1
|
Aguilar R, Jiménez A, Santano R, Vidal M, Maiga-Ascofare O, Strauss R, Bonney J, Agbogbatey M, Goovaerts O, Boham EEA, Adu EA, Cuamba I, Ramírez-Morros A, Dutta S, Angov E, Zhan B, Izquierdo L, Santamaria P, Mayor A, Gascón J, Ruiz-Comellas A, Molinos-Albert LM, Amuasi JH, Awuah AAA, Adriaensen W, Dobaño C, Moncunill G. Malaria and other infections induce polyreactive antibodies that impact SARS-CoV-2 seropositivity estimations in endemic settings. J Med Virol 2024; 96:e29713. [PMID: 38874194 DOI: 10.1002/jmv.29713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence is used to estimate the proportion of individuals within a population previously infected, to track viral transmission, and to monitor naturally and vaccine-induced immune protection. However, in sub-Saharan African settings, antibodies induced by higher exposure to pathogens may increase unspecific seroreactivity to SARS-CoV-2 antigens, resulting in false positive responses. To investigate the level and type of unspecific seroreactivitiy to SARS-CoV-2 in Africa, we measured immunoglobulin G (IgG), IgA, and IgM to a broad panel of antigens from different pathogens by Luminex in 602 plasma samples from African and European subjects differing in coronavirus disease 2019, malaria, and other exposures. Seroreactivity to SARS-CoV-2 antigens was higher in prepandemic African than in European samples and positively correlated with antibodies against human coronaviruses, helminths, protozoa, and especially Plasmodium falciparum. African subjects presented higher levels of autoantibodies, a surrogate of polyreactivity, which correlated with P. falciparum and SARS-CoV-2 antibodies. Finally, we found an improved sensitivity in the IgG assay in African samples when using urea as a chaotropic agent. In conclusion, our data suggest that polyreactive antibodies induced mostly by malaria are important mediators of the unspecific anti-SARS-CoV-2 responses, and that the use of dissociating agents in immunoassays could be useful for more accurate estimates of SARS-CoV-2 seroprevalence in African settings.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Rebeca Santano
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Oumou Maiga-Ascofare
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ricardo Strauss
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joseph Bonney
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Melvin Agbogbatey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Odin Goovaerts
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eric E A Boham
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Evan A Adu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
| | - Inocencia Cuamba
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Bin Zhan
- Baylor College of Medicine (BCM), Houston, Texas, USA
| | - Luis Izquierdo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Department of Physiological Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Joaquim Gascón
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Grup de Promoció de la Salut en l'Àmbit Rural (ProSaARu), Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Facultat de Medicina, Universitat de Vic-Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
| | | | - John H Amuasi
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Anthony A-A Awuah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kumasi, Ghana
- Department of Infectious Diseases Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- College of Health Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| |
Collapse
|
2
|
Disease Biomarkers of Giardiasis. J Parasitol Res 2022; 2022:1932518. [PMID: 36065350 PMCID: PMC9440637 DOI: 10.1155/2022/1932518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/12/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Giardiasis is a common, treatable intestinal disease that adversely affects underprivileged communities living in unsanitary conditions. Giardiasis causes a wide spectrum of gastrointestinal diseases in those infected, ranging from subclinical disease that can manifest as irritable bowel syndrome with persistent abdominal symptoms. Importantly, giardiasis has been identified as a predictor of malnutrition among young children in rural areas and as a cause of waterborne mass epidemics endangering not only humans but also animals in a broad clinical, social, and economic spectrum. While the diagnosis of giardiasis is heavily dependent on the presence of cysts and/or trophozoites detected using microscopy, the intermittent cyst excretion, low infection intensity, and low sensitivity method m4akes fecal examination unrewarding, thus urging the need for an improved diagnostic method for giardiasis. Proteins are key compounds in biosynthesis, cells, tissues, and organ signaling, carrying important information related to biological and pathogenic processes, as well as pharmacological responses to therapeutic intervention, and are therefore important indicators for determining disease onset, progression, and drug treatment effectiveness. In connection with this, proteins could serve as promising biomarkers for antigen-antibody detection, as well as vaccine candidates. This article is aimed at providing a comprehensive overview of proteins, serological, molecular, inflammatory, volatile, and hormonal biomarkers associated with giardiasis and their potential for diagnostics and therapeutics.
Collapse
|
3
|
Effect of biannual azithromycin distribution on antibody responses to malaria, bacterial, and protozoan pathogens in Niger. Nat Commun 2022; 13:976. [PMID: 35190534 PMCID: PMC8861117 DOI: 10.1038/s41467-022-28565-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
The MORDOR trial in Niger, Malawi, and Tanzania found that biannual mass distribution of azithromycin to children younger than 5 years led to a 13.5% reduction in all-cause mortality (NCT02048007). To help elucidate the mechanism for mortality reduction, we report IgG responses to 11 malaria, bacterial, and protozoan pathogens using a multiplex bead assay in pre-specified substudy of 30 communities in the rural Niger placebo-controlled trial over a three-year period (n = 5642 blood specimens, n = 3814 children ages 1–59 months). Mass azithromycin reduces Campylobacter spp. force of infection by 29% (hazard ratio = 0.71, 95% CI: 0.56, 0.89; P = 0.004) but serological measures show no significant differences between groups for other pathogens against a backdrop of high transmission. Results align with a recent microbiome study in the communities. Given significant sequelae of Campylobacter infection among preschool aged children, our results support an important mechanism through which biannual mass distribution of azithromycin likely reduces mortality in Niger. In a randomized placebo-controlled trial in rural Niger, biannual azithromycin distribution to children 1-59 months reduced all-cause mortality. Based on serology, Arzika et al. here report a reduction of Campylobacter infection, supporting one mechanism for the intervention’s impact on mortality.
Collapse
|
4
|
Alonso S, Vidal M, Ruiz-Olalla G, González R, Manaca MN, Jairoce C, Vázquez-Santiago M, Balcells R, Vala A, Rupérez M, Cisteró P, Fuente-Soro L, Cova M, Angov E, Nhacolo A, Sevene E, Aponte JJ, Macete E, Aguilar R, Mayor A, Menéndez C, Dobaño C, Moncunill G. Reduced Placental Transfer of Antibodies Against a Wide Range of Microbial and Vaccine Antigens in HIV-Infected Women in Mozambique. Front Immunol 2021; 12:614246. [PMID: 33746958 PMCID: PMC7965965 DOI: 10.3389/fimmu.2021.614246] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/08/2021] [Indexed: 01/16/2023] Open
Abstract
Transplacental transfer of antibodies is essential for conferring protection in newborns against infectious diseases. We assessed the impact of different factors, including gestational age and maternal infections such as HIV and malaria, on the efficiency of cord blood levels and placental transfer of IgG subclasses. We measured total IgG and IgG subclasses by quantitative suspension array technology against 14 pathogens and vaccine antigens, including targets of maternal immunization, in 341 delivering HIV-uninfected and HIV-infected mother-infant pairs from southern Mozambique. We analyzed the association of maternal HIV infection, Plasmodium falciparum exposure, maternal variables and pregnancy outcomes on cord antibody levels and transplacental transfer. Our results show that maternal antibody levels were the main determinant of cord antibody levels. Univariable and multivariable analysis showed that HIV reduced the placental transfer and cord levels of IgG and IgG1 principally, but also IgG2 to half of the antigens tested. P. falciparum exposure and prematurity were negatively associated with cord antibody levels and placental transfer, but this was antigen-subclass dependent. Our findings suggest that lower maternally transferred antibodies may underlie increased susceptibility to infections of HIV-exposed infants. This could affect efficacy of maternal vaccination, especially in sub-Saharan Africa, where there is a high prevalence of HIV, malaria and unfavorable environmental factors.
Collapse
Affiliation(s)
- Selena Alonso
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Gemma Ruiz-Olalla
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Raquel González
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - M. Nelia Manaca
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | | | - Reyes Balcells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Anifa Vala
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - María Rupérez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pau Cisteró
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Laura Fuente-Soro
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marta Cova
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Arsenio Nhacolo
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Esperança Sevene
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Department of Physiologic Science, Clinical Pharmacology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - John J. Aponte
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Clara Menéndez
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| |
Collapse
|
5
|
Bradbury RS, Arguello I, Lane M, Cooley G, Handali S, Dimitrova SD, Nascimento FS, Jameson S, Hellmann K, Tharp M, Byers P, Montgomery SP, Haynie L, Kirmse B, Pilotte N, Williams SA, Hobbs CV. Parasitic Infection Surveillance in Mississippi Delta Children. Am J Trop Med Hyg 2020; 103:1150-1153. [PMID: 32588796 PMCID: PMC7470556 DOI: 10.4269/ajtmh.20-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Some recent studies suggest ongoing transmission of parasitic diseases in the American South; however, surveys in Mississippi children are lacking. We enrolled 166 children (median age 8 years, range 4-13 years) from the Mississippi Delta region and carried out multi-parallel real-time polymerase chain reaction (PCR) for Necator americanus, Ascaris lumbricoides, and Strongyloides stercoralis on their stool samples. Dried blood spots were obtained for multiplex serology antibody detection. Of 166 children, all reported having flushable toilets, 11% had soil exposure, and 34% had a pet dog or cat. None had prior diagnosis or treatment of parasitic disease. Multi-parallel real-time PCRs were negative on the 89 stool DNA extracts available for testing. Dried blood spot testing of all 166 children determined the seroprevalence of IgG antibodies to Toxocara spp. (3.6%), Cryptosporidium (2.4%), S. stercoralis, Fasciola hepatica, and Giardia duodenalis (all 0%). In conclusion, parasitic infections and exposure were scarce in this population. Larger studies of at-risk populations are needed.
Collapse
Affiliation(s)
- Richard S Bradbury
- School of Health and Life Sciences, Federation University, Berwick Campus, Melbourne, Australia.,Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Irene Arguello
- Department of Pediatrics, Division of Infectious Diseases, Children's of Mississippi, Jackson, Mississippi
| | - Meredith Lane
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gretchen Cooley
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sukwan Handali
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Silvia D Dimitrova
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Fernanda S Nascimento
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sam Jameson
- Department of Pediatrics, Division of Infectious Diseases, Children's of Mississippi, Jackson, Mississippi
| | - Kathryn Hellmann
- Department of Pediatrics, Division of Infectious Diseases, Children's of Mississippi, Jackson, Mississippi
| | - Michelle Tharp
- The Delta Mercy Project, School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi.,Division of Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Paul Byers
- Mississippi State Department of Health, Jackson, Mississippi
| | - Susan P Montgomery
- Division of Parasitic Diseases and Malaria, Parasitic Diseases Branch, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lisa Haynie
- The Delta Mercy Project, School of Nursing, University of Mississippi Medical Center, Jackson, Mississippi
| | - Brian Kirmse
- Division of Genetics, Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nils Pilotte
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Steven A Williams
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts.,Department of Biological Sciences, Smith College, Northampton, Massachusetts
| | - Charlotte V Hobbs
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi.,Department of Pediatrics, Division of Infectious Diseases, Children's of Mississippi, Jackson, Mississippi
| |
Collapse
|
6
|
Aiemjoy K, Aragie S, Wittberg DM, Tadesse Z, Callahan EK, Gwyn S, Martin D, Keenan JD, Arnold BF. Seroprevalence of antibodies against Chlamydia trachomatis and enteropathogens and distance to the nearest water source among young children in the Amhara Region of Ethiopia. PLoS Negl Trop Dis 2020; 14:e0008647. [PMID: 32877398 PMCID: PMC7491729 DOI: 10.1371/journal.pntd.0008647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/15/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
The transmission of trachoma, caused by repeat infections with Chlamydia trachomatis, and many enteropathogens are linked to water quantity. We hypothesized that children living further from a water source would have higher exposure to C. trachomatis and enteric pathogens as determined by antibody responses. We used a multiplex bead assay to measure IgG antibody responses to C. trachomatis, Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, Campylobacter jejuni, enterotoxigenic Escherichia coli (ETEC) and Vibrio cholerae in eluted dried blood spots collected from 2267 children ages 0-9 years in 40 communities in rural Ethiopia in 2016. Linear distance from the child's house to the nearest water source was calculated. We derived seroprevalence cutoffs using external negative control populations, if available, or by fitting finite mixture models. We used targeted maximum likelihood estimation to estimate differences in seroprevalence according to distance to the nearest water source. Seroprevalence among 1-9-year-olds was 43% for C. trachomatis, 28% for S. enterica, 70% for E. histolytica, 54% for G. intestinalis, 96% for C. jejuni, 76% for ETEC and 94% for C. parvum. Seroprevalence increased with age for all pathogens. Median distance to the nearest water source was 473 meters (IQR 268, 719). Children living furthest from a water source had a 12% (95% CI: 2.6, 21.6) higher seroprevalence of S. enterica and a 12.7% (95% CI: 2.9, 22.6) higher seroprevalence of G. intestinalis compared to children living nearest. Seroprevalence for C. trachomatis and enteropathogens was high, with marked increases for most enteropathogens in the first two years of life. Children living further from a water source had higher seroprevalence of S. enterica and G. intestinalis indicating that improving access to water in the Ethiopia's Amhara region may reduce exposure to these enteropathogens in young children.
Collapse
Affiliation(s)
- Kristen Aiemjoy
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | | | - Dionna M. Wittberg
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
| | | | | | - Sarah Gwyn
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Diana Martin
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeremy D. Keenan
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
| | - Benjamin F. Arnold
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Garzon T, Valencia L, Dominguez V, Rascon L, Quintero J, Garibay-Escobar A, Enrique Robles-Zepeda R, Velazquez C. Differential antibody responses to Giardia lamblia strain variants expressing dissimilar levels of an immunogenic protein. Parasite Immunol 2020; 42:e12767. [PMID: 32594543 DOI: 10.1111/pim.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
AIMS Giardia lamblia is a protozoan parasite that causes giardiasis, one of the most common worldwide gastrointestinal diseases. For rational development of a Giardia vaccine, increasing our understanding of the host-Giardia interaction is crucial. In this study, we analysed the immunogenicity and antigenicity of two G lamblia strain variants [GS and GS-5G8 (+)], which express different levels of the variant-specific surface protein (VSP) 5G8 and also analysed the intestinal histological changes associated with Giardia infection. METHODS AND RESULTS We evaluated the antibody responses induced by G lamblia strains in infected, reinfected and immunized C3H/HeJ mice using ELISA, flow cytometry, Western blotting and histological analysis. Our results showed that G lamblia GS-5G8 (+) was more immunogenic and antigenic than the GS strain. The antibody response against the GS-5G8 (+) strain primarily recognized 5G8 protein. Serum antibody from infected and reinfected mice exhibited specific agglutination of trophozoites in vitro. GS-5G8 (+)-infected mice showed higher CD19+ infiltrating cell levels compared to GS-infected animals. CONCLUSION G lamblia strains with different expression levels of an immunogenic antigen (VSP 5G8) induce differential antibody responses. A better understanding of the immunogenic proteins of G lamblia will contribute to the rational development of an effective vaccine against this parasitic disease.
Collapse
Affiliation(s)
- Thania Garzon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Lourdes Valencia
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Victor Dominguez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Lucila Rascon
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| | - Jael Quintero
- Health Science Department, University of Sonora, Obregon, Mexico
| | | | | | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Mexico
| |
Collapse
|
8
|
Njenga SM, Kanyi HM, Arnold BF, Matendechero SH, Onsongo JK, Won KY, Priest JW. Integrated Cross-Sectional Multiplex Serosurveillance of IgG Antibody Responses to Parasitic Diseases and Vaccines in Coastal Kenya. Am J Trop Med Hyg 2020; 102:164-176. [PMID: 31769388 PMCID: PMC6947807 DOI: 10.4269/ajtmh.19-0365] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Accurate and cost-effective identification of areas where co-endemic infections occur would enable public health managers to identify opportunities for implementation of integrated control programs. Dried blood spots collected during cross-sectional lymphatic filariasis surveys in coastal Kenya were used for exploratory integrated detection of IgG antibodies against antigens from several parasitic infections (Wuchereria bancrofti, Schistosoma mansoni, Plasmodium spp., Ascaris lumbricoides, and Strongyloides stercoralis) as well as for detection of responses to immunizing agents used against vaccine-preventable diseases (VPDs) (measles, diphtheria, and tetanus) using a multiplex bead assay (MBA) platform. High heterogeneity was observed in antibody responses by pathogen and antigen across the sentinel sites. Antibody seroprevalence against filarial antigens were generally higher in Ndau Island (P < 0.0001), which also had the highest prevalence of filarial antigenemia compared with other communities. Antibody responses to the Plasmodium species antigens circumsporozoite protein (CSP) and merozoite surface protein-1 (MSP-1)19 were higher in Kilifi and Kwale counties, with Jaribuni community showing higher overall mean seroprevalence (P < 0.0001). Kimorigo community in Taita–Taveta County was the only area where antibody responses against S. mansoni Sm25 recombinant antigen were detected. Seroprevalence rates to Strongyloides antigen NIE ranged between 3% and 26%, and there was high heterogeneity in immune responses against an Ascaris antigen among the study communities. Differences were observed between communities in terms of seroprevalence to VPDs. Seroprotection to tetanus was generally lower in Kwale County than in other counties. This study has demonstrated that MBA holds promise for rapid integrated monitoring of trends of infections of public health importance in endemic areas.
Collapse
Affiliation(s)
- Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Henry M Kanyi
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Benjamin F Arnold
- Francis I. Proctor Foundation, University of California, San Francisco, California
| | - Sultani H Matendechero
- Department of Preventive and Promotive Services, Neglected Tropical Diseases Programme, Ministry of Health, Nairobi, Kenya
| | | | - Kimberly Y Won
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
9
|
Abstract
For more than 35 years, various assay formats have been used to detect Cryptosporidium-specific antibodies in human and animal sera. Cryptosporidium parvum 17- and 27-kDa antigens, identified from invasive sporozoites, have been used in serologic antibody assays to identify individuals infected in outbreaks of diarrheal disease caused by this protozoan parasite and to monitor exposures in communities. During infection, immunoglobulin (Ig) A, IgM, and IgG responses are elicited by these immunodominant antigens, and the parasite-specific Ig responses diminish following the resolution of infection. Using the recombinant forms of the 17- and 27-kDa C. parvum antigens and the relatively recently developed multiplex bead assay (MBA), data from serologic antibody responses can be economically and efficiently acquired, especially when the Cryptosporidium assays are integrated with assays for antibody responses to antigens from other pathogens monitored in community-wide or nation-wide serosurveys. Here we describe the coupling of the C. parvum recombinant antigens to carboxylated polystyrene beads, the data acquisition and analysis of IgG antibodies bound to the coupled beads, and the quality control methods required for data validation using the Luminex/MBA system.
Collapse
|
10
|
Madbouly NA, Nashee H, Elgendy AA, Rabee I, El Amir A. Encapsulation of Low Metronidazole Dose in Poly (D,L-lactide-co-glycolide) (PLGA) Nanoparticles Improves Giardia intestinalis Treatment. Infect Chemother 2020; 52:550-561. [PMID: 33377322 PMCID: PMC7779986 DOI: 10.3947/ic.2020.52.4.550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/21/2020] [Indexed: 01/26/2023] Open
Abstract
Background The present study was designed to investigate the antigiardial efficacy of low metronidazole dose loaded-D.L-lactide-co-glycolide (LMD-PLGA) nanoparticles (NPs) and to compare it with the standard high dose of metronidazole either free (HMD) or loaded on PLGA (HMD-PLGA). Materials and Methods PLGA NPs were prepared by single emulsification method, metronidazole (MTZ) was loaded in low and high doses. The nanoparticles were evaluated in vivo for mice model. The Giardia intestinalis infected mice were treated by LMD and HMD either free or PLGA NPs loaded, the parasitic load and ployclonal antigiardial serum antibodies (IgG and IgA) were recorded. Histopathological studies on intestinal and liver sections were applied. Results MTZ-PLGA NPs was successfully prepared with 81.68% encapsulation efficiency and with an average particle size of approximately 228.00 ± 43.19 nm and -32.28 ± 0.07 mV Zeta potential. Experimentally, it was observed that Giardia intestinalis infected animals administered with LMD-PLGA had completely eliminated cyst shedding and trophozoite count compared with Giardia-infected mice. Further, it was found that animals belonging to LMD-PLGA group had significantly reduced levels of antigiardial IgA (0.99 ± 0.05) antibodies in serum compared with Giardia-infected. Histopathologyically, also animals belonging to LMD-PLGA treated group had intact mucosal epithelium lining, and normal villi with no detection of G. intestinalis trophozoites. In addition to the less toxic effect on the liver tissue compared to free HMD, HMD-PLGA and infected-untreated groups using Ishak grading system. Conclusion Our study showed that PLGA nanoparticles could be atrial delivery systems for antigiardial drugs to improve their therapeutic efficacy and minimize their side effects that results from frequent dosing.
Collapse
Affiliation(s)
| | - Hayam Nashee
- Chemistry Laboratory, Abou El Nomros Central Hospital, Giza, Egypt
| | | | - Ibraheem Rabee
- Department of Parasitology, Theodore Bilharz Research Institute, Giza, Egypt
| | - Azza El Amir
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Rogier E, van den Hoogen L, Herman C, Gurrala K, Joseph V, Stresman G, Presume J, Romilus I, Mondelus G, Elisme T, Ashton R, Chang M, Lemoine JF, Druetz T, Eisele TP, Existe A, Boncy J, Drakeley C, Udhayakumar V. High-throughput malaria serosurveillance using a one-step multiplex bead assay. Malar J 2019; 18:402. [PMID: 31801556 PMCID: PMC6894145 DOI: 10.1186/s12936-019-3027-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/21/2019] [Indexed: 01/21/2023] Open
Abstract
Background Serological data indicating the presence and level of antibodies against infectious disease antigens provides indicators of exposure and transmission patterns in a population. Laboratory testing for large-scale serosurveys is often hindered by time-consuming immunoassays that employ multiple tandem steps. Some nations have recently begun using malaria serosurveillance data to make inferences about the malaria exposure in their populations, and serosurveys have grown increasingly larger as more accurate estimates are desired. Presented here is a novel approach of antibody detection using bead-based immunoassay that involves incubating all assay reagents concurrently overnight. Results A serosurvey in was performed in Haiti in early 2017 with both sera (n = 712) and dried blood spots (DBS, n = 796) collected for the same participants. The Luminex® multiplex bead-based assay (MBA) was used to detect total IgG against 8 malaria antigens: PfMSP1, PvMSP1, PmMSP1, PfCSP, PfAMA1, PfLSA1, PfGLURP-R0, PfHRP2. All sera and DBS samples were assayed by MBA using a standard immunoassay protocol with multiple steps, as well a protocol where sample and all reagents were incubated together overnight—termed here the OneStep assay. When compared to a standard multi-step assay, this OneStep assay amplified the assay signal for IgG detection for all 8 malaria antigens. The greatest increases in assay signal were seen at the low- and mid-range IgG titers and were indicative of an enhancement in the analyte detection, not simply an increase in the background signal of the assay. Seroprevalence estimates were generally similar for this sample Haitian population for all antigens regardless of serum or DBS sample type or assay protocol used. Conclusions When using the MBA for IgG detection, overnight incubation for the test sample and all assay reagents greatly minimized hands-on time for laboratory staff. Enhanced IgG signal was observed with the OneStep assay for all 8 malaria antigens employed in this study, and seroprevalence estimates for this sample population were similar regardless of assay protocol used. This overnight incubation protocol has the potential to be deployed for large-scale malaria serosurveys for the high-throughput and timely collection of antibody data, particularly for malaria seroprevalence estimates.
Collapse
Affiliation(s)
- Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| | - Lotus van den Hoogen
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Camelia Herman
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.,CDC Foundation, Atlanta, GA, 30308, USA
| | - Kevin Gurrala
- Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Vena Joseph
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Gillian Stresman
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Jacquelin Presume
- Laboratoire National de Santé Publique (LNSP), Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Ithamare Romilus
- Laboratoire National de Santé Publique (LNSP), Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Gina Mondelus
- Laboratoire National de Santé Publique (LNSP), Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Tamara Elisme
- Laboratoire National de Santé Publique (LNSP), Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Ruth Ashton
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Michelle Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Jean F Lemoine
- Programme National de Contrôle de la Malaria/MSPP, Port-au-Prince, Haiti
| | - Thomas Druetz
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA.,Department of Social and Preventive Medicine, University of Montreal School of Public Health, Montreal, QC, H3X 1X9, Canada
| | - Thomas P Eisele
- Center for Applied Malaria Research and Evaluation, Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70112, USA
| | - Alexandre Existe
- Laboratoire National de Santé Publique (LNSP), Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Jacques Boncy
- Laboratoire National de Santé Publique (LNSP), Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
12
|
Arnold BF, Martin DL, Juma J, Mkocha H, Ochieng JB, Cooley GM, Omore R, Goodhew EB, Morris JF, Costantini V, Vinjé J, Lammie PJ, Priest JW. Enteropathogen antibody dynamics and force of infection among children in low-resource settings. eLife 2019; 8:45594. [PMID: 31424386 PMCID: PMC6746552 DOI: 10.7554/elife.45594] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
Little is known about enteropathogen seroepidemiology among children in low-resource settings. We measured serological IgG responses to eight enteropathogens (Giardia intestinalis, Cryptosporidium parvum, Entamoeba histolytica, Salmonella enterica, enterotoxigenic Escherichia coli, Vibrio cholerae, Campylobacter jejuni, norovirus) in cohorts from Haiti, Kenya, and Tanzania. We studied antibody dynamics and force of infection across pathogens and cohorts. Enteropathogens shared common seroepidemiologic features that enabled between-pathogen comparisons of transmission. Overall, exposure was intense: for most pathogens the window of primary infection was <3 years old; for highest transmission pathogens primary infection occurred within the first year. Longitudinal profiles demonstrated significant IgG boosting and waning above seropositivity cutoffs, underscoring the value of longitudinal designs to estimate force of infection. Seroprevalence and force of infection were rank-preserving across pathogens, illustrating the measures provide similar information about transmission heterogeneity. Our findings suggest antibody response can be used to measure population-level transmission of diverse enteropathogens in serologic surveillance. Diarrhea, which is caused by bacteria such as Salmonella or by viruses like norovirus, is the fourth leading cause of death among children worldwide, with children in low-resource settings being at highest risk. The pathogens that cause diarrhea spread when stool from infected people comes into contact with new hosts, for example, through inadequate sanitation or by drinking contaminated water. Currently, the best way to track these infections is to collect stool samples from people and test them for the presence of the pathogens. Unfortunately, this is costly and difficult to do on a large scale outside of clinical settings, making it hard to track the spread of diarrhea-causing pathogens. The body produces antibodies – small proteins that can detect specific pathogens – in response to an infection. These antibodies help ward off future infections by the same pathogen, so if they are present in the blood, this indicates a current or previous infection. Scientists already collect blood samples to track malaria, HIV and vaccine-preventable diseases in low-resource settings. These samples could be tested more broadly to measure the levels of antibodies against diarrhea-causing pathogens. Now, Arnold et al. have used blood samples collected from children in Haiti, Kenya, and Tanzania to measure antibody responses to 8 diarrhea-causing pathogens. The results showed that many children in these settings had been infected with all 8 pathogens before age three, and that all of the pathogens shared similar age-dependent patterns of antibody response. This finding enabled Arnold et al. to combine antibody measurements with statistical models to estimate each pathogen’s force of infection, that is, the rate at which susceptible individuals in the population become infected. This is a key step for epidemiologists to understand which pathogens cause the most infections in a population. The experiments show that testing blood samples for antibodies could provide scientists with a new tool to track the transmission of diarrhea-causing pathogens in low-resource settings. This information could help public health officials design and test efforts to prevent diarrhea, for example, by improving water treatment or developing vaccines.
Collapse
Affiliation(s)
- Benjamin F Arnold
- Division of Epidemiology and Biostatistics, University of California, Berkeley, Berkeley, United States.,Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, United States.,Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
| | - Diana L Martin
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Jane Juma
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Harran Mkocha
- Kongwa Trachoma Project, Kongwa, United Republic of Tanzania
| | - John B Ochieng
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Gretchen M Cooley
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Richard Omore
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - E Brook Goodhew
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Jamae F Morris
- Department of African-American Studies, Georgia State University, Atlanta, United States
| | - Veronica Costantini
- Division of Viral Diseases, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Jan Vinjé
- Division of Viral Diseases, United States Centers for Disease Control and Prevention, Atlanta, United States
| | - Patrick J Lammie
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, United States.,Neglected Tropical Diseases Support Center, Task Force for Global Health, Decatur, United States
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, United States Centers for Disease Control and Prevention, Atlanta, United States
| |
Collapse
|
13
|
Miernyk KM, Bruden D, Parkinson AJ, Hurlburt D, Klejka J, Berner J, Stoddard RA, Handali S, Wilkins PP, Kersh GJ, Fitzpatrick K, Drebot MA, Priest JW, Pappert R, Petersen JM, Teshale E, Hennessy TW, Bruce MG. Human Seroprevalence to 11 Zoonotic Pathogens in the U.S. Arctic, Alaska. Vector Borne Zoonotic Dis 2019; 19:563-575. [PMID: 30789314 PMCID: PMC10874833 DOI: 10.1089/vbz.2018.2390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background: Due to their close relationship with the environment, Alaskans are at risk for zoonotic pathogen infection. One way to assess a population's disease burden is to determine the seroprevalence of pathogens of interest. The objective of this study was to determine the seroprevalence of 11 zoonotic pathogens in people living in Alaska. Methods: In a 2007 avian influenza exposure study, we recruited persons with varying wild bird exposures. Using sera from this study, we tested for antibodies to Cryptosporidium spp., Echinococcus spp., Giardia intestinalis, Toxoplasma gondii, Trichinella spp., Brucella spp., Coxiella burnetii, Francisella tularensis, California serogroup bunyaviruses, and hepatitis E virus (HEV). Results: Eight hundred eighty-seven persons had sera tested, including 454 subsistence bird hunters and family members, 160 sport bird hunters, 77 avian wildlife biologists, and 196 persons with no wild bird exposure. A subset (n = 481) of sera was tested for California serogroup bunyaviruses. We detected antibodies to 10/11 pathogens. Seropositivity to Cryptosporidium spp. (29%), California serotype bunyaviruses (27%), and G. intestinalis (19%) was the most common; 63% (301/481) of sera had antibodies to at least one pathogen. Using a multivariable logistic regression model, Cryptosporidium spp. seropositivity was higher in females (35.7% vs. 25.0%; p = 0.01) and G. intestinalis seropositivity was higher in males (21.8% vs. 15.5%; p = 0.02). Alaska Native persons were more likely than non-Native persons to be seropositive to C. burnetii (11.7% vs. 3.8%; p = 0.005) and less likely to be seropositive to HEV (0.4% vs. 4.1%; p = 0.01). Seropositivity to Cryptosporidium spp., C. burnetii, HEV, and Echinococcus granulosus was associated with increasing age (p ≤ 0.01 for all) as was seropositivity to ≥1 pathogen (p < 0.0001). Conclusion: Seropositivity to zoonotic pathogens is common among Alaskans with the highest to Cryptosporidium spp., California serogroup bunyaviruses, and G. intestinalis. This study provides a baseline for use in assessing seroprevalence changes over time.
Collapse
Affiliation(s)
- Karen M. Miernyk
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Dana Bruden
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Alan J. Parkinson
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Debby Hurlburt
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska
| | | | - James Berner
- Alaska Native Tribal Health Consortium, Anchorage, Alaska
| | - Robyn A. Stoddard
- Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sukwan Handali
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Patricia P. Wilkins
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Gilbert J. Kersh
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kelly Fitzpatrick
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mike A. Drebot
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Jeffrey W. Priest
- Waterborne Diseases Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ryan Pappert
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Ft. Collins, Colorado
| | - Jeannine M. Petersen
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Ft. Collins, Colorado
| | - Eyasu Teshale
- Epidemiology and Surveillance Branch, Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Thomas W. Hennessy
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska
| | - Michael G. Bruce
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, Alaska
| |
Collapse
|
14
|
Hjøllo T, Bratland E, Steinsland H, Radunovic M, Langeland N, Hanevik K. Longitudinal cohort study of serum antibody responses towards Giardia lamblia variant-specific surface proteins in a non-endemic area. Exp Parasitol 2018; 191:66-72. [PMID: 29908864 DOI: 10.1016/j.exppara.2018.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/10/2018] [Accepted: 06/12/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION/AIMS The long-term humoral immune response after a natural giardiasis infection is not well understood. The aim of this study was to evaluate longitudinal serum IgA and IgG/M responses towards conserved regions of two Giardia variant-specific surface proteins (VSP) and whether these responses differ between Giardia assemblages and durations of infection. METHODS We recruited thirty Giardia-positive patients, mainly returning travellers, and eighteen healthy adults presumed to be Giardia unexposed. Blood samples were collected before treatment, and at 6 weeks, 6 months and 12 months after the infection cleared. We used a multiplex bead-based flow cytometry immunoassay to measure Giardia specific IgA and IgG/M responses targeting two recombinant antigens from G. lamblia VSP proteins 3 and 5 (VSP3 and VSP5). RESULTS Serum levels of anti-VSP5 and anti-VSP3 IgA decreased rapidly to low levels after treatment but continued to be substantially higher than that of presumed unexposed controls even after 6 and 12 months. The IgG/M response decreased more gradually but remained significantly higher than presumed unexposed controls at all time points, except for anti-VSP3 at 12 months. There were no significant difference in responses for infections with assemblage A and assemblage B Giardia lamblia. Chronic infections (>8 weeks) were associated with a significantly lower anti-VSP5 IgG/M response. CONCLUSION This study describes the kinetics of the humoral immune response against two Giardia VSP proteins over one year, and the considerable cross reactivity between the two human infective Giardia assemblages. Persons with chronic Giardia infection seem to have lower levels of VSP antibodies.
Collapse
Affiliation(s)
- Torunn Hjøllo
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Eirik Bratland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hans Steinsland
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Matej Radunovic
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Morris JF, Murphy J, Fagerli K, Schneeberger C, Jaron P, Moke F, Juma J, Ochieng JB, Omore R, Roellig D, Xiao L, Priest JW, Narayanan J, Montgomery JM, Hill V, Mintz E, Ayers TL, O’Reilly CE. A Randomized Controlled Trial to Assess the Impact of Ceramic Water Filters on Prevention of Diarrhea and Cryptosporidiosis in Infants and Young Children-Western Kenya, 2013. Am J Trop Med Hyg 2018; 98:1260-1268. [PMID: 29611500 PMCID: PMC5953370 DOI: 10.4269/ajtmh.17-0731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/07/2018] [Indexed: 11/07/2022] Open
Abstract
Cryptosporidium is a leading cause of diarrhea among Kenyan infants. Ceramic water filters (CWFs) are used for household water treatment. We assessed the impact of CWFs on diarrhea, cryptosporidiosis prevention, and water quality in rural western Kenya. A randomized, controlled intervention trial was conducted in 240 households with infants 4-10 months old. Twenty-six weekly household surveys assessed infant diarrhea and health facility visits. Stool specimens from infants with diarrhea were examined for Cryptosporidium. Source water, filtered water, and filter retentate were tested for Cryptosporidium and/or microbial indicators. To estimate the effect of CWFs on health outcomes, logistic regression models using generalized estimating equations were performed; odds ratios (ORs) and 95% confidence intervals (CIs) are reported. Households reported using surface water (36%), public taps (29%), or rainwater (17%) as their primary drinking water sources, with no differences in treatment groups. Intervention households reported less diarrhea (7.6% versus 8.9%; OR: 0.86 [0.64-1.16]) and significantly fewer health facility visits for diarrhea (1.0% versus 1.9%; OR: 0.50 [0.30-0.83]). In total, 15% of intervention and 12% of control stools yielded Cryptosporidium (P = 0.26). Escherichia coli was detected in 93% of source water samples; 71% of filtered water samples met World Health Organization recommendations of < 1 E. coli/100 mL. Cryptosporidium was not detected in source water and was detected in just 2% of filter rinses following passage of large volumes of source water. Water quality was improved among CWF users; however, the short study duration and small sample size limited our ability to observe reductions in cryptosporidiosis.
Collapse
Affiliation(s)
- Jamae Fontain Morris
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
- Department of African-American Studies, Georgia State University, Atlanta, Georgia
| | - Jennifer Murphy
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kirsten Fagerli
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chandra Schneeberger
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Peter Jaron
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Fenny Moke
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Jane Juma
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - John B. Ochieng
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Richard Omore
- Kenya Medical Research Institute, Center for Global Health Research, Kisumu, Kenya
| | - Dawn Roellig
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jeffrey W. Priest
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jothikumar Narayanan
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Vince Hill
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Eric Mintz
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Tracy L. Ayers
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ciara E. O’Reilly
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
16
|
Chard AN, Trinies V, Moss DM, Chang HH, Doumbia S, Lammie PJ, Freeman MC. The impact of school water, sanitation, and hygiene improvements on infectious disease using serum antibody detection. PLoS Negl Trop Dis 2018; 12:e0006418. [PMID: 29659574 PMCID: PMC5919668 DOI: 10.1371/journal.pntd.0006418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/26/2018] [Accepted: 03/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background Evidence from recent studies assessing the impact of school water, sanitation and hygiene (WASH) interventions on child health has been mixed. Self-reports of disease are subject to bias, and few WASH impact evaluations employ objective health measures to assess reductions in disease and exposure to pathogens. We utilized antibody responses from dried blood spots (DBS) to measure the impact of a school WASH intervention on infectious disease among pupils in Mali. Methodology/Principal findings We randomly selected 21 beneficiary primary schools and their 21 matched comparison schools participating in a matched-control trial of a comprehensive school-based WASH intervention in Mali. DBS were collected from 20 randomly selected pupils in each school (n = 807). We analyzed eluted IgG from the DBS using a Luminex multiplex bead assay to 28 antigens from 17 different pathogens. Factor analysis identified three distinct latent variables representing vector-transmitted disease (driven primarily by dengue), food/water-transmitted enteric disease (driven primarily by Escherichia coli and Vibrio cholerae), and person-to-person transmitted enteric disease (driven primarily by norovirus). Data were analyzed using a linear latent variable model. Antibody evidence of food/water-transmitted enteric disease (change in latent variable mean (β) = -0.24; 95% CI: -0.53, -0.13) and person-to-person transmitted enteric disease (β = -0.17; 95% CI: -0.42, -0.04) was lower among pupils attending beneficiary schools. There was no difference in antibody evidence of vector-transmitted disease (β = 0.11; 95% CI: -0.05, 0.33). Conclusions/Significance Evidence of enteric disease was lower among pupils attending schools benefitting from school WASH improvements than students attending comparison schools. These findings support results from the parent study, which also found reduced incidence of self-reported diarrhea among pupils of beneficiary schools. DBS collection was feasible in this resource-poor field setting and provided objective evidence of disease at a low cost per antigen analyzed, making it an effective measurement tool for the WASH field. Trial registration The trial was registered at ClinicalTrials.gov (NCT01787058) Water, sanitation, and hygiene (WASH) in schools is promoted as an intervention to improve child health in low-resource settings. However, evidence of the impact of school WASH interventions on child health is mixed. One reason could be that most studies rely on self-reported disease symptoms, which are prone to bias. In order to objectively measure evidence of disease, we collected dried blood spots (DBS) from pupils attending schools participating in an impact evaluation of a comprehensive school WASH intervention in Mali, and analyzed the DBS for antibody responses to 28 antigens from 17 different pathogens. We found that evidence of enteric disease was lower among pupils attending beneficiary schools compared to pupils attending comparison schools. These results are consistent with those from the parent study, which also found reduced self-reported diarrhea among pupils attending beneficiary schools. Our results support WASH in schools as an effective intervention to improve child health. Further, DBS are a feasible measurement tool for the WASH field to provide objective evidence of disease.
Collapse
Affiliation(s)
- Anna N. Chard
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Victoria Trinies
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Delynn M. Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Howard H. Chang
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Seydou Doumbia
- Malaria Research and Training Center, Faculty of Medicine and Odontostomatology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Patrick J. Lammie
- Division of Parasitic Diseases and Malaria, Centers for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Matthew C. Freeman
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
17
|
Giardia and Cryptosporidium antibody prevalence and correlates of exposure among Alaska residents, 2007-2008. Epidemiol Infect 2018; 146:888-894. [PMID: 29633686 DOI: 10.1017/s095026881800078x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Giardia duodenalis and Cryptosporidium spp. are common intestinal protozoa that can cause diarrhoeal disease. Although cases of infection with Giardia and Cryptosporidium have been reported in Alaska, the seroprevalence and correlates of exposure to these parasites have not been characterised. We conducted a seroprevalence survey among 887 residents of Alaska, including sport hunters, wildlife biologists, subsistence bird hunters and their families and non-exposed persons. We tested serum using a multiplex bead assay to evaluate antibodies to the Giardia duodenalis variant-specific surface protein conserved structural regions and to the Cryptosporidium parvum 17- and 27-kDa antigens. Approximately one third of participants in each group had evidence of exposure to Cryptosporidium. Prevalence of Giardia antibody was highest among subsistence hunters and their families (30%), among whom positivity was associated with lack of community access to in-home running water (adjusted prevalence ratio [aPR] 1.15, 95% confidence interval (CI) 1.02-1.28) or collecting rain, ice, or snow to use as drinking water (aPR 1.09, 95% CI 1.01-1.18). Improving in-home water access for entire communities could decrease the risk of exposure to Giardia.
Collapse
|
18
|
Garcia LS, Arrowood M, Kokoskin E, Paltridge GP, Pillai DR, Procop GW, Ryan N, Shimizu RY, Visvesvara G. Practical Guidance for Clinical Microbiology Laboratories: Laboratory Diagnosis of Parasites from the Gastrointestinal Tract. Clin Microbiol Rev 2018; 31:e00025-17. [PMID: 29142079 PMCID: PMC5740970 DOI: 10.1128/cmr.00025-17] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This Practical Guidance for Clinical Microbiology document on the laboratory diagnosis of parasites from the gastrointestinal tract provides practical information for the recovery and identification of relevant human parasites. The document is based on a comprehensive literature review and expert consensus on relevant diagnostic methods. However, it does not include didactic information on human parasite life cycles, organism morphology, clinical disease, pathogenesis, treatment, or epidemiology and prevention. As greater emphasis is placed on neglected tropical diseases, it becomes highly probable that patients with gastrointestinal parasitic infections will become more widely recognized in areas where parasites are endemic and not endemic. Generally, these methods are nonautomated and require extensive bench experience for accurate performance and interpretation.
Collapse
Affiliation(s)
| | - Michael Arrowood
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, Waterborne Disease Prevention Branch, Atlanta, Georgia, USA
| | - Evelyne Kokoskin
- Public Health Ontario, Ottawa, Ontario, Canada
- Public Health Laboratories-Ottawa, Ottawa, Ontario, Canada
| | | | - Dylan R Pillai
- Calgary Laboratory Services, Diagnostic and Scientific Centre, Calgary, Alberta, Canada
| | - Gary W Procop
- Enterprise Test Utilization and Pathology Consultative Services, Cleveland, Ohio, USA
- Molecular Microbiology, Parasitology, and Mycology Laboratories, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Norbert Ryan
- Bacteriology and Parasitology, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, Victoria, Australia
| | | | - Govinda Visvesvara
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Foodborne, Waterborne, and Environmental Diseases, Waterborne Disease Prevention Branch, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Zambrano LD, Priest JW, Ivan E, Rusine J, Nagel C, Kirby M, Rosa G, Clasen TF. Use of Serologic Responses against Enteropathogens to Assess the Impact of a Point-of-Use Water Filter: A Randomized Controlled Trial in Western Province, Rwanda. Am J Trop Med Hyg 2017; 97:876-887. [PMID: 28749764 PMCID: PMC5590594 DOI: 10.4269/ajtmh.16-1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
Diarrhea is a leading contributor to childhood morbidity and mortality in sub-Saharan Africa. Given the challenge of blinding most water, sanitation, and hygiene (WASH) interventions, diarrheal disease outcome measures in WASH intervention trials are subject to potential bias and misclassification. Using the platform of a cluster-randomized controlled trial of a household-based drinking water filter in western province, Rwanda, we assessed the impact of the drinking water filter on enteric seroconversion in young children as a health outcome and examined the association between serologic responses and caregiver-reported diarrhea. Among the 2,179 children enrolled in the trial, 189 children 6-12 months of age were enrolled in a nested serology study. These children had their blood drawn at baseline and 6-12 months after the intervention was distributed. Multiplex serologic assays for Giardia, Cryptosporidium, Entamoeba histolytica, norovirus, Campylobacter, enterotoxigenic Escherichia coli and Vibrio cholerae were performed. Despite imperfect uptake, receipt of the water filter was associated with a significant decrease in seroprevalence of IgG directed against Cryptosporidium parvum Cp17 and Cp23 (relative risk [RR]: 0.62, 95% confidence interval [CI]: 0.44-0.89). Serologic responses were positively associated with reported diarrhea in the previous 7 days for both Giardia intestinalis (RR: 1.94, 95% CI: 1.04-3.63) and C. parvum (RR: 2.21, 95% CI: 1.09-4.50). Serologic responses for all antigens generally increased in the follow-up round, rising sharply after 12 months of age. The water filter is associated with reduced serologic responses against C. parvum, a proxy for exposure and infection; therefore, serologic responses against protozoa may be a suitable health outcome measure for WASH trials among children with diarrhea.
Collapse
Affiliation(s)
- Laura Divens Zambrano
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Jeffrey W. Priest
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Zoonotic and Emerging Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Emil Ivan
- National Reference Laboratory, Rwanda Biomedical Center, Kigali, Rwanda
| | - John Rusine
- National Reference Laboratory, Rwanda Biomedical Center, Kigali, Rwanda
| | - Corey Nagel
- OHSU/PSU School of Public Health, Oregon Health and Science University, Portland, Oregon
| | - Miles Kirby
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ghislaine Rosa
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas F. Clasen
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
20
|
Adams DA, Thomas KR, Jajosky RA, Foster L, Baroi G, Sharp P, Onweh DH, Schley AW, Anderson WJ. Summary of Notifiable Infectious Diseases and Conditions - United States, 2015. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2017; 64:1-143. [PMID: 28796757 DOI: 10.15585/mmwr.mm6453a1] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Summary of Notifiable Infectious Diseases and Conditions - United States, 2015 (hereafter referred to as the summary) contains the official statistics, in tabular and graphical form, for the reported occurrence of nationally notifiable infectious diseases and conditions in the United States for 2015. Unless otherwise noted, data are final totals for 2015 reported as of June 30, 2016. These statistics are collected and compiled from reports sent by U.S. state and territories, New York City, and District of Columbia health departments to the National Notifiable Diseases Surveillance System (NNDSS), which is operated by CDC in collaboration with the Council of State and Territorial Epidemiologists (CSTE). This summary is available at https://www.cdc.gov/MMWR/MMWR_nd/index.html. This site also includes summary publications from previous years.
Collapse
Affiliation(s)
- Deborah A Adams
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Kimberly R Thomas
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Ruth Ann Jajosky
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Loretta Foster
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Gitangali Baroi
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Pearl Sharp
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Diana H Onweh
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Alan W Schley
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | - Willie J Anderson
- Division of Health Informatics and Surveillance, Office of Public Health Scientific Services, CDC
| | | |
Collapse
|
21
|
Feeser KR, Cama V, Priest JW, Thiele EA, Wiegand RE, Lakwo T, Feleke SM, Cantey PT. Characterizing Reactivity to Onchocerca volvulus Antigens in Multiplex Bead Assays. Am J Trop Med Hyg 2017; 97:666-672. [PMID: 28722605 DOI: 10.4269/ajtmh.16-0519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Multiplex bead assays (MBAs) may provide a powerful integrated tool for monitoring, evaluation, and post-elimination surveillance of onchocerciasis and co-endemic diseases; however, the specificity and sensitivity of Onchocerca volvulus antigens have not been characterized within this context. An MBA was developed to evaluate three antigens (OV-16, OV-17, and OV-33) for onchocerciasis. Receiver operating characteristics (ROC) analyses were used to characterize antigen performance using a panel of 610 specimens: 109 O. volvulus-positive specimens, 426 non-onchocerciasis controls with filarial and other confirmed parasitic infection, and 75 sera from patients with no other parasitic infection. The IgG and IgG4 assays for OV-16 demonstrated sensitivities of 95.4% and 96.3%, and specificities of 99.4% and 99.8%, respectively. The OV-17 IgG and IgG4 assays had sensitivities of 86.2% and 76.1% and specificities of 79.2% and 82.8%. For OV-33, the IgG and IgG4 assays had sensitivities of 90.8% and 96.3%, and specificities of 96.8% and 98.6%. The OV-16 IgG4-based MBA had the best assay characteristics, followed by OV-33 IgG4. The OV-16 IgG4 assay would be useful for monitoring and evaluation using the MBA platform. Further evaluations are needed to review the potential use of OV-33 as a confirmatory test in the context of program evaluations.
Collapse
Affiliation(s)
- Karla R Feeser
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vitaliano Cama
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jeffrey W Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elizabeth A Thiele
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ryan E Wiegand
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Thomson Lakwo
- Vector Control Division, Uganda Ministry of Health, Kampala, Uganda
| | | | - Paul T Cantey
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
22
|
Arnold BF, van der Laan MJ, Hubbard AE, Steel C, Kubofcik J, Hamlin KL, Moss DM, Nutman TB, Priest JW, Lammie PJ. Measuring changes in transmission of neglected tropical diseases, malaria, and enteric pathogens from quantitative antibody levels. PLoS Negl Trop Dis 2017; 11:e0005616. [PMID: 28542223 PMCID: PMC5453600 DOI: 10.1371/journal.pntd.0005616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/01/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Serological antibody levels are a sensitive marker of pathogen exposure, and advances in multiplex assays have created enormous potential for large-scale, integrated infectious disease surveillance. Most methods to analyze antibody measurements reduce quantitative antibody levels to seropositive and seronegative groups, but this can be difficult for many pathogens and may provide lower resolution information than quantitative levels. Analysis methods have predominantly maintained a single disease focus, yet integrated surveillance platforms would benefit from methodologies that work across diverse pathogens included in multiplex assays. METHODS/PRINCIPAL FINDINGS We developed an approach to measure changes in transmission from quantitative antibody levels that can be applied to diverse pathogens of global importance. We compared age-dependent immunoglobulin G curves in repeated cross-sectional surveys between populations with differences in transmission for multiple pathogens, including: lymphatic filariasis (Wuchereria bancrofti) measured before and after mass drug administration on Mauke, Cook Islands, malaria (Plasmodium falciparum) before and after a combined insecticide and mass drug administration intervention in the Garki project, Nigeria, and enteric protozoans (Cryptosporidium parvum, Giardia intestinalis, Entamoeba histolytica), bacteria (enterotoxigenic Escherichia coli, Salmonella spp.), and viruses (norovirus groups I and II) in children living in Haiti and the USA. Age-dependent antibody curves fit with ensemble machine learning followed a characteristic shape across pathogens that aligned with predictions from basic mechanisms of humoral immunity. Differences in pathogen transmission led to shifts in fitted antibody curves that were remarkably consistent across pathogens, assays, and populations. Mean antibody levels correlated strongly with traditional measures of transmission intensity, such as the entomological inoculation rate for P. falciparum (Spearman's rho = 0.75). In both high- and low transmission settings, mean antibody curves revealed changes in population mean antibody levels that were masked by seroprevalence measures because changes took place above or below the seropositivity cutoff. CONCLUSIONS/SIGNIFICANCE Age-dependent antibody curves and summary means provided a robust and sensitive measure of changes in transmission, with greatest sensitivity among young children. The method generalizes to pathogens that can be measured in high-throughput, multiplex serological assays, and scales to surveillance activities that require high spatiotemporal resolution. Our results suggest quantitative antibody levels will be particularly useful to measure differences in exposure for pathogens that elicit a transient antibody response or for monitoring populations with very high- or very low transmission, when seroprevalence is less informative. The approach represents a new opportunity to conduct integrated serological surveillance for neglected tropical diseases, malaria, and other infectious diseases with well-defined antigen targets.
Collapse
Affiliation(s)
- Benjamin F. Arnold
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Mark J. van der Laan
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Alan E. Hubbard
- School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Cathy Steel
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Kubofcik
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katy L. Hamlin
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Delynn M. Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey W. Priest
- Division of Foodborne, Waterborne, and Environmental Diseases, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patrick J. Lammie
- Division of Parasitic Diseases and Malaria, United States Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Neglected Tropical Diseases Support Center, Task Force for Global Health, Decatur, Georgia, United States of America
| |
Collapse
|
23
|
Krylsky DV, Gushchin AP, Gushchin SA, Dezhurov SV, Morenkov OS, Gladyshev PP, Vasiliev AA. Development of a toolkit for early precision immunochromatographic diagnosis. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M, Egorov AI, Griffin SM, Heaney CD. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings. Curr Environ Health Rep 2016; 3:322-34. [PMID: 27352014 PMCID: PMC5424709 DOI: 10.1007/s40572-016-0096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). RECENT FINDINGS We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.
Collapse
Affiliation(s)
- Natalie G Exum
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Acute and Chronic Care, School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret Kosek
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shannon M Griffin
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Christopher D Heaney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Room W7033B, 615 North Wolfe Street, Baltimore, Maryland, 21205-2179, USA.
| |
Collapse
|
25
|
Poirier MJ, Moss DM, Feeser KR, Streit TG, Chang GJJ, Whitney M, Russell BJ, Johnson BW, Basile AJ, Goodman CH, Barry AK, Lammie PJ. Measuring Haitian children's exposure to chikungunya, dengue and malaria. Bull World Health Organ 2016; 94:817-825A. [PMID: 27821884 PMCID: PMC5096354 DOI: 10.2471/blt.16.173252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 11/27/2022] Open
Abstract
Objective To differentiate exposure to the newly introduced chikungunya virus from exposure to endemic dengue virus and other pathogens in Haiti. Methods We used a multiplex bead assay to detect immunoglobulin G (IgG) responses to a recombinant chikungunya virus antigen, two dengue virus-like particles and three recombinant Plasmodium falciparum antigens. Most (217) of the blood samples investigated were collected longitudinally, from each of 61 children, between 2011 and 2014 but another 127 were collected from a cross-sectional sample of children in 2014. Findings Of the samples from the longitudinal cohort, none of the 153 collected between 2011 and 2013 but 78.7% (48/61) of those collected in 2014 were positive for IgG responses to the chikungunya virus antigen. In the cross-sectional sample, such responses were detected in 96 (75.6%) of the children and occurred at similar prevalence across all age groups. In the same sample, responses to malarial antigen were only detected in eight children (6.3%) but the prevalence of IgG responses to dengue virus antigens was 60.6% (77/127) overall and increased steadily with age. Spatial analysis indicated that the prevalence of IgG responses to the chikungunya virus and one of the dengue virus-like particles decreased as the sampling site moved away from the city of Léogâne and towards the ocean. Conclusion Serological evidence indicates that there had been a rapid and intense dissemination of chikungunya virus in Haiti. The multiplex bead assay appears to be an appropriate serological platform to monitor the seroprevalence of multiple pathogens simultaneously.
Collapse
Affiliation(s)
- Mathieu Jp Poirier
- University of Notre Dame Haiti Program, Hôpital Sainte Croix, Rue D' Accenil No.1, Léogâne, Haiti
| | - Delynn M Moss
- Centers for Disease Control and Prevention, Atlanta, United States of America (USA)
| | - Karla R Feeser
- Centers for Disease Control and Prevention, Atlanta, United States of America (USA)
| | - Thomas G Streit
- University of Notre Dame Haiti Program, Hôpital Sainte Croix, Rue D' Accenil No.1, Léogâne, Haiti
| | | | - Matthew Whitney
- Centers for Disease Control and Prevention, Fort Collins, USA
| | | | | | - Alison J Basile
- Centers for Disease Control and Prevention, Fort Collins, USA
| | | | - Amanda K Barry
- Centers for Disease Control and Prevention, Atlanta, United States of America (USA)
| | - Patrick J Lammie
- Centers for Disease Control and Prevention, Atlanta, United States of America (USA)
| |
Collapse
|
26
|
Integration of Multiplex Bead Assays for Parasitic Diseases into a National, Population-Based Serosurvey of Women 15-39 Years of Age in Cambodia. PLoS Negl Trop Dis 2016; 10:e0004699. [PMID: 27136913 PMCID: PMC4854427 DOI: 10.1371/journal.pntd.0004699] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
Collection of surveillance data is essential for monitoring and evaluation of public health programs. Integrated collection of household-based health data, now routinely carried out in many countries through demographic health surveys and multiple indicator surveys, provides critical measures of progress in health delivery. In contrast, biomarker surveys typically focus on single or related measures of malaria infection, HIV status, vaccination coverage, or immunity status for vaccine-preventable diseases (VPD). Here we describe an integrated biomarker survey based on use of a multiplex bead assay (MBA) to simultaneously measure antibody responses to multiple parasitic diseases of public health importance as part of a VPD serological survey in Cambodia. A nationally-representative cluster-based survey was used to collect serum samples from women of child-bearing age. Samples were tested by MBA for immunoglobulin G antibodies recognizing recombinant antigens from Plasmodium falciparum and P. vivax, Wuchereria bancrofti, Toxoplasma gondii, Taenia solium, and Strongyloides stercoralis. Serologic IgG antibody results were useful both for generating national prevalence estimates for the parasitic diseases of interest and for confirming the highly focal distributions of some of these infections. Integrated surveys offer an opportunity to systematically assess the status of multiple public health programs and measure progress toward Millennium Development Goals. In 2012 a comprehensive national serosurvey to assess immunity to vaccine preventable diseases such as polio, rubella, measles, and tetanus was conducted among women of child bearing age in Cambodia. We were able to test this sample set using a multiplex bead assay in order to measure specific antibody responses to the parasites that cause malaria, toxoplasmosis, lymphatic filariasis, cysticercosis, and strongyloidiasis. National prevalence estimates generated from the serologic data show widespread exposure (>45% positive) to the soil transmitted nematode worm, Strongyloides stercoralis. In contrast, <5% of women were positive for antibodies to P. falciparum malaria, P. vivax malaria, and lymphatic filariasis, and antibody-positive women were mainly found in the North region of the country. Women who were positive for antibodies to Toxoplasma gondii and Taenia solium (5.8% and 2.6% of the population, respectively) were not clustered in any particular geographic region. With this study we have shown how the integration of a multiplex assay into a national serosurvey can provide useful information on the prevalence and distributions of medically important parasitic infections.
Collapse
|
27
|
Rogier E, Wiegand R, Moss D, Priest J, Angov E, Dutta S, Journel I, Jean SE, Mace K, Chang M, Lemoine JF, Udhayakumar V, Barnwell JW. Multiple comparisons analysis of serological data from an area of low Plasmodium falciparum transmission. Malar J 2015; 14:436. [PMID: 26537125 PMCID: PMC4634594 DOI: 10.1186/s12936-015-0955-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a nation reduces the burden of falciparum malaria, identifying areas of transmission becomes increasingly difficult. Over the past decade, the field of utilizing malaria serological assays to measure exposure has grown rapidly, and a variety of serological methods for data acquisition and analysis of human IgG against falciparum antigens are available. Here, different immunoassays and statistical methods are utilized to analyse samples from a low transmission setting and directly compare the estimates generated. METHODS A subset of samples (n = 580) from a 2012 Haitian nationwide malaria survey was employed as sample population of low falciparum endemicity. In addition to the Haitian samples, samples from 247 US residents were used as a reference population of 'true seronegatives'. Data acquisition was performed through standard ELISA and bead-based multiplex assays assaying for IgG antibodies to the Plasmodium falciparum antigens MSP-1p19, MSP-1p42(D), MSP-1p42(F), and AMA-1. Appropriate parametric distributions and seropositivity cutoff values were determined by statistical measures. RESULTS Data from both assays showed a strong positive skew, and the lognormal distribution was found to be an appropriate statistical fit to the Haitian and American populations. The American samples served as a good serological true negative population for the multiplex assay, but not for ELISA-based data. Mixture model approaches to determine seronegative and seropositive populations from the Haitian data showed a high degree of distribution overlap-likely due to the historical low falciparum transmission in this nation. Different fittings to the reversible catalytic model resulted depending upon the immunoassay utilized and seropositivity cutoff method employed. Data were also analysed through fitting to penalized B-splines, presenting another possible analytical tool for the analysis of malaria serological data. CONCLUSIONS Standardization of serological techniques and analyses may prove difficult as some tools can prove to be more useful depending on the area and parasite in question, making clear interpretation a vital pursuit. The presented analysis in the low-endemic nation of Haiti found malaria-naive US residents to be an appropriate seronegative reference population for the multiplex assay, and this assay providing consistent estimates between MSP-1 and AMA-1 antigens of percent seropositives for this low-endemic population.
Collapse
Affiliation(s)
- Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | - Ryan Wiegand
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | - Delynn Moss
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | - Jeff Priest
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | - Evelina Angov
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Sheetij Dutta
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Ito Journel
- Laboratoire National de Santé Publique (LNSP)/Ministère de la Santé Publique et de la Population (MSPP), Port-au-Prince, Haiti.
| | - Samuel E Jean
- Population Services International/Organisation Haïtienne de Marketing Social pour la Santé, Port-au-Prince, Haiti.
| | - Kimberly Mace
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | - Michelle Chang
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | | | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Center for Global Health, Atlanta, GA, USA.
| |
Collapse
|
28
|
Development of Ss-NIE-1 recombinant antigen based assays for immunodiagnosis of strongyloidiasis. PLoS Negl Trop Dis 2015; 9:e0003694. [PMID: 25860665 PMCID: PMC4393093 DOI: 10.1371/journal.pntd.0003694] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/10/2015] [Indexed: 11/30/2022] Open
Abstract
Strongyloides stercoralis is a widely distributed parasite that infects 30 to 100 million people worldwide. In the United States strongyloidiasis is recognized as an important infection in immigrants and refugees. Public health and commercial reference laboratories need a simple and reliable method for diagnosis of strongyloidiasis to identify and treat cases and to prevent transmission. The recognized laboratory test of choice for diagnosis of strongyloidiasis is detection of disease specific antibodies, most commonly using a crude parasite extract for detection of IgG antibodies. Recently, a luciferase tagged recombinant protein of S. stercoralis, Ss-NIE-1, has been used in a luciferase immunoprecipitation system (LIPS) to detect IgG and IgG4 specific antibodies. To promote wider adoption of immunoassays for strongyloidiasis, we used the Ss-NIE-1 recombinant antigen without the luciferase tag and developed ELISA and fluorescent bead (Luminex) assays to detect S. stercoralis specific IgG4. We evaluated the assays using well-characterized sera from persons with or without presumed strongyloidiasis. The sensitivity and specificity of Ss-NIE-1 IgG4 ELISA were 95% and 93%, respectively. For the IgG4 Luminex assay, the sensitivity and specificity were 93% and 95%, respectively. Specific IgG4 antibody decreased after treatment in a manner that was similar to the decrease of specific IgG measured in the crude IgG ELISA. The sensitivities of the Ss-NIE-1 IgG4 ELISA and Luminex assays were comparable to the crude IgG ELISA but with improved specificities. However, the Ss-NIE-1 based assays are not dependent on native parasite materials and can be performed using widely available laboratory equipment. In conclusion, these newly developed Ss-NIE-1 based immunoassays can be readily adopted by public health and commercial reference laboratories for routine screening and clinical diagnosis of S. stercoralis infection in refugees and immigrants in the United States. Strongyloidiasis is a neglected tropical disease that affects millions worldwide and needs more attention and better diagnostic methods. Strongyloides stercoralis can undergo an autoinfection cycle and can cause hyperinfection involving the pulmonary and gastrointestinal systems and disseminated infection in other organs. Although endemic areas are mostly developing countries in tropical and subtropical regions with only sporadic transmission in temperate areas, the disease is a threat to developed world populations through immigrants, refugees, travelers, and military personnel. The disease can have catastrophic effects when a patient is immunocompromised or when an infected organ is transplanted into a vulnerable recipient. Due to the threat to public health, the intricate life cycle of S. stercoralis, the need to perform multiple follow-up diagnostics to ensure treatment success, and the necessity to rule out multiple co-endemic parasitic infections, it is imperative to develop new diagnostic assays that are simple and efficient while retaining maximal sensitivity and specificity. In this study, we use a well-known recombinant protein, Ss-NIE-1, to optimize assays using both an ELISA format and a multiplex platform to meet these needs.
Collapse
|
29
|
Seroepidemiology of Toxoplasma in a coastal region of Haiti: multiplex bead assay detection of immunoglobulin G antibodies that recognize the SAG2A antigen. Epidemiol Infect 2015; 143:618-30. [PMID: 25600668 DOI: 10.1017/s0950268814001216] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a globally distributed parasitic protozoan that infects most warm-blooded animals. We incorporated a bead coupled with recombinant SAG2A protein into our Neglected Tropical Disease (NTD) multiplex bead assay (MBA) panel and used it to determine Toxoplasma infection rates in two studies in Haiti. In a longitudinal cohort study of children aged 0-11 years, the infection rate varied with age reaching a maximum of 0·131 infections/year in children aged 3 years [95% confidence interval (CI) 0·065-0·204]. The median time to seroconversion was estimated to be 9·7 years (95% CI 7·6-∞). In a cross-sectional, community-wide survey of residents of all ages, we determined an overall seroprevalence of 28·2%. The seroprevalence age curve from the cross-sectional study also suggested that the force of infection varied with age and peaked at 0·057 infections/year (95% CI 0·033-0·080) at age 2·6 years. Integration of the Toxoplasma MBA into NTD surveys may allow for better estimates of the potential burden of congenital toxoplasmosis in underserved regions.
Collapse
|
30
|
Heyworth MF. Immunological aspects of Giardia infections. ACTA ACUST UNITED AC 2014; 21:55. [PMID: 25347704 PMCID: PMC4209855 DOI: 10.1051/parasite/2014056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/16/2014] [Indexed: 11/14/2022]
Abstract
Immunodeficiency, particularly antibody deficiency, predisposes to increased intensity and persistence of Giardia infections. Giardia-infected immunocompetent hosts produce serum and intestinal antibodies against Giardia trophozoites. The number of Giardia muris trophozoites, in mice with G. muris infection, is reduced by intra-duodenal administration of anti-G. muris antibody. Giardia intestinalis antigens that are recognised by human anti-trophozoite antibodies include variable (variant-specific) and invariant proteins. Nitric oxide (NO) appears to contribute to host clearance of Giardia trophozoites. Arginine is a precursor of NO and is metabolised by Giardia trophozoites, possibly reducing its availability for generation of NO by the host. Work with mice suggests that T lymphocytes and interleukin-6 (IL-6) contribute to clearance of Giardia infection via mechanisms independent of antibodies.
Collapse
Affiliation(s)
- Martin F Heyworth
- Research Service, Department of Veterans Affairs (VA) Medical Center, Philadelphia, PA 19104, USA - Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Moss DM, Priest JW, Hamlin K, Derado G, Herbein J, Petri WA, Lammie PJ. Longitudinal evaluation of enteric protozoa in Haitian children by stool exam and multiplex serologic assay. Am J Trop Med Hyg 2014; 90:653-60. [PMID: 24591430 DOI: 10.4269/ajtmh.13-0545] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Haitian children were monitored longitudinally in a filariasis study. Included were stool samples examined for Giardia intestinalis and Entamoeba histolytica cysts, and serum specimens analyzed for immunoglobulin G (IgG) responses to eight recombinant antigens from G. intestinalis (variant-specific surface protein [VSP1-VSP5]), E. histolytica (lectin adhesion molecule [LecA]), and Cryptosporidium parvum (17- and 27-kDa) using a multiplex bead assay. The IgG responses to VSP antigens peaked at 2 years of age and then diminished and were significantly lower (P < 0.002) in children > 4.5 years than in children < 4.5 years. The IgG responses to Cryptosporidium tended to increase with age. The IgG responses to LecA and VSP antigens and the prevalence of stools positive for cysts were significantly higher (P < 0.037 and P < 0.035, respectively) in the rainy season than in the dry season. The multiplex bead assay provides a powerful tool for analyzing serologic responses to multiple pathogens.
Collapse
Affiliation(s)
- Delynn M Moss
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Division of Parasitic Diseases and Malaria, National Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Departments of Medicine, Microbiology, and Pathology, University of Virginia, and TECHLAB, Inc., Blacksburg, Virginia
| | | | | | | | | | | | | |
Collapse
|
32
|
New concepts in diagnostics for infectious diarrhea. Mucosal Immunol 2013; 6:876-85. [PMID: 23881355 DOI: 10.1038/mi.2013.50] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/11/2013] [Indexed: 02/04/2023]
Abstract
Conventional approaches to the diagnosis of infectious diarrhea must include several modalities to detect an array of potential viruses, bacteria, and parasites. We will provide a general overview of the wide range of diagnostic modalities available for enteropathogens, briefly discuss some of the limitations of conventional methods, and then focus on new molecular methods, including real-time PCR and next-generation sequencing. In particular, we will discuss quantitation of pathogen load with these techniques. We will then describe examples whereby novel diagnostics may help illuminate the etiology of infectious diarrhea, where they may not, and how they may benefit studies of immunity to enteric infections.
Collapse
|
33
|
Chalmers RM, Katzer F. Looking for Cryptosporidium: the application of advances in detection and diagnosis. Trends Parasitol 2013; 29:237-51. [PMID: 23566713 PMCID: PMC7106352 DOI: 10.1016/j.pt.2013.03.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 01/18/2023]
Abstract
The protozoan Cryptosporidium is a major public and animal health concern. Young children, immunocompromised people, and pre-weaning animals are especially vulnerable, but treatment options are limited and there is no vaccine. A laboratory diagnosis is required to confirm cases of cryptosporidiosis, and species and genotype determination is essential in distinguishing human from non-human sources, understanding transmission, and strengthening the epidemiological evidence for causative links in outbreaks. However, testing is not consistent, as demonstrated by investigation of a significant increase in cases in some European countries during 2012. Many methods employed are laborious and time-consuming; recent advances, translated into diagnostic assays, can improve testing and facilitate typing to support clinical and environmental investigations.
Collapse
Affiliation(s)
- Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, UK.
| | | |
Collapse
|
34
|
Hamlin KL, Moss DM, Priest JW, Roberts J, Kubofcik J, Gass K, Streit TG, Nutman TB, Eberhard ML, Lammie PJ. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Negl Trop Dis 2012; 6:e1941. [PMID: 23236534 PMCID: PMC3516578 DOI: 10.1371/journal.pntd.0001941] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 10/23/2012] [Indexed: 12/04/2022] Open
Abstract
Antifilarial antibody testing has been established as a sensitive and specific method of diagnosing lymphatic filariasis. However, the development of serological responses to specific filarial antigens and their relationship to acquisition of infection is poorly understood. In order to evaluate whether the development of antigen specific antifilarial antibodies precedes microfilaremia and antigenemia, we compared the antibody responses of serum samples collected between 1990 and 1999 from a cohort of 142 Haitian children followed longitudinally. Antigen status was determined using the Og4C3 ELISA and the presence of microfilaremia was detected using microscopy. Antibody responses to Wb123, a Wuchereria bancrofti L3 antigen, were measured using a Luciferase Immunoprecipitation System (LIPS) assay. Antibody responses to Bm14 and Bm33, Brugia malayi antigens and to a major surface protein (WSP) from Wolbachia were analyzed using a multiplex bead assay. Over follow-up, 80 (56%) of the children became antigen-positive and 30 (21%) developed microfilaremia. Detectable antibody responses to Bm14, Bm33, Wb123, and WSP developed in 95%, 100%, 92%, and 29% of children, respectively. With the exception of WSP, the development of antibody responses generally preceded detection of filarial antigen. Our results show that antifilarial antibody responses can serve as an important epidemiological indicator in a sentinel population of young children and thus, may be valuable as tool for surveillance in the context of lymphatic filariasis elimination programs. Programs to eliminate lymphatic filariasis (LF) are designed to interrupt transmission of the parasite by treating the human reservoir of infection. As infection levels decline, assessing infection and transmission levels becomes more and more challenging. In principle, measuring the level of antibody to filarial antigens in children may provide a sensitive measure of transmission intensity. Here, we used samples collected over time from 142 Haitian children living in an area of intense transmission of LF to determine when they first developed antibody responses to defined filarial antigens compared to when they became infected. Antibody responses were measured to several filarial antigens using sensitive assays based on multiplex and LIPS assay methods. Our results show that antibody responses developed before infection could be detected by conventional tests for the presence of microfilariae or antigen in the blood. These results support the idea that antibody tests can be used to monitor the impact of mass drug administration programs on transmission of LF and to carry out surveillance for LF after drug treatments have stopped.
Collapse
Affiliation(s)
- Katy L. Hamlin
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Delynn M. Moss
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jeffrey W. Priest
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacquelin Roberts
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Joseph Kubofcik
- National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine Gass
- The LF Support Center at the Task Force for Global Health, Decatur, Georgia, United States of America
| | - Thomas G. Streit
- The Notre Dame Haiti Program, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Thomas B. Nutman
- National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark L. Eberhard
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patrick J. Lammie
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Dorevitch S, Dworkin MS, Deflorio SA, Janda WM, Wuellner J, Hershow RC. Enteric pathogens in stool samples of Chicago-area water recreators with new-onset gastrointestinal symptoms. WATER RESEARCH 2012; 46:4961-72. [PMID: 22819874 DOI: 10.1016/j.watres.2012.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 05/26/2023]
Abstract
BACKGROUND Characterizing pathogens responsible for recreational waterborne gastrointestinal illness is important in estimating risk and developing management strategies to prevent infection. Although water recreation is associated with sporadic cases of gastrointestinal illness, pathogens responsible for such illness are not well characterized. METHODS A prospective cohort study was conducted enrolling non-water recreators (such as cyclists and joggers) and two groups of limited-contact waters recreators (such as boaters and kayakers): those on an effluent-dominated urban waterway and those on general use waters. Stool samples were collected from participants who developed gastrointestinal symptoms during a three-week follow-up period. Samples were analyzed for bacterial, viral, and protozoan pathogens. Logistic regression models were used to identify associations between water recreation and the presence of pathogens in stool samples. RESULTS Among 10,998 participants without gastrointestinal symptoms at baseline, 2,429 (22.1%) developed at least one symptom during 21 days of follow-up. Of those, 740 (30.5%) provided at least one stool sample, of which 76 (10.3%) were positive for a pathogen. Rotavirus, found primarily among adults, accounted for 53 of the 76 (70%) infections. Among participants with symptoms, pathogen presence was not associated with water recreation or the extent of water exposure. The range of pathogens that could be identified and sample size limitations may have contributed to this lack of association. CONCLUSIONS We did not find specific pathogens or groups of pathogens associated with recreational waterborne gastrointestinal illness. Although pathogens responsible for outbreaks of waterborne gastrointestinal illness have been described, microbes that cause sporadic cases remain poorly defined.
Collapse
Affiliation(s)
- Samuel Dorevitch
- Division of Environmental and Occupational Health Sciences, University of Illinois at Chicago School of Public Health, 2121 W. Taylor Street, M/C 922, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Multiplex assay detection of immunoglobulin G antibodies that recognize Babesia microti antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1539-48. [PMID: 22855390 DOI: 10.1128/cvi.00313-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human babesiosis, a blood-borne infection caused by several species of Babesia, including B. microti, is an emerging disease that is endemic in the Northeast, upper Midwest, and Pacific Northwest regions of the United States. Risk factors for babesiosis include exposure to the infected tick vector and blood transfusions from infected donors. In this work, we cloned and expressed two of the immunodominant antigens from B. microti and used them in a multiplex bead format assay (MBA) to detect parasite-specific IgG responses in human sera. The MBA using recombinant B. microti secreted antigen 1 (BmSA1) protein was more specific (100%) and slightly more sensitive (98.7%) than the assay using a truncated recombinant BMN1-17 construct (97.6% and 97.4%, respectively). Although some antibody reactivity was observed among sera from confirmed-malaria patients, only one Plasmodium falciparum sample was simultaneously positive for IgG antibodies to both antigens. Neither antigen reacted with sera from babesiosis patients who were infected with Babesia species other than B. microti. Both positive and negative MBA results were reproducible between assays and between instruments. Additional studies of these recombinant antigens and of the multiplex bead assay using blood samples from clinically defined babesiosis patients and from blood donors are needed to more clearly define their usefulness as a blood screening assay.
Collapse
|
37
|
Lammie PJ, Moss DM, Brook Goodhew E, Hamlin K, Krolewiecki A, West SK, Priest JW. Development of a new platform for neglected tropical disease surveillance. Int J Parasitol 2012; 42:797-800. [PMID: 22846784 DOI: 10.1016/j.ijpara.2012.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/11/2022]
Abstract
An expanded global focus on the control and elimination of neglected tropical diseases (NTDs) has called attention to the need to develop and validate surveillance strategies that are cost effective and can be integrated across diseases. Here, we describe a multiplex tool for the sensitive detection of antibody responses to NTDs as well as vaccine preventable diseases, malaria, and waterborne and zoonotic infections. The assay platform is robust, can be performed with either serum or dried blood spots and can be adapted to local epidemiological conditions and public health priorities. Multiplex assays open the door to conducting routine serosurveillance for NTDs through demographic health surveillance or malaria indicator surveys.
Collapse
Affiliation(s)
- Patrick J Lammie
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Benitez A, Priest JW, Ehigiator HN, McNair N, Mead JR. Evaluation of DNA encoding acidic ribosomal protein P2 of Cryptosporidium parvum as a potential vaccine candidate for cryptosporidiosis. Vaccine 2011; 29:9239-45. [PMID: 21968447 DOI: 10.1016/j.vaccine.2011.09.094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 09/18/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
The Cryptosporidium parvum acidic ribosomal protein P2 (CpP2) is an important immunodominant marker in C. parvum infection. In this study, the CpP2 antigen was evaluated as a vaccine candidate using a DNA vaccine model in adult C57BL/6 IL-12 knockout (KO) mice, which are susceptible to C. parvum infection. Our data show that subcutaneous immunization in the ear with DNA encoding CpP2 (CpP2-DNA) cloned into the pUMVC4b vector induced a significant anti-CpP2 IgG antibody response that was predominantly of the IgG1 isotype. Compared to control KO mice immunized with plasmid alone, CpP2-immunized mice demonstrated specific in vitro spleen cell proliferation as well as enhanced IFN-γ production to recombinant CpP2. Further, parasite loads in CpP2 DNA-immunized mice were compared to control mice challenged with C. parvum oocysts. Although a trend in reduction of infection was observed in the CpP2 DNA-immunized mice, differences between groups were not statistically significant. These results suggest that a DNA vaccine encoding the C. parvum P2 antigen is able to provide an effective means of eliciting humoral and cellular responses and has the potential to generate protective immunity against C. parvum infection but may require using alternative vectors or adjuvant to generate a more potent and balanced response.
Collapse
Affiliation(s)
- Alvaro Benitez
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|