1
|
Del Río L, Salinas J, Ortega N, Buendía AJ, Navarro JA, Caro MR. IL-10 Overexpression Reduces the Protective Response of an Experimental Chlamydia abortus Vaccine in a Murine Model. Animals (Basel) 2024; 14:2322. [PMID: 39199857 PMCID: PMC11350884 DOI: 10.3390/ani14162322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In ovine populations, the enzootic nature of Chlamydia abortus (C. abortus) is attributed to its capacity to establish persistent intracellular infections, which necessitate a cellular immune response mediated by interferon-gamma (IFN-γ) for effective resolution. In both natural hosts and murine models, interleukin-10 (IL-10) has been demonstrated to modulate the cellular immune response crucial for the eradication of C. abortus. During gestation, it has also been shown to play a role in preventing inflammatory damage to gestational tissues and foetal loss through the downregulation of pro-inflammatory cytokines. This paradigm can be key for events leading to a protective response towards an infectious abortion. Previous research successfully established a mouse model of chronic C. abortus infection using transgenic mice overexpressing IL-10 (IL-10tg), simulating the dynamics of chronic infection observed in non-pregnant natural host. This study aims to evaluate the efficacy of an experimental inactivated vaccine against C. abortus and to elucidate the immune mechanisms involved in protection during chronic infection using this model. Transgenic and wild-type (WT) control mice were immunized and subsequently challenged with C. abortus. Vaccine effectiveness and immune response were assessed via immunohistochemistry and cytokine serum levels over a 28-day period. Morbidity, measured by daily weight loss, was more pronounced in non-vaccinated transgenic IL-10 mice, though no mortality was observed in any group. Vaccinated control mice eliminated the bacterial infection by day 9 post-infection (p.i.), whereas presence of bacteria was noted in vaccinated transgenic IL-10 mice until day 28 p.i. Vaccination induced an early post-infection increase in IFN-γ production, but did not alter IL-10 production in transgenic mice. Histological analysis indicated suboptimal recruitment of inflammatory cells in vaccinated transgenic IL-10 mice compared to WT controls. In summary, the findings suggest that IL-10 overexpression in transgenic mice diminishes the protective efficacy of vaccination, confirming that this model can be useful for validating the efficacy of vaccines against intracellular pathogens such as C. abortus that require robust cell-mediated immunity.
Collapse
Affiliation(s)
- Laura Del Río
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| | - Jesús Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| | - Nieves Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| | - Antonio J. Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Jose A. Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - María Rosa Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 31000 Murcia, Spain; (J.S.); (N.O.); (M.R.C.)
| |
Collapse
|
2
|
Fries-Craft K, Bobeck EA. Coccidiosis and necrotic enteritis model may have a greater impact than dietary anti-interleukin-10 on broiler chicken systemic immunometabolic responses. Poult Sci 2024; 103:103551. [PMID: 38417332 PMCID: PMC10909892 DOI: 10.1016/j.psj.2024.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Dietary egg yolk-derived anti-interleukin (IL)-10 may preserve broiler chicken performance during coccidiosis due to Eimeria spp. infection while effects on secondary Clostridium perfringens (necrotic enteritis) are unknown. Some necrotic enteritis models implement Salmonella Typhimurium to improve repeatability; however, Salmonella upregulation of IL-10 may be a confounder when evaluating anti-IL-10. The study objective was to investigate anti-IL-10 effects on systemic cytokine concentrations and immunometabolism during E. maxima ± C. perfringens challenge in models ± S. Typhimurium. Three 25 d replicate studies using Ross 308 chicks were conducted in wire-floor cages (32 cages/ replicate) with chicks assigned to diets ± 0.03% anti-IL-10. 640 chicks (20/ cage; replicates 1 and 2) were inoculated with sterile saline ± 1×108 colony forming units (CFU) S. Typhimurium while 480 chicks (15/ cage) were placed in replicate 3. In all replicates, blood samples were collected on d 14 (6 chicks/treatment) before administering 15,000 sporulated E. maxima M6 oocysts to S. Typhimurium-inoculated (replicates 1 and 2) or challenge-designated chicks (replicate 3). Half the E. maxima-challenged chicks received 1×108 CFU C. perfringens on d 18 and 19. Blood samples were collected at 1, 3, 7, and 11 d post-inoculation (dpi) with E. maxima and 1, 3, and 7 dpi with secondary C. perfringens. Plasma cytokines were determined by ELISA while immunometabolic assays evaluated peripheral blood mononuclear cell ATP production and glycolytic rate responses. Data were analyzed with diet and challenge fixed effects plus associated interactions (SAS 9.4; P ≤ 0.05). Replicates 1 and 2 showed few immunometabolic responses within 3 dpi with E. maxima, but 25 to 31% increased ATP production and 32% increased compensatory glycolysis at 1 dpi with C. perfringens in challenged vs. unchallenged chicks (P ≤ 0.04). In replicate 3, total ATP production and compensatory glycolysis were increased 25 and 40%, respectively, by the E. maxima main effect at 1dpi (P ≤ 0.05) with unobserved responsiveness to C. perfringens. These outcomes indicate that model type had greater impacts on systemic immunity than anti-IL-10.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Kasem SM, Mira NM, Helal IB, Mahfouz ME. Prophylactic and Therapeutic Efficacy of Ultrasonicated Rosmarinus officinalis Ethanolic Extract and its Chitosan-Loaded Nanoparticles Against Eimeria tenella Infected Broiler Chickens. Acta Parasitol 2024; 69:951-999. [PMID: 38492183 PMCID: PMC11001757 DOI: 10.1007/s11686-024-00793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE The in vivo efficacy of ultrasonicated Rosmarinus officinalis ethanolic extract (UROEE) and its chitosan-loaded nanoparticles (UROEE-CsNPs) was investigated as a dietary prophylactic agent and as a therapeutic treatment against Eimeria tenella infected broiler chickens. METHODS Chickens were infected with 4 × 104 E. tenella oocysts at 21 days old for primary infection and with 8 × 104 oocysts at 35 days old for secondary infection. Eleven experimental groups were conducted. Dietary addition of 100 mg/kg UROEE and 20 mg/kg for CsNPs as well as UROEE-CsNPs were included for prophylactic groups from day 1 to 42. The same doses were used for therapeutic treatment groups for 5 constitutive days. Oocyst output in feces was counted. Histopathological and immunohistochemical studies were conducted. Gene expression of pro-inflammatory cytokines as IFN-γ, IL-1β and IL-6 as well as anti-inflammatory cytokines as IL-10 and TGF-β4 was analyzed using semi-quantitative reverse transcriptase-PCR. RESULTS The results showed an efficacy of UROEE, CsNPs and UROEE-CsNPs in reduction of oocyst excretion and improving the cecal tissue architecture. CD4+ and CD8+ T lymphocytes protein expression were reduced. E. tenella infection lead to upregulation of pro-inflammatory cytokines as IFN-γ, IL-1β, IL-6 and anti-inflammatory cytokines as TGF-β4 following primary infection, while their expression was downregulated following secondary infection. CONCLUSION The dietary prophylactic additives and therapeutic treatments with UROEE, CsNPs and UROEE-CsNPs could decrease the inflammatory response to E. tenella as indicated by oocyst output reduction, histopathological improvements, CD4+ and CD8+ T cells protein expression reduction as well as reducing mRNA expression levels of the tested cytokines following primary and secondary infections. Consequently, these results will help to develop better-combating strategies for the control and prevention of coccidiosis on poultry farms as a dietary prophylactic agent or as a therapeutic treatment.
Collapse
Affiliation(s)
- Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| |
Collapse
|
4
|
Mirrazavi ZS, Behrouz V. Various types of fasting diet and possible benefits in nonalcoholic fatty liver: Mechanism of actions and literature update. Clin Nutr 2024; 43:519-533. [PMID: 38219703 DOI: 10.1016/j.clnu.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of chronic liver injury, affecting around one-fourth of the general population across the world. Several important pathophysiological mechanisms underlying NAFLD include oxidative stress, inflammation, liver fibrosis, and apoptosis. Currently, therapeutic approaches are not ideal for managing NAFLD, thus new approaches and treatments are still needed. Over the last two decades, various fasting protocols have been explored to reduce body weight and improve metabolic disorders. In this review, we provide updated literature that supports fasting regimens for subjects with NAFLD and describes underlying mechanisms of action. We suggest that fasting regimens may modulate NAFLD via several mechanisms, including changes in gut microbiota, hepatic arginase, hepatic autophagy, inflammatory responses, liver functional enzymes and hepatic steatosis, fibroblast growth factors signaling, white adipose tissue browning, adipokines, circadian rhythms, lipid profiles, and body composition.
Collapse
Affiliation(s)
| | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
5
|
Fries-Craft K, Bobeck EA. Early Salmonella Typhimurium inoculation may obscure anti-interleukin-10 protective effects on broiler performance during coccidiosis and necrotic enteritis challenge. Poult Sci 2024; 103:103187. [PMID: 37980755 PMCID: PMC10665935 DOI: 10.1016/j.psj.2023.103187] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023] Open
Abstract
Anti-interleukin (IL)-10 may preserve broiler performance during coccidiosis by diminishing Eimeria spp. host-evasion but has not been evaluated during secondary Clostridium perfringens challenge (necrotic enteritis). Early Salmonella Typhimurium inoculation is implemented in some models to improve repeatability-a potential confounder due to Salmonella using similar IL-10 host evasion pathways. The objective was to evaluate performance and disease outcomes in broilers fed anti-IL-10 during necrotic enteritis challenge ± S. Typhimurium. Three 42 d replicate studies in wire-floor cages (32 cages/replicate) were conducted with Ross 308 chicks assigned to diets ± 0.03% anti-IL-10 for 25 d before moving to floor pens for the study remainder. In replicates 1 and 2, 640 chicks were placed at hatch (20/cage) and inoculated with sterile saline ± 1 × 108 colony forming units (CFU) S. Typhimurium. Replicate 3 placed 480 chicks (15/cage) at hatch. On d 14, S. Typhimurium-inoculated chicks (replicates 1 and 2) or those designated for challenge (replicate 3) were inoculated with 15,000 sporulated Eimeria maxima M6 oocysts. On d 18 and 19, half the E. maxima-challenged chicks were gavaged with 1 × 108 CFU C. perfringens. Body weight (BW) and feed intake were measured throughout, while 6 chicks/ treatment were scored for jejunal lesions at 7 and 3 d postinoculation (pi) with E. maxima and C. perfringens, respectively. Oocyst shedding was measured at 8 and 4 dpi with E. maxima and C. perfringens, respectively. Performance and oocyst shedding were analyzed with diet and challenge fixed effects (SAS 9.4), whereas lesion scores and mortalities were analyzed by ordinal logistic regression (R 4.2.2; P ≤ 0.05). In replicate 3, no wk 3 feed conversion ratio (FCR) differences were observed between chicks fed anti-IL-10 challenged with E. maxima ± C. perfringens, whereas control-fed chicks had a 50 point less efficient FCR during E. maxima + C. perfringens challenge vs. E. maxima only (P = 0.04). Outcomes suggest anti-IL-10 may preserve bird feed efficiency during necrotic enteritis challenge in models without S. Typhimurium.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Berneking L, Bekere I, Rob S, Schnapp M, Huang J, Ruckdeschel K, Aepfelbacher M. A bacterial effector protein promotes nuclear translocation of Stat3 to induce IL-10. Eur J Cell Biol 2023; 102:151364. [PMID: 37806297 DOI: 10.1016/j.ejcb.2023.151364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/22/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
The multifunctional Yersinia effector YopM inhibits effector triggered immunity and increases production of the anti-inflammatory cytokine Interleukin-10 (IL-10) to suppress the host immune response. Previously it was shown that YopM induces IL-10 gene expression by elevating phosphorylation of the serine-threonine kinase RSK1 in the nucleus of human macrophages. Using transcriptomics, we found that YopM strongly affects expression of genes belonging to the JAK-STAT signaling pathway. Further analysis revealed that YopM mediates nuclear translocation of the transcription factor Stat3 in Y. enterocolitica infected macrophages and that knockdown of Stat3 inhibited YopM-induced IL-10 gene expression. YopM-induced Stat3 translocation did not depend on autocrine IL-10, activation of RSK1 or tyrosine phosphorylation of Stat3. Thus, besides activation of RSK1, stimulation of nuclear translocation of Stat3 is another mechanism by which YopM increases IL-10 gene expression in macrophages.
Collapse
Affiliation(s)
- Laura Berneking
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Indra Bekere
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sören Rob
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Marie Schnapp
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Klaus Ruckdeschel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
7
|
Shao TY, Jiang TT, Stevens J, Russi AE, Troutman TD, Bernieh A, Pham G, Erickson JJ, Eshleman EM, Alenghat T, Jameson SC, Hogquist KA, Weaver CT, Haslam DB, Deshmukh H, Way SS. Kruppel-like factor 2+ CD4 T cells avert microbiota-induced intestinal inflammation. Cell Rep 2023; 42:113323. [PMID: 37889750 PMCID: PMC10822050 DOI: 10.1016/j.celrep.2023.113323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 09/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Intestinal colonization by antigenically foreign microbes necessitates expanded peripheral immune tolerance. Here we show commensal microbiota prime expansion of CD4 T cells unified by the Kruppel-like factor 2 (KLF2) transcriptional regulator and an essential role for KLF2+ CD4 cells in averting microbiota-driven intestinal inflammation. CD4 cells with commensal specificity in secondary lymphoid organs and intestinal tissues are enriched for KLF2 expression, and distinct from FOXP3+ regulatory T cells or other differentiation lineages. Mice with conditional KLF2 deficiency in T cells develop spontaneous rectal prolapse and intestinal inflammation, phenotypes overturned by eliminating microbiota or reconstituting with donor KLF2+ cells. Activated KLF2+ cells selectively produce IL-10, and eliminating IL-10 overrides their suppressive function in vitro and protection against intestinal inflammation in vivo. Together with reduced KLF2+ CD4 cell accumulation in Crohn's disease, a necessity for the KLF2+ subpopulation of T regulatory type 1 (Tr1) cells in sustaining commensal tolerance is demonstrated.
Collapse
Affiliation(s)
- Tzu-Yu Shao
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Tony T Jiang
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Joseph Stevens
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Abigail E Russi
- Division of Gastroenterology, Hepatology and Advanced Nutrition, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Ty D Troutman
- Division of Allergy and Immunology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Anas Bernieh
- Division of Pathology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Giang Pham
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - John J Erickson
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Stephen C Jameson
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kristin A Hogquist
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Casey T Weaver
- Program in Immunology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - David B Haslam
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Hitesh Deshmukh
- Division of Neonatology and Pulmonary Biology, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Sing Sing Way
- Division of Infectious Diseases, Center for Inflammation and Tolerance, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
8
|
Grubwieser P, Hilbe R, Gehrer CM, Grander M, Brigo N, Hoffmann A, Seifert M, Berger S, Theurl I, Nairz M, Weiss G. Klebsiella pneumoniae manipulates human macrophages to acquire iron. Front Microbiol 2023; 14:1223113. [PMID: 37637102 PMCID: PMC10451090 DOI: 10.3389/fmicb.2023.1223113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Background Klebsiella pneumoniae (KP) is a major cause of hospital-acquired infections, such as pneumonia. Moreover, it is classified as a pathogen of concern due to sprawling anti-microbial resistance. During infection, the gram-negative pathogen is capable of establishing an intracellular niche in macrophages by altering cellular metabolism. One factor critically affecting the host-pathogen interaction is the availability of essential nutrients, like iron, which is required for KP to proliferate but which also modulates anti-microbial immune effector pathways. We hypothesized, that KP manipulates macrophage iron homeostasis to acquire this crucial nutrient for sustained proliferation. Methods We applied an in-vitro infection model, in which human macrophage-like PMA-differentiated THP1 cells were infected with KP (strain ATCC 43816). During a 24-h course of infection, we quantified the number of intracellular bacteria via serial plating of cell lysates and evaluated the effects of different stimuli on intracellular bacterial numbers and iron acquisition. Furthermore, we analyzed host and pathogen specific gene and protein expression of key iron metabolism molecules. Results Viable bacteria are recovered from macrophage cell lysates during the course of infection, indicative of persistence of bacteria within host cells and inefficient pathogen clearing by macrophages. Strikingly, following KP infection macrophages strongly induce the expression of the main cellular iron importer transferrin-receptor-1 (TFR1). Accordingly, intracellular KP proliferation is further augmented by the addition of iron loaded transferrin. The induction of TFR1 is mediated via the STAT-6-IL-10 axis, and pharmacological inhibition of this pathway reduces macrophage iron uptake, elicits bacterial iron starvation, and decreases bacterial survival. Conclusion Our results suggest, that KP manipulates macrophage iron metabolism to acquire iron once confined inside the host cell and enforces intracellular bacterial persistence. This is facilitated by microbial mediated induction of TFR1 via the STAT-6-IL-10 axis. Mechanistic insights into immune metabolism will provide opportunities for the development of novel antimicrobial therapies.
Collapse
Affiliation(s)
- Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Clemens Michael Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Grander
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Sylvia Berger
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pulmonology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Riquelme-Neira R, Walker-Vergara R, Fernández-Blanco JA, Vergara P. IL-10 Modulates the Expression and Activation of Pattern Recognition Receptors in Mast Cells. Int J Mol Sci 2023; 24:9875. [PMID: 37373041 DOI: 10.3390/ijms24129875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Mast cells (MCs) are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, and cancer, among others. MCs identify microorganisms by pattern recognition receptors (PRRs), activating a secretory response. Interleukin (IL)-10 has been described as an important modulator of MC responses; however, its role in PRR-mediated activation of MC is not fully understood. We analyzed the activation of TLR2, TLR4, TLR7 and Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mucosal-like MCs (MLMCs) and peritoneum-derived cultured MCs (PCMCs) from IL-10-/- and wild-type (WT) mice. IL-10-/- mice showed a reduced expression of TLR4 and NOD2 at week 6 and TLR7 at week 20 in MLMC. In MLMC and PCMC, TLR2 activation induced a reduced secretion of IL-6 and TNFα in IL-10-/- MCs. TLR4- and TLR7-mediated secretion of IL-6 and TNFα was not detected in PCMCs. Finally, no cytokine release was induced by NOD2 ligand, and responses to TLR2 and TLR4 were lower in MCs at 20 weeks. These findings indicate that PRR activation in MCs depends on the phenotype, ligand, age, and IL-10.
Collapse
Affiliation(s)
- Roberto Riquelme-Neira
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Romina Walker-Vergara
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede Concepción, Chacabuco 539, Concepción 4070254, Chile
| | - Joan Antoni Fernández-Blanco
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Patrocinio Vergara
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
10
|
Carlini V, Noonan DM, Abdalalem E, Goletti D, Sansone C, Calabrone L, Albini A. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol 2023; 14:1161067. [PMID: 37359549 PMCID: PMC10287165 DOI: 10.3389/fimmu.2023.1161067] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine that has a fundamental role in modulating inflammation and in maintaining cell homeostasis. It primarily acts as an anti-inflammatory cytokine, protecting the body from an uncontrolled immune response, mostly through the Jak1/Tyk2 and STAT3 signaling pathway. On the other hand, IL-10 can also have immunostimulating functions under certain conditions. Given the pivotal role of IL-10 in immune modulation, this cytokine could have relevant implications in pathologies characterized by hyperinflammatory state, such as cancer, or infectious diseases as in the case of COVID-19 and Post-COVID-19 syndrome. Recent evidence proposed IL-10 as a predictor of severity and mortality for patients with acute or post-acute SARS-CoV-2 infection. In this context, IL-10 can act as an endogenous danger signal, released by tissues undergoing damage in an attempt to protect the organism from harmful hyperinflammation. Pharmacological strategies aimed to potentiate or restore IL-10 immunomodulatory action may represent novel promising avenues to counteract cytokine storm arising from hyperinflammation and effectively mitigate severe complications. Natural bioactive compounds, derived from terrestrial or marine photosynthetic organisms and able to increase IL-10 expression, could represent a useful prevention strategy to curb inflammation through IL-10 elevation and will be discussed here. However, the multifaceted nature of IL-10 has to be taken into account in the attempts to modulate its levels.
Collapse
Affiliation(s)
- Valentina Carlini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Douglas M. Noonan
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eslam Abdalalem
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Napoli, Italy
| | - Luana Calabrone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), MultiMedica, Milan, Italy
| | - Adriana Albini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) European Institute of Oncology IEO-, Milan, Italy
| |
Collapse
|
11
|
Xu X, Zhang B, Wang Y, Shi S, Lv J, Fu Z, Gao X, Li Y, Wu H, Song Q. Renal fibrosis in type 2 cardiorenal syndrome: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2023; 164:114901. [PMID: 37224755 DOI: 10.1016/j.biopha.2023.114901] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Cardiorenal syndrome (CRS) is a state of coexisting heart failure and renal insufficiency in which acute or chronic dysfunction of the heart or kidney lead to acute or chronic dysfunction of the other organ.It was found that renal fibrosis is an important pathological process in the progression of type 2 CRS to end-stage renal disease, and progressive renal impairment accelerates the deterioration of cardiac function and significantly increases the hospitalization and mortality rates of patients. Previous studies have found that Hemodynamic Aiteration, RAAS Overactivation, SNS Dysfunction, Endothelial Dysfunction and Imbalance of natriuretic peptide system contribute to the development of renal disease in the decompensated phase of heart failure, but the exact mechanisms is not clear. Therefore, in this review, we focus on the molecular pathways involved in the development of renal fibrosis due to heart failure and identify the canonical and non-canonical TGF-β signaling pathways and hypoxia-sensing pathways, oxidative stress, endoplasmic reticulum stress, pro-inflammatory cytokines and chemokines as important triggers and regulators of fibrosis development, and summarize the therapeutic approaches for the above signaling pathways, including SB-525334 Sfrp1, DKK1, IMC, rosarostat, 4-PBA, etc. In addition, some potential natural drugs for this disease are also summarized, including SQD4S2, Wogonin, Astragaloside, etc.
Collapse
Affiliation(s)
- Xia Xu
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bingxuan Zhang
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajiao Wang
- College of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Shuqing Shi
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Lv
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyue Fu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiya Gao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Yumeng Li
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Huaqin Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qingqiao Song
- Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Chen J, Shao J, Dai M, Fang W, Yang YL. Adaptive immunology of Cryptococcus neoformans infections-an update. Front Immunol 2023; 14:1174967. [PMID: 37251371 PMCID: PMC10213923 DOI: 10.3389/fimmu.2023.1174967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
The fungal genus Cryptococcus comprises a group of pathogens with considerable phenotypic and genotypic diversity that can lead to cryptococcosis in both healthy and immunocompromised individuals. With the emergence of the HIV pandemic, cryptococcosis, mainly meningoencephalitis, afflicts HIV-infected patients with severe dysfunction of T cells. It has also been reported in recipients of solid organ transplantation and in patients with autoimmune diseases who take immunosuppressive agents long-term, as well as in those with unidentified immunodeficiency. The clinical outcome of the disease is primarily determined by the immune response resulting from the interplay between the host immune system and the pathogen. Most human infections are caused by Cryptococcus neoformans, and nearly all immunological studies have focused on C. neoformans. This review provides an updated understanding of the role of adaptive immunity during infection with C. neoformans in human and animal models over the past half-decade.
Collapse
Affiliation(s)
- Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiasheng Shao
- Department of Immunology and Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Science, Shanghai, China
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Min Dai
- Department of Immunology and Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Science, Shanghai, China
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ya-li Yang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
El-Ghareeb WR, Kishawy ATY, Anter RGA, Aboelabbas Gouda A, Abdelaziz WS, Alhawas B, Meligy AMA, Abdel-Raheem SM, Ismail H, Ibrahim D. Novel Antioxidant Insights of Myricetin on the Performance of Broiler Chickens and Alleviating Experimental Infection with Eimeria spp.: Crosstalk between Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051026. [PMID: 37237892 DOI: 10.3390/antiox12051026] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In the modern poultry industry, the application of novel phytogenic bioactive compounds with antioxidant potential aims to enhance productivity and quality and to minimize the stress of associated diseases. Herein, myricetin, a natural flavonoid, was evaluated for the first time on broiler chickens' performance, antioxidants and immune modulating functions, and tackling avian coccidiosis. A total of 500 one-day-old chicks were divided into five groups. The negative (NC) and infected control (IC) groups were fed a control diet without additives, and the latter was infected with Eimeria spp. Groups supplemented with myricetin (Myc) were fed a control diet of Myc (200, 400 and 600 mg/kg diet each). On d 14, all chicks except those in NC were challenged with oocysts of mixed Eimeria spp. Significant improvements in the overall growth rate and feed conversion ratio were detected in the group that was fed 600 mg/kg, unlike the IC group. Notably, groups that were fed 400 and 600 mg/kg showed higher total meat antioxidant capacity with an inverse reduction in oxidative and lipid peroxidation biomarkers (hydrogen peroxide: H2O2; reactive oxygen species: ROS; Malondialdehyde: MDA). Of note, the upregulation of glutathione peroxidase; GSH-Px, catalase; CAT, superoxide dismutase; SOD, heme oxygenase-1; HO-1 and NAD(P)H dehydrogenase quinone 1 NQO1 genes in jejunum and muscle were prominently observed with increasing levels of supplemental Myc. At 21 dpi, the severity of coccoidal lesions (p < 0.05) induced by mixed Eimeria spp. and oocyst excretion were greatly reduced in the group that was fed 600 mg/kg of Myc. In the IC group, higher serum levels of C-reactive protein; CRP and nitric oxide; and NO and the upregulated expression of inflammatory biomarkers (interleukin-1β; IL-1β, interleukin-6; IL-6, tumor necrosis factor-α; TNF-α, chemotactic cytokines; CCL20, stromal cell-derived factor-1; CXCL13, and avian defensins; AvBD612) were subsided in higher levels in the Myc-fed groups. Taken together, these findings indicate the promising antioxidant role of Myc in modulating immune responses and reducing growth depression associated with coccidia challenges.
Collapse
Affiliation(s)
- Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asmaa T Y Kishawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Reham G A Anter
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Asmaa Aboelabbas Gouda
- Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Walaa S Abdelaziz
- Avian and Rabbit Medicine Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Bassam Alhawas
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M A Meligy
- Department of Clinical Science, Central Lab, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Physiology, Agricultural Research Center (ARC), Giza 12511, Egypt
| | - Sherief M Abdel-Raheem
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Hesham Ismail
- Department of Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Food Hygiene Department, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
14
|
Cheng X, Zhu H, Bai S, Zou Y, Xia Z, Yang R. Pathogenicity of phospholipase B1 of Trichosporon asahii in immunosuppressed mice. Mycoses 2023; 66:467-476. [PMID: 36680377 DOI: 10.1111/myc.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Trichosporon asahii is an opportunistic pathogenic yeast-like fungus. Phospholipase B1 (PLB1) is an important virulence factor of pathogenic fungi such as Candida albicans and Cryptococcus neoformans, and there are few studies on the role of PLB1 in the pathogenicity of T. asahii. OBJECTIVES To investigate the role of PLB1 in the pathogenicity of T. asahii. METHODS A strain with low secretion of PLB1 (4848) was screened, a PLB1 overexpression strain (PLB1OX ) was constructed, and the differences in histopathology, fungal load of organ, survival time of mice, the levels of IL-6, IL-10, TNF-α, and GM-GSF in the serum and organs caused by the two strains were compared. RESULTS Histopathology showed that spores and hyphae were observed in both groups, and PLB1OX led to more fungal invasion. The fungal loads in the kidney, lung, spleen and liver in the PLB1OX group were significantly higher than those in the 4848 group, and the survival time of mice was significantly lower than that in the 4848 group. The levels of TNF-α in the serum, liver, spleen, lung and kidney of the PLB1OX group were lower than those of the 4848 group, while the level of IL-10 in the serum was higher than that of the 4848 group. CONCLUSIONS These results suggest that PLB1 can enhance the invasive function of T. asahii and affect the secretion of TNF-α and IL-10 which may affect the host antifungal immune response, providing evidence that PLB1 plays a role in the pathogenic infection of T. asahii.
Collapse
Affiliation(s)
- Xiaoxian Cheng
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - He Zhu
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Shuang Bai
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Department of Dermatology, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia, China
| | - Yuekun Zou
- Chinese PLA Medical School, Peking, China.,Department of Geriatrics, The Sixth Medical Center of PLA General Hospital, Peking, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rongya Yang
- Chinese PLA Medical School, Peking, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| |
Collapse
|
15
|
Ren Z, Yan J, Whelan R, Liao X, Bütz DE, Arendt MK, Cook ME, Yang X, Crenshaw TD. Dietary supplementation of sulfur amino acids improves intestinal immunity to Eimeria in broilers treated with anti-interleukin-10 antibody. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 10:382-389. [PMID: 35949200 PMCID: PMC9356037 DOI: 10.1016/j.aninu.2022.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Oral antibody to interleukin-10 (anti-IL-10) enhances the intestinal immune defense against Eimeria. The sulfur amino acids methionine and cysteine (M+C) play essential roles in inducing and maintaining protective immune responses during intestinal infections. Hence, increased dietary M+C may support the anti-IL-10-induced intestinal immunity to Eimeria. Broilers (n = 640) were arranged in a 2 × 2 × 2 factorial design with 2 levels of each of the 3 main factors: dietary standardized ileal digestible (SID) M+C levels (0.6% or 0.8%), dietary anti-IL-10 supplementation (with or without), and coccidiosis challenge (control or challenge). Briefly, the broilers were supplied with either 0.6% or 0.8% SID M+C, each with or without anti-IL-10 (300 μg/kg), from d 10 to 21. On d 14, broilers from each diet were gavaged with either PBS or Eimeria. The resulting Eimeria infection induced fecal oocyst shedding and intestinal lesions. Broilers fed 0.8% SID M+C (main effects, P ≤ 0.05) had decreased feed-to-gain ratio, increased duodenum and cecum luminal anti-Eimeria IgA titers, and decreased fecal oocyst counts, when compared to 0.6% SID M+C. The supplementation of anti-IL-10 (main effects, P ≤ 0.05) increased cecum luminal total IgA concentration and decreased cecum lesions. Interactions (P ≤ 0.05) were detected for growth performance and cecum luminal IFN-γ. Briefly, the highest body weight gain and feed intake were reached in PBS-gavaged broilers fed 0.8% SID M+C with no anti-IL-10 and in Eimeria-challenged broilers fed 0.8% SID M+C with anti-IL-10. In Eimeria-infected broilers, anti-IL-10 increased intestinal luminal IFN-γ and body weight gain only at 0.8% SID M+C. Collectively, anti-IL-10 increased intestinal luminal IFN-γ levels, decreased cecum lesions and restored growth only when fed with adequate amounts of sulfur amino acids. Our findings underscore the importance of providing sufficient essential nutrients to support the anti-IL-10 induced immunity against coccidiosis.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Xujie Liao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Daniel E. Bütz
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Maria K. Arendt
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Mark E. Cook
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Thomas D. Crenshaw
- Department of Animal Sciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
16
|
Kumar J, Kumar M, Sharma S, Srivastava N, Singh R, Hussain MA, Mazumder S. Th1-Th2 and M1-M2 interplay sculpt Aeromonas hydrophila pathogenesis in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2022; 127:357-365. [PMID: 35772676 DOI: 10.1016/j.fsi.2022.06.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila is an important aquatic zoonotic pathogen that causes septicemia, necrotizing fasciitis and gastroenteritis in various aquatic and non-aquatic animals. However, the pathogenesis of A. hydrophila is not fully understood. Here, we examined the pathogenicity and histopathology of A. hydrophila in the zebrafish (Danio rerio) model system. We found that the intensity of symptoms and mortality is dose-dependent. Bacterial colonization studies demonstrated that A. hydrophila never cleared out from the fish body but stayed in a state of inactivity till it enters a fresh host. Reinfection studies showed that exposure to A. hydrophila provides immunity against future infection and hence improves fish survival. Gene expression studies revealed the crosstalk between T-helper cell and macrophage responses in fish immune system in response to A. hydrophila and infection memory. Histopathological studies showed that symptoms of tissue damage and inflammation lasted for less duration with less intensity in immunized fish when compared to non-immunized fish. Together, our results suggest that the zebrafish model is a useful system in studying the interplay between A. hydrophila pathogenesis, persistence and immunity.
Collapse
Affiliation(s)
- Jai Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Manmohan Kumar
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shagun Sharma
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Department of Zoology, School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, 174103, India
| | - Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Md Arafat Hussain
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India; Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
17
|
Kulig K, Karnas E, Woznicka O, Kuleta P, Zuba-Surma E, Pyza E, Osyczka A, Kozik A, Rapala-Kozik M, Karkowska-Kuleta J. Insight Into the Properties and Immunoregulatory Effect of Extracellular Vesicles Produced by Candida glabrata, Candida parapsilosis, and Candida tropicalis Biofilms. Front Cell Infect Microbiol 2022; 12:879237. [PMID: 35734578 PMCID: PMC9207348 DOI: 10.3389/fcimb.2022.879237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, non-albicans Candida species, including C. tropicalis, C. glabrata, and C. parapsilosis, are becoming an increasing epidemiological threat, predominantly due to the distinct collection of virulence mechanisms, as well as emerging resistance to antifungal drugs typically used in the treatment of candidiasis. They can produce biofilms that release extracellular vesicles (EVs), which are nanometric spherical structures surrounded by a lipid bilayer, transporting diversified biologically active cargo, that may be involved in intercellular communication, biofilm matrix production, and interaction with the host. In this work, we characterize the size and protein composition of these structures for three species of non-albicans Candida fungi forming biofilm, indicating considerable heterogeneity of the investigated population of fungal EVs. Examination of the influence of EVs on cytokine production by the human monocytic cell line THP-1 differentiated into macrophage-like cells revealed that the tested vesicles have a stimulating effect on the secretion of tumor necrosis factor α and interleukin 8, while they reduce the production of interleukin 10. This may indicate the proinflammatory nature of the effect of EVs produced by these species on the host immune cells. Moreover, it has been indicated that vesicles may be involved in C. tropicalis biofilm resistance to fluconazole and caspofungin. This reveals the important role of EVs not only in the physiology of C. tropicalis, C. glabrata, and C. parapsilosis fungi but also in the pathogenesis of infections associated with the production of fungal biofilm.
Collapse
Affiliation(s)
- Kamila Kulig
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Woznicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Patryk Kuleta
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- *Correspondence: Justyna Karkowska-Kuleta,
| |
Collapse
|
18
|
Chauhan R, Awasthi V, Thakur RS, Pande V, Chattopadhyay D, Das J. CD4 +ICOS +Foxp3 +: a sub-population of regulatory T cells contribute to malaria pathogenesis. Malar J 2022; 21:32. [PMID: 35109868 PMCID: PMC8812217 DOI: 10.1186/s12936-022-04055-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regulatory T cells are known to play a key role to counter balance the protective immune response and immune mediated pathology. However, the role of naturally occurring regulatory cells CD4+CD25+Foxp3+ in malaria infection during the disease pathogenesis is controversial. Beside this, ICOS molecule has been shown to be involved in the development and function of regulatory T cell enhance IL-10 production. Therefore, possible involvement of the ICOS dependent regulatory CD4+ICOS+Foxp3+ T cells in resistance/susceptibility during malaria parasite is explored in this study. METHODS 5 × 105 red blood cells infected with non-lethal and lethal parasites were inoculated in female Balb/c mice by intra-peritoneal injection. Infected or uninfected mice were sacrificed at early (3rd day post infection) and later stage (10th day post infection) of infection. Harvested cells were analysed by using flow cytometer and serum cytokine by Bioplex assay. RESULTS Thin blood films show that percentages of parasitaemia increases with disease progression in infections with the lethal malaria parasite and mice eventually die by day 14th post-infection. Whereas in case of non-lethal malaria parasite, parasitaemia goes down by 7th day post infection and gets cleared within 13th day. The number of CD4+ ICOS+ T cells increases in lethal infection with disease progression. Surprisingly, in non-lethal parasite, ICOS expression decreases after day 7th post infection as parasitaemia goes down. The frequency of CD4+ICOS+FoxP3+ Tregs was significantly higher in lethal parasitic infection as compared to the non-lethal parasite. The level of IL-12 cytokine was remarkably higher in non-lethal infection compared to the lethal infection. In contrast, the level of IL-10 cytokines was higher in lethal parasite infection compared to the non-lethal parasite. CONCLUSION Taken together, these data suggest that lethal parasite induce immunosuppressive environment, protecting from host immune responses and help the parasite to survive whereas non-lethal parasite leads to low frequencies of Treg cells seldom impede immune response that allow the parasite to get self-resolved.
Collapse
Affiliation(s)
- Rubika Chauhan
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Vikky Awasthi
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Reva Sharan Thakur
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Biotechnology Department, Kumaun University, Nainital, India
| | - Debprasad Chattopadhyay
- ICMR Virus Unit, ID and BG Hospital, Kolkata, 700010, India.,ICMR-National Institute of Traditional Medicine (NITM), Belagavi, 590010, India
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, Sector-8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
19
|
Ormondes de Farias J, Resende Ferreira AC, Cardoso Kostopoulos AG, Berto Rezende TM, Dias SC. Synergistic activity and immunomodulatory potential of levofloxacin and Synoeca-MP peptide against multi-resistant strains of Klebsiella pneumoniae. Microb Pathog 2022; 163:105403. [PMID: 35033636 DOI: 10.1016/j.micpath.2022.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to study the isolated and combined effect of the peptides Synoeca-MP and IDR-1018 against multi-resistant clinical isolates of K. pneumoniae (Kp2177569 - LACEN) in vitro. The bactericidal activity of the peptide Synoeca-MP in combination with three different classes of commercial antimicrobials and its immunomodulatory potential was also evaluated. Synoeca-MP showed better antimicrobial activity than IDR-1018 and presented synergistic action combined with levofloxacin. Therefore, Synoeca-MP and levofloxacin, and the combination of both, were used in subsequent analyses. In the presence of heat-killed antigens, cellular viability and TNF-α levels was maintained, the production of NO increased and a reduction in IL-10 production was observed. The synergistic antibacterial effect between Synoeca-MP and levofloxacin was effective against multidrug-resistant strains of K. pneumoniae. The association of Synoeca-MP and levofloxacin may present a low modulating action of pro and anti-inflammatory mediators, based on these results.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil
| | - Arthur Corrêa Resende Ferreira
- Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SHAN 916 Módulo B Avenida W5 - Asa Norte, Brasília, DF, Brazil
| | | | - Taia Maria Berto Rezende
- Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil; Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SHAN 916 Módulo B Avenida W5 - Asa Norte, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.
| | - Simoni Campos Dias
- Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SHAN 916 Módulo B Avenida W5 - Asa Norte, Brasília, DF, Brazil; Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade de Brasília, Campus Darcy Ribeiro s/n - Asa Norte, Brasília, DF, Brazil
| |
Collapse
|
20
|
Zhou Y, Zhang P, Zheng X, Ye C, Li M, Bian P, Fan C, Zhang Y. miR-155 regulates pro- and anti-inflammatory cytokine expression in human monocytes during chronic hepatitis C virus infection. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1618. [PMID: 34926662 PMCID: PMC8640902 DOI: 10.21037/atm-21-2620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022]
Abstract
Background Hepatitis C virus (HCV) dysregulates innate and adaptive immune responses while monocytes (M) play a crucial role in linking innate and adaptive immunity to control viral infection. A transcription factor T-bet is upregulated to dampen M functions via the c-Jun N-terminal kinase (JNK) pathway, followed by enhanced Tim-3 expression in chronic HCV infection. However, the molecular mechanisms that control the expression in M are yet unknown. miR-155 has been implicated as a key regulator controlling diverse biological processes through posttranscriptional repression, but the influences of miR-155 on these regulators and effectors still need to be studied. Methods Forty HCV-infected patients and 40 healthy subjects (HS) were recruited, THP-1 cells (human acute monocyte leukemia cell line) were cultured with HCV-infected Huh 7.5 cells. The expression levels of miR-155 and JNK1/JNK2/JNK3 were measured by real-time RT-PCR. IL-10/IL-12 was detected by flow cytometry. THP-1 cells were transfected with mimics-155 and negative control, SOCS1, p-STAT1, p65, p-smad, p-p38, and p-JNK were measured by Western blot. TNF-α levels were measured by ELISA. Student’s t-test was used in statistics. Results The study showed that miR-155 was upregulated in CD14+ M in HCV-infected patients compared to healthy subjects (P<0.05). Moreover, the upregulation of miR-155 in CD14+ M from HCV-infected patients induced TNF-α production and JNK gene expression, which, in turn, led to T-bet upregulation. Also, miR-155 upregulation in CD14+ M of HCV-infected patients increased the IL-12 and decreased the IL-10 production. Conclusions The obtained results indicated that miR-155 upregulation in M during HCV infection enhances the activation of TNF-α and JNK pathways, promotes the expression of transcription factor T-bet, and triggers pro- and anti-inflammatory mediators. Together, these data reveal new information regarding the mechanisms of chronic HCV infection.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peixin Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Mengyuan Li
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peiyu Bian
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Fan
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying Zhang
- Department of Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
21
|
Tantengco OAG, Kechichian T, Vincent KL, Pyles RB, Medina PMB, Menon R. Inflammatory response elicited by Ureaplasma parvum colonization in human cervical epithelial, stromal, and immune cells. Reproduction 2021; 163:1-10. [PMID: 34780348 PMCID: PMC8669769 DOI: 10.1530/rep-21-0308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Ureaplasma parvum is a commensal bacterium in the female reproductive tract but has been associated with pregnancy complications such as preterm prelabor rupture of membranes and preterm birth (PTB). However, the pathologic effects of U. parvum in the cervix, which prevents ascending infections during pregnancy, are still poorly understood. To determine the impact of U. parvum on the cervix, ectocervical (ecto) and endocervical (endo) epithelial and stromal cells were incubated with U. parvum. Macrophages were also tested as a proxy for cervical macrophages to determine the antigenicity of U. parvum. The effects of U. parvum, including influence on cell cycle and cell death, antimicrobial peptide (AMP) production, epithelial-to-mesenchymal transition (EMT), and inflammatory cytokine levels, were assessed. U. parvum colonized cervical epithelial and stromal cells 4 h post-infection. Like uninfected control, U. parvum neither inhibited cell cycle progression and nor caused cell death in cervical epithelial and stromal cells. U. parvum increased the production of the AMPs cathelicidin and human β-defensin 3 and exhibited weak signs of EMT evidenced by decreased cytokeratin 18 and increased vimentin expression in cervical epithelial cells. U. parvum induced a proinflammatory environment (cytokines) and increased MMP-9 in cervical epithelial cells but promoted pro- and anti-inflammatory response in cervical stromal cells and macrophages. U. parvum may colonize the cervical epithelial layer, but induction of AMPs and anti-inflammatory response may protect the cervix and may prevent ascending infections that can cause PTB. These findings suggest that U. parvum is a weak inducer of inflammation in the cervix.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Talar Kechichian
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Kathleen L. Vincent
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Richard B. Pyles
- Departments of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
22
|
Bahroudi M, Bakhshi B, Soudi S, Najar-Peerayeh S. Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Res Ther 2021; 12:564. [PMID: 34732259 PMCID: PMC8567566 DOI: 10.1186/s13287-021-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causative agent of cholera, which is commonly associated with high morbidity and mortality, and presents a major challenge to healthcare systems throughout the world. Lipopolysaccharide (LPS) is required for full protection against V. cholerae but can induce inflammation and septic shock. Mesenchymal stem cells (MSCs) are currently used to treat infectious and inflammatory diseases. Therefore, this study aimed to evaluate the immune-modulating effects of the LPS-MSC-conditioned medium (CM) on V. cholerae LPS immunization in a murine model. METHODS After preconditioning MSCs with LPS, mice were immunized intraperitoneally on days 0 and 14 with the following combinations: LPS + LPS-MSC-CM; detoxified LPS (DLPS) + MSC-CM; LPS + MSC sup; LPS; LPS-MSC-CM; MSC supernatant (MSC sup); and PBS. The mouse serum and saliva samples were collected to evaluate antibody (serum IgG and saliva IgA) and cytokine responses (TNF-α, IL-10, IL-6, TGF-β, IL-4, IL-5, and B-cell activating factor (BAFF)). RESULTS The LPS + LPS-MSC-CM significantly increased total IgG and IgA compared to other combinations (P < 0.001). TNF-α levels, in contrast to IL-10 and TGF-β, were reduced significantly in mice receiving the LPS + LPS-MSC-CM compared to mice receiving only LPS. IL-4, IL-5, and BAFF levels significantly increased in mice receiving increased doses of LPS + LPS-MSC-CM compared to those who received only LPS. The highest vibriocidal antibody titer (1:64) was observed in LPS + LPS-MSC-CM-immunized mice and resulted in a significant improvement in survival in infant mice infected by V. cholerae O1. CONCLUSIONS The LPS-MSC-CM modulates the immune response to V. cholerae LPS by regulating inflammatory and anti-inflammatory responses and inducing vibriocidal antibodies, which protect neonate mice against V. cholerae infection.
Collapse
Affiliation(s)
- Mahboube Bahroudi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave., 14117-13116, Tehran, Iran
| |
Collapse
|
23
|
Ma Z, Yu S, Cheng K, Miao Y, Xu Y, Hu R, Zheng W, Yi J, Zhang H, Li R, Li Z, Wang Y, Chen C. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J Vet Sci 2021; 23:e8. [PMID: 34841746 PMCID: PMC8799945 DOI: 10.4142/jvs.21224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. OBJECTIVES To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. METHODS Constructed Brucella abortus BspJ gene deletion strain (B. abortus ΔBspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. RESULTS BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. CONCLUSIONS BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.
Collapse
Affiliation(s)
- Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shuifa Yu
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Kejian Cheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huan Zhang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.,Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
24
|
Sheybani N, Bakhtiarizadeh MR, Salehi A. An integrated analysis of mRNAs, lncRNAs, and miRNAs based on weighted gene co-expression network analysis involved in bovine endometritis. Sci Rep 2021; 11:18050. [PMID: 34508138 PMCID: PMC8433134 DOI: 10.1038/s41598-021-97319-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/17/2021] [Indexed: 02/08/2023] Open
Abstract
In dairy cattle, endometritis is a severe infectious disease that occurs following parturition. It is clear that genetic factors are involved in the etiology of endometritis, however, the molecular pathogenesis of endometritis is not entirely understood. In this study, a system biology approach was used to better understand the molecular mechanisms underlying the development of endometritis. Forty transcriptomic datasets comprising of 20 RNA-Seq (GSE66825) and 20 miRNA-Seq (GSE66826) were obtained from the GEO database. Next, the co-expressed modules were constructed based on RNA-Seq (Rb-modules) and miRNA-Seq (mb-modules) data, separately, using a weighted gene co-expression network analysis (WGCNA) approach. Preservation analysis was used to find the non-preserved Rb-modules in endometritis samples. Afterward, the non-preserved Rb-modules were assigned to the mb-modules to construct the integrated regulatory networks. Just highly connected genes (hubs) in the networks were considered and functional enrichment analysis was used to identify the biological pathways associated with the development of the disease. Furthermore, additional bioinformatic analysis including protein-protein interactions network and miRNA target prediction were applied to enhance the reliability of the results. Thirty-five Rb-modules and 10 mb-modules were identified and 19 and 10 modules were non-preserved, respectively, which were enriched in biological pathways related to endometritis like inflammation and ciliogenesis. Two non-preserved Rb-modules were significantly assigned to three mb-modules and three and two important sub-networks in the Rb-modules were identified, respectively, including important mRNAs, lncRNAs and miRNAs genes like IRAK1, CASP3, CCDC40, CCDC39, ZMYND10, FOXJ1, TLR4, IL10, STAT3, FN1, AKT1, CD68, ENSBTAG00000049936, ENSBTAG00000050527, ENSBTAG00000051242, ENSBTAG00000049287, bta-miR-449, bta-miR-484, bta-miR-149, bta-miR-30b and bta-miR-423. The potential roles of these genes have been previously demonstrated in endometritis or related pathways, which reinforced putative functions of the suggested integrated regulatory networks in the endometritis pathogenesis. These findings may help further elucidate the underlying mechanisms of bovine endometritis.
Collapse
Affiliation(s)
- Negin Sheybani
- grid.46072.370000 0004 0612 7950Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Mohammad Reza Bakhtiarizadeh
- grid.46072.370000 0004 0612 7950Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Abdolreza Salehi
- grid.46072.370000 0004 0612 7950Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
25
|
Khatun MM, Islam MA, Baek BK. In Vitro and In Vivo IFN-γ and IL-10 Measurement in Experimental Brucella abortus Biotype 1 Infection in Sprague-Dawley Rats. Vector Borne Zoonotic Dis 2021; 21:579-585. [PMID: 34077683 DOI: 10.1089/vbz.2020.2738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response to Brucella abortus mainly depends on antigen-specific T cell activation, CD4+ and CD8+ T cells, and Brucella-specific humoral response. Protective immune response against Brucella infection has not been performed in the Sprague-Dawley (SD) rat model. We measured bacterial kinetics in addition to in vivo and in vitro interferon gamma (IFN-γ) and interleukin-10 (IL-10) production against crude Brucella protein in the SD rats at different days of postinfection with B. abortus biotype 1 by indirect enzyme-linked immunosorbent assay. Forty SD rats were inoculated intraperitoneally with 0.1 mL sterile injectable pyrogen-free solution containing 1 × 1010 colony-forming units/mL of B. abortus biotype 1 obtained from cattle in Korea. Four rats were used as uninfected control. Serum IFN-γ level at 3 and 7 days postinfection were significantly higher (p > 0.001) compared with the IL-10 level. On the contrary, serum IL-10 levels were observed significantly higher at 21 and 28 days postinfection compared with the serum IFN-γ levels (p < 0.001). The production of IFN-γ by spleen cells was significantly higher at 7 and 14 days postinfection compared with IL-10 (p < 0.001). On the contrary, IL-10 productions were found to be significantly higher at 21, 28, 35, and 42 days postinfection compared with IFN-γ (p < 0.001). The presence of B. abortus in blood was marked till 5 weeks of infection, throughout the experiment in case of spleen, and no bacteria were isolated from the kidney and liver at 6 weeks postinfection. The in vivo and in vitro IFN-γ and IL-10 measurement in our study reported that B. abortus infection in rats primarily educe T helper (Th)1-dominant immune response in acute infection accompanied by Th2-dominant immune response in chronic infection.
Collapse
Affiliation(s)
- Mst Minara Khatun
- Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea.,Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Ariful Islam
- Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea.,Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Byeong Kirl Baek
- Department of Veterinary Public Health, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
26
|
Hedia M, Ibrahim S, Mahmoud K, Ahmed Y, Ismail S, El-Belely M. Hemodynamic changes in cytokines, chemokines, acute phase proteins and prostaglandins in mares with subclinical endometritis. Theriogenology 2021; 171:38-43. [PMID: 34022530 DOI: 10.1016/j.theriogenology.2021.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
Apparently healthy mares with conception failure or embryonic loss may have subclinical endometritis (SE). Our objective was to document evidence of systemic immune responses against SE in mares. In apparently healthy (control) mares as well as those with chronic endometritis (ChE) or subacute suppurative endometritis (SSE), both considered classes of SE, serum concentrations of cytokines (IL-1β, IL-6, IL-10 and TNF-α), chemokines (IL-8), acute phase protein (SAA), and plasma concentrations of prostaglandins (PGF2α and PGE2) were measured using validated enzyme linked immunoassays (EIA). Mixed-breed mares of known reproductive history, were used. Based on an endometrial cytological examination, mares were allocated into the following groups: healthy (control), ChE, and SSE (12, 26 and 11 mares, respectively). Serum concentrations of IL-6, IL-8 and IL-10 and plasma PGF2α concentrations were increased (P < 0.01) in mares with SSE compared to healthy mares. Furthermore, serum concentrations of IL-6 (P < 0.05) and IL-10 (P < 0.05) were elevated in the ChE group compared to the healthy group whereas serum SAA (P < 0.01) and plasma PGE2 (P < 0.05) were higher in healthy mares compared to ChE and SSE mares. However, serum concentrations of IL-1β and TNF-α were not significantly different among groups. In conclusion, there were two novel findings: (1) development of serum testing for a set of biochemical markers has promise to explore the pathogenesis of inflammation in mares with SE; and (2) none of the individual biomarkers studied, excluding IL-8, was a significant predictor of SE. However, serum IL-6:IL-10 and IL-6:TNF-α concentrations, as well as plasma PGE2:PGF2α ratios, may yield a novel diagnostic marker for chronic subclinical endometritis.
Collapse
Affiliation(s)
- Mohamed Hedia
- Department of Theriogenology, Faculty of Veterinary Medicine, Giza, Egypt.
| | - Sally Ibrahim
- Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Karima Mahmoud
- Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Youssef Ahmed
- Department of Animal Reproduction and AI, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Sayed Ismail
- Department of Theriogenology, Faculty of Veterinary Medicine, Giza, Egypt
| | - Mohamed El-Belely
- Department of Theriogenology, Faculty of Veterinary Medicine, Giza, Egypt.
| |
Collapse
|
27
|
He L, Liu L, Li T, Zhuang D, Dai J, Wang B, Bi L. Exploring the Imbalance of Periodontitis Immune System From the Cellular to Molecular Level. Front Genet 2021; 12:653209. [PMID: 33841510 PMCID: PMC8033214 DOI: 10.3389/fgene.2021.653209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Periodontitis is a common chronic inflammatory disease of periodontal tissue, mostly concentrated in people over 30 years old. Statistics show that compared with foreign countries, the prevalence of periodontitis in China is as high as 40%, and the prevalence of periodontal disease is more than 90%, which must arouse our great attention. Diagnosis and treatment of periodontitis currently rely mainly on clinical criteria, and the exploration of the etiologic criteria is relatively lacking. We, therefore, have explored the pathogenesis of periodontitis from the perspective of immune imbalance. By predicting the fraction of 22 immune cells in periodontitis tissues and comparing them with normal tissues, we found that multiple immune cell infiltration in periodontitis tissues was inhibited and this feature can clearly distinguish periodontitis from normal tissues. Further, protein interaction network (PPI) and transcription regulation network have been constructed based on differentially expressed genes (DEGs) to explore the interaction function modules and regulation pathways. Three functional modules have been revealed and top TFs such as EGR1 and ETS1 have been shown to regulate the expression of periodontitis-related immune genes that play an important role in the formation of the immunosuppressive microenvironment. The classifier was also used to verify the reliability of periodontitis features obtained at the cellular and molecular levels. In conclusion, we have revealed the immune microenvironment and molecular characteristics of periodontitis, which will help to better understand the mechanism of periodontitis and its application in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Longfei He
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Lijuan Liu
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Ti Li
- Department of Stomatology, Weifang People's Hospital, Weifang, China
| | - Deshu Zhuang
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| | - Jiayin Dai
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Wang
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Yu H, Zou W, Mi C, Wang Q, Dai G, Zhang T, Zhang G, Xie K, Wang J, Shi H. Research Note: Expression of T cell-related cytokines in chicken cecal and spleen tissues following Eimeria tenella infection in vivo. Poult Sci 2021; 100:101161. [PMID: 34058567 PMCID: PMC8170425 DOI: 10.1016/j.psj.2021.101161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/07/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
The T cell-mediated immune response plays an important role in coccidiosis. To reveal the host T cell immune response following Eimeria tenella (E. tenella) infection in chickens, we performed quantitative real-time PCR to analyze the dynamic expression of the Th1-related cytokines IFN-γ, IL-2, and IL-12; the Th17-related cytokines IL-17A, IL-17F, and IL-22; and the Treg-related cytokines IL-10, TGF-β, and CTLA-4 in the cecum and spleen at 0, 2, 4, 6, 8, and 10 d postinfection (dpi). In the cecal tissue, the expression of the Th1-related cytokine IFN-γ was significantly higher at 6 and 8 dpi than at other time points (11.97-fold and 39.78-fold, respectively, compared with 0 dpi, P < 0.05). IL-2 and IL-12 expression was significantly higher at 6 and 8 dpi than at 0, 2 and 10 dpi (P < 0.05). The expression of the Th17-related cytokines IL-17A and IL-17F at 2 and 4 dpi and IL-22 expression at 4 dpi were significantly higher than those at 0, 6, 8 and 10 dpi (P < 0.05). The expression of the Treg-related cytokines IL-10, TGF-β and CTLA-4 was significantly higher at 6 and 8 dpi than at 0, 2 and 4 dpi (P < 0.05). In the spleen, IFN-γ and IL-12 expression peaked at 4 dpi, while IL-2 expression peaked at 10 dpi. IL-17A, IL-17F and IL-22 expression was significantly higher at 2 and 4 dpi than at 0, 6, 8 and 10 dpi (P < 0.05). Treg-related cytokine TGF-β expression was almost unchanged and significantly decreased at only 4 dpi (P < 0.05), while CTLA-4 expression showed an overall decreasing trend from 0 to 8 dpi but increased significantly at 10 dpi (P < 0.05). The expression patterns of three T cell subset-related cytokines were different in the cecum and spleen. Furthermore, Th1 and Treg cells participate in the immune response mainly in the latter stage of coccidia infection (6 and 8 dpi), while Th17 cells play a role mainly in the early stages of infection (2 and 4 dpi). Our data will help to deepen the understanding of the complex T cell immune response after coccidia infection.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Changhao Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, China
| |
Collapse
|
29
|
Pineda GE, Rearte B, Todero MF, Bruballa AC, Bernal AM, Fernandez-Brando RJ, Isturiz MA, Zotta E, Alba-Soto CD, Palermo MS, Ramos MV. Absence of interleukin-10 reduces progression of shiga toxin-induced hemolytic uremic syndrome. Clin Sci (Lond) 2021; 135:575-588. [PMID: 33496327 DOI: 10.1042/cs20200468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Hemolytic Uremic Syndrome (HUS), a disease triggered by Shiga toxin (Stx), is characterized by hemolytic anemia, thrombocytopenia and renal failure. The inflammatory response mediated by polymorphonuclear neutrophils (PMNs) and monocytes is essential to HUS onset. Still, the role of anti-inflammatory cytokines is less clear. The deficiency of IL-10, an anti-inflammatory cytokine, leads to severe pathology in bacterial infections but also to beneficial effects in models of sterile injury. The aim of this work was to analyze the role of IL-10 during HUS. Control and IL-10 lacking mice (IL-10-/-) were intravenously injected with Stx type 2 (Stx2) and survival rate was evaluated. PMN and circulating and renal pro- and anti-inflammatory factors were analyzed by FACS and enzyme-linked immunosorbent assay (ELISA) respectively. IL-10-/- mice showed a higher survival associated with lower renal damage reflected by reduced plasma urea and creatinine levels than control mice. Circulating PMN increased at 72 h in both mouse strains accompanied by an up-regulation of CD11b in control mice. In parallel, renal PMN were significantly increased only in control mice after toxin. Plasma TNF-α, IL-6 and corticosterone levels were higher increased in IL-10-/- than control mice. Simultaneously renal TNF-α raised constantly but was accompanied by increased TGF-β levels in IL-10-/- mice. These results demonstrate that the profile of circulating and renal cytokines after Stx2 differed between strains suggesting that balance of these factors could participate in renal protection. We conclude that IL-10 absence has a protective role in an experimental model of HUS by reducing PMN recruitment into kidney and renal damage, and increasing mice survival.
Collapse
Affiliation(s)
- Gonzalo Ezequiel Pineda
- Laboratorio de Patogénesis e Inmunología de los Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Bárbara Rearte
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Florencia Todero
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Andrea Cecilia Bruballa
- Laboratorio de Patogénesis e Inmunología de los Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de los Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Romina Jimena Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de los Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Martin Amadeo Isturiz
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elsa Zotta
- Laboratorio de Fisiopatogenia, Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Catalina Dirney Alba-Soto
- Instituto de Microbiología y Parasitología Médica (IMPaM, CONICET-UBA), Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de los Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de los Procesos Infecciosos, Instituto de Medicina Experimental (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
30
|
Bhattarai K, Bhattarai K, Kabir ME, Bastola R, Baral B. Fungal natural products galaxy: Biochemistry and molecular genetics toward blockbuster drugs discovery. ADVANCES IN GENETICS 2021; 107:193-284. [PMID: 33641747 DOI: 10.1016/bs.adgen.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Secondary metabolites synthesized by fungi have become a precious source of inspiration for the design of novel drugs. Indeed, fungi are prolific producers of fascinating, diverse, structurally complex, and low-molecular-mass natural products with high therapeutic leads, such as novel antimicrobial compounds, anticancer compounds, immunosuppressive agents, among others. Given that these microorganisms possess the extraordinary capacity to secrete diverse chemical scaffolds, they have been highly exploited by the giant pharma companies to generate small molecules. This has been made possible because the isolation of metabolites from fungal natural sources is feasible and surpasses the organic synthesis of compounds, which otherwise remains a significant bottleneck in the drug discovery process. Here in this comprehensive review, we have discussed recent studies on different fungi (pathogenic, non-pathogenic, commensal, and endophytic/symbiotic) from different habitats (terrestrial and marines), the specialized metabolites they biosynthesize, and the drugs derived from these specialized metabolites. Moreover, we have unveiled the logic behind the biosynthesis of vital chemical scaffolds, such as NRPS, PKS, PKS-NRPS hybrid, RiPPS, terpenoids, indole alkaloids, and their genetic mechanisms. Besides, we have provided a glimpse of the concept behind mycotoxins, virulence factor, and host immune response based on fungal infections.
Collapse
Affiliation(s)
- Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Tübingen, Germany
| | - Keshab Bhattarai
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Md Ehsanul Kabir
- Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh
| | - Rina Bastola
- Spinal Cord Injury Association-Nepal (SCIAN), Pokhara, Nepal
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
31
|
Ma Z, Yu S, Cheng K, Miao Y, Xu Y, Hu R, Zheng W, Yi J, Zhang H, Li R, Li Z, Wang Y, Chen C. Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host. J Vet Sci 2021. [DOI: 10.4142/jvs.2021.22.e94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Zhongchen Ma
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Shuifa Yu
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Kejian Cheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yuhe Miao
- Fujian Sunvet Biological Technology Co., Ltd, Nanping 354100, Fujian, China
| | - Yimei Xu
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Wei Zheng
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Jihai Yi
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huan Zhang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Ruirui Li
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, Henan, China
| | - Yong Wang
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Chuangfu Chen
- International Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
- Collaborative Innovation Center for Prevention and Control of High Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| |
Collapse
|
32
|
Shirani K, Riahi Zanjani B, Mehri S, Razavi-Azarkhiavi K, Badiee A, Hayes AW, Giesy JP, Karimi G. miR-155 influences cell-mediated immunity in Balb/c mice treated with aflatoxin M 1. Drug Chem Toxicol 2021; 44:39-46. [PMID: 30739504 DOI: 10.1080/01480545.2018.1556682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/02/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Aflatoxin M1 (AFM1) is a 4-hydroxylated metabolite of aflatoxin B1 (AFB1). It induces various toxicological effects including immunotoxicity. In the present study, we investigated the effects of AFM1 on immune system and its modulation by MicroRNA (miR)-155. AFM1 was administered intraperitoneally at doses of 25 and 50 µg/kg for 28 days to Balb/c mice and different immune system parameters were analyzed. The levels of miR-155 and targeted proteins were evaluated in isolated T cells from spleens of mice. Spleen weight was reduced in mice exposed to AFM1 compared to negative control. Proliferation of splenocytes in response to phytohemagglutinin-A was reduced in mice exposed to AFM1. IFN-γ was decreased in mice exposed to AFM1, whereas IL-10 was increased. Concentration of IL-4 did not change different in mice exposed to AFM1 compared to negative control. Exposure to AFM1 reduced the expression of miR-155. Significant upregulation of phosphatidylinositol-3, 4, 5-trisphosphate 5-phosphatase 1 (Ship1) and suppressor of cytokine signaling 1 (Socs1) was observed in isolated T cells from spleens of mice treated with AFM1, but the transcription factor Maf (c-MAF) was not affected. These results suggest that miR-155 and targeted proteins might be involved in the immunotoxicity observed in mice exposed to AFM1.
Collapse
Affiliation(s)
- Kobra Shirani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi Zanjani
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Meng H, Jin W, Yu L, Xu S, Wan H, He Y. Protective effects of polysaccharides on cerebral ischemia: A mini-review of the mechanisms. Int J Biol Macromol 2020; 169:463-472. [PMID: 33347928 DOI: 10.1016/j.ijbiomac.2020.12.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Cerebral ischemia, a common cerebrovascular disease, is one of the great threats to human health. Nowadays, many drugs used in the treatment of cerebral ischemia such as clot busting drugs, antiplatelet drugs, and neuroprotective drugs have limits. It is urgent finding new effective treatments for the patients. Researches have confirmed that many kinds of polysaccharides from natural resources possess therapeutic effects on cerebral ischemia, but are still lack of a comprehensively understanding. In this paper, based on the pathophysiology of cerebral ischemic injury, we summarize the latest discoveries and advancements of 29 kinds of polysaccharides, focusing on their ameliorating effects on cerebral ischemia and the underlying mechanisms. Several mechanisms are involved, mainly including antioxidant activities, anti-inflammatory activities, regulating neuron apoptosis, as well as resisting nitrosative stress injury. Besides, polysaccharides show protective effects through certain signaling pathways including PI3K/Akt, MAPK, and NF-κB, PARP-1/AIF, JNK3/c-Jun/Fas-L, and Nrf2/HO-1 signaling pathways. The main goal of this mini-review is to emphasize the important roles of polysaccharides in attenuating cerebral ischemic injury through the elucidation of mechanisms.
Collapse
Affiliation(s)
- Huanhuan Meng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shouchao Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
34
|
Edwards S, Zhao G, Tran J, Patten KT, Valenzuela A, Wallis C, Bein KJ, Wexler AS, Lein PJ, Rao X. Pathological Cardiopulmonary Evaluation of Rats Chronically Exposed to Traffic-Related Air Pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127003. [PMID: 33275451 PMCID: PMC7717845 DOI: 10.1289/ehp7045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) is made up of complex mixtures of particulate matter, gases and volatile compounds. However, the effects of TRAP on the cardiopulmonary system in most animal studies have been tested using acute exposure to singular pollutants. The cardiopulmonary effects and molecular mechanisms in animals that are chronically exposed to unmodified air pollution as a whole have yet to be studied. Additionally, sex-dependent toxicity of TRAP exposure has rarely been evaluated. OBJECTIVES This study sought to assess the cardiopulmonary effect of chronic exposure to unmodified, real-world TRAP in both female and male rats. METHODS Four-week-old male and female rats were exposed to TRAP or filtered air for 14 months in a novel facility drawing air from a major freeway tunnel system in Northern California. Inflammation and oxidative stress markers were examined in the lung, heart, spleen, and plasma, and TRAP deposits were quantified in the lungs of both male and female rats. RESULTS Elemental analysis showed higher levels of eight elements in the female lungs and one element in the male lungs. Expression of genes related to fibrosis, aging, oxidative stress, and inflammation were higher in the rat hearts exposed to TRAP, with female rats being more susceptible than males. Enhanced collagen accumulation was found only in the TRAP-exposed female hearts. Plasma cytokine secretion was higher in both female and male rats, but inflammatory macrophages were higher only in TRAP-exposed male spleens. DISCUSSION Our results in rats suggest pathological consequences from chronic TRAP exposure, including sex differences indicating females may be more susceptible to TRAP-induced cardiac fibrosis. https://doi.org/10.1289/EHP7045.
Collapse
Affiliation(s)
- Sabrina Edwards
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, USA
| | - Gang Zhao
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, USA
- Department of Cardiology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Joanne Tran
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, USA
- University of Portland, Portland, Oregon, USA
| | - Kelley T. Patten
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Anthony Valenzuela
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Christopher Wallis
- Air Quality Research Center, University of California, Davis, Davis, California, USA
| | - Keith J. Bein
- Air Quality Research Center, University of California, Davis, Davis, California, USA
- Center for Health and the Environment, University of California, Davis, Davis, California, USA
| | - Anthony S. Wexler
- Air Quality Research Center, University of California, Davis, Davis, California, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, University of California, Davis, Davis, California, USA
| | - Pamela J. Lein
- Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Xiaoquan Rao
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon, USA
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
35
|
Clark SE, Schmidt RL, Aguilera ER, Lenz LL. IL-10-producing NK cells exacerbate sublethal Streptococcus pneumoniae infection in the lung. Transl Res 2020; 226:70-82. [PMID: 32634590 PMCID: PMC7572800 DOI: 10.1016/j.trsl.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Lung inflammation is tightly controlled to balance microbial clearance with the tissue damage that accompanies this response. Bacterial pathogens including Streptococcus pneumoniae (S. pneumoniae) modulate immune regulation by promoting secretion of the anti-inflammatory cytokine IL-10. The important cellular sources of IL-10 that impact protection against different bacterial infections are not well characterized. We find that S. pneumoniaeactivates IL-10 secretion from natural killer (NK) cells in the lung, which restrict host protection in a mouse model of sublethal infection. Direct transfer of wild-type NK cells into the lungs of IL-10-deficient mice drives bacterial expansion, identifying NK cells as a critical source of IL-10 promoting S. pneumoniae infection. The S. pneumoniae virulence protein Spr1875 was found to elicit NK cell IL-10 production in purified cells and in the lungs of live animals. These findings reveal therapeutic targets to combat bacterial-driven immune regulation in the lung.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Rebecca L Schmidt
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Biology and Chemistry, Upper Iowa University, Fayette, Iowa
| | - Elizabeth R Aguilera
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Laurel L Lenz
- Department of Biomedical Sciences, National Jewish Health, Denver, Colorado; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
36
|
Murray HW. Targeting IL-27 and/or IL-10 in Experimental Murine Visceral Leishmaniasis. Am J Trop Med Hyg 2020; 103:1938-1941. [PMID: 32815498 DOI: 10.4269/ajtmh.20-0531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Interleukin-10 (IL-10) and interleukin-27 (IL-27) both exert counterregulatory immunodeactivation in visceral Leishmania donovani infection. We studied experimental L. donovani infection in the livers of IL-10-/- and IL-27Rα-/- mice and observed that in IL-27Rα-/-, but not IL-10-/- mice, interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) were required for heightened granulomatous inflammation and accelerated control of intracellular parasite replication. This difference in mechanism, along with residual IL-10 activity in IL-27Rα-/- mice, suggested targeting IL-27 in addition to IL-10 in a macrophage-activating, anti-counterregulatory cytokine treatment strategy. In C57BL/6 wild-type mice with established liver infection, a single injection of anti-IL-27 p28 or anti-IL-10R monoclonal antibody enhanced granuloma assembly, enabled macrophage activation, and induced comparable parasite killing (49-56%). However, anti-IL-27 p28 plus anti-IL-10R combination treatment did not increase leishmanicidal effects. These results suggest that IL-27 and IL-10 may operate in a linked deactivating mechanism and that in this intracellular infection, either IL-27 or IL-10 is a suitable immunotherapeutic target.
Collapse
Affiliation(s)
- Henry W Murray
- Division of Infectious Diseases, Department of Medicine, Well Cornell Medical College, New York, New York
| |
Collapse
|
37
|
Paryuni AD, Indarjulianto S, Widyarini S. Dermatophytosis in companion animals: A review. Vet World 2020; 13:1174-1181. [PMID: 32801570 PMCID: PMC7396343 DOI: 10.14202/vetworld.2020.1174-1181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022] Open
Abstract
Dermatophytosis, a zoonotic disease, is caused by fungi of three main genera, namely, Micropsorum, Trichophyton, and Epidermophyton. Specific lesions of dermatophyte infections are localized in the face, legs, and/or tail. Skin lesions in infected animals demonstrate localized alopecia, erythema, and crust, which are more commonly known as ringworm. Factors that affect dermatophytosis include the dermatophyte species; virulence factors of the agent; and the immune status, age, and sex of the host. High levels of cortisol and pro-inflammatory cytokines have also been reported to play an important role in dermatophyte infection. This review aims to explore and understand factors that affect dermatophyte infection with an emphasis on the prevalence, clinical signs, pathogenesis, immune response, and the roles of cortisol and cytokines in companion animals infected by a dermatophyte.
Collapse
Affiliation(s)
- Alsi Dara Paryuni
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Soedarmanto Indarjulianto
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sitarina Widyarini
- Department of Pathology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
38
|
Park HS, Back YW, Son YJ, Kim HJ. Mycobacterium avium subsp . paratuberculosis MAP1889c Protein Induces Maturation of Dendritic Cells and Drives Th2-biased Immune Responses. Cells 2020; 9:cells9040944. [PMID: 32290379 PMCID: PMC7226993 DOI: 10.3390/cells9040944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a causative agent of chronic granulomatous bowel disease in animals and is associated with various autoimmune diseases in humans including Crohn’s disease. A good understanding of the host-protective immune response and antibacterial immunity controlled by MAP and its components may contribute to the development of effective control strategies. MAP1889c was identified as a seroreactive antigen in Crohn’s disease patients. In this study, we investigated the immunological function of MAP1889c in dendritic cells (DCs). MAP1889c stimulated DCs to increase expression of co-stimulatory molecules (CD80 and CD86) and major histocompatibility complex (MHC) class molecules and to secret higher interleukin (IL)-10 and moderate IL-6, tumor necrosis factor (TNF)-α, and IL-12p70 levels through the Toll-like receptor (TLR) 4 pathway. MAP1889c-induced DC activation was mediated by mitogen-activated protein kinases (MAPKs), cAMPp-response element binding protein (CREB), and nuclear factor kappa B (NF-κB). In particular, the CREB signal was essential for MAP1889c-mediated IL-10 production but not TNF-α and IL-12p70. In addition, MAP1889c-matured DCs induced T cell proliferation and drove the Th2 response. Production of lipopolysaccharide (LPS)-mediated pro-inflammatory cytokines and anti-inflammatory cytokines was suppressed and enhanced respectively by MAP1889c pretreatment in DCs and T cells. Furthermore, treatment of MAP1889c in M. avium-infected macrophages promoted intracellular bacterial growth and IL-10 production. These findings suggest that MAP1889c modulates the host antimycobacterial response and may be a potential virulence factor during MAP infection.
Collapse
|
39
|
Han S, Hu W, Kan W, Ge Z, Song X, Li L, Shang Y, Zeng Q, Zhou JH. Analyses of genetics and pathogenesis of Salmonella enterica QH with narrow spectrum of antibiotic resistance isolated from yak. INFECTION GENETICS AND EVOLUTION 2020; 82:104293. [PMID: 32247035 DOI: 10.1016/j.meegid.2020.104293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Salmonella is an important pathogen for public health due to food poisoning and acute infectious intestinal disease by zoonotic trait. We isolated Salmonella enterica QH which represents the normal growth condition in Luria-Bertani culture and displays a wide range of susceptibility for multiple antibiotics. To further investigate genetic and pathogenic traits of S. enterica QH, the sequencing genome of S. enterica QH and oral Salmonella infection in mice were performed in this study. Compared with other Salmonella strains, several large sequences containing prophages and genomic islands were inserted into S. enterica QH genome. Furthermore, nucleotide and synonymous codon usage patterns display mutation pressure and natural selection serving as drivers for the evolutionary trend of S. enterica QH at gene level. The unique codon usage pattern of S. enterica QH probably contributes to adaptation to environmental/host niches and to pathogenicity. In an early oral S. enterica QH infection, the levels of CD4+ and CD8+ lymphocytes significantly reduce in peripheral blood of mice, but the increasing transcription levels of some cytokines (IFN-β1, IFN-γ and CXCL10) might have pleiotypic immune effects against S. enterica QH infection. Of note, IL10 displays significant enhancement at levels of transcription and translation, suggesting that immunosuppressive effects mediated by IL10 may function as an early oral S. enterica QH infection. The systemic investigations, including genomic and genetic characterizations and biological traits of S. enterica QH in vivo and in vitro may reflect the basic lifestyle of S. enterica QH, requiring intestine colonization, undergoing environmental stresses and performing dissemination.
Collapse
Affiliation(s)
- Shengyi Han
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Wen Hu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China; Gansu Police Vocational College, Lanzhou, 730046, Gansu, PR China
| | - Wei Kan
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China; Qinghai Animal Disease Prevention and Control Center, Xi-ning 810000, PR China
| | - Zhiyi Ge
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xiangyang Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Lingxia Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Qiaoying Zeng
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.
| |
Collapse
|
40
|
Sanches AWD, Belote BL, Hümmelgen P, Heemann ACW, Soares I, Tujimoto-Silva A, Tirado AGC, Cunha AF, Santin E. Basal and Infectious Enteritis in Broilers Under the I See Inside Methodology: A Chronological Evaluation. Front Vet Sci 2020; 6:512. [PMID: 32118051 PMCID: PMC7034362 DOI: 10.3389/fvets.2019.00512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/24/2019] [Indexed: 02/02/2023] Open
Abstract
Recently, the inflammation of the intestinal mucosa has been related to many diseases in humans and animals. The concept of Microscopic Enteritis (ME) used in human pathology through the Marsh classification system has no counter-part in veterinary medicine. In poultry science, the I See Inside (ISI) methodology, unlike the current linear measures of villi and crypts, generates possibilities to describe and understand the avian ME. Through specific parameters, graded from 0 to 3, the model links proliferative and/or inflammatory reactions in the intestinal layers to some loss in performance. Herein, two trials were conducted in order to describe the development of ME through the ISI methodology in chickens challenged or not with Eimeria spp. and Clostridium perfringens. In each trial, a total of 64 birds were divided in 2 treatments with 4 replicates containing 8 birds each: non-challenged (NCH) and challenged (CH) through gavage with an Eimeria spp. vaccine at 1 day of age and 108 CFU/mL of Clostridium perfringens administered at 10, 11, and 12 days of age. At 7, 14, 21, and 28 days of age birds were euthanized and samples of ileum and liver were collected for ISI evaluation, cytokines and presence of macrophages, CD4+ and CD8+ cell. The results allowed the description of the avian Microscopic Enteritis and of its two basic components: a basal enteritis (BE) in NCH broilers, over which the infectious enteritis is developed in CH birds. In addition, the chronology of ME translated by the ISI methodology parameters were associated to losses in zootechnical performance.
Collapse
Affiliation(s)
- Adrien W D Sanches
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruna L Belote
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Paulo Hümmelgen
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ana C W Heemann
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Igor Soares
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Aline Tujimoto-Silva
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Amanda G C Tirado
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Anderson F Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Elizabeth Santin
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
41
|
Anti-Cryptococcal activity of a furanone derivative-antibiofilm and opsonophagocytic potential. J Mycol Med 2020; 30:100924. [PMID: 32037102 DOI: 10.1016/j.mycmed.2020.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans, an encapsulated fungal pathogen is evolving as a major threat to immune-compromised patients and rarely to healthy individuals also. The cell wall bound capsular polysaccharide, melanin pigment and biofilm formation are major virulence factors that are known to contribute to cryptococcal meningitis. In the present study, a furanone derivative, (E)-5-benzylidenedihydrofuran-2(3H)-one (compound-6) was evaluated against biofilm of seven different strains of C. neoformans in melanized and non-melanized condition. In addition, the efficacy of compound-6 in activation of TLR-2, opsonophagocytosis, and modulation of cytokine expression during phagocytosis were studied. During the biofilm study, we found that moderate capsule size favored biofilm formation. Interestingly, the minimum biofilm eradication concentration (MBEC0.5) of melanized biofilm was found to be achieved at 1- to 1.7-fold higher MBEC0.5 of non-melanized cells. The maximum eradication of 77% and 69% of non-melanized and melanized biofilm were observed. The capsule size was reduced to half of its size with marked changes in morphology. Furthermore, expression of TLR2, iNOS and pro-inflammatory cytokines such as TNF-α, IL-12, and IFN-γ were also facilitated by compound-6. The correlation analysis showed a positive correlation between phagocytosis and the expression of TLR-2, iNOS, IL-6, IL-12. Collectively, the significant effect of compound-6, anti-melanization activity, antibiofilmand effective immunomodulant could be an interesting dual strategy drug agonist against cryptococcal meningitis.
Collapse
|
42
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
43
|
Ren Z, Bütz DE, Whelan R, Naranjo V, Arendt MK, Ramuta MD, Yang X, Crenshaw TD, Cook ME. Effects of dietary methionine plus cysteine levels on growth performance and intestinal antibody production in broilers during Eimeria challenge. Poult Sci 2019; 99:374-384. [PMID: 32416822 PMCID: PMC7587792 DOI: 10.3382/ps/pez503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Research has shown that methionine+ cysteine (M+C) requirements may be higher when chickens are infected with Eimeria app. In a 4 × 2 factorial design, broilers (11 to 21 D) were fed one of 4 corn–soybean meal-based diets containing either 0.6, 0.8, 0.9, or 1.0% standardized ileal digestible (SID) M+C; on day 14, broilers from each diet were gavaged with either phosphate-buffered saline (PBS) or a commercial coccidiosis vaccine (at 100 × vaccine dose) which provide a mixture of live Eimeria acervulina, Eimeria maxima, and Eimeria tenella oocysts. Growth performance was recorded from day 11 to 21. Plasma and intestinal luminal samples were collected on days 14 and 21. Intestine lesion scores and fecal oocyst counts were conducted on day 21. Regardless of dietary SID M+C levels, compared to PBS gavaged broilers, the Eimeria-challenged broilers had (1) decreased (P < 0.05) body weight gain (BWG), feed intake (FI), and gain-to-feed ratio (G:F); (2) increased (P < 0.05) intestinal lesion scores and fecal oocyst counts; (3) increased (P < 0.05) plasma anti-Eimeria IgG, and intestinal luminal total IgA and anti-Eimeria IgA concentrations; and (4) increased (P < 0.05) levels of duodenum luminal gamma interferon (IFN-γ) and interleukin-10 (IL-10), as well as jejunum and cecum luminal IFN-γ concentrations. Regardless of Eimeria challenge, when compared to 0.6% SID M+C, broilers fed ≥0.8% SID M+C had (1) increased (P < 0.05) BWG, FI, and G:F and (2) increased (P < 0.05) levels of jejunum luminal total IgA. After Eimeria challenge, broilers fed 0.8% SID M+C had increased (P < 0.05) levels of jejunum luminal anti-Eimeria IgA compared to broilers fed diets containing 0.6 and 1.0% SID M+C. Collectively, in 11- to 21-D broilers, the growth suppression caused by Eimeria infection could not be mitigated by further increasing dietary M+C alone ≥0.8%. Further research should investigate interactions between dietary M+C and other nutrients for support of immune function and growth in pathogen-challenged broilers.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Daniel E Bütz
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Rose Whelan
- Evonik Nutrition & Care GmbH, 4 Rodenbacher Chaussee, Hanau-Wolfgang 63457, Germany
| | - Victor Naranjo
- Evonik Nutrition & Care GmbH, 4 Rodenbacher Chaussee, Hanau-Wolfgang 63457, Germany
| | - Maria K Arendt
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Mitchell D Ramuta
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Thomas D Crenshaw
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| | - Mark E Cook
- Department of Animal Sciences, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI 53706, USA
| |
Collapse
|
44
|
Arendt MK, Knoll LJ, Cook ME. Oral antibody to interleukin-10 receptor 2, but not interleukin-10 receptor 1, as an effective Eimeria species immunotherapy in broiler chickens. Poult Sci 2019; 98:3471-3480. [PMID: 30880340 DOI: 10.3382/ps/pez064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Coccidiosis is a major gastrointestinal disease caused by several Eimeria species in floor raised chickens. Feeding an antibody to interleukin 10 (aIL-10) ameliorates the negative symptoms of coccidiosis in broilers, i.e., lack of weight gain, decreased feed conversion, and mortality. IL-10 signals by forming a ligand-receptor complex with IL-10 Receptor 1 (IL-10 R1) and IL-10 Receptor 2 (IL-10 R2). In this study, we hypothesize oral antibodies to the IL-10 receptors will neutralize the IL-10 signaling pathway equal to or better than aIL-10 to act as an oral anti-coccidiosis immunotherapy. A total of 5 sequential feed trials, set up as a 4 (diet antibody) × 2 (Eimeria challenge) factorial design, tested oral egg yolk antibodies to a total of 6 IL-10 R1 epitopes and 3 IL-10 R2 epitopes compared to a control antibody diet. A total of 10 pens of 5 chicks/pen/diet antibody/Eimeria challenge were housed for 21 d. On day 3 of age, chicks were either infected or not infected with a 10× dose of an Eimeria vaccine containing Eimeria acervulina, Eimeria tenella, and Eimeria maxima. Pen feed consumption and mean body weights were assessed weekly (d1, d7, d14, and d21); fecal oocyst shedding was assessed on day 10. Data were analyzed using a 2-way ANOVA. No significant interaction on chick weight was observed in chicks fed IL-10 R1 antibodies compared to chicks fed the control antibody was observed. In studies evaluating aIL-10 R2 oral antibodies, infected chicks fed aIL-10 R2: epitope 1 overcame the negative effects of Eimeria infection and had similar 21-d body weight to uninfected chicks (P4 = 0.07). We hypothesized that feeding oral antibodies to the IL-10 receptors would result in equivalent anti-coccidial benefits to aIL-10. However, none of the 6 antibodies to IL-10 R1 epitopes yielded any benefits during Eimeria infection compared to controls. A total of 2 oral antibodies to IL-10 R2 showed promising results equivalent to the aIL-10 immunotherapeutic. Immunofluorescence staining shows that the IL-10R2 significantly increases in abundance in response to Eimeria infection, whereas IL-10R1 does not.
Collapse
Affiliation(s)
- Maria K Arendt
- Comparative Biomedical Sciences Department, University of Wisconsin-Madison, Madison, WI 53706
| | - Laura J Knoll
- Medical Microbiology & Immunology Department, University of Wisconsin-Madison, Madison, WI 53706
| | - Mark E Cook
- Animal Science Department, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
45
|
Osho SO, Adeola O. Impact of dietary chitosan oligosaccharide and its effects on coccidia challenge in broiler chickens. Br Poult Sci 2019; 60:766-776. [PMID: 31483171 DOI: 10.1080/00071668.2019.1662887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022]
Abstract
1. Two experiments were conducted, the first to determine the optimum inclusion of chitosan oligosaccharide (COS) in broiler diets to support growth performance, digestive functions, intestinal morphology, and immune organs. The second experiment evaluated the immune-protective properties of COS on broiler chickens during coccidia challenge (CC).2. Experiment 1 investigated the effect of graded dietary concentration of COS in the diets of broiler chickens using eight cage replicates for each of the six diets. A corn-soybean meal-based diet was used as the basal diet and supplemented with 0.0, 0.5, 1.0, 1.5, 2.0, or 2.5 g of COS/kg feed to form the six treatments.3. The diet supplemented with 1.0 g COS/kg of feed provided the optimal inclusion level for broiler chickens regarding body weight (BW) gain, jejunal villus height, villus height to crypt depth ratio, and ileal energy digestibility at d 22 of age.4. Experiment 2 investigated the immune-protective properties of COS in broiler chickens during CC. A total of 224 male broiler chicks were randomly assigned to eight replicate cages in a 2 × 2 factorial arrangement of treatments with two COS concentrations (0 or 1 g of COS/kg of diet), with or without CC.5. On d 18 of age, birds in the CC group received twice the recommended coccidia vaccine dose of 30 doses/kg BW.6. Coccidia challenge reduced (P < 0.05) and dietary COS increased (P < 0.05) BW gain, and feed intake. Dietary COS mitigated (P < 0.05) the CC-induced effects on gain:feed. Dietary COS supplementation attenuated the CC-induced effects (P < 0.05) on the expression of occludin genes.7. In conclusion, dietary COS improved performance, and the immune-related beneficial impact of COS supplementation was associated with reduced expression of pro-inflammatory cytokine genes.
Collapse
Affiliation(s)
- S O Osho
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - O Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
46
|
Nain Z, Abdulla F, Rahman MM, Karim MM, Khan MSA, Sayed SB, Mahmud S, Rahman SMR, Sheam MM, Haque Z, Adhikari UK. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. J Biomol Struct Dyn 2019; 38:4850-4867. [PMID: 31709929 DOI: 10.1080/07391102.2019.1692072] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elizabethkingia anophelis is an emerging human pathogen causing neonatal meningitis, catheter-associated infections and nosocomial outbreaks with high mortality rates. Besides, they are resistant to most antibiotics used in empirical therapy. In this study, therefore, we used immunoinformatic approaches to design a prophylactic peptide vaccine against E. anophelis as an alternative preventive measure. Initially, cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), and linear B-lymphocyte (LBL) epitopes were predicted from the highest antigenic protein. The CTL and HTL epitopes together had a population coverage of 99.97% around the world. Eventually, six CTL, seven HTL, and two LBL epitopes were selected and used to construct a multi-epitope vaccine. The vaccine protein was found to be highly immunogenic, non-allergenic, and non-toxic. Codon adaptation and in silico cloning were performed to ensure better expression within E. coli K12 host system. The stability of the vaccine structure was also improved by disulphide bridging. In addition, molecular docking and dynamics simulation revealed strong and stable binding affinity between the vaccine and toll-like receptor 4 (TLR4) molecule. The immune simulation showed higher levels of T-cell and B-cell activities which was in coherence with actual immune response. Repeated exposure simulation resulted in higher clonal selection and faster antigen clearance. Nevertheless, experimental validation is required to ensure the immunogenic potency and safety of this vaccine to control E. anophelis infection in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Faruq Abdulla
- Department of Statistics, Faculty of Sciences, Islamic University, Kushtia, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mohammad Minnatul Karim
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Shakil Ahmed Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sifat Bin Sayed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Shafi Mahmud
- Department of Biotechnology and Genetic Engineering, Faculty of Life and Earth Science, Rajshahi University, Rajshahi, Bangladesh
| | - S M Raihan Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Zahurul Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | | |
Collapse
|
47
|
Clark SE, Schmidt RL, McDermott DS, Lenz LL. A Batf3/Nlrp3/IL-18 Axis Promotes Natural Killer Cell IL-10 Production during Listeria monocytogenes Infection. Cell Rep 2019; 23:2582-2594. [PMID: 29847790 PMCID: PMC6170157 DOI: 10.1016/j.celrep.2018.04.106] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/06/2018] [Accepted: 04/25/2018] [Indexed: 11/27/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes (Lm) capitalizes on natural killer (NK) cell production of regulatory interleukin (IL)-10 to establish severe systemic infections. Here, we identify regulators of this IL-10 secretion. We show that IL-18 signals to NK cells license their ability to produce IL-10. IL-18 acts independent of IL-12 and STAT4, which co-stimulate IFNγ secretion. Dendritic cell (DC) expression of Nlrp3 is required for IL-18 release in response to the Lm p60 virulence protein. Therefore, mice lacking Nlrp3, Il18, or Il18R fail to accumulate serum IL-10 and are highly resistant to systemic Lm infection. We further show that cells expressing or dependent on Batf3 are required for IL-18-inducing IL-10 production observed in infected mice. These findings explain how Il18 and Batf3 promote susceptibility to bacterial infection and demonstrate the ability of Lm to exploit NLRP3 for the promotion of regulatory NK cell activity.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Rebecca L Schmidt
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Daniel S McDermott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
48
|
Arendt M, Elissa J, Schmidt N, Michael E, Potter N, Cook M, Knoll LJ. Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Vet Immunol Immunopathol 2019; 218:109934. [PMID: 31520870 DOI: 10.1016/j.vetimm.2019.109934] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/22/2019] [Accepted: 08/27/2019] [Indexed: 12/27/2022]
Abstract
Eimeria species are intestinal protozoan parasites that cause lack of production, malabsorption and mortality in floor raised chickens. Administering an oral antibody to interleukin 10 (aIL-10) reduces the symptoms of coccidiosis in broilers, indicating interleukin 10 (IL-10) is key to Eimeria pathology. IL-10 is an anti-inflammatory cytokine and acts as a stand down signal to reduce inflammation and host pathology during disease. Related protozoan parasites exploit IL-10 to reduce pathogen-damaging host inflammatory responses. We hypothesize that IL-10 is increased during Eimeria infection through an unknown host-pathogen interaction, and by feeding aIL-10 to neutralize excess IL-10 the bird is allowed to mount an effective immune response to Eimeria. To determine the effects of aIL-10 during the intestinal immune response, intestinal pathology and the relationship between IL-10, interferon gamma (IFNγ) and Eimeria infection were evaluated in this study. In both experiments, broilers were administered either a 10x dose of Advent® Eimeria vaccine or saline. Duodenum, jejunum and cecum samples were collected, processed, stained and examined under a microscope. Evaluation of intestinal histomorphology during aIL-10 administration showed minimal differences in birds fed aIL-10 during infection compared to animals fed a control antibody during Eimeria infection. To further evaluate aIL-10's positive effect during infection, immunofluorescent histochemistry was performed on chicken intestines days 3-7 post Eimeria infection for IL-10 and IFNγ presence in intestinal mucosa in control and infected birds, in regions with and without visible Eimeria burden. IL-10 and IFNγ had significant changes between days 4.5-7 post-infection in birds fed aIL-10 compared to animals fed a control antibody. Overall we found that the duodenum had increased IL-10 presence and increased IFNγ presence, and the jejunum and cecum had decreased IL-10 presence and decreased IFNγ presence. These differences in spatial regulation of IL-10 and IFNγ may indicate Eimeria species induce slightly different cytokine responses.
Collapse
Affiliation(s)
- Maria Arendt
- University of Wisconsin - Madison, Comparative Biomedical Sciences Department, United States.
| | - Jonathan Elissa
- University of Wisconsin - Madison, School of Veterinary Medicine, United States
| | - Natalie Schmidt
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Emily Michael
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Nicole Potter
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Mark Cook
- University of Wisconsin - Madison, Animal Science Department, United States
| | - Laura J Knoll
- University of Wisconsin - Madison, Medical Microbiology & Immunology Department, United States
| |
Collapse
|
49
|
Sayeed HM, Lee ES, Byun HO, Sohn S. The role of CCR1 and therapeutic effects of anti-CCL3 antibody in herpes simplex virus-induced Behçet's disease mouse model. Immunology 2019; 158:206-218. [PMID: 31393598 PMCID: PMC6797864 DOI: 10.1111/imm.13102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Behçet's disease (BD) is a chronic systemic inflammatory disease with unclear etiopathogenesis. Although gene variants of CC chemokine receptor type 1 (CCR1) have been reported, the protein expression of CCR1 in patients with BD remains unclear. The objective of this study was to analyze the frequencies of CCR1+ cells in a herpes simplex virus‐induced mouse model of BD. The frequencies of CCR1+ cells on the surface and in the cytoplasm of peripheral blood mononuclear cells and lymph nodes were analyzed by flow cytometry. The CCR1+ cells were significantly down‐regulated in BD mice compared with the normal control and symptom‐free control mice. Colchicine and pentoxifylline treatment improved the symptoms of BD and increased the frequencies of CCR1+ cells in BD mice. Treatment with chemokine CC motif ligand 3 (CCL3), a ligand of CCR1, caused BD symptoms to deteriorate in 10 of 16 BD mice (62·5%) via down‐regulation of CCR1+ cells. Anti‐CCL3 antibody treatment ameliorated BD symptoms in 10 of 20 mice (50%) and significantly decreased the disease severity score compared with CCL3‐treated BD mice (P = 0·01) via up‐regulation of CCR1+ cell frequencies. In patients with BD, plasma levels of CCL3 in an active state were significantly higher than in healthy control individuals (P = 0·02). These results show that the up‐regulation of CCR1+ cells was related to the control of systemic inflammation of BD in mouse models.
Collapse
Affiliation(s)
- Hasan M Sayeed
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Ok Byun
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - Seonghyang Sohn
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.,Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
50
|
Ren P, Zhang J, Yu L, Qu Y, Jiang X, Zhou Y, Hu D, Gao C. Impact of different Streptococcus pneumoniae on the secretion of interleukin and adhesin from THP-1 monocytes. J Clin Lab Anal 2019; 33:e22927. [PMID: 31231868 PMCID: PMC6757131 DOI: 10.1002/jcla.22927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/20/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the secretion of interleukin‐1β (IL‐1β), IL‐6, IL‐10, IL‐8, and soluble intercellular adhesin molecule 1 (sICAM‐1) from THP‐1 monocytes stimulated by different Streptococcus pneumoniae (S pneumoniae) strains. Methods Fifty‐eight strains of S pneumoniae were collected: ATCC49619, 23 from sputum (sd‐SP), 23 from blood (bd‐SP), and 11 from cerebrospinal fluid (CSF; cd‐SP). Such strains were cultured and suspended at 0.5 McFarland. THP‐1 monocytes were cultured and resuspended at 5.0 × 108/L, which were stimulated by S pneumoniae for 4, 8, and 12 hours, respectively. The suspensions were analyzed for IL‐1β, IL‐6, IL‐10, IL‐8, and sICAM‐1 using an ELISA method. The data were assayed with SPSS 19.0. Results Contrary to IL‐10, the concentrations of IL‐1β, IL‐6, IL‐8, and sICAM‐1 all increased first and then decreased. IL‐1β and sICAM‐1 levels in the ATCC49619 group were both higher than all the clinical S pneumoniae groups (sd‐SP, bd‐SP, and cd‐SP), IL‐6 and IL‐8 versa, and IL‐10 equal. The difference among clinical S pneumoniae groups lay only in sICAM‐1. cd‐SP group showed lower sICAM‐1 concentrations than sd‐SP and bd‐SP groups at both 4 and 8 hours. However, they became equal at 12 hours. Conclusions The secretion summit is 8 hours for IL‐1β, IL‐6, IL‐8, and sICAM‐1, bottom for IL‐10. Different clinical S pneumoniae strains show similar ability to induce THP‐1 cells secreting interleukins. However, cd‐SP induces THP‐1 cells secreting lower sICAM‐1 than sd‐SP and bd‐SP, which may in turn facilitate its invasion into CSF.
Collapse
Affiliation(s)
- Ping Ren
- Zhejiang Provincial Demonstration Center of Laboratory Medicine Experimental Teaching, Wenzhou Medical University, Wenzhou, China
| | - Jin Zhang
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Ying Qu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Xinyu Jiang
- Huazhong University of Science and Technology, Wuhan, China
| | - Yixia Zhou
- The Affiliated Hospital, Guizhou Medical University, Guiyang, China
| | - Dakang Hu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China.,Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunyan Gao
- Tangshan Maternal and Child Health Hospital, Tangshan, China
| |
Collapse
|