1
|
Calderón EJ, Friaza V. Pneumocystis jirovecii in human disease: just pneumonia? Rev Clin Esp 2024; 224:546-548. [PMID: 39032916 DOI: 10.1016/j.rceng.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Affiliation(s)
- E J Calderón
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain.
| | - V Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
2
|
Feng Q, Tong Z. Clinical Characteristics and Prognostic Predictors of Pneumocystis Jirovecii Pneumonia in Patients with and without Chronic Pulmonary Disease: A Retrospective Cohort Study. Infect Drug Resist 2024; 17:2169-2182. [PMID: 38832106 PMCID: PMC11146626 DOI: 10.2147/idr.s456716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Objective Pneumocystis jirovecii pneumonia (PJP) is a severe respiratory infection caused by Pneumocystis jirovecii in immunocompromised hosts. The role of P. jirovecii colonization in the development or progression of various pulmonary diseases has been reported. Our aim was to explore serial change in serum biomarkers and the independent risk factors for mortality in patients with and without chronic pulmonary diseases who developed PJP. Methods We performed a retrospective study to select patients with Pneumocystis jirovecii pneumonia between January 1, 2012, and December 31, 2021. Information regarding demographics, clinical characteristics, underlying diseases, laboratory tests, treatment, and outcomes was collected. Univariate and multivariate logistic regression analyses were used to identify independent predictors of in-hospital mortality. Results A total of 167 patients diagnosed with PJP were included in the study: 53 in the CPD-PJP group and 114 in the NCPD-PJP group. The number of patients with PJP showed an increasing trend over the 10-year period. A similar trend was observed for in-hospital mortality. Independent risk factors associated with death in the NCPD-PJP group were procalcitonin level (adjusted OR 1.08, 95% CI 1.01-1.16, P=0.01), pneumothorax (adjusted OR 0.07, 95% CI 0.01-0.38, P=0.002), neutrophil count (adjusted OR 1.27, 95% CI 1.05-1.53, P=0.01) at 14 days, and hemoglobin level (adjusted OR 0.94, 95% CI 0.91-0.98; P=0.002) at 14 days after admission. The risk factor associated with death in the CPD-PJP group was neutrophil count (adjusted OR 1.19, 95% CI 0.99-1.43; P=0.05) at 14 days after admission. Conclusion The risk factors for death were different between patients with PJP with and without chronic pulmonary disease. Early identification of these factors in patients with PJP and other underlying diseases may improve prognosis.
Collapse
Affiliation(s)
- Qiuyue Feng
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Beijing Huairou Hospital, Beijing, 101400, People’s Republic of China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| |
Collapse
|
3
|
Wood BR, Simon GL. Does Pneumocystis jirovecii pneumonia cause long-term deficits in lung function? AIDS 2023; 37:1333-1334. [PMID: 37930314 DOI: 10.1097/qad.0000000000003561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Affiliation(s)
- Brian R Wood
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University School, Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
4
|
Rojas DA, Ponce CA, Bustos A, Cortés V, Olivares D, Vargas SL. Pneumocystis Exacerbates Inflammation and Mucus Hypersecretion in a Murine, Elastase-Induced-COPD Model. J Fungi (Basel) 2023; 9:jof9040452. [PMID: 37108906 PMCID: PMC10142929 DOI: 10.3390/jof9040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation and mucus hypersecretion are frequent pathology features of chronic respiratory diseases such as asthma and COPD. Selected bacteria, viruses and fungi may synergize as co-factors in aggravating disease by activating pathways that are able to induce airway pathology. Pneumocystis infection induces inflammation and mucus hypersecretion in immune competent and compromised humans and animals. This fungus is a frequent colonizer in patients with COPD. Therefore, it becomes essential to identify whether it has a role in aggravating COPD severity. This work used an elastase-induced COPD model to evaluate the role of Pneumocystis in the exacerbation of pathology, including COPD-like lung lesions, inflammation and mucus hypersecretion. Animals infected with Pneumocystis developed increased histology features of COPD, inflammatory cuffs around airways and lung vasculature plus mucus hypersecretion. Pneumocystis induced a synergic increment in levels of inflammation markers (Cxcl2, IL6, IL8 and IL10) and mucins (Muc5ac/Muc5b). Levels of STAT6-dependent transcription factors Gata3, FoxA3 and Spdef were also synergically increased in Pneumocystis infected animals and elastase-induced COPD, while the levels of the mucous cell-hyperplasia transcription factor FoxA2 were decreased compared to the other groups. Results document that Pneumocystis is a co-factor for disease severity in this elastase-induced-COPD model and highlight the relevance of STAT6 pathway in Pneumocystis pathogenesis.
