1
|
Palos-Fernández R, Aguilar-Pontes MV, Puebla-Planas G, Berger H, Studt-Reinhold L, Strauss J, Di Pietro A, López-Berges MS. Copper acquisition is essential for plant colonization and virulence in a root-infecting vascular wilt fungus. PLoS Pathog 2024; 20:e1012671. [PMID: 39495784 PMCID: PMC11563359 DOI: 10.1371/journal.ppat.1012671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Plant pathogenic fungi provoke devastating agricultural losses and are difficult to control. How these organisms acquire micronutrients during growth in the host environment remains poorly understood. Here we show that efficient regulation of copper acquisition mechanisms is crucial for plant colonization and virulence in the soilborne ascomycete Fusarium oxysporum, the causal agent of vascular wilt disease in more than 150 different crops. Using a combination of RNA-seq and ChIP-seq, we establish a direct role of the transcriptional regulator Mac1 in activation of copper deficiency response genes, many of which are induced during plant infection. Loss of Mac1 impaired growth of F. oxysporum under low copper conditions and abolishes pathogenicity on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, overexpression of two Mac1 target genes encoding a copper reductase and a copper transporter was sufficient to restore virulence in the mac1 mutant background. Our results establish a previously unrecognized role of copper reduction and uptake in fungal infection of plants and reveal new ways to protect crops from phytopathogens.
Collapse
Affiliation(s)
- Rafael Palos-Fernández
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Victoria Aguilar-Pontes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Gema Puebla-Planas
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Sánchez López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
2
|
Calvo AM, Dabholkar A, Wyman EM, Lohmar JM, Cary JW. Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis. Appl Environ Microbiol 2024; 90:e0081924. [PMID: 39230285 PMCID: PMC11497805 DOI: 10.1128/aem.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Velvet proteins, as well as the epigenetic regulator LaeA, are conserved in numerous fungal species, where, in response to environmental cues, they control several crucial cellular processes, including sexual and asexual morphogenesis, secondary metabolism, response to oxidative stress, and virulence. During the last two decades, knowledge of their mechanism of action as well as understanding their functional roles, has greatly increased, particularly in Aspergillus species. Research efforts from multiple groups followed, leading to the characterization of other Velvet and LaeA homologs in species of other fungal genera, including important opportunistic plant and animal pathogens. This review focuses mainly on the current knowledge of the role of Velvet and LaeA function in fungal pathogenesis. Velvet proteins and LaeA are unique to fungi, and for this reason, additional knowledge of these critical regulatory proteins will be important in the development of targeted control strategies to decrease the detrimental impact of fungal pathogens capable of causing disease in plants and animals.
Collapse
Affiliation(s)
- Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Apoorva Dabholkar
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Elizabeth M. Wyman
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jessica M. Lohmar
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, USDA/ARS, Southern Regional Research Center, New Orleans, Louisiana, USA
| |
Collapse
|
3
|
Rodríguez-Sánchez B, Arias-Lotto F, Santos-Sebastián MM, Campos-Domínguez M. Angioinvasive Fusariosis with Cutaneous Manifestations After Hematopoietic Stem Cell Transplantation. ACTAS DERMO-SIFILIOGRAFICAS 2024:S0001-7310(24)00783-X. [PMID: 39413906 DOI: 10.1016/j.ad.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 10/18/2024] Open
Affiliation(s)
- B Rodríguez-Sánchez
- Servicio de Dermatología, Hospital General Universitario Gregorio Marañón, Madrid, España.
| | - F Arias-Lotto
- Servicio de Anatomía Patológica, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - M M Santos-Sebastián
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - M Campos-Domínguez
- Servicio de Dermatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
4
|
Kaur M, Thakur P, Verma N, Choksket S, Harshvardhan, Korpole S, Bandarupalli D, Grover V. Invasive Fungal Infections in Immunocompromised Conditions: Emphasis on COVID-19. Curr Microbiol 2024; 81:400. [PMID: 39384659 DOI: 10.1007/s00284-024-03916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024]
Abstract
The COVID-19 pandemic caused death of 6 million lives globally, primarily from respiratory failure, but also a significant number from invasive fungal co-infections in these patients, owing to the immune dysfunction in hospitalized patients. Such complications occurred more often in critically ill, hospitalized patients particularly those admitted in intensive care units and were reported as the major reason associated with a high mortality rate worldwide. Fungal pathogens most commonly associated with COVID-19 patients comprise members of the Mucorales (such as Rhizopus, Mucor, and Lichtheimia), as well as genera Aspergillus and Candida. In India, the prevalence rate of mucormycosis is relatively high than aspergillosis and candidiasis, and the predisposing risk factors associated with such infections included uncontrolled diabetes, underlying lung disease, leukopenia, neutropenia, malignancies and prolonged steroid therapy. However, co-infection with other fungi, including Alternaria and Scedosporium was also sporadically reported. These devastating invasive fungal infections are associated with differential mortality (high-low) and morbidity rates even after active management. The diagnosis of such infections is often challenging due to lack of sensitivity in contemporary diagnostic methods and poses an enormous challenge to healthcare experts. Thus, the role of early and accurate diagnosis, and management of such fungal infections, is vital in preventing life-threatening situations. Hence, this review focusses primarily on the epidemiology, predisposing risk factors, host environment, diagnosis and treatment of the most common medically important invasive fungal infections in immunocompromised conditions associated with COVID-19.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Payal Thakur
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Nandini Verma
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Stanzin Choksket
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Harshvardhan
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devadatha Bandarupalli
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vishakha Grover
- Dr. HS Judge Institute of Dental Sciences and Hospital, Panjab University, Sector 25, Chandigarh, India.
| |
Collapse
|
5
|
Liu F, Chen Y, Huang Y, Jin Q, Ji J. Nanomaterial-based therapeutics for enhanced antifungal therapy. J Mater Chem B 2024; 12:9173-9198. [PMID: 39192670 DOI: 10.1039/d4tb01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The application of nanotechnology in antifungal therapy is gaining increasing attention. Current antifungal drugs have significant limitations, such as severe side effects, low bioavailability, and the rapid development of resistance. Nanotechnology offers an innovative solution to address these issues. This review discusses three key strategies of nanotechnology to enhance antifungal efficacy. Firstly, nanomaterials can enhance their interaction with fungal cells via ingenious surface tailoring of nanomaterials. Effective adhesion of nanoparticles to fungal cells can be achieved by electrostatic interaction or specific targeting to the fungal cell wall and cell membrane. Secondly, stimuli-responsive nanomaterials are developed to realize smart release of drugs in the specific microenvironment of pathological tissues, such as the fungal biofilm microenvironment and inflammatory microenvironment. Thirdly, nanomaterials can be designed to cross different physiological barriers, effectively addressing challenges posed by skin, corneal, and blood-brain barriers. Additionally, some new nanomaterial-based strategies in treating fungal infections are discussed, including the development of fungal vaccines, modulation of macrophage activity, phage therapy, the application of high-throughput screening in drug discovery, and so on. Despite the challenges faced in applying nanotechnology to antifungal therapy, its significant potential and innovation open new possibilities for future clinical antifungal applications.
Collapse
Affiliation(s)
- Fang Liu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, China
| |
Collapse
|
6
|
Khangembam VC, Thakuria D, Tandel RS, Pant V, Pandey N, Pandey PK. Identification and antifungal sensitivity of Fusarium species isolated from piscine hosts. DISEASES OF AQUATIC ORGANISMS 2024; 159:117-126. [PMID: 39206606 DOI: 10.3354/dao03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fusarium is a huge genus of filamentous fungi that has the potential to cause emerging diseases. Members of this genus can cause infections in plants, animals and humans. Here, we report the isolation of F. oxysporum and F. equiseti from 2 important fish species, Oncorhynchus mykiss (rainbow trout) and Tor putitora (golden mahseer), respectively. F. oxysporum has emerged as a significant fungal pathogen causing infection in many fish. However, F. equiseti has been isolated mainly from plants. As far as the available literatures are concerned, this is the first report on the isolation of F. oxysporum and F. equiseti from these hosts. The isolates were identified based on growth morphology and microscopic observation. F. oxysporum produced violet pigmentation on potato dextrose agar, while F. equiseti had yellow colouration. F. oxysporum produced 1- to 2-celled microconidia along with straight or curved macroconidia having 3 to 4 septa. F. equiseti produced abundant macroconidia with 4 or more septa. Species were further confirmed based on the nucleotide sequences of the internal transcribed spacer region. In a molecular phylogeny analysis, F. oxysporum and F. equiseti formed 2 different clades. In an antifungal sensitivity assay, F. oxysporum was found to be susceptible to clotrimazole with a minimum inhibitory concentration of 1.0 µg ml-1, whereas F. equiseti was susceptible to clotrimazole, ketoconazole and fluconazole. Overall, the main findings of this study are the infection of new hosts by Fusarium species and the limited activity of many antifungal drugs against these pathogens.
Collapse
Affiliation(s)
| | - Dimpal Thakuria
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand 263136, India
| | - Ritesh Shantilal Tandel
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand 263136, India
| | - Vinita Pant
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand 263136, India
| | - Nityanand Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand 263136, India
| | - Pramod Kumar Pandey
- ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital, Uttarakhand 263136, India
| |
Collapse
|
7
|
Mirmajlessi M, Najdabbasi N, Sigillo L, Haesaert G. An implementation framework for evaluating the biocidal potential of essential oils in controlling Fusarium wilt in spinach: from in vitro to in planta. FRONTIERS IN PLANT SCIENCE 2024; 15:1444195. [PMID: 39239191 PMCID: PMC11376204 DOI: 10.3389/fpls.2024.1444195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024]
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. spinaciae, causes a significant challenge on vegetative spinach and seed production. Addressing this issue necessitates continuous research focused on innovative treatments and protocols through comprehensive bioassays. Recent studies have highlighted the potential of plant-based compounds in controlling fungal diseases. The present work aims to conduct a series of experiments, encompassing both in vitro and in planta assessments, to investigate the biocontrol capabilities of different essential oils (EOs) at various application rates, with the ultimate goal of reducing the incidence of Fusarium wilt in spinach. The inhibitory effect of four plant EOs (marjoram, thyme, oregano, and tea tree) was initially assessed on the spore germination of five unknown Fusarium strains. The outcomes revealed diverse sensitivities of Fusarium strains to EOs, with thyme exhibiting the broadest inhibition, followed by oregano at the highest concentration (6.66 μL/mL) in most strains. The tested compounds displayed a diverse range of median effective dose (ED50) values (0.69 to 7.53 µL/mL), with thyme and oregano consistently showing lower ED50 values. The direct and indirect inhibitory impact of these compounds on Fusarium mycelial growth ranged from ~14% to ~100%, wherein thyme and oregano consistently exhibiting the highest effectiveness. Following the results of five distinct inoculation approaches and molecular identification, the highly pathogenic strain F-17536 (F. oxysporum f.sp. spinaciae) was chosen for Fusarium wilt assessment in spinach seedlings, employing two promising EO candidates through seed and soil treatments. Our findings indicate that colonized grain (CG) proved to be a convenient and optimal inoculation method for consistent Fusarium wilt assessment under greenhouse conditions. Seed treatments with thyme and oregano EOs consistently resulted in significantly better disease reduction rates, approximately 54% and 36% respectively, compared to soil treatments (P > 0.05). Notably, thyme, applied at 6.66 µL/mL, exhibited a favorable emergence rate (ERI), exceeding seven, in both treatments, emphasizing its potential for effective disease control in spinach seedlings without inducing phytotoxic effects. This study successfully transitions from in vitro to in planta experiments, highlighting the potential incorporation of EOs into integrated disease management for Fusarium wilt in spinach production.
Collapse
Affiliation(s)
- Mahyar Mirmajlessi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Neda Najdabbasi
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| | - Loredana Sigillo
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Geert Haesaert
- Department of Plants and Crops, Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium
| |
Collapse
|
8
|
Zhao CS, Wai K, Koo EB, Rahimy E, Mruthyunjaya P, Mahajan VB, DeBoer CMT. Endogenous Fusarium Endophthalmitis after Bone Marrow Transplant: A Case Report and Literature Review. Vision (Basel) 2024; 8:44. [PMID: 39051230 PMCID: PMC11270371 DOI: 10.3390/vision8030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
PURPOSE We aim to present a case of disseminated fusariosis that occurred in the setting of immunosuppression and presented with bilateral endogenous endophthalmitis, along with a literature review of Fusarium endophthalmitis, highlighting management strategies. OBSERVATION A 70-year-old male with acute myeloid leukemia who had recently undergone a bone marrow transplant noted bilateral floaters and decreased vision. He was found to have bilateral Fusarium endophthalmitis, with subsequent evidence of fungemia and fusariosis in his skin and joints. Despite aggressive local and systemic treatment, he succumbed to the disease. Endophthalmitis was initially stabilized with pars plana vitrectomy and intravitreal amphotericin and voriconazole until the patient transitioned to comfort measures. A review of 31 cases demonstrates that outcomes are poor and that the disease must be treated aggressively, often both systemically and surgically. CONCLUSION This case highlights the recalcitrance of Fusarium bacteremia and Fusarium endophthalmitis.
Collapse
Affiliation(s)
- Cindy S. Zhao
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Karen Wai
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Eubee B. Koo
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Ehsan Rahimy
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
- Department of Ophthalmology, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | - Prithvi Mruthyunjaya
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
| | - Vinit B. Mahajan
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94303, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Charles M. T. DeBoer
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA 94303, USA
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA 94303, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Ling J, Liang L, Liu X, Wu W, Yan Z, Zhou W, Jiang Y, Kuang L. Invasive Fusarium solani infection diagnosed by traditional microbial detection methods and metagenomic next-generation sequencing in a pediatric patient: a case report and literature review. Front Med (Lausanne) 2024; 11:1322700. [PMID: 39040893 PMCID: PMC11260673 DOI: 10.3389/fmed.2024.1322700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fusarium solani, as an opportunistic pathogen, can infect individuals with immunosuppression, neutropenia, hematopoietic stem cell transplantation (HSCT), or other high-risk factors, leading to invasive or localized infections. Particularly in patients following allogeneic HSCT, Fusarium solani is more likely to cause invasive or disseminated infections. This study focuses on a pediatric patient who underwent HSCT for severe aplastic anemia. Although initial blood cultures were negative, an abnormality was detected in the 1,3-β-D-glucan test (G test) post-transplantation. To determine the causative agent, blood samples were subjected to metagenomic next-generation sequencing (mNGS) and blood cultures simultaneously. Surprisingly, the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and mNGS differed slightly, with mNGS identifying Nectria haematonectria, while MALDI-TOF MS based on culture showed Fusarium solani. To clarify the results, Sanger sequencing was performed for further detection, and the results were consistent with those of MALDI-TOF MS. Since the accuracy of Sanger sequencing is higher than that of mNGS, the diagnosis was revised to invasive Fusarium solani infection. With advancements in technology, various detection methods for invasive fungi have been developed in recent years, such as mNGS, which has high sensitivity. While traditional methods may be time-consuming, they are important due to their high specificity. Therefore, in clinical practice, it is essential to utilize both traditional and novel detection methods in a complementary manner to enhance the diagnosis of invasive fungal infections.
Collapse
Affiliation(s)
- Jiaji Ling
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Liting Liang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xingxin Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wenjing Wu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Linghan Kuang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
10
|
Cortés-López PN, Guzmán-Montijo E, Fuentes-Venado CE, Arenas R, Bonifaz A, Pinto-Almazán R, Martínez-Herrera E. Cutaneous fusarium disease and leukaemias: A systematic review. Mycoses 2024; 67:e13759. [PMID: 39012211 DOI: 10.1111/myc.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
The present study analyses the clinical characteristics of patients diagnosed with cutaneous fusarium through a systematic review of cases reported in literature. A total of 39 cases were included, of which 53% were men, 30% were women, and in 17% the sex was not specified. The age ranged from 5 to 85 years. Most cases were reported in Brazil, followed by Japan and United States of America. The most common agent was Fusarium solani, in 37.5% of the patients. Most of the affected individuals had acute myeloid leukaemia and some of the predisposing factors, which included induction chemotherapy, febrile neutropenia, and bone marrow transplantation. The clinical topography of the lesions was located in 27.5% and disseminated in 72.5%, with the most observed clinical feature outstanding the presence of papules and nodules with central necrosis in 47% of the cases. Longer survival was demonstrated in those treated with more than three antifungals. It is concluded that cutaneous fusarium is a complex and challenging clinical entity, infection in patients with leukaemias underscores the need for thorough care to decrease morbidity and mortality.
Collapse
Affiliation(s)
- Paulina Nundehui Cortés-López
- Sección de Micología, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Claudia Erika Fuentes-Venado
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, Mexico
- Servicio de Medicina Física y Rehabilitación, Hospital General de Zona No 197, Texcoco, Mexico
| | - Roberto Arenas
- Sección de Micología, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
| | - Alexandro Bonifaz
- Servicio de Dermatología, Hospital General de México "Dr. Eduardo Liceaga", Cuauhtémoc, Ciudad de México, Mexico
- Departamento de Micología, Hospital General de México "Dr. Eduardo Liceaga", Cuauhtémoc, Ciudad de México, Mexico
| | - Rodolfo Pinto-Almazán
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, Mexico
- Fundación Vithas, Grupo Hospitalario Vithas, Madrid, Spain
| | - Erick Martínez-Herrera
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México, Mexico
- Fundación Vithas, Grupo Hospitalario Vithas, Madrid, Spain
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IISGS), Servizo Galego de Saúde-Universidade de Vigo (UVIGO), Vigo, Spain
| |
Collapse
|
11
|
Stanković M, Skaro Bogojevic S, Kljun J, Milanović Ž, Stevanović NL, Lazic J, Vojnovic S, Turel I, Djuran MI, Glišić BĐ. Silver(I) complexes with voriconazole as promising anti-Candida agents. J Inorg Biochem 2024; 256:112572. [PMID: 38691971 DOI: 10.1016/j.jinorgbio.2024.112572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Recognizing that metal ions play an important role in modifying the pharmacological properties of known organic-based drugs, the present manuscript addresses the complexation of the antifungal agent voriconazole (vcz) with the biologically relevant silver(I) ion as a strategy for the development of new antimycotics. The synthesized silver(I) complexes with vcz were characterized by mass spectrometry, IR, UV-Vis and NMR spectroscopy and single-crystal X-ray diffraction analysis. The crystallographic results showed that complexes {[Ag(vcz)(H2O)]CH3SO3}n (1), {[Ag(vcz)2]BF4}n (2) and {[Ag(vcz)2]PF6}n (3) have polymeric structures in the solid state, in which silver(I) ions have a distorted tetrahedral geometry. On the other hand, DFT calculations revealed that the investigated silver(I) complexes 1-3 in DMSO exist as linear [Ag(vcz-N2)(vcz-N19)]+ (1a), [Ag(vcz-N2)(vcz-N4)]+ (2a) and [Ag(vcz-N4)2]+ (3a) species, respectively. The evaluated complexes showed an enhanced anti-Candida activity compared to the parent drug with minimal inhibitory concentration (MIC) values in the range of 0.02-1.05 μM. In comparison with vcz, the corresponding silver(I) complexes showed better activity in prevention hyphae and biofilm formation of C. albicans, indicating that they could be considered as promising agents against Candida that significantly inhibit its virulence. Also, these complexes are much better inhibitors of ergosterol synthesis in the cell membrane of C. albicans at the concentration of 0.5 × MIC. This is also confirmed by a molecular docking, which revealed that complexes 1a - 3a showed better inhibitory activity than vcz against the sterol 14α-demethylase enzyme cytochrome P450 (CYP51B), which plays a crucial role in the formation of ergosterol.
Collapse
Affiliation(s)
- Mia Stanković
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Skaro Bogojevic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jakob Kljun
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Žiko Milanović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Nevena Lj Stevanović
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Jelena Lazic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Sandra Vojnovic
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Iztok Turel
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| | - Miloš I Djuran
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia.
| | - Biljana Đ Glišić
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| |
Collapse
|
12
|
Marinelli T, Kim HY, Halliday CL, Garnham K, Bupha-Intr O, Dao A, Morris AJ, Alastruey-Izquierdo A, Colombo A, Rickerts V, Perfect J, Denning DW, Nucci M, Hamers RL, Cassini A, Oladele R, Sorrell TC, Ramon-Pardo P, Fusire T, Chiller TM, Wahyuningsih R, Forastiero A, Al-Nuseirat A, Beyer P, Gigante V, Beardsley J, Sati H, Alffenaar JW, Morrissey CO. Fusarium species,Scedosporium species, and Lomentospora prolificans: A systematic review to inform the World Health Organization priority list of fungal pathogens. Med Mycol 2024; 62:myad128. [PMID: 38935914 PMCID: PMC11210614 DOI: 10.1093/mmy/myad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 06/29/2024] Open
Abstract
Recognizing the growing global burden of fungal infections, the World Health Organization established a process to develop a priority list of fungal pathogens (FPPL). In this systematic review, we aimed to evaluate the epidemiology and impact of infections caused by Fusarium spp., Scedosporium spp., and Lomentospora prolificans to inform the first FPPL. PubMed and Web of Sciences databases were searched to identify studies published between January 1, 2011 and February 23, 2021, reporting on mortality, complications and sequelae, antifungal susceptibility, preventability, annual incidence, and trends. Overall, 20, 11, and 9 articles were included for Fusarium spp., Scedosporium spp., and L. prolificans, respectively. Mortality rates were high in those with invasive fusariosis, scedosporiosis, and lomentosporiosis (42.9%-66.7%, 42.4%-46.9%, and 50.0%-71.4%, respectively). Antifungal susceptibility data, based on small isolate numbers, showed high minimum inhibitory concentrations (MIC)/minimum effective concentrations for most currently available antifungal agents. The median/mode MIC for itraconazole and isavuconazole were ≥16 mg/l for all three pathogens. Based on limited data, these fungi are emerging. Invasive fusariosis increased from 0.08 cases/100 000 admissions to 0.22 cases/100 000 admissions over the time periods of 2000-2009 and 2010-2015, respectively, and in lung transplant recipients, Scedosporium spp. and L. prolificans were only detected from 2014 onwards. Global surveillance to better delineate antifungal susceptibility, risk factors, sequelae, and outcomes is required.
Collapse
Affiliation(s)
- Tina Marinelli
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Katherine Garnham
- Department of Infectious Diseases and Microbiology, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Olivia Bupha-Intr
- Department of Infection Services, Wellington Regional Hospital, Wellington, New Zealand
| | - Aiken Dao
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- Children’s Hospital at Westmead, Westmead, New South Wales, Australia
| | - Arthur J Morris
- Department of Clinical Microbiology, Auckland City Hospital, Grafton, Auckland, New Zealand
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Arnaldo Colombo
- Departamento de Medicina, Division of Infectious Diseases, Hospital São Paulo, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - John Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, North Carolina, USA
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Marcio Nucci
- Universidade Federal do Rio de Janeiro and Grupo Oncoclinicas, Rio de Janeiro, Brazil
| | - Raph L Hamers
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alessandro Cassini
- Infectious Diseases Service, Lausanne University Hospital, Lausanne, Switzerland
- Public Health Department, Lausanne, Switzerland
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Tania C Sorrell
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - Pilar Ramon-Pardo
- Department of Communicable Diseases Prevention, Control and Elimination, Pan American Health Organization, Washington, District of Columbia, USA
| | - Terence Fusire
- South East Asia Region Office, World Health Organization, New Delhi, India
| | - Tom M Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Kristen, Jakarta, Indonesia
| | - Agustina Forastiero
- Department of Communicable Diseases Prevention, Control and Elimination, Pan American Health Organization, Washington, District of Columbia, USA
| | - Adi Al-Nuseirat
- Department of Health Systems, World Health Organization, Regional Office of the Eastern Mediterranean, Cairo, Egypt
| | - Peter Beyer
- Global Antibiotics Research and Development Partnership, Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Valeria Gigante
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Justin Beardsley
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva, Switzerland
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, New South Wales, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, New South Wales, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Petrikkos L, Kourti M, Stathi A, Antoniadi K, Ampatzidou M, Stefanaki K, Zachariadou L, Iosifidis E, Roilides E, Polychronopoulou S. Successful Treatment of Disseminated Fusariosis in a 15-Month-Old Boy With Refractory Acute Lymphoblastic Leukemia Using High-Dose Voriconazole. Pediatr Infect Dis J 2024:00006454-990000000-00914. [PMID: 38916910 DOI: 10.1097/inf.0000000000004451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Infections due to rare molds, such as Fusarium spp., cause severe and difficult-to-control diseases with increasing frequency. Data on fusariosis in children and on the use of voriconazole (VCZ), considered a drug of choice, are scarce in infants and children <2 years of age. CASE PRESENTATION We present the first, to our knowledge, pediatric case of disseminated mycosis due to Fusarium musae in a 15-month-old boy with relapsed/refractory acute lymphoblastic leukemia, diagnostics and outcome. Herein, at this severely immunocompromised patient, after prompt diagnosis, disseminated fusariosis was successfully treated with high-dose VCZ at a final dose of 15 mg/kg of body weight twice a day. This occurred by achieving adequate drug exposures as determined by drug susceptibility testing and followed by therapeutic drug monitoring without observed toxicity. CONCLUSIONS Appropriate diagnostic approach and timely administration of optimal antifungal therapy with VCZ were important for the successful treatment of disseminated fusariosis. Therapeutic drug monitoring, especially in <2-year-old children, is necessary to achieve sufficient drug exposure for optimal therapeutic response without toxicity.
Collapse
Affiliation(s)
- Loizos Petrikkos
- From the Department of Pediatric Hematology-Oncology (T.A.O.), "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Maria Kourti
- Infectious Diseases Unit, Third Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Angeliki Stathi
- Department of Microbiology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Kondilia Antoniadi
- From the Department of Pediatric Hematology-Oncology (T.A.O.), "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Mirella Ampatzidou
- From the Department of Pediatric Hematology-Oncology (T.A.O.), "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Kalliopi Stefanaki
- Department of Pathology, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | - Elias Iosifidis
- Infectious Diseases Unit, Third Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, Third Department of Pediatrics, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Sophia Polychronopoulou
- From the Department of Pediatric Hematology-Oncology (T.A.O.), "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Barrios EL, Drabick Z, Rodriguez J, Fahy BG, Cochran AL, Driscoll IR, Munden AM. Precision Medicine Approach Using Triple Combination Antifungal Therapy for Fusarium Brain Abscesses and Endocarditis in an Adult Burn Patient. Mil Med 2024:usae284. [PMID: 38836840 DOI: 10.1093/milmed/usae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
We report a management strategy for disseminated Fusarium solani fungal infection in an adult 35% total body surface area burn patient with brain abscesses and concomitant pulmonic valve endocarditis resulting in the longest survival reported in a burn patient. Early in his hospital course, the patient was diagnosed with a Fusarium burn wound infection with concomitant fungemia and was treated with a prolonged course of intravenous (IV) antifungal monotherapy. Shortly thereafter, he developed focal neurologic deficits and was found to have brain abscesses on MRI. He underwent emergent craniotomy with debridement, and triple antifungal therapy was initiated. Transesophageal echocardiography demonstrated pulmonic valve vegetations, which resolved with triple antifungal therapy. Disseminated Fusarium solani infection is quite rare with mortality approaching 100%. Given the rarity of this disease process, there are no established antifungal treatment guidelines. However, this patient survived for approximately 1 year after diagnosis with treatment including source control via craniotomy and debridement coupled with prolonged courses of combination antifungal therapy (given the near pan-resistance of his fungal infection). Pharmacogenomic testing was utilized to establish the patient's metabolism of voriconazole and dosing adjusted accordingly to improve the efficacy of the combination therapy. To our knowledge, an adult burn patient surviving this length of time after Fusarium brain abscesses with disseminated infection has not been previously described.
Collapse
Affiliation(s)
- Evan L Barrios
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610-0108, USA
| | - Zachary Drabick
- Department of Pharmacy, UF Health Shands Hospital, Gainesville, FL 32608, USA
| | - John Rodriguez
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610-0108, USA
| | - Brenda G Fahy
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL 32610-0254, USA
| | - Amalia L Cochran
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610-0108, USA
| | - Ian R Driscoll
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610-0108, USA
| | - Andrea M Munden
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610-0108, USA
| |
Collapse
|
15
|
Carlesse F, Paixão de Sousa da Silva AM, Sztajnbok J, Litivinov N, Peron K, Otsuka M, Volpe Arnoni M, Schirmer M, de Oliveira Costa P, Munhoz Cavalcanti de Albuquerque AL, Morales H, Lopez-Medina E, A. Portilla C, Valenzuela R, Motta F, Motta FA, de Almeida Junior JN, Santolaya ME, Lopes Colombo A. Landscape of Invasive Fusariosis in Pediatric Cancer Patients: Results of a Multicenter Observational Study From Latin America. Open Forum Infect Dis 2024; 11:ofae285. [PMID: 38872851 PMCID: PMC11170500 DOI: 10.1093/ofid/ofae285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Invasive fusariosis (IF) is a life-threatening opportunistic infection that affects vulnerable hosts. We conducted a multicenter and multinational retrospective study to characterize the natural history and clinical management of IF in pediatric cancer patients. We selected patients <18 years old who were sequentially hospitalized in 10 Latin American medical centers with a diagnosis of IF between 2002 and 2021. Data were collected using an electronic case report form complemented by a dictionary of terms. We assessed mortality rates at 30, 60, and 90 days. We collected data from 60 episodes of IF (median age, 9.8 years) that were mostly documented in patients with hematologic cancer (70%). Other risk conditions found were lymphopenia (80%), neutropenia (76.7%), and corticosteroid exposure (63.3%). IF was disseminated in 55.6% of patients. Skin lesions was present in 58.3% of our patients, followed by pulmonary involvement in 55%, sinusitis in 21.7%, bone/joint involvement in 6.7% and 1 case each of endocarditis and brain abscess. Positive blood and skin biopsy cultures were detected in 60% and 48.3% of cases, respectively. Fusarium solani complex was the most commonly identified agent (66.6%). The majority of patients received monotherapy within the first 72 hours (71.6%), either with voriconazole or amphotericin B formulation. The mortality rates at 30, 60, and 90 days were 35%, 41.6%, and 45%, respectively. An important factor affecting mortality rates appears to be disseminated disease. The high percentage of patients with fungal involvement in multiple organs and systems highlights the need for extensive workup for additional sites of infection in severely immunocompromised children.
Collapse
Affiliation(s)
- Fabianne Carlesse
- Instituto de Oncologia Pediátrica—IOP-GRAACC-UNIFESP, Departamento de Pediatria, São Paulo, Brazil
- Departamento de Pediatria, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Jaques Sztajnbok
- Instituto de Tratamento do Cancer Infantil (ITACI), Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Infectologia Emilio Ribas, Intensive Care Unit, Department of Emergency Medical Care, São Paulo, Brazil
| | - Nadia Litivinov
- Instituto de Tratamento do Cancer Infantil (ITACI), Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Karina Peron
- Instituto de Tratamento do Cancer Infantil (ITACI), Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Marcelo Schirmer
- Instituto Nacional do Cancer—INCA, Department of Pediatrics, Rio de Janeiro, Brazil
| | | | | | - Hugo Morales
- Hospital Erasto Gaertner, Department of Pediatrics, Curitiba, Brazil
| | - Eduardo Lopez-Medina
- Centro de Estudios en Infectología Pediátrica CEIP, Department of Pediatrics, Universidad del Valle, Clínica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Carlos A. Portilla
- Centro de Estudios en Infectología Pediátrica CEIP, Department of Pediatrics, Universidad del Valle, Clínica Imbanaco, Grupo Quironsalud, Cali, Colombia
| | - Romina Valenzuela
- Faculty of Medicine, Hospital Dr Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Fabrizio Motta
- Santa Casa de Misericórdia de Porto Alegre, Department of Pediatrics, Porto Alegre, Brazil
| | | | - João Nobrega de Almeida Junior
- Departamento de Medicina- Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), Departamento de Medicina, UNIFESP, São Paulo, Brazil
| | - Maria Elena Santolaya
- Faculty of Medicine, Hospital Dr Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Arnaldo Lopes Colombo
- Departamento de Medicina- Escola Paulista de Medicina, Universidade Federal de São Paulo-UNIFESP, São Paulo, Brazil
- Antimicrobial Resistance Institute of São Paulo (ARIES), Departamento de Medicina, UNIFESP, São Paulo, Brazil
| |
Collapse
|
16
|
Di R, Zhu L, Huang Z, Lu M, Yin L, Wang C, Bao Y, Duan Z, Powell CA, Hu Q, Zhang J, Zhang M, Yao W. Fusarium sacchari FsNis1 induces plant immunity. Gene 2024; 907:148260. [PMID: 38342252 DOI: 10.1016/j.gene.2024.148260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Pokkah Boeng disease (PBD), caused by Fusarium sacchari, severely affects sugarcane yield and quality. Necrosis-inducing secreted protein 1 (Nis1) is a fungal secreted effector that induces necrotic lesions in plants. It interacts with host receptor-like kinases and inhibits their kinase activity. FsNis1 contains the Nis1 structure and triggered a pathogen-associated molecular pattern-triggered immune response in Nicotiana benthamiana, as reflected by causing reactive oxygen species production, callose accumulation, and the upregulated expression of defense response genes. Knockout of this gene in F. sacchari revealed a significant reduction in its pathogenicity, whereas the pathogenicity of the complementary mutant recovered to the wild-type levels, making this gene an important virulence factor for F. sacchari. In addition, the signal peptide of FsNis1 was required for the induction of cell death and PTI response in N. benthamiana. Thus, FsNis1 may not only be a key virulence factor for F. sacchari but may also induce defense responses in plants. These findings provide new insights into the function of Nis1 in host-pathogen interactions.
Collapse
Affiliation(s)
- Ruolin Di
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Lixiang Zhu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Minyan Lu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Liuyu Yin
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | | | - Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China.
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA.
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning 530005, China; IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA.
| |
Collapse
|
17
|
Chen H, Liu W, Coker OO, Qin N, Chen H, Wang Y, Liu X, Zhang L, Choi GY, Wong WT, Leung CC, Ling L, Hui M, Gin T, Wong SH, Chan MTV, Wu WKK. Blood microbial signatures associated with mortality in patients with sepsis: A pilot study. Heliyon 2024; 10:e29572. [PMID: 38699748 PMCID: PMC11063401 DOI: 10.1016/j.heliyon.2024.e29572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Sepsis is a life-threatening illness caused by the dysregulated host response to infection. Nevertheless, our current knowledge of the microbial landscape in the blood of septic patients is still limited. Next-generation sequencing (NGS) is a sensitive method to quantitatively characterize microbiomes at various sites of the human body. In this study, we analyzed the blood microbial DNA of 22 adult patients with sepsis and 3 healthy subjects. The presence of non-human DNA was identified in both healthy and septic subjects. Septic patients had a markedly altered microbial DNA profile compared to healthy subjects over α- and β-diversity. Unexpectedly, the patients could be further divided into two subgroups (C1 and C2) based on β-diversity analysis. C1 patients showed much higher bacteria, viruses, fungi, and archaea abundance, and a higher level of α-diversity (Chao1, Observed and Shannon index) than both C2 patients and healthy subjects. The most striking difference was seen in the case of Streptomyces violaceusniger, Phenylobacterium sp. HYN0004, Caulobacter flavus, Streptomyces sp. 11-1-2, and Phenylobacterium zucineum, the abundance of which was the highest in the C1 group. Notably, C1 patients had a significantly poorer outcome than C2 patients. Moreover, by analyzing the patterns of microbe-microbe interactions in healthy and septic subjects, we revealed that C1 and C2 patients exhibited distinct co-occurrence and co-exclusion relationships. Together, our study uncovered two distinct microbial signatures in the blood of septic patients. Compositional and ecological analysis of blood microbial DNA may thus be useful in predicting mortality of septic patients.
Collapse
Affiliation(s)
- Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Olabisi Oluwabukola Coker
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Na Qin
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifei Wang
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Gordon Y.S. Choi
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Tat Wong
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Czarina C.H. Leung
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Lowell Ling
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Mamie Hui
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Hei Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, Singapore
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
18
|
Ríos-López AL, Dávila-Aviña J, González GM, Flores-Maldonado O. Antifungal and Antivirulence Activity of Vanillin and Tannic Acid Against Aspergillus fumigatus and Fusarium solani. Curr Microbiol 2024; 81:156. [PMID: 38656548 DOI: 10.1007/s00284-024-03678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.
Collapse
Affiliation(s)
- Ana L Ríos-López
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Jorge Dávila-Aviña
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas, Nuevo León, Mexico
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Nuevo León, Mexico
| | - Orlando Flores-Maldonado
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
19
|
Ledoux MP, Dicop E, Sabou M, Letscher-Bru V, Castelain V, Danion F, Herbrecht R. Fusarium, Scedosporium and Other Rare Mold Invasive Infections: Over Twenty-Five-Year Experience of a European Tertiary-Care Center. J Fungi (Basel) 2024; 10:289. [PMID: 38667960 PMCID: PMC11051493 DOI: 10.3390/jof10040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Invasive mold infections (IMD) are an emerging concern due to the growing prevalence of patients at risk, encompassing but not limited to allogeneic hematopoietic stem cell transplant recipients, hematological malignancies patients, solid organ transplant recipients and intensive care unit patients. In contrast with invasive aspergillosis and mucormycosis, other hyalohyphomycoses and phaeohyphomycoses remain poorly known. We conducted a retrospective analysis of the clinical, biological, microbiological and evolutive features of 92 IMD having occurred in patients in our tertiary-care center over more than 25 years. A quarter of these infections were due to multiple molds. Molds involved were Fusarium spp. (36.2% of IMD with a single agent, 43.5% of IMD with multiple agents), followed by Scedosporium spp. (respectively 14.5% and 26.1%) and Alternaria spp. (respectively 13.0% and 8.7%). Mortality at day 84 was higher for Fusarium spp., Scedosporium spp. or multiple pathogens IMD compared with Alternaria or other pathogens (51.7% vs. 17.6%, p < 0.05). Mortality at day 84 was also influenced by host factor: higher among hematology and alloHSCT patients than in other patients (30.6% vs. 20.9% at day 42 and 50.0% vs. 27.9% at day 84, p = 0.041). Better awareness, understanding and treatments are awaited to improve patient prognosis.
Collapse
Affiliation(s)
- Marie-Pierre Ledoux
- Department of Hematology, Institut de Cancérologie de Strasbourg, 67033 Strasbourg, France
| | - Elise Dicop
- Clinics of Oncology, Elsan, 67000 Strasbourg, France
| | - Marcela Sabou
- Laboratoire de Parasitologie et Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut de Parasitologie et de Pathologie Tropicale, UR 3073 Pathogens-Host-Arthropods-Vectors Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Valérie Letscher-Bru
- Laboratoire de Parasitologie et Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut de Parasitologie et de Pathologie Tropicale, UR 3073 Pathogens-Host-Arthropods-Vectors Interactions, Université de Strasbourg, 67000 Strasbourg, France
| | - Vincent Castelain
- Intensive Care Unit, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - François Danion
- Department of Infectious Diseases, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- INSERM UMR-S1109, 67000 Strasbourg, France
| | - Raoul Herbrecht
- Department of Hematology, Institut de Cancérologie de Strasbourg, 67033 Strasbourg, France
| |
Collapse
|
20
|
Niu X, Al-Hatmi AMS, Vitale RG, Lackner M, Ahmed SA, Verweij PE, Kang Y, de Hoog S. Evolutionary trends in antifungal resistance: a meta-analysis. Microbiol Spectr 2024; 12:e0212723. [PMID: 38445857 PMCID: PMC10986544 DOI: 10.1128/spectrum.02127-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
The present paper includes a meta-analysis of literature data on 318 species of fungi belonging to 34 orders in their response to 8 antifungal agents (amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole, posaconazole, terbinafine, and voriconazole). Main trends of MIC results at the ordinal level were visualized. European Committee on Antimicrobial Susceptibility Testing and Clinical & Laboratory Standards Institute (CLSI) clinical breakpoints were used as the staff gauge to evaluate MIC values ranging from resistance to susceptibility, which were subsequently compared with a phylogenetic tree of the fungal kingdom. Several orders (Hypocreales, Microascales, and Mucorales) invariably showed resistance. Also the basidiomycetous orders Agaricales, Polyporales, Sporidiales, Tremellales, and Trichosporonales showed relatively high degrees of azole multi-resistance, while elsewhere in the fungal kingdom, including orders with numerous pathogenic and opportunistic species, that is, Onygenales, Chaetothyiales, Sordariales, and Malasseziales, in general were susceptible to azoles. In most cases, resistance vs susceptibility was consistently associated with phylogenetic distance, members of the same order showing similar behavior. IMPORTANCE A kingdom-wide the largest set of published wild-type antifungal data comparison were analyzed. Trends in resistance in taxonomic groups (monophyletic clades) can be compared with the phylogeny of the fungal kingdom, eventual relationships between fungus-drug interaction and evolution can be described.
Collapse
Affiliation(s)
- Xueke Niu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Roxana G. Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Sector Micología, Hospital J.M. Ramos Mejía, Buenos Aires, Argentina
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A. Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Paul E. Verweij
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sybren de Hoog
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Lamoth F, Kontoyiannis DP. PCR diagnostic platforms for non- Aspergillus mold infections: ready for routine implementation in the clinic? Expert Rev Mol Diagn 2024; 24:273-282. [PMID: 38501431 DOI: 10.1080/14737159.2024.2326474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION While Aspergillus spp. remain the predominant cause of invasive mold infections, non-Aspergillus molds, such as the Mucorales or Fusarium spp., account for an increasing proportion of cases. The diagnosis of non-Aspergillus invasive mold infections (NAIMI) is challenging because of the low sensitivity and delay of conventional microbiological tests. Therefore, there is a particular interest to develop molecular tools for their early detection in blood or other clinical samples. AREAS COVERED This extensive review of the literature discusses the performance of Mucorales-specific PCR and other genus-specific or broad-range fungal PCR that can be used for the diagnosis of NAIMI in diverse clinical samples, with a focus on novel technologies. EXPERT OPINION PCR currently represents the most promising approach, combining good sensitivity/specificity and ability to detect NAIMI in clinical samples before diagnosis by conventional cultures and histopathology. Several PCR assays have been designed for the detection of Mucorales in particular, but also Fusarium spp. or Scedosporium/Lomentospora spp. Some commercial Mucorales PCRs are now available. While efforts are still needed for standardized protocols and the development of more rapid and simpler techniques, PCR is on the way to becoming an essential test for the early diagnosis of mucormycosis and possibly other NAIMIs.
Collapse
Affiliation(s)
- Frederic Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Wang Y, Wu S, Yang Y, Yang Y, Liu H, Chen Y, Ju H. In situ SERS imaging of protein-specific glycan oxidation on living cells to quantitatively visualize pathogen-cell interactions. Chem Sci 2024; 15:3901-3906. [PMID: 38487245 PMCID: PMC10935716 DOI: 10.1039/d4sc00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Glycan oxidation on the cell surface occurs in many specific life processes including pathogen-cell interactions. This work develops a surface-enhanced Raman scattering (SERS) imaging strategy for in situ quantitative monitoring of protein-specific glycan oxidation mediated pathogen-cell interactions by utilizing Raman reporter DTNB and aptamer co-assembled platinum shelled gold nanoparticles (Au@Pt-DTNB/Apt). Using Fusarium graminearum (FG) and MCF-7 cells as models, Au@Pt-DTNB/Apt can specifically bind to MUC1 protein on the cell surface containing heavy galactose (Gal) and N-acetylgalactosamine (GalNAc) modification. When FG interacts with cells, the secreted galactose oxidase (GO) can oxidize Gal/GalNAc, and the generated reactive oxygen species (ROS) further oxidizes DTNB to produce TNB for greatly enhancing the SERS signal. This strategy can quantitatively visualize for the first time both the protein-specific glycan oxidation and the mediated pathogen-cell interactions, thus providing key quantitative information to distinguish and explore the pathogen-resistance and pharmacological mechanisms of different drugs.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Shan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuhui Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
23
|
Montoya AM, Rodríguez-Grimaldo JE, López-Jácome LE, Bonifaz A, Enríquez-Domínguez E, Castañón-Olivares LR, Charles-Niño CL, Rodríguez-Rodríguez A, de J Treviño-Rangel R, Rojas OC, González GM. Species distribution and antifungal susceptibility profiles of clinical and environmental Fusarium isolates from Mexico: A multicenter study. Mycologia 2024; 116:258-266. [PMID: 38232343 DOI: 10.1080/00275514.2023.2293296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Fusarium spp. has emerged as an opportunistic etiological agent with clinical manifestations varying from localized infections to deep-seated systemic disease. It is also a phytopathogen of economic impact. There are few reports on the species diversity of this genus, and no comprehensive studies on the epidemiology nor the antifungal susceptibility of Fusarium in Mexico. The present multicentric study aims to shed light on the species distribution and antifungal susceptibility patterns of 116 strains of Fusarium isolated from clinical and environmental samples. Isolates were identified by standard phenotypic characteristics and by sequencing of the ITS (internal transcribed spacer), TEF1 (translation elongation factor 1-α), RPB2 (RNA polymerase II core subunit), and/or CAM1 (calmodulin) regions. Susceptibility tests were carried out against 15 antifungals of clinical and agricultural use. Regarding Fusarium distribution, we identified 27 species belonging to eight different species complexes. The most frequently isolated species for both clinical and environmental samples were F. falciforme (34%), F. oxysporum sensu stricto (12%), F. keratoplasticum (8%), and F. solani sensu stricto (8%). All Fusarium isolates showed minimum inhibitory concentrations (MICs) equal to or above the maximum concentration evaluated for fluconazole, 5-fluocytosine, caspofungin, micafungin, and anidulafungin. All isolates had a MIC of ≤16 µg/mL for voriconazole, with a mode of 4 µg/mL. F. verticillioides appeared to be the most susceptible to all antifungals tested.
Collapse
Affiliation(s)
- Alexandra M Montoya
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero s/n, Monterrey, 64460, México
| | - Joan E Rodríguez-Grimaldo
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero s/n, Monterrey, 64460, México
| | - Luis Esaú López-Jácome
- Laboratorio de Infectología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Mexico City, 14389, Mexico
| | - Alexandro Bonifaz
- Servicio de Dermatología y Departamento de Microbiología, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, 06720, Mexico
| | - Erika Enríquez-Domínguez
- Laboratorio de Micología Experimental, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosi, 78210, Mexico
| | - Laura R Castañón-Olivares
- Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Claudia Lisette Charles-Niño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | | | - Rogelio de J Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero s/n, Monterrey, 64460, México
| | - Olga C Rojas
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero s/n, Monterrey, 64460, México
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero s/n, Monterrey, 64460, México
| |
Collapse
|
24
|
Yen JS, Chang SY, Sun PL. Extensive primary cutaneous fusariosis in a patient with burns: A case report and review of the literature. J Mycol Med 2024; 34:101450. [PMID: 38042017 DOI: 10.1016/j.mycmed.2023.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Fusarium species can cause a broad spectrum of human infections, ranging from superficial and locally invasive to disseminated, depending on the immune status of the host and portal of entry. Although several cases of cutaneous fusariosis in burn victims have been reported, molecular identification for pathogen recognition has been used only in a few cases. CASE DESCRIPTION In this report, we describe an uncommon case of extensive primary cutaneous fusariosis caused by Fusarium keratoplasticum in a patient who sustained injuries during stubble burning. FINDINGS A review of cases of cutaneous fusariosis in burn victims revealed that this uncommon infection could be lethal, and treatment strategies should focus on both surgical debridement and the initiation of systemic antifungal therapy. Furthermore, because skin defects can serve as a portal of entry for Fusarium species in burn victims, early and aggressive treatment is crucial to prevent serious consequences.
Collapse
Affiliation(s)
- Ju-Shao Yen
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Shu-Ying Chang
- Department of Plastic and Reconstructive Surgery, The Burn Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan; Research Laboratory of Medical Mycology, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Samborska M, Wziątek A, Młynarczyk Ł, Dey S, Varghese N, Derwich K. Fusarium oxysporum disseminated infection in a teenage patient with a relapse of acute lymphoblastic leukemia - Case report and review of the literature. J Infect Chemother 2024; 30:258-262. [PMID: 37913869 DOI: 10.1016/j.jiac.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/07/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Infections are still a significant cause of mortality in children with hematologic malignancies. Fusariosis is a relatively rare and opportunistic infection, which may present dangerous course and a poor prognosis. Below, we describe the fatal course of a 15-years old patient with a combined bone marrow and testicular relapse of ALL and multisystemic Fusariosis oxysporum infection with fulminant evolution. Despite aggressive therapy, which included multiagent antifungal treatment and surgical debridement, patient succumbed to the disease. The review of the literature was conducted and the need for early detection of fusarium symptoms was emphasized. The case encourages further research in the prevention and treatment of the illness.
Collapse
Affiliation(s)
- Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznań, Poland; University of Medical Sciences, Poznań, Poland.
| | - Agnieszka Wziątek
- Department of Pediatric Oncology, Hematology and Transplantology, Poznań, Poland; University of Medical Sciences, Poznań, Poland
| | - Łukasz Młynarczyk
- Department of Pediatric Oncology, Hematology and Transplantology, Poznań, Poland; University of Medical Sciences, Poznań, Poland
| | - Shreya Dey
- Department of Pediatric Oncology, Hematology and Transplantology, Poznań, Poland; University of Medical Sciences, Poznań, Poland
| | - Noel Varghese
- Department of Pediatric Oncology, Hematology and Transplantology, Poznań, Poland; University of Medical Sciences, Poznań, Poland
| | - Katarzyna Derwich
- Department of Pediatric Oncology, Hematology and Transplantology, Poznań, Poland; University of Medical Sciences, Poznań, Poland
| |
Collapse
|
26
|
Diabankana RGC, Frolov M, Islamov B, Shulga E, Filimonova MN, Afordoanyi DM, Validov S. Identification and Aggressiveness of Fusarium Species Associated with Onion Bulb ( Allium cepa L.) during Storage. J Fungi (Basel) 2024; 10:161. [PMID: 38392833 PMCID: PMC10890437 DOI: 10.3390/jof10020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant pathogens present a major challenge to crop production, leading to decreased yield and quality during growth and storage. During long-term storage, healthy onions can develop diseases from latent pathogen infections. This poses a challenge for onion growers because infected bulbs without visible symptoms can lead to significant crop losses during the growing season. In this study, we aimed to isolate and identify Fusarium species from yellow onion bulbs (Allium cepa L.) that developed disease symptoms during storage. The aggressiveness of these strains against onion bulbs and seedlings was also evaluated. The isolated strains were further subjected to morphological and molecular differentiation. The results revealed that all 16 isolated strains belonged to the Fusarium complex species incarnatum-equiseti and Fusarium fujikuroi, namely, F. proliferatum (98%), F. oxysporum (1%), and Fusarium sp. (1%). Koch's postulate analysis of isolated strains revealed varying aggressiveness on onion bulbs and plants depending on fungal species. Disease symptoms developed more slowly on plants than on onion bulb plants according to Koch's postulates. Moreover, the results revealed that Fusarium strains that can infect onion plants were less pathogenic to onion bulbs and vice versa. In addition, three isolates were found to be non-pathogenic to onions. Furthermore, the in vitro control of Fusarium species through Bacillus velezensis KS04-AU and Streptomyces albidoflavus MGMM6 showed high potential for controlling the growth of these pathogenic fungi. These results may contribute to the development of environmentally friendly approaches for controlling onion spoilage caused by pathogens during storage.
Collapse
Affiliation(s)
- Roderic Gilles Claret Diabankana
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia
| | - Mikhail Frolov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia
| | - Bakhtiyar Islamov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia
| | - Elena Shulga
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia
| | - Maria Nikolaevna Filimonova
- Academic and Research Centre, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Daniel Mawuena Afordoanyi
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia
| | - Shamil Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
27
|
Trinidad Hasbún M, Agüero R, Decombe C. Invasive Fusariosis With Nasal Septum Involvement: Case Report of a 7-Year-Old Boy. ACTAS DERMO-SIFILIOGRAFICAS 2024:S0001-7310(24)00146-7. [PMID: 38382745 DOI: 10.1016/j.ad.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 02/23/2024] Open
Affiliation(s)
- M Trinidad Hasbún
- Dermatology Department, Clínica Alemana de Santiago - Facultad de Medicina Universidad del Desarrollo, Av. Vitacura 5951, Vitacura, Región Metropolitana, Chile; Dermatology Department, Hospital de niños Exequiel González Cortés, Gran Av. José Miguel Carrera 3300, San Miguel, Región Metropolitana, Chile
| | - R Agüero
- Keck School of Medicine, University of Southern California, 1500 San Pablo St, Los Angeles, CA 90033, United States.
| | - C Decombe
- Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Santiago, Las Condes, Región Metropolitana, Chile
| |
Collapse
|
28
|
Demonchy J, Biard L, Clere-Jehl R, Wallet F, Mokart D, Moreau AS, Argaud L, Verlhac C, Pène F, Lautrette A, Bige N, de Jong A, Canet E, Quenot JP, Issa N, Zerbib Y, Bouard I, Picard M, Zafrani L. Multicenter Retrospective Study of Invasive Fusariosis in Intensive Care Units, France. Emerg Infect Dis 2024; 30. [PMID: 38270146 PMCID: PMC10826781 DOI: 10.3201/eid3002.231221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Invasive fusariosis can be life-threatening, especially in immunocompromised patients who require intensive care unit (ICU) admission. We conducted a multicenter retrospective study to describe clinical and biologic characteristics, patient outcomes, and factors associated with death and response to antifungal therapy. We identified 55 patients with invasive fusariosis from 16 ICUs in France during 2002----2020. The mortality rate was high (56%). Fusariosis-related pneumonia occurred in 76% of patients, often leading to acute respiratory failure. Factors associated with death included elevated sequential organ failure assessment score at ICU admission or history of allogeneic hematopoietic stem cell transplantation or hematologic malignancies. Neither voriconazole treatment nor disseminated fusariosis were strongly associated with response to therapy. Invasive fusariosis can lead to multiorgan failure and is associated with high mortality rates in ICUs. Clinicians should closely monitor ICU patients with a history of hematologic malignancies or stem cell transplantation because of higher risk for death.
Collapse
|
29
|
Piña-Delgado C, Bolaños-Rivero M, Bolaños-Rivero MA, de Miguel-Martínez I. [Gram staining of blood cultures from an oncologic patient]. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:110-111. [PMID: 38099434 PMCID: PMC10874665 DOI: 10.37201/req/083.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 01/28/2024]
Affiliation(s)
- C Piña-Delgado
- Carmen Piña Delgado, Servicio de Microbiología, Complejo Hospitalario Universitario Insular-Materno Infantil de Gran Canaria, Avenida Marítima del Sur, s/n, 35016, Las Palmas de Gran Canaria.35016, Spain.
| | | | | | | |
Collapse
|
30
|
Sudhaharan S, Pamidimukkala U, Singh KN, Chavali P. Clinical spectrum of fusariosis from a tertiary care center in India- a retrospective study. IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:145-150. [PMID: 38682054 PMCID: PMC11055442 DOI: 10.18502/ijm.v16i1.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Background and Objectives Fusarium spp. is an emerging pathogen that presents with varied clinical presentations but there are very few studies from India that elaborate on the spectrum of infection caused by the fungus. Hence, the present study was conducted in our institute to understand the clinical spectrum of fusariosis. Materials and Methods The present study was a retrospective study conducted at a tertiary care institute, in Hyderabad, Telangana, India for four years from January 2018 to December 2022. All the patients with clinically significant isolation of Fusarium spp. from various samples were included in the study. Results There were 25 cases of fusariosis diagnosed during the study period. Fusarium was isolated predominantly from debrided tissue following road traffic accidents in 12/25 (84%) of the cases, nails in 3/25 (12%) and superficial leg ulcer in 1/25 (4%) of the cases. Speciation was done for four patients. Three were Fusarium incarnatum and one was Fusarium solani. The patients were treated surgically and with/without antifungal therapy and were discharged in a stable condition. Conclusion Traumatic injuries were the major cause of infections in the present study. As Fusarium is a virulent and highly resistant pathogen, an early suspicion and an appropriate diagnosis would lead to a better outcome in these patients.
Collapse
Affiliation(s)
- Sukanya Sudhaharan
- Department of Microbiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Umabala Pamidimukkala
- Department of Microbiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Kumari Neha Singh
- Department of Microbiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Padmasri Chavali
- Department of Microbiology, Nizam’s Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Zhou PS, Dermarkarian CR, Andrade RM, Tao JP. Infection of a Nylon Foil Orbital Implant Due to Fusarium brachygibbosum and Lomentospora prolificans After Intranasal Methamphetamine Use. Ophthalmic Plast Reconstr Surg 2024; 40:e25-e28. [PMID: 37791833 DOI: 10.1097/iop.0000000000002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The authors describe a case of nylon foil implant infection caused by Fusarium brachygibbosum , and Lomentospora prolificans following medial orbital wall fracture repair in the setting of postoperative nasal methamphetamine use. A 61-year-old male presented with OS pain and swelling after a physical assault on his face. A CT of maxillofacial bones without contrast showed a moderately comminuted fracture of the medial wall of the left orbit with depression of fracture fragments into the left ethmoid air cells. Six days after repair of the medial wall fracture, the patient returned with a new onset headache, OS pain, and swelling to the left medial canthal area. He reported snorting methamphetamine approximately 48 hours before his current presentation. CT imaging showed fat stranding and soft tissue density in the extraconal space adjacent to the left medial rectus muscle and chronic fracture deformity of lamina papyracea with approximately 4 mm of medial displacement of the fracture fragments. The patient showed little clinical improvement after 48 hours of intravenous antibiotics, which led to the removal of the nylon foil implant by a left orbitotomy. Intraoperative tissue cultures grew coagulase-negative Staphylococcus , F. brachygibbosum , and Lomentospora (Scedosporium) prolificans . The patient was subsequently transitioned to oral clindamycin 600 mg three times daily and voriconazole 200 mg two times daily. To the authors' knowledge, this is the first case report to document an association between snorted methamphetamine and a fungal infection of an orbital implant.
Collapse
Affiliation(s)
| | | | - Rosa M Andrade
- Department of Infectious Diseases, University of California-Irvine, Irvine, California, U.S.A
| | | |
Collapse
|
32
|
Boutin CA, Luong ML. Update on therapeutic approaches for invasive fungal infections in adults. Ther Adv Infect Dis 2024; 11:20499361231224980. [PMID: 38249542 PMCID: PMC10799587 DOI: 10.1177/20499361231224980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Invasive fungal infections are increasingly encountered with the expansion of iatrogenic immunosuppression, including not only solid organ and hematopoietic stem cell transplant recipients but also patients with malignancies or autoimmune diseases receiving immunomodulatory therapies, such as Bruton Tyrosine Kinase (BTK) inhibitor. Their attributable mortality remains elevated, part of which is a contribution from globally emerging resistance in both molds and yeasts. Because antifungal susceptibility test results are often unavailable or delayed, empiric and tailored antifungal approaches including choice of agent(s) and use of combination therapy are heterogeneous and often based on clinician experience with knowledge of host's net state of immunosuppression, prior antifungal exposure, antifungal side effects and interaction profile, clinical severity of disease including site(s) of infection and local resistance data. In this review, we aim to summarize previous recommendations and most recent literature on treatment of invasive mold and yeast infections in adults to guide optimal evidence-based therapeutic approaches. We review the recent data that support use of available antifungal agents, including the different triazoles that have now been studied in comparison to previously preferred agents. We discuss management of complex infections with specific emerging fungi such as Scedosporium spp., Fusarium spp., Trichosporon asahii, and Candida auris. We briefly explore newer antifungal agents or formulations that are now being investigated to overcome therapeutic pitfalls, including but not limited to olorofim, rezafungin, fosmanogepix, and encochleated Amphotericin B. We discuss the role of surgical resection or debridement, duration of treatment, follow-up modalities, and need for secondary prophylaxis, all of which remain challenging, especially in patients chronically immunocompromised or awaiting more immunosuppressive therapies.
Collapse
Affiliation(s)
- Catherine-Audrey Boutin
- Division of Infectious Diseases, Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, Canada
| | - Me-Linh Luong
- Department of Medicine, Division of Infectious Diseases, Université de Montréal, Centre Hospitalier de l’Université de Montréal (CHUM), F Building, 6th Floor, Room F06.1102F, 1051 Sanguinet, Montreal, QC, H2X 0C1, Canada
| |
Collapse
|
33
|
Nucci M, Nouér SA. Practical issues related to non-Aspergillus invasive mold infections. Mol Aspects Med 2023; 94:101230. [PMID: 38011770 DOI: 10.1016/j.mam.2023.101230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 11/04/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Infection by non-Aspergillus molds has been increasingly reported. The management of such infections is challenging both for diagnosis and treatment, including the need of well-trained mycologists to properly identify rare fungi, difficulties in distinguishing between contamination, colonization and infection, the lack of randomized studies comparing different drugs or regimens, poor activity of available antifungal agents, lack of correlation between in vitro antifungal susceptibility tests and clinical outcome, and poor prognosis. Mucormycosis and fusariosis are the most frequent non-Aspergillus mold infections. Mucormycosis occurs more frequently in four major groups of patients: solid organ transplant recipients, patients with hematologic malignancies receiving chemotherapy or hematopoietic cell transplantation, diabetic patients, and immunocompetent individuals who suffer various types of skin and soft tissue trauma. Invasive fusariosis occurs almost exclusively in patients with hematologic malignancies. In this review we discuss practical issues related to the management of these and other non-Aspergillus mold infections.
Collapse
Affiliation(s)
- Marcio Nucci
- Department of Internal Medicine, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Grupo Oncoclínicas, Rio de Janeiro, Brazil.
| | - Simone A Nouér
- Department of Infectious Diseases, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Lourenço LMO, Cunha Â, Sierra-Garcia IN. Light-Driven Tetra- and Octa-β-substituted Cationic Zinc(II) Phthalocyanines for Eradicating Fusarium oxysporum Conidia. Int J Mol Sci 2023; 24:16980. [PMID: 38069303 PMCID: PMC10706913 DOI: 10.3390/ijms242316980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Photodynamic inactivation (PDI) is an emerging therapeutic approach that can effectively inactivate diverse microbial forms, including vegetative forms and spores, while preserving host tissues and avoiding the development of resistance to the photosensitization procedure. This study evaluates the antifungal and sporicidal photodynamic activity of two water-soluble amphiphilic tetra- and octa-β-substituted zinc(II) phthalocyanine (ZnPc) dyes with dimethylaminopyridinium groups at the periphery (ZnPcs 1, 2) and their quaternized derivatives (ZnPcs 1a, 2a). Tetra(1, 1a)- and octa(2, 2a)-β-substituted zinc(II) phthalocyanines were prepared and assessed as photosensitizers (PSs) for their effects on Fusarium oxysporum conidia. Antimicrobial photoinactivation experiments were performed with each PS at 0.1, 1, 10, and 20 µM under white light irradiation at an irradiance of 135 mW·cm-2, for 60 min (light dose of 486 J·cm-2). High PDI efficiency was observed for PSs 1a, 2, and 2a (10 µM), corresponding to inactivation until the method's detection limit. PS 1 (20 µM) also achieved a considerable reduction of >5 log10 in the concentration of viable conidia. The quaternized PSs (1a, 2a) showed better PDI performance than the non-quaternized ones (1, 2), even at the low concentration of 1 µM, and a light dose of 486 J·cm-2. These cationic phthalocyanines are potent photodynamic drugs for antifungal applications due to their ability to effectively inactivate resistant forms, like conidia, with low concentrations and reasonable energy doses.
Collapse
Affiliation(s)
| | - Ângela Cunha
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (Â.C.); (I.N.S.-G.)
| | - Isabel N. Sierra-Garcia
- CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (Â.C.); (I.N.S.-G.)
| |
Collapse
|
35
|
Al-Manei K, Sobkowiak MJ, Nagadia RH, Heymann R, Sällberg Chen M, Özenci V. Mycobiota profile of oral fungal infections in head and neck cancer patients receiving radiotherapy: A 6-year retrospective MALDI-TOF mass spectrometry study. Oral Oncol 2023; 146:106556. [PMID: 37611433 DOI: 10.1016/j.oraloncology.2023.106556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/14/2023] [Accepted: 08/13/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES Head and neck cancer (HNC) impairs patient immunity and increases susceptibility to oral fungal infections (OFIs). Effectively treating such infections requires accurate identification of the causative pathogens. This study aimed to characterize the mycobiota profile of OFIs in HNC patients undergoing radiation treatment (RT). MATERIALS AND METHODS A 6-year retrospective analysis of oral mucosal samples from HNC patients with a history of RT and OFIs between 2014 and 2019 was conducted using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) profiling. Samples from the Clinical Microbiology Laboratory at Karolinska University Hospital were evaluated for mycobiota diversity and species co-occurrence patterns in the ongoing-RT and post-RT groups. RESULTS A total of 190 oral fungi (88% Candida, 5% Pichia) were isolated from 162 HNC patients receiving RT. In the ongoing-RT group, the emergent non-albicans Candida (NAC) species; F. solani and C. jadinii, were detected for the first time. The dominant pathogens in both ongoing and post-RT groups were C. albicans, C. glabrata, P. kudriavzevii, C. parapsilosis, and C. tropicalis, as shown by Venn analysis. Network analysis revealed greater fungi diversity and multi-species co-occurrence in the ongoing-RT group. C. albicans commonly co-occurred with C. glabrata in both ongoing-RT (21%) and post-RT groups (30%). CONCLUSION MALDI-TOF MS identified a wide range of oral fungal species in HNC patients receiving RT. While C. albicans remains the most prevalent OFIs pathogen, multi-species co-occurrence and novel NACs were noted. Understanding the ecological interactions among these causative pathogens could significantly advance the development of effective therapeutics for treating OFIs in HNC patients.
Collapse
Affiliation(s)
- Khaled Al-Manei
- Unit of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge 14104, Sweden; Division of Endodontics, Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Michał Jacek Sobkowiak
- Unit of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge 14104, Sweden
| | - Rahul Harshad Nagadia
- Unit of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge 14104, Sweden; Department of Head and Neck Surgery, National Cancer Centre Singapore, and Singapore General Hospital, Singapore; Department of Oral and Maxillofacial Surgery, National Dental Centre Singapore, Singapore
| | - Robert Heymann
- Unit of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge 14104, Sweden; Medical Unit for Reconstructive Plastic- and Craniofacial Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Margaret Sällberg Chen
- Unit of Oral Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Huddinge 14104, Sweden.
| | - Volkan Özenci
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14104, Sweden; Department of Clinical Microbiology F72, Karolinska University Hospital, Huddinge 14104, Sweden.
| |
Collapse
|
36
|
Jabeen R, Kizhisseri MI, Mayanaik SN, Mohamed MM. Bioaerosol assessment in indoor and outdoor environments: a case study from India. Sci Rep 2023; 13:18066. [PMID: 37872255 PMCID: PMC10593752 DOI: 10.1038/s41598-023-44315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023] Open
Abstract
Exposure to bioaerosols has been associated with the occurrence of a variety of health impacts, including infectious illnesses, acute toxic effects, allergies, and cancer. This study aimed at evaluating airborne bacteria and fungi populations at different indoor and outdoor sites on a college campus in Bengaluru, India. Bioaerosol samples were collected using a two-stage Andersen air sampler; and isolates were identified using standard procedures. Six air samples and meteorological data were collected in March and April 2014 to examine the effects of temperature and relative humidity on bioaerosol concentration using linear regression modeling. Among all sites, the canteen showed the highest bioaerosol levels both indoors and outdoors. Specific bacterial identification was not possible, but gram staining and microscopic analysis helped to identify gram positive and gram negative bacteria. The most prevalent fungal species in the samples were Cladosporium, Aspergillus niger, Penicillium, Rhizopus, Fusarium, Mucor, and Alternaria. Due to the impact of weather conditions, such as temperature and relative humidity, the bioaerosol concentration varied greatly at each site according to the regression model. The indoor bioaerosol concentrations at all sites exceeded the values established by the American Industrial Hygiene Association (< 250 CFU/m3 for total fungi and < 500 CFU/m3 for total bacteria). Higher concentrations of bioaerosols may be attributed to the transportation of microbes from the ground surface to suspended particles, the release of microbes from the respiratory tract, higher rate of shredding of human skin cells, and many other factors.
Collapse
Affiliation(s)
- Raisa Jabeen
- Department of Environmental Engineering, China State Construction Engineering Corporation, Middle East L.L.C, Dubai, United Arab Emirates
| | - Mohamed Ibrahim Kizhisseri
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | | | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
37
|
Marek A, Meijer EFJ, Tartari E, Zakhour J, Chowdhary A, Voss A, Kanj SS, Bal AM. Environmental monitoring for filamentous fungal pathogens in hematopoietic cell transplant units. Med Mycol 2023; 61:myad103. [PMID: 37793805 DOI: 10.1093/mmy/myad103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023] Open
Abstract
The incidence of invasive fungal disease (IFD) is on the rise due to increasing numbers of highly immunocompromized patients. Nosocomial IFD remains common despite our better understanding of its risk factors and pathophysiology. High-efficiency particulate air filtration with or without laminar air flow, frequent air exchanges, a positive pressure care environment, and environmental hygiene, amongst other measures, have been shown to reduce the mould burden in the patient environment. Environmental monitoring for moulds in areas where high-risk patients are cared for, such as hematopoietic cell transplant units, has been considered an adjunct to other routine environmental precautions. As a collaborative effort between authors affiliated to the Infection Prevention and Control Working Group and the Fungal Infection Working Group of the International Society of Antimicrobial Chemotherapy (ISAC), we reviewed the English language literature and international guidance to describe the evidence behind the need for environmental monitoring for filamentous fungi as a quality assurance approach with an emphasis on required additional precautions during periods of construction. Many different clinical sampling approaches have been described for air, water, and surface sampling with significant variation in laboratory methodologies between reports. Importantly, there are no agreed-upon thresholds that correlate with an increase in the clinical risk of mould infections. We highlight important areas for future research to assure a safe environment for highly immunocompromized patients.
Collapse
Affiliation(s)
- Aleksandra Marek
- Department of Microbiology, Glasgow Royal Infirmary, Glasgow, UK
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
| | - Eelco F J Meijer
- Canisius-Wilhelmina Hospital (CWZ), Medical Microbiology and Infectious Diseases, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, The Netherlands
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Ermira Tartari
- Faculty of Health Sciences, University of Malta, Msida, Malta
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
| | - Johnny Zakhour
- Division of Infectious Diseases, Department of Internal Medicine and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
- Infection Control Working Group, International Society of Antimicrobial Chemotherapy
| | - Souha S Kanj
- Division of Infectious Diseases, Department of Internal Medicine and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| | - Abhijit M Bal
- Department of Microbiology, Queen Elizabeth University Hospital, Glasgow, UK
- Fungal Infection Working Group, International Society of Antimicrobial Chemotherapy
| |
Collapse
|
38
|
McMahon DE, Schuetz AN, Kovarik CL. Emerging infectious diseases of the skin: a review of clinical and histologic findings. Hum Pathol 2023; 140:196-213. [PMID: 37454994 DOI: 10.1016/j.humpath.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Emerging infectious diseases are of great importance to public health and clinical practice. This review aims to characterize the clinical and histopathologic features of emerging infectious diseases with cutaneous manifestations in order to increase awareness of these entities among dermatologists, pathologists, and dermatopathologists.
Collapse
Affiliation(s)
- Devon E McMahon
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey N Schuetz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Carrie L Kovarik
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
39
|
Santos-Lima D, de Castro Spadari C, de Morais Barroso V, Carvalho JCS, de Almeida LC, Alcalde FSC, Ferreira MJP, Sannomiya M, Ishida K. Lipopeptides from an isolate of Bacillus subtilis complex have inhibitory and antibiofilm effects on Fusarium solani. Appl Microbiol Biotechnol 2023; 107:6103-6120. [PMID: 37561179 DOI: 10.1007/s00253-023-12712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Bacillus subtilis species complex is known as lipopeptide-producer with biotechnological potential for pharmaceutical developments. This study aimed to identify lipopeptides from a bacterial isolate and evaluate their antifungal effects. Here, we isolated and identified a lipopeptide-producing bacterium as a species of Bacillus subtilis complex (strain UL-1). Twenty lipopeptides (six iturins, six fengycins, and eight surfactins) were identified in the crude extract (CE) and fractions (F1, F2, F3, and F4), and the highest content of total lipopeptides was observed in CE and F2. The chemical quantification data corroborate with the hemolytic and antifungal activities that CE and F2 were the most hemolytic and inhibited the fungal growth at lower concentrations against Fusarium spp. In addition, they caused morphological changes such as shortening and/or atypical branching of hyphae and induction of chlamydospore-like structure formation, especially in Fusarium solani. CE was the most effective in inhibiting the biofilm formation and in disrupting the mature biofilm of F. solani reducing the total biomass and the metabolic activity at concentrations ≥ 2 µg/mL. Moreover, CE significantly inhibited the adherence of F. solani conidia on contact lenses and nails as well as disrupted the pre-formed biofilms on nails. CE at 100 mg/kg was nontoxic on Galleria mellonella larvae, and it reduced the fungal burden in larvae previously infected by F. solani. Taken together, the lipopeptides obtained from strain UL-1 demonstrated a potent anti-Fusarium effect inducing morphological alterations and antibiofilm activities. Our data open further studies for the biotechnological application of these lipopeptides as potential antifungal agents. KEY POINTS: • Lipopeptides inhibit Fusarium growth and induce chlamydospore-like structures. • Lipopeptides hamper the adherence of conidia and biofilms of Fusarium solani. • Iturins, fengycins, and surfactins were associated with antifungal effects.
Collapse
Affiliation(s)
- Daniélle Santos-Lima
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | - Miriam Sannomiya
- School of Arts, Sciences and Humanities, University of São Paulo, Arlindo Béttio St. 1000, São Paulo, SP, 03828-000, Brazil.
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Ave. 1374, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
40
|
Winston DJ, Young PA, Schlamm HT, Schiller GJ. Fosmanogepix Therapy of Disseminated Fusarium Infection. Clin Infect Dis 2023; 77:848-850. [PMID: 37220752 DOI: 10.1093/cid/ciad309] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Invasive Fusarium infections cause high mortality. Fosmanogepix, a first-in-class antifungal agent, has potent activity against Fusarium. A patient with acute leukemia with invasive fusariosis, probably involving the central nervous system and caused by Fusarium lactis resistant to currently available antifungal agents, was cured of her infection with fosmanogepix. Fosmanogepix was well tolerated.
Collapse
Affiliation(s)
- Drew J Winston
- Division of Hematology-Oncology, Department of Medicine, Center for Health Sciences, University of California, Los Angeles, USA
| | - Patricia A Young
- Division of Hematology-Oncology, Department of Medicine, Center for Health Sciences, University of California, Los Angeles, USA
| | | | - Gary J Schiller
- Division of Hematology-Oncology, Department of Medicine, Center for Health Sciences, University of California, Los Angeles, USA
| |
Collapse
|
41
|
Erami M, Aboutalebian S, Hashemi Hezaveh SJ, Matini AH, Momen-Heravi M, Ahsaniarani AH, Arani SS, Ganjizadeh M, Mirhendi H. Invasive Fusarium rhinosinusitis in COVID-19 patients: report of three cases with successful management. Front Cell Infect Microbiol 2023; 13:1247491. [PMID: 37780844 PMCID: PMC10538539 DOI: 10.3389/fcimb.2023.1247491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal rhinosinusitis (IFRS) is a life-threatening infection that can occur in immunocompromised patients, including those with COVID-19. Although Mucorales and Aspergillus species are the most common causes of IFRS, infections caused by other fungi such as Fusarium are rare. In this report, we present three cases of proven rhinosinusitis fusariosis that occurred during or after COVID-19 infection. The diagnosis was confirmed through microscopy, pathology, and culture, and species identification of the isolates was performed by DNA sequencing the entire ITS1-5.8 rRNA-ITS2 region and translation elongation factor 1-alpha (TEF-1α). Antifungal susceptibility testing was conducted according to CLSI guidelines. The causative agents were identified as Fusarium proliferatum, F. oxysporum + Aspergillus flavus, and F. solani/falciforme. Treatment involved the administration of antifungal medication and endoscopic sinus surgery to remove the affected mucosa, leading to the successful resolution of the infections. However, one patient experienced a recurrence of IFRS caused by A. flavus 15 months later. Early diagnosis and timely medical and surgical treatment are crucial in reducing mortality rates associated with invasive fusariosis. Additionally, the cautious use of corticosteroids in COVID-19 patients is highly recommended.
Collapse
Affiliation(s)
- Mahzad Erami
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Shima Aboutalebian
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Jamal Hashemi Hezaveh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hassan Matini
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Disease, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Ahsaniarani
- Department of Otorhinolaryngology, School of Medicine, Matini Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Shafaee Arani
- Department of Pathology and Histology, School of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Ganjizadeh
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Mycology Reference Laboratory, Research Core Facilities Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
42
|
Furaijat G, Bettac L, Kächele M, Grüner B, Skrabal C, Barth TFE, Parlak M, Hagemann JB, Peters L, Walther G, Kersten J. An unusual presentation of invasive Fusarium aortitis in a patient who is immunocompromised: A case report. Int J Infect Dis 2023; 134:102-105. [PMID: 37279826 DOI: 10.1016/j.ijid.2023.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Fusarium (F.) species are ubiquitous filamentous fungi that may cause various opportunistic infections, especially in patients who are immunocompromised. A rare manifestation of disseminated fusariosis affects the aortic valve and results in invasive aortitis, which poses a significant challenge for clinicians in diagnosis and treatment. Here, we report a case of a patient, aged 54 years, who is immunocompromised, presenting initially with Fusarium keratitis and chorioretinitis in both eyes and a new endovascular aortic mass. Positron emission tomography/computed tomography was performed, suggesting aortitis. Transoesophageal echocardiography and electrocardiogram-guided computed tomography-angiography confirmed a large intraluminal mass in the ascending aorta. The aortic mass and a part of the ascending aorta were resected surgically, and a filamentous fungus with the microscopic features of the genus Fusarium was isolated and later identified molecularly as F. petroliphilum. The course of the treatment was complicated by perioperative cerebral embolization and mesenteric ischemia. These complications could be attributed to a preoperatively existing occlusion of the superior and inferior mesenteric artery and a subtotal stenosis of the celiac trunk. This case report describes a rare manifestation of disseminated fusariosis, frequently characterized by protracted clinical courses with poor prognosis. Fusariosis may manifest at different sites at different times or persist as a long-lasting disease with reactivation. This case highlights the importance of the interdisciplinary approach for effectively treating invasive mycoses.
Collapse
Affiliation(s)
- Ghefar Furaijat
- University of Ulm, Department of Internal Medicine I, Ulm, Germany
| | - Lucas Bettac
- University of Ulm, Department of Internal Medicine I, Ulm, Germany
| | - Martin Kächele
- University of Ulm, Department of Internal Medicine I, Ulm, Germany
| | - Beate Grüner
- University of Ulm, Department of Internal Medicine III, Division of Infectious Diseases, Ulm, Germany
| | - Christian Skrabal
- University of Ulm, Department of Cardiac, Thoracic and Vascular Surgery, Ulm, Germany
| | | | - Melih Parlak
- University of Ulm, Department of Ophthalmology, Ulm, Germany
| | | | - Lynn Peters
- University of Ulm, Department of Internal Medicine III, Division of Infectious Diseases, Ulm, Germany
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research, and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Johannes Kersten
- University of Ulm, Division of Sports and Rehabilitation Medicine, Ulm, Germany.
| |
Collapse
|
43
|
Cuervo-Maldonado SI, Álvarez-Rodríguez JC, Cubides CL, Barrera JC, Montañez-Abril JD, Vergara-Vela EP, Saavedra-Trujillo CH, López-Mora MJ, Mora-Figueroa GE, Celis-Ramírez A, Jaramillo-Calle RM, Parra-Medina R. Fusariosis in cancer patients: 13 case series report and literature review. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:41-56. [PMID: 37721903 PMCID: PMC10588968 DOI: 10.7705/biomedica.6925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 09/20/2023]
Abstract
The fusariosis is an opportunistic mycosis caused by Fusarium spp. Its clinical presentation depends on the immunological status of the host, especially in patients with hematooncological diseases, whose manifestations vary from localized to invasive fungal infections. Skin or blood culture helps to guide combined antifungal treatment with amphotericin B and voriconazole. Here, we present 13 cases in a period of eleven years of patients with cancer who developed disseminated fusariosis and their outcomes, together with a review of the related literature. In this series of cases, mortality was 61.5 % (8/13), despite the use of the antifungal. Out of the 13 cases, 11 had hematological neoplasia and 2 solid neoplasia. The most determinant risk factor was profound neutropenia. Skin involvement and positive blood cultures in most cases allowed combined treatment prescription. Persistent febrile neutropenia associated with skin lesions, onychomycosis, nodules, or lung masses lead to suspicion of Fusarium spp. fungal invasive infection. The aim of this series of cases is to remind healthcare professionals that oncological patients with deep and persistent febrile neutropenia can develop fusariosis.
Collapse
Affiliation(s)
- Sonia Isabel Cuervo-Maldonado
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia; Grupo de Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas (GREICAH), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - José Camilo Álvarez-Rodríguez
- Grupo de Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas (GREICAH), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Cristian Leonardo Cubides
- Grupo de Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas (GREICAH), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Juan Camilo Barrera
- Grupo de Infectología, Instituto Nacional de Cancerología, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas (GREICAH), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - Juan Diego Montañez-Abril
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia; Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas (GREICAH), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | | | - Carlos Humberto Saavedra-Trujillo
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia; Grupo de Enfermedades Infecciosas, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
| | - María José López-Mora
- Grupo de Investigación en Enfermedades Infecciosas en Cáncer y Alteraciones Hematológicas (GREICAH), Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia; Grupo de Infectología, Clínica de Marly, Bogotá, D.C., Colombi.
| | | | - Adriana Celis-Ramírez
- Grupo de Investigación Celular y Molecular de Microorganismos Patógenos (CeMoP), Universidad de los Andes, Bogotá, D.C., Colombia.
| | | | - Rafael Parra-Medina
- Grupo de Investigación Patología Oncológica INC, Instituto Nacional de Cancerología, Bogotá, Colombia.
| |
Collapse
|
44
|
Bihani S, Gupta A, Mehta S, Rajczewski AT, Johnson J, Borishetty D, Griffin TJ, Srivastava S, Jagtap PD. Metaproteomic Analysis of Nasopharyngeal Swab Samples to Identify Microbial Peptides in COVID-19 Patients. J Proteome Res 2023; 22:2608-2619. [PMID: 37450889 DOI: 10.1021/acs.jproteome.3c00040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During the COVID-19 pandemic, impaired immunity and medical interventions resulted in cases of secondary infections. The clinical difficulties and dangers associated with secondary infections in patients necessitate the exploration of their microbiome. Metaproteomics is a powerful approach to study the taxonomic composition and functional status of the microbiome under study. In this study, the mass spectrometry (MS)-based data of nasopharyngeal swab samples from COVID-19 patients was used to investigate the metaproteome. We have established a robust bioinformatics workflow within the Galaxy platform, which includes (a) generation of a tailored database of the common respiratory tract pathogens, (b) database search using multiple search algorithms, and (c) verification of the detected microbial peptides. The microbial peptides detected in this study, belong to several opportunistic pathogens such as Streptococcus pneumoniae, Klebsiella pneumoniae, Rhizopus microsporus, and Syncephalastrum racemosum. Microbial proteins with a role in stress response, gene expression, and DNA repair were found to be upregulated in severe patients compared to negative patients. Using parallel reaction monitoring (PRM), we confirmed some of the microbial peptides in fresh clinical samples. MS-based clinical metaproteomics can serve as a powerful tool for detection and characterization of potential pathogens, which can significantly impact the diagnosis and treatment of patients.
Collapse
Affiliation(s)
- Surbhi Bihani
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Aryan Gupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Andrew T Rajczewski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - James Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dhanush Borishetty
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| | - Sanjeeva Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Pratik D Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 7-129 MCB, 420 Washington Ave SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Avkan Oguz V, Karabicak N, Irmak C, Unek T. Fusarium solani species complex infection treated with posaconazole in a liver transplantation patient; a case report. J Mycol Med 2023; 33:101382. [PMID: 37060850 DOI: 10.1016/j.mycmed.2023.101382] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/11/2022] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Although Fusarium spp. rarely cause infections in healthy people, they can cause fusariosis, particularly in neutropenic hematological malignancies, bone marrow transplant patients, and immunocompromised patients, such as those with acquired immune deficiency syndrome (AIDS), and rarely in solid organ transplant recipients. Here, we present a case of a liver transplant recipient with F. solani species complex (FSSC) infection treated with posaconazole. A 61-year-old man presented with multiple itchy, painful, palpable, irregular, subcutaneous nodules on the right leg and total dystrophic onychomycosis in the right toenails. Incisional skin biopsies of the lesions were performed, and the samples were sent to the pathology and mycology laboratories for analysis. The clinical isolate was identified as FSSC using phenotypic, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and genotypic methods. Liposomal amphotericin B could not be administered owing to the development of side effects; hence, the patient was treated with posaconazole for 4 months. While some nodular lesions disappeared completely under this treatment, the others showed dimensional regression. This is the first case of FSSC infection with skin and nail involvement in a non-neutropenic, liver transplant patient in Turkey. Fusariosis may develop with rare species, such as FSSC, as first reported in this case of a liver transplant patient. Regardless of the species, amphotericin B is the first choice for treating fusariosis; however, posaconazole is an effective and safe alternative to amphotericin B.
Collapse
Affiliation(s)
- Vildan Avkan Oguz
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey.
| | - Nilgun Karabicak
- Public Health Institution of Turkey National Mycology Reference Laboratory, Ankara, Turkey
| | - Caglar Irmak
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Tarkan Unek
- Dokuz Eylul University Faculty of Medicine, Department of General Surgery, Izmir, Turkey
| |
Collapse
|
46
|
Yuan H, Liu Z, Dong J, Bacharier LB, Jackson D, Mauger D, Boushey H, Castro M, Durack J, Huang YJ, Lemanske RF, Storch GA, Weinstock GM, Wylie K, Covar R, Fitzpatrick AM, Phipatanakul W, Robison RG, Beigelman A, Zhou Y. The Fungal Microbiome of the Upper Airway Is Associated With Future Loss of Asthma Control and Exacerbation Among Children With Asthma. Chest 2023; 164:302-313. [PMID: 37003356 PMCID: PMC10477953 DOI: 10.1016/j.chest.2023.03.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that the upper airway bacterial microbiota is implicated in asthma inception, severity, and exacerbation. Unlike bacterial microbiota, the role of the upper airway fungal microbiome (mycobiome) in asthma control is poorly understood. RESEARCH QUESTION What are the upper airway fungal colonization patterns among children with asthma and their relationship with subsequent loss of asthma control and exacerbation of asthma? STUDY DESIGN AND METHODS The study was coupled with the Step Up Yellow Zone Inhaled Corticosteroids to Prevent Exacerbations (ClinicalTrials.gov Identifier: NCT02066129) clinical trial. The upper airway mycobiome was investigated using Internal transcribed spacer 1 (ITS1) sequencing of nasal blow samples collected from children with asthma when asthma was well controlled (baseline, n = 194) and during early signs of loss of asthma control (yellow zone [YZ], n = 107). RESULTS At baseline, 499 fungal genera were detected in the upper airway samples, with two commensal fungal species, Malassezia globosa and Malassezia restricta, being most dominant. The relative abundance of Malassezia species varies by age, BMI, and race. Higher relative abundance of M globosa at baseline was associated with lower risk of future YZ episodes (P = .038) and longer time to development of first YZ episode (P = .022). Higher relative abundance of M globosa at YZ episode was associated with lower risk of progression from YZ episode to severe asthma exacerbation (P = .04). The upper airway mycobiome underwent significant changes from baseline to YZ episode, and increased fungal diversity was correlated highly with increased bacterial diversity (ρ = 0.41). INTERPRETATION The upper airway commensal mycobiome is associated with future asthma control. This work highlights the importance of the mycobiota in asthma control and may contribute to the development of fungi-based markers to predict asthma exacerbation.
Collapse
Affiliation(s)
- Hanshu Yuan
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Zhongmao Liu
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Jinhong Dong
- Department of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Leonard B Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel Jackson
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - David Mauger
- Department of Public Health Sciences, Penn State University, Hershey, PA
| | - Homer Boushey
- Department of Medicine, University of California, San Francisco, CA
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS
| | | | - Yvonne J Huang
- Department of Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI
| | - Robert F Lemanske
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Gregory A Storch
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | - Kristine Wylie
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | | | | | - Wanda Phipatanakul
- Asthma, Allergy and Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rachel G Robison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO; Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
47
|
Buoio E, Cialini C, Costa A. Air Quality Assessment in Pig Farming: The Italian Classyfarm. Animals (Basel) 2023; 13:2297. [PMID: 37508074 PMCID: PMC10376095 DOI: 10.3390/ani13142297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
On 24 September 2019, the Ministry of Health issued an explanatory circular containing clarifications on the implementation methods of the National Improvement Plan for the application of Legislative Decree 122/2011. The Plan states that "In all farms where weaning or fattening pigs are raised and in breeding farms which wean piglets (excluding those for self-consumption), a risk assessment is carried out by the veterinarian on the basis of three levels: insufficient, room for improvement and optimal". ClassyFarm, a risk assessment tool for livestock farming, is applied in Italy to evaluate the level of welfare and management of animals from a variety of points of view. Essentially, the categorization risk introduced by ClassyFarm in pig farming depended on the obligation stated by the EU in Decree 122/2011 to avoid tail docking in piglets and, at the same time, to reduce the stressor aspects able to induce aggressive behavior among pigs, improving the welfare and health status of animals. Since ClassyFarm evaluates many aspects of the management of animal farming, our aims in this review are to discuss the topic from an environmental point of view: (1) to frame the indications of ClassyFarm to make a farm risk assessment based on pigs' welfare; (2) to review environmental quality assessment in pig farms, and its repercussions on animal health and welfare; (3) to describe the most used sampling techniques of air pollutants measurements.
Collapse
Affiliation(s)
- Eleonora Buoio
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Chiara Cialini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Annamaria Costa
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
48
|
Lamoth F, Nucci M, Fernandez-Cruz A, Azoulay E, Lanternier F, Bremerich J, Einsele H, Johnson E, Lehrnbecher T, Mercier T, Porto L, Verweij PE, White L, Maertens J, Alanio A. Performance of the beta-glucan test for the diagnosis of invasive fusariosis and scedosporiosis: a meta-analysis. Med Mycol 2023; 61:myad061. [PMID: 37381179 PMCID: PMC10405209 DOI: 10.1093/mmy/myad061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023] Open
Abstract
The (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in serum and used as an adjunctive tool for the diagnosis of invasive mold infections (IMI) in patients with hematologic cancer or other immunosuppressive conditions. However, its use is limited by modest sensitivity/specificity, inability to differentiate between fungal pathogens, and lack of detection of mucormycosis. Data about BDG performance for other relevant IMI, such as invasive fusariosis (IF) and invasive scedosporiosis/lomentosporiosis (IS) are scarce. The objective of this study was to assess the sensitivity of BDG for the diagnosis of IF and IS through systematic literature review and meta-analysis. Immunosuppressed patients diagnosed with proven or probable IF and IS, with interpretable BDG data were eligible. A total of 73 IF and 27 IS cases were included. The sensitivity of BDG for IF and IS diagnosis was 76.7% and 81.5%, respectively. In comparison, the sensitivity of serum galactomannan for IF was 27%. Importantly, BDG positivity preceded the diagnosis by conventional methods (culture or histopathology) in 73% and 94% of IF and IS cases, respectively. Specificity was not assessed because of lacking data. In conclusion, BDG testing may be useful in patients with suspected IF or IS. Combining BDG and galactomannan testing may also help differentiating between the different types of IMI.
Collapse
Affiliation(s)
- Frederic Lamoth
- To whom correspondence should be addressed. Frederic Lamoth, Infectious Diseases Service and Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland. Tel: +41 21 314 11 11; E-mail:
| | - Marcio Nucci
- University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Grupo Oncoclinicas, Brazil
| | - Ana Fernandez-Cruz
- Infectious Disease Unit, Internal Medicine Department, Puerta de Hierro-Majadahonda University Hospital, Fundación de Investigación Puerta de Hierro-Segovia de Arana, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elie Azoulay
- Médecine Intensive et Réanimation, APHP, Hôpital Saint-Louis, Paris Cité University, Paris, France
| | - Fanny Lanternier
- Institut Pasteur, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Université Paris Cité, Paris, France
- Infectious Diseases Unit, Hopital Necker Enfants malades, APHP, Necker-Pasteur Center for Infectious Diseases and Tropical Medicine, Paris, France
| | - Jens Bremerich
- Cardiothoracic Imaging Section, Department of Radiology, Basel University Hospital, 4031 Basel, Switzerland
| | - Hermann Einsele
- University Hospital Würzburg, Internal Medicine II, Würzburg, Germany
| | - Elizabeth Johnson
- UK Health Security Agency (UKHSA) Mycology Reference Laboratory, Southmead Hospital, Bristol, UK and MRC Centre for Medical Mycology, Exeter University, Exeter, UK
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Toine Mercier
- Department of Oncology-Hematology, AZ Sint-Maarten, Mechelen, Belgium
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Luciana Porto
- Division of Neuroradiology, Pediatric Neuroradiology Department, University Hospital, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Center, Nijmegen, The Netherlands
| | - Lewis White
- Public Health Wales Mycology Reference Laboratory and Cardiff University Centre for Trials Research/Division of Infection and Immunity, UHW, Cardiff, UK
| | - Johan Maertens
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium and Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Alexandre Alanio
- To whom correspondence should be addressed. Alexandre Alanio, Laboratoire de parasitologie mycologie, Hôpital Saint Louis, Université Paris Cité Centre National de Référence Mycoses invasives et Antifongiques, Institut Pasteur, Paris France. Tel: +33142499501; E-mail:
| | | |
Collapse
|
49
|
Cighir A, Mare AD, Vultur F, Cighir T, Pop SD, Horvath K, Man A. Fusarium spp. in Human Disease: Exploring the Boundaries between Commensalism and Pathogenesis. Life (Basel) 2023; 13:1440. [PMID: 37511815 PMCID: PMC10381950 DOI: 10.3390/life13071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Fusarium is a large fungal genus that is widely distributed in the environment, mostly known for its plant pathogenicity. Rarely, it is involved in human pathology, where the type of infection caused is highly dependent upon the portal of entry and the immune status of the host. The study at hand aims to summarize routine methods used in diagnosing such infections as well as more advanced molecular diagnostic methods, techniques that can play a huge role in differentiating between colonization and infection when trying to decide the therapeutic outcome. Consequently, to further support our findings, two different strains (one isolated from corneal scrapings and one isolated from purulent discharge) were analyzed in a clinical context and thoroughly tested using classical and modern diagnostic methods: identification by macroscopical and microscopical examinations of the culture and mass spectrometry, completed by molecular methods such as PCR for trichothecene and ERIC-PCR for genetic fingerprinting. Isolation of a clinically relevant Fusarium spp. from a sample still remains a diagnostic challenge for both the clinician and the microbiologist, because differentiating between colonization and infection is very strenuous, but can make a difference in the treatment that is administered to the patient.
Collapse
Affiliation(s)
- Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Florina Vultur
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Teodora Cighir
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Suzana Doina Pop
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Karin Horvath
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Ophthalmology Clinic, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Street, 540139 Târgu Mures, Romania
- Department of Medical Laboratory, Mureș Clinical County Hospital, 1 Gheorghe Marinescu Street, 540103 Târgu Mures, Romania
| |
Collapse
|
50
|
Goggin KP, Londeree J, Freeman AF, Garro R, George RP. Successful Use of Fosmanogepix for Treatment of Rare Highly Resistant Cutaneous Fusariosis in a Pediatric Patient With STAT3 Hyper-Immunoglobulin E Syndrome and End-Stage Kidney Disease. Open Forum Infect Dis 2023; 10:ofad285. [PMID: 37305844 PMCID: PMC10249262 DOI: 10.1093/ofid/ofad285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
We describe the successful use of the novel antifungal drug fosmanogepix to treat a chronic case of multidrug-resistant cutaneous Fusarium suttonianum infection in a pediatric patient with STAT3 hyper-IgE syndrome and end-stage kidney disease on peritoneal dialysis.
Collapse
Affiliation(s)
- Kathryn P Goggin
- Correspondence: Kathryn P. Goggin, MD, MSc, Infectious Diseases Division Emory Department of Pediatrics 2015 Uppergate Drive, Suite 534 Atlanta, GA 30322 ()
| | - Jackson Londeree
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rouba Garro
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | | |
Collapse
|