Collapse
Affiliation(s)
- Diego A Rojas
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Adriel Bustos
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Vicente Cortés
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Daniela Olivares
- Instituto de Ciencias Biomédicas (ICB), Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| |
Collapse
|
5
|
Serré J, Tanjeko AT, Mathyssen C, Heigl T, Sacreas A, Cook DP, Verbeken E, Maes K, Verhaegen J, Pilette C, Vanoirbeek J, Gysemans C, Mathieu C, Vanaudenaerde B, Janssens W, Gayan-Ramirez G. Effects of repeated infections with non-typeable Haemophilus influenzae on lung in vitamin D deficient and smoking mice. Respir Res 2022; 23:40. [PMID: 35236342 PMCID: PMC8889723 DOI: 10.1186/s12931-022-01962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD), exacerbations cause acute inflammatory flare-ups and increase the risk for hospitalization and mortality. Exacerbations are common in all disease stages and are often caused by bacterial infections e.g., non-typeable Heamophilus influenzae (NTHi). Accumulating evidence also associates vitamin D deficiency with the severity of COPD and exacerbation frequency. However, it is still unclear whether vitamin D deficiency when combined with cigarette smoking would worsen and prolong exacerbations caused by repeated infections with the same bacterial strain. Methods Vitamin D sufficient (VDS) and deficient (VDD) mice were exposed to nose-only cigarette smoke (CS) for 14 weeks and oropharyngeally instilled with NTHi at week 6, 10 and 14. Three days after the last instillation, mice were assessed for lung function, tissue remodeling, inflammation and immunity. The impact of VDD and CS on inflammatory cells and immunoglobulin (Ig) production was also assessed in non-infected animals while serum Ig production against NTHi and dsDNA was measured in COPD patients before and 1 year after supplementation with Vitamin D3. Results VDD enhanced NTHi eradication, independently of CS and complete eradication was reflected by decreased anti-NTHi Ig’s within the lung. In addition, VDD led to an increase in total lung capacity (TLC), lung compliance (Cchord), MMP12/TIMP1 ratio with a rise in serum Ig titers and anti-dsDNA Ig’s. Interestingly, in non-infected animals, VDD exacerbated the CS-induced anti-NTHi Ig’s, anti-dsDNA Ig’s and inflammatory cells within the lung. In COPD patients, serum Ig production was not affected by vitamin D status but anti-NTHi IgG increased after vitamin D3 supplementation in patients who were Vitamin D insufficient before treatment. Conclusion During repeated infections, VDD facilitated NTHi eradication and resolution of local lung inflammation through production of anti-NTHi Ig, independently of CS whilst it also promoted autoantibodies. In COPD patients, vitamin D supplementation could be protective against NTHi infections in vitamin D insufficient patients. Future research is needed to decipher the determinants of dual effects of VDD on adaptive immunity. Trail registration ClinicalTrials, NCT00666367. Registered 23 April 2008, https://www.clinicaltrials.gov/ct2/show/study/NCT00666367. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01962-6.
Collapse
Affiliation(s)
- Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ajime Tom Tanjeko
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Carolien Mathyssen
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Tobias Heigl
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Annelore Sacreas
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Dana Paulina Cook
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Erik Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Jan Verhaegen
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Charles Pilette
- Institute of Experimental & Clinical Research, Pole of Pneumology, ENT and Dermatology, and Cliniques Universitaires Saint-Luc, Department of Pulmonology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Gantois N, Lesaffre A, Durand-Joly I, Bautin N, Le Rouzic O, Nseir S, Reboux G, Scherer E, Aliouat EM, Fry S, Gosset P, Fréalle E. Factors associated with Pneumocystis colonization and circulating genotypes in chronic obstructive pulmonary disease patients with acute exacerbation or at stable state and their homes. Med Mycol 2021; 60:6420247. [PMID: 34734270 DOI: 10.1093/mmy/myab070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/20/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii colonization is frequent during chronic obstructive pulmonary disease (COPD) and patients constitute potential contributors to its interhuman circulation. However, the existence of an environmental reservoir cannot be excluded. We assessed the prevalence and factors associated with Pneumocystis colonization during COPD, and studied circulation between patients and their domestic environment. Pneumocystis molecular detection and mtLSU genotyping were performed in oro-pharyngeal washes (OPW) sampled in 58 patients with COPD acute exacerbation, and in indoor dust, sampled in patients' homes using electrostatic dust collectors (EDCs). Lung and systemic inflammation was assessed. Pneumocystis carriage was evaluated in 28 patients after 18 months at stable state. Pneumocystis was detected in 11/58 OPWs during exacerbation (19.0%). Colonized patients presented a significantly lower body mass index, and higher serum IL-17 and CD62P. One patient presented positive detection of typable isolates in both OPW and EDC, with both isolates harboring mtLSU genotype 3. Pneumocystis genotype 1 was further detected in EDCs from three non-colonized patients and one colonized patient with non-typable isolate. Genotypes 1 and 2 were predominant in clinical isolates (both 42%), with genotype 3 representing 16% of isolates. Pneumocystis was detected in 3/28 patients at stable state (10.7%). These data suggest that Pneumocystis colonization could be facilitated by a lower BMI and be related to acute alteration of lung function during COPD exacerbation. It also suggests Th17 pathway and platelet activation could be involved in the anti-Pneumocystis response during colonization. Last, Pneumocystis detection in EDCs supports its potential persistence in indoor dust. LAY SUMMARY Chronic obstructive pulmonary disease patients tend to be more frequently colonized by Pneumocystis during exacerbation (19.0%) than at stable state (10.7%). Factors associated with colonization include lower BMI, higher IL-17, and CD62P. Pneumocystis detection in patients' dwellings suggests potential persistence in indoor dust.
Collapse
Affiliation(s)
- Nausicaa Gantois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Aymerick Lesaffre
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | | | - Nathalie Bautin
- CHU Lille, Clinique des Maladies Respiratoires, F-59000 Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,CHU Lille, Clinique des Maladies Respiratoires, F-59000 Lille, France
| | - Saad Nseir
- CHU Lille, Pôle de Réanimation, F-59000 Lille, France
| | - Gabriel Reboux
- Chrono-Environnement UMR 6249 CNRS, Université de Bourgogne Franche-Comté & Service de Parasitologie-Mycologie, CHU de Besançon, F-25030 Besançon, France
| | - Emeline Scherer
- Chrono-Environnement UMR 6249 CNRS, Université de Bourgogne Franche-Comté & Service de Parasitologie-Mycologie, CHU de Besançon, F-25030 Besançon, France
| | - El Moukhtar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Stéphanie Fry
- CHU Lille, Clinique des Maladies Respiratoires, F-59000 Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Emilie Fréalle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.,CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| |
Collapse
|
7
|
Xue T, Chun-Li A. Role of Pneumocystis jirovecii infection in chronic obstructive pulmonary disease progression in an immunosuppressed rat Pneumocystis pneumonia model. Exp Ther Med 2020; 19:3133-3142. [PMID: 32256801 DOI: 10.3892/etm.2020.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/09/2019] [Indexed: 11/05/2022] Open
Abstract
Pneumocystis jirovecii (P. jirovecii), an opportunistic fungal pathogen, is the primary cause of Pneumocystis pneumonia (PCP), which affects immunocompromised individuals and leads to high morbidity and mortality. P. jirovecii colonization is associated with development of chronic obstructive pulmonary disease (COPD) in patients with HIV infection, and also non-sufferers, and in primate models of HIV infection. However, the mechanisms underlying P. jirovecii infection in the pathogenesis of COPD have yet to be fully elucidated. To investigate the pathogenicity of P. jirovecii infection and its role in COPD development, the present study established a PCP rat model induced by dexamethasone sodium phosphate injection. Expression of COPD-related biomarkers, including matrix metalloproteinases (MMPs) MMP-2, MMP-8, MMP-9, and MMP-12, and heat shock protein-27 (HSP-27), were quantified in the rat PCP model using reverse transcription-quantitative polymerase chain reaction, ELISA, western blot analysis, immunohistochemistry and gelatin zymography. Body weight, COPD symptoms, and pulmonary histopathology were assessed. Inflammatory cell counts in splenic tissues were measured using flow cytometry. It was identified that MMP and HSP-27 expression increased in the PCP rats, which was in agreement with previous literature. Therefore, it was hypothesized that P. jirovecii infection may have an important role in COPD development.
Collapse
Affiliation(s)
- Ting Xue
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - An Chun-Li
- Department of Microbiology and Parasitology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
8
|
Affiliation(s)
- Julia Kastner
- University of Maryland School of Medicine, Baltimore, MD
| | - Rydhwana Hossain
- University of Maryland School of Medicine, Cardiothoracic Imaging, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center, Baltimore, MD
| | | |
Collapse
|
9
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
10
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Abstract
INTRODUCTION The respiratory tract is constantly exposed to various environmental and endogenous microbes; however, unlike other similar mucosal surfaces, there has been limited investigation of the microbiome of the respiratory tract. AREAS COVERED In this review, we summarize the current state of knowledge of the bacterial, fungal, and viral respiratory microbiomes during HIV infection and how the microbiome might relate to HIV-associated lung disease. Expert commentary: HIV infection is associated with alterations in the respiratory microbiome. The clinical implications of lung microbial dysbiosis are however currently unknown. Mechanistic studies are needed to establish causality between shifts in the respiratory microbiome and pulmonary complications in HIV-infected individuals.
Collapse
Affiliation(s)
- M B Lawani
- a University of Pittsburgh , School of Medicine, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine , Pittsburgh , PA , USA
| | - A Morris
- a University of Pittsburgh , School of Medicine, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine , Pittsburgh , PA , USA
| |
Collapse
|
12
|
Abstract
Pneumocystis jirovecii is an unusual ascomycetous fungus that can be detected in the lungs of healthy individuals. Transmission from human to human is one of its main characteristics in comparison with other fungi responsible for invasive infections.
P. jirovecii is transmitted through the air between healthy individuals, who are considered to be the natural reservoir, at least transiently. In immunocompromised patients,
P. jirovecii multiplies, leading to subacute infections and acute life-threatening pneumonia, called Pneumocystis pneumonia [PCP]. PCP is caused by genotypically distinct mixtures of organisms in more than 90% of cases, reinforcing the hypothesis that there is constant inhalation of
P. jirovecii from different contacts over time, although reactivation of latent organisms from previous exposures may be possible. Detection of
P. jirovecii DNA without any symptoms or related radiological signs has been called “colonization”. This situation could be considered as the result of recent exposure to
P. jirovecii that could evolve towards PCP, raising the issue of cotrimoxazole prophylaxis for at-risk quantitative polymerase chain reaction (qPCR)-positive immunocompromised patients. The more accurate way to diagnose PCP is the use of real-time quantitative PCR, which prevents amplicon contamination and allows determination of the fungal load that is mandatory to interpret the qPCR results and manage the patient appropriately. The detection of
P. jirovecii in respiratory samples of immunocompromised patients should be considered for potential risk of developing PCP. Many challenges still need to be addressed, including a better description of transmission, characterization of organisms present at low level, and prevention of environmental exposure during immunodepression.
Collapse
Affiliation(s)
- Alexandre Alanio
- Parasitology-Mycology Laboratory, Lariboisière Saint-Louis Fernand Widal Hospitals, Assistance Publique-Hôpitaux de Paris, Paris, France.,Paris-Diderot, Sorbonne Paris Cité University, Paris, France.,Molecular Mycology Unit, CNRS, Institut Pasteur, URA 3012, Paris, France
| | - Stéphane Bretagne
- Parasitology-Mycology Laboratory, Lariboisière Saint-Louis Fernand Widal Hospitals, Assistance Publique-Hôpitaux de Paris, Paris, France.,Paris-Diderot, Sorbonne Paris Cité University, Paris, France.,Molecular Mycology Unit, CNRS, Institut Pasteur, URA 3012, Paris, France
| |
Collapse
|
13
|
Leung JM, Tiew PY, Mac Aogáin M, Budden KF, Yong VFL, Thomas SS, Pethe K, Hansbro PM, Chotirmall SH. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology 2017; 22:634-650. [PMID: 28342288 PMCID: PMC7169176 DOI: 10.1111/resp.13032] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/16/2022]
Abstract
COPD is a major global concern, increasingly so in the context of ageing populations. The role of infections in disease pathogenesis and progression is known to be important, yet the mechanisms involved remain to be fully elucidated. While COPD pathogens such as Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae are strongly associated with acute exacerbations of COPD (AECOPD), the clinical relevance of these pathogens in stable COPD patients remains unclear. Immune responses in stable and colonized COPD patients are comparable to those detected in AECOPD, supporting a role for chronic colonization in COPD pathogenesis through perpetuation of deleterious immune responses. Advances in molecular diagnostics and metagenomics now allow the assessment of microbe-COPD interactions with unprecedented personalization and precision, revealing changes in microbiota associated with the COPD disease state. As microbial changes associated with AECOPD, disease severity and therapeutic intervention become apparent, a renewed focus has been placed on the microbiology of COPD and the characterization of the lung microbiome in both its acute and chronic states. Characterization of bacterial, viral and fungal microbiota as part of the lung microbiome has the potential to reveal previously unrecognized prognostic markers of COPD that predict disease outcome or infection susceptibility. Addressing such knowledge gaps will ultimately lead to a more complete understanding of the microbe-host interplay in COPD. This will permit clearer distinctions between acute and chronic infections and more granular patient stratification that will enable better management of these features and of COPD.
Collapse
Affiliation(s)
- Janice M. Leung
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
- Division of Respiratory Medicine, St Paul's HospitalUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Pei Yee Tiew
- Department of Respiratory and Critical Care MedicineSingapore General HospitalSingapore
| | - Micheál Mac Aogáin
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Kurtis F. Budden
- Priority Research Centre for Healthy LungsUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNewcastleNew South WalesAustralia
| | | | - Sangeeta S. Thomas
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Kevin Pethe
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore
| | - Philip M. Hansbro
- Priority Research Centre for Healthy LungsUniversity of NewcastleNewcastleNew South WalesAustralia
- Hunter Medical Research InstituteNewcastleNew South WalesAustralia
| | | |
Collapse
|
14
|
Santos CR, de Assis ÂM, Luz EA, Lyra L, Toro IF, Seabra JCC, Daldin DH, Marcalto TU, Galasso MT, Macedo RF, Schreiber AZ, Aoki FH. Detection of Pneumocystis jirovecii by nested PCR in HIV-negative patients with pulmonary disease. Rev Iberoam Micol 2017; 34:83-88. [DOI: 10.1016/j.riam.2015.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022] Open
|
15
|
Abstract
PURPOSE OF REVIEW Lung cancer is emerging as a leading cause of death in HIV-infected persons. This review will discuss the latest scientific evidence regarding the mechanisms driving lung cancer risk in HIV infection, the clinical presentation of lung cancer in HIV-infected persons and recent data regarding the outcomes, treatment and prevention of lung cancer in this group. RECENT FINDINGS Increased risk of lung cancer in HIV-infected persons is primarily due to higher smoking rates, but emerging evidence also implicates immunosuppression and inflammatory processes. Lung cancer outcomes may be worse in HIV-infected persons in the antiretroviral era, but this may stem, in part, from treatment disparities. Early detection of lung cancer using chest computed tomography (CT) is being increasingly adopted for smokers in the general population, and recent studies suggest that it may be safe and efficacious in HIV-infected smokers. SUMMARY Lung cancer is an important complication associated with chronic HIV infection. It is associated with unique HIV-related causal mechanisms, and may be associated with worse outcomes in some HIV-infected persons. Smoking cessation and early cancer detection with chest CT are likely to benefit HIV-infected smokers.
Collapse
Affiliation(s)
- Keith Sigel
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, NY, NY
| | - Alain Makinson
- Department of Infectious and Tropical Diseases, U1175-INSERM/UMI 233, IRD, University Montpellier, Montpellier
| | - Jonathan Thaler
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, NY, NY
| |
Collapse
|
16
|
Abstract
Pulmonary malignancies are a major source of morbidity and mortality in HIV-infected persons. Non-AIDS-defining lung cancers (mostly non-small cell lung cancers) are now a leading cause of cancer death among HIV-infected persons. HIV-associated factors appear to affect the risk of lung cancer and may adversely impact cancer treatment and outcomes. HIV infection also may modify the potential harms and benefits of lung cancer screening with computed tomography. AIDS-defining lung malignancies include pulmonary Kaposi sarcoma and pulmonary lymphoma, both of which are less prevalent with widespread adoption of antiretroviral therapy.
Collapse
Affiliation(s)
- Keith Sigel
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Pitts
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
17
|
Gates K, Martinez F. The Human Microbiome in the Lung: Are Infections Contributing to Lung Health and Disease? CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2016; 3:466-472. [PMID: 28848868 DOI: 10.15326/jcopdf.3.1.2015.0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article serves as a CME-available, enduring material summary of the following COPD9USA presentations: "The Human Microbiome in the Lung: The Way Forward" Presenter: Gary B. Huffnagle, PhD "COPD: Is it Just Bacteria?" Presenter: Alison Morris, MD, MS "What We Have Learned From Other Disease States and How It Applies to COPD" Presenter: Fernando Martinez, MD, MS.
Collapse
Affiliation(s)
- Khalilah Gates
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Fernando Martinez
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| |
Collapse
|
18
|
Drummond MB, Huang L, Diaz PT, Kirk GD, Kleerup EC, Morris A, Rom W, Weiden MD, Zhao E, Thompson B, Crothers K. Factors associated with abnormal spirometry among HIV-infected individuals. AIDS 2015; 29:1691-700. [PMID: 26372280 PMCID: PMC4571285 DOI: 10.1097/qad.0000000000000750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE HIV-infected individuals are susceptible to development of chronic lung diseases, but little is known regarding the prevalence and risk factors associated with different spirometric abnormalities in this population. We sought to determine the prevalence, risk factors and performance characteristics of risk factors for spirometric abnormalities among HIV-infected individuals. DESIGN Cross-sectional cohort study. METHODS We analyzed cross-sectional US data from the NHLBI-funded Lung-HIV consortium - a multicenter observational study of heterogeneous groups of HIV-infected participants in diverse geographic sites. Logistic regression analysis was performed to determine factors statistically significantly associated with spirometry patterns. RESULTS A total of 908 HIV-infected individuals were included. The median age of the cohort was 50 years, 78% were men and 68% current smokers. An abnormal spirometry pattern was present in 37% of the cohort: 27% had obstructed and 10% had restricted spirometry patterns. Overall, age, smoking status and intensity, history of Pneumocystis infection, asthma diagnosis and presence of respiratory symptoms were independently associated with an abnormal spirometry pattern. Regardless of the presence of respiratory symptoms, five HIV-infected participants would need to be screened with spirometry to diagnose two individuals with any abnormal spirometry pattern. CONCLUSIONS Nearly 40% of a diverse US cohort of HIV-infected individuals had an abnormal spirometry pattern. Specific characteristics including age, smoking status, respiratory infection history and respiratory symptoms can identify those at risk for abnormal spirometry. The high prevalence of abnormal spirometry and the poor predictive capability of respiratory symptoms to identify abnormal spirometry should prompt clinicians to consider screening spirometry in HIV-infected populations.
Collapse
Affiliation(s)
- M Bradley Drummond
- aDepartment of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland bDepartment of Medicine, School of Medicine, University of California San Francisco, San Francisco, California cDepartment of Medicine, Ohio State University, Columbus, Ohio dDepartment of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland eDepartment of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California fDepartments of Medicine and Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania gDivision of Pulmonary & Critical Care Medicine, Departments of Medicine and Environmental Medicine, New York University School of Medicine, New York hClinical Trials and Survey Corporation, Owings Mills, Maryland iDepartment of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, Camp D, Kingsley L, Leo N, Greenblatt RM, Fong S, Stone S, Dermand JC, Kleerup EC, Huang L, Morris A, Ghedin E. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med 2015; 191:932-42. [PMID: 25603113 DOI: 10.1164/rccm.201409-1583oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RATIONALE Microbiome studies typically focus on bacteria, but fungal species are common in many body sites and can have profound effects on the host. Wide gaps exist in the understanding of the fungal microbiome (mycobiome) and its relationship to lung disease. OBJECTIVES To characterize the mycobiome at different respiratory tract levels in persons with and without HIV infection and in HIV-infected individuals with chronic obstructive pulmonary disease (COPD). METHODS Oral washes (OW), induced sputa (IS), and bronchoalveolar lavages (BAL) were collected from 56 participants. We performed 18S and internal transcribed spacer sequencing and used the neutral model to identify fungal species that are likely residents of the lung. We used ubiquity-ubiquity plots, random forest, logistic regression, and metastats to compare fungal communities by HIV status and presence of COPD. MEASUREMENTS AND MAIN RESULTS Mycobiomes of OW, IS, and BAL shared common organisms, but each also had distinct members. Candida was dominant in OW and IS, but BAL had 39 fungal species that were disproportionately more abundant than in the OW. Fungal communities in BAL differed significantly by HIV status and by COPD, with Pneumocystis jirovecii significantly overrepresented in both groups. Other fungal species were also identified as differing in HIV and COPD. CONCLUSIONS This study systematically examined the respiratory tract mycobiome in a relatively large group. By identifying Pneumocystis and other fungal species as overrepresented in the lung in HIV and in COPD, it is the first to determine alterations in fungal communities associated with lung dysfunction and/or HIV, highlighting the clinical relevance of these findings. Clinical trial registered with www.clinicaltrials.gov (NCT00870857).
Collapse
|
20
|
Abstract
Investigation of the human microbiome has become an important field of research facilitated by advances in sequencing technologies. The lung, which is one of the latest body sites being explored for the characterization of human-associated microbial communities, has a microbiome that is suspected to play a substantial role in health and disease. In this review, we provide an overview of the basics of microbiome studies. Challenges in the study of the lung microbiome are highlighted, and further attention is called to the optimization and standardization of methodologies to explore the role of the lung microbiome in health and disease. We also provide examples of lung microbial communities associated with disease or infection status and discuss the role of fungal species in the lung. Finally, we review studies demonstrating that the environmental microbiome can influence lung health and disease, such as the finding that the diversity of microbial exposure correlates inversely with the development of childhood asthma.
Collapse
|
21
|
Abstract
The interaction between host immunity and infections in the context of a suppressed immune system presents an opportunity to study the interaction of colonization and infection with the development of acute and chronic pulmonary morbidity and mortality. This article summarizes presentations at the Pittsburgh International Lung Conference about comorbid consequences in two categories of immunosuppressed hosts: HIV-infected individuals and lung transplant recipients. Specifically, chronic obstructive pulmonary disease, pulmonary hypertension, and chronic lung rejection after transplant are three diseases that may be consequences of colonization or infection by viruses or fungi, whether HIV itself or the opportunistic infections Pneumocystis and cytomegalovirus. In the fourth section, we discuss unique aspects of infections after lung transplant as well as the battle against multidrug-resistant organisms in this population and theorize that the immunosuppressed population may provide a unique group of patients in which to study ways to overcome nosocomial pathogenic challenges. These host-pathogen interactions serve as models for developing new strategies to reduce acute and chronic morbidity due to colonization and subclinical infection, and potential therapeutic avenues, which are often overlooked in the clinical arena.
Collapse
|
22
|
Kumar S, Smith-Norowitz TA, Kohlhoff S, Apfalter P, Roblin P, Kutlin A, Harkema J, Ng SP, Doherty-Lyons S, Zelikoff JT, Hammerschlag MR. Exposure to cigarette smoke and Chlamydia pneumoniae infection in mice: Effect on infectious burden, systemic dissemination and cytokine responses: A pilot study. J Immunotoxicol 2015; 13:77-83. [PMID: 25640695 DOI: 10.3109/1547691x.2015.1006346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke exposure has been considered a risk factor for infection with Chlamydia pneumoniae. C. pneumoniae infection is associated with respiratory tract infection and chronic respiratory disease, which is a serious public health concern. To determine whether prior exposure to cigarette smoke worsens C. pneumoniae infection (specifically, increases infectious burden and systemic dissemination) as well as alters cytokine responses in mice, adult female C57BL/6 mice were exposed to either filtered air (FA) or mainstream cigarette smoke (MCS) (15 mg/m(3), total suspended particulates) for 5 days/week for 2 weeks and then infected with C. pneumoniae (10(5) IFU) via intratracheal instillation. Mice were euthanized on Days 7, 14 or 26 post-infection (p.i.). Chlamydial burdens in the lungs and spleen were quantified by quantitative PCR (qPCR) and histologic analyses were performed; cytokine levels (TNFα, IL-4, IFNγ) in bronchoalveolar lavage fluid and serum were assayed by enzyme-linked immunosorbent assay (ELISA). The results indicated that: (1) mice exposed to either FA or MCS had similar chlamydial burdens in the lungs and spleen on Days 14 and 26 p.i.; (2) proximal and distal airway inflammation was observed on Day 14 p.i. in both FA and MCS mice, but persisted in MCS mice until Day 26 p.i.; FA exposed mice demonstrated resolution of distal airway inflammation; and (3) MCS mice displayed higher serum levels of IFNγ and IL-4 on Day 26 p.i. These findings indicate that exposure of mice to MCS (at a concentration equivalent to smoking < 1 pack cigarettes/day) led to greater C. pneumoniae-induced inflammation, as indicated by prolonged inflammatory changes.
Collapse
Affiliation(s)
- Swati Kumar
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - Tamar A Smith-Norowitz
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - Stephan Kohlhoff
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - Petra Apfalter
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - Patricia Roblin
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - Andrei Kutlin
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - Jack Harkema
- b Center for Integrative Toxicology, Michigan State University , East Lansing , MI , USA
| | - Sheung P Ng
- c DuPont Stine Haskell Research Center , Newark , DE , USA , and
| | - Shannon Doherty-Lyons
- d Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Judith T Zelikoff
- d Department of Environmental Medicine , New York University School of Medicine , Tuxedo , NY , USA
| | - Margaret R Hammerschlag
- a Department of Pediatrics , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| |
Collapse
|
23
|
Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2014; 9:629-45. [PMID: 24754714 DOI: 10.1517/17460441.2014.909805] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is a leading global cause of mortality and chronic morbidity. Inhalation of cigarette smoke is the principal risk factor for development of this disease. COPD is a progressive disease that is typically characterised by chronic pulmonary inflammation, mucus hypersecretion, airway remodelling and emphysema that collectively reduce lung function. There are currently no therapies that effectively halt or reverse disease progression. It is hoped that the development of animal models that develop the hallmark features of COPD, in a short time frame, will aid in the identifying and testing of new therapeutic approaches. AREAS COVERED The authors review the recent developments in mouse models of chronic cigarette smoke-induced COPD as well as the principal findings. Furthermore, the authors discuss the use of mouse models to understand the pathogenesis and the contribution of infectious exacerbations. They also discuss the investigations of the systemic co-morbidities of COPD (pulmonary hypertension, cachexia and osteoporosis). EXPERT OPINION Recent advances in the field mark a point where animal models recapitulate the pathologies of COPD patients in a short time frame. They also reveal novel insights into the pathogenesis and potential treatment of this debilitating disease.
Collapse
Affiliation(s)
- Michael Fricker
- University of Newcastle and Hunter Medical Research Institute, Priority Research Centre for Asthma and Respiratory Disease , New Lambton Heights, New South Wales , Australia
| | | | | |
Collapse
|
24
|
Trimethoprim-sulfamethoxazole treatment does not reverse obstructive pulmonary changes in pneumocystis-colonized nonhuman primates with SHIV infection. J Acquir Immune Defic Syndr 2014; 65:381-9. [PMID: 24121760 DOI: 10.1097/qai.0000000000000007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite antiretroviral therapy and trimethoprim-sulfamethoxazole (TMP-SMX) prophylaxis, Pneumocystis pneumonia remains an important serious opportunistic infection in HIV-infected persons. Pneumocystis (Pc) colonization in HIV-infected individuals and in HIV-uninfected smokers is associated with chronic obstructive pulmonary disease (COPD). We previously developed a nonhuman primate model of HIV infection and Pc colonization and demonstrated that Pc colonization correlated with COPD development. In the present study, we examined kinetics of COPD development in non-human primate and tested the effect of Pc burden reduction on pulmonary function by TMP-SMX treatment. METHODS Cynomolgus macaques (n = 16) were infected with simian/human immunodeficiency virus (SHIV89.6P), and natural Pc colonization was examined by nested polymerase chain reaction of serial bronchoalveolar lavage fluid and anti-Pc serology. RESULTS Eleven of 16 monkeys became Pc colonized by 16 weeks post simian-human immunodeficiency virus (SHIV) infection. Pc colonization of SHIV-infected monkeys led to progressive declines in pulmonary function as early as 4 weeks after Pc detection. SHIV-infected and Pc-negative monkeys maintained normal lung function. At 25 weeks post-SHIV infection, TMP-SMX treatment was initiated in 7 Pc-positive (Pc+) (TMP: 20 mg/kg and SMX: 100 mg/kg, daily for 48 weeks) and 5 Pc-negative (Pc-) monkeys. Four SHIV+/Pc+ remained untreated for the duration of the experiment. Detection frequency of Pc in serial bronchoalveolar lavage fluid (P < 0.001), as well as plasma Pc antibody titers (P = 0.02) were significantly reduced in TMP-SMX-treated macaques compared with untreated. CONCLUSIONS Reduction of Pc colonization by TMP-SMX treatment did not improve pulmonary function, supporting the concept that Pc colonization results in early, permanent obstructive changes in the lungs of immunosuppressed macaques.
Collapse
|
25
|
Fitzpatrick ME, Tedrow JR, Hillenbrand ME, Lucht L, Richards T, Norris KA, Zhang Y, Sciurba FC, Kaminski N, Morris A. Pneumocystis jirovecii colonization is associated with enhanced Th1 inflammatory gene expression in lungs of humans with chronic obstructive pulmonary disease. Microbiol Immunol 2014; 58:202-11. [PMID: 24438206 PMCID: PMC4106795 DOI: 10.1111/1348-0421.12135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/12/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex disease, the pathogenesis of which remains incompletely understood. Colonization with Pneumocystis jirovecii may play a role in COPD pathogenesis; however, the mechanisms by which such colonization contributes to COPD are unknown. The objective of this study was to determine lung gene expression profiles associated with Pneumocystis colonization in patients with COPD to identify potential key pathways involved in disease pathogenesis. Using COPD lung tissue samples made available through the Lung Tissue Research Consortium (LTRC), Pneumocystis colonization status was determined by nested PCR. Microarray gene expression profiles were performed for each sample and the profiles of colonized and non-colonized samples compared. Overall, 18 participants (8.5%) were Pneumocystis-colonized. Pneumocystis colonization was associated with fold increase in expression of four closely related genes: INF-γ and the three chemokine ligands CXCL9, CXCL10, and CXCL11. These ligands are chemoattractants for the common cognate receptor CXCR3, which is predominantly expressed on activated Th1 T-lymphocytes. Although these ligand-receptor pairs have previously been implicated in COPD pathogenesis, few initiators of ligand expression and subsequent lymphocyte trafficking have been identified: our findings implicate Pneumocystis as a potential trigger. The finding of upregulation of these inflammatory genes in the setting of Pneumocystis colonization sheds light on infectious-immune relationships in COPD.
Collapse
Affiliation(s)
- Meghan E. Fitzpatrick
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - John R. Tedrow
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Maria E. Hillenbrand
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Lorrie Lucht
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Thomas Richards
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Karen A. Norris
- Department of Immunology, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Frank C. Sciurba
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Alison Morris
- Department of Medicine and Immunology, University of Pittsburgh, 3459 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
26
|
Activated alveolar epithelial cells initiate fibrosis through secretion of mesenchymal proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1559-1570. [PMID: 24012677 DOI: 10.1016/j.ajpath.2013.07.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/10/2013] [Accepted: 07/23/2013] [Indexed: 12/29/2022]
Abstract
Fibrosis is characterized by accumulation of activated fibroblasts and pathological deposition of fibrillar collagens. Activated fibroblasts overexpress matrix proteins and release factors that promote further recruitment of activated fibroblasts, leading to progressive fibrosis. The contribution of epithelial cells to this process remains unknown. Epithelium-directed injury may lead to activation of epithelial cells with phenotypes and functions similar to activated fibroblasts. Prior reports that used a reporter gene fate-mapping strategy are limited in their ability to investigate the functional significance of epithelial cell-derived mesenchymal proteins during fibrogenesis. We found that lung epithelial cell-derived collagen I activates fibroblast collagen receptor discoidin domain receptor-2, contributes significantly to fibrogenesis, and promotes resolution of lung inflammation. Alveolar epithelial cells undergoing transforming growth factor-β-mediated mesenchymal transition express several other secreted profibrotic factors and are capable of activating lung fibroblasts. These studies provide direct evidence that activated epithelial cells produce mesenchymal proteins that initiate a cycle of fibrogenic effector cell activation, leading to progressive fibrosis. Therapy targeted at epithelial cell production of type I collagen offers a novel pathway for abrogating this progressive cycle and for limiting tissue fibrosis but may lead to sustained lung injury/inflammation.
Collapse
|
27
|
Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-β-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization. J Clin Microbiol 2013; 51:3380-8. [PMID: 23903553 DOI: 10.1128/jcm.01554-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 10(7) versus 3.4 × 10(3) copies/μl, P < 0.05). A lower cutoff value (1.6 × 10(3) copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 10(4) copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 10(3) and 2 × 10(4) copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses.
Collapse
|
28
|
Abstract
In the era of effective antiretroviral therapy (ART), epidemiologic studies have found that persons infected with human immunodeficiency virus (HIV) have a higher prevalence and incidence of chronic obstructive pulmonary disease than HIV-uninfected persons. In comparison with HIV-uninfected persons and those with well-controlled HIV disease, HIV-infected persons with poor viral control or lower CD4 cell count have more airflow obstruction, a greater decline in lung function, and possibly more severe diffusing impairment. This article reviews the evidence linking HIV infection to obstructive lung disease, and discusses management issues related to the treatment of obstructive lung disease in HIV-infected patients.
Collapse
Affiliation(s)
- Matthew R. Gingo
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Kristina Crothers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
29
|
Browning KK, Wewers ME, Ferketich AK, Diaz P. Tobacco use and cessation in HIV-infected individuals. Clin Chest Med 2013; 34:181-90. [PMID: 23702169 DOI: 10.1016/j.ccm.2013.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Smoking prevalence estimates among HIV-infected individuals range from 40% to 84%, much higher than the overall US adult prevalence. To date, few tobacco dependence treatment trials have been conducted among HIV-infected smokers. Recommendations for future research include examining underlying factors that contribute to persistent smoking and barriers to abstinence, identifying ways to increase motivation for quit attempts, increasing the number of multicentered 2-arm tobacco dependence treatment trials, and using highly efficacious first-line pharmacotherapy in tobacco dependence treatment intervention studies. Addressing these research gaps will help to reduce the tobacco-related disease burden of HIV-infected individuals in the future.
Collapse
Affiliation(s)
- Kristine K Browning
- The Ohio State University College of Nursing and Comprehensive Cancer Center-James Cancer Hospital, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Antiretroviral therapy has improved longevity for HIV-infected persons, but long-term HIV infection is now complicated by increased rates of chronic medical conditions including pulmonary disorders. Chronic obstructive pulmonary disease, lung cancer, asthma, and pulmonary hypertension are becoming common comorbidities of HIV infection, and these diseases may develop as a result of HIV-related risk factors, such as antiretroviral drug toxicities, colonization by infectious organisms, HIV viremia, immune activation, or immune dysfunction. It also appears that the ability to control HIV infection does not completely eliminate the risk for infectious complications, such as bacterial pneumonia and tuberculosis. The effect of HIV infection on lung-specific immune responses is being elucidated to help develop better prevention and treatment strategies in HIV-infected persons.
Collapse
Affiliation(s)
- Matthew R. Gingo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
31
|
Abstract
Although the incidence of Pneumocystis pneumonia (PCP) has decreased since the introduction of combination antiretroviral therapy, it remains an important cause of disease in both HIV-infected and non-HIV-infected immunosuppressed populations. The epidemiology of PCP has shifted over the course of the HIV epidemic both from changes in HIV and PCP treatment and prevention and from changes in critical care medicine. Although less common in non-HIV-infected immunosuppressed patients, PCP is now more frequently seen due to the increasing numbers of organ transplants and development of novel immunotherapies. New diagnostic and treatment modalities are under investigation. The immune response is critical in preventing this disease but also results in lung damage, and future work may offer potential areas for vaccine development or immunomodulatory therapy. Colonization with Pneumocystis is an area of increasing clinical and research interest and may be important in development of lung diseases such as chronic obstructive pulmonary disease. In this review, we discuss current clinical and research topics in the study of Pneumocystis and highlight areas for future research.
Collapse
|
32
|
Nelson MP, Christmann BS, Dunaway CW, Morris A, Steele C. Experimental Pneumocystis lung infection promotes M2a alveolar macrophage-derived MMP12 production. Am J Physiol Lung Cell Mol Physiol 2012; 303:L469-75. [PMID: 22773692 DOI: 10.1152/ajplung.00158.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Among several bacterial and viral pathogens, the atypical fungal organism Pneumocystis jirovecii has been implicated as a contributor to the pathogenesis of chronic obstructive pulmonary disease (COPD). In a previous study, we reported that Pneumocystis-colonized HIV-positive subjects had worse obstruction of airways and higher sputum levels of macrophage elastase/matrix metalloproteinase 12 (MMP12), a protease strongly associated with the development of COPD. Here, we examined parameters of Pneumocystis-induced MMP12 in the lungs of mice and its role in the lung immune response to murine Pneumocystis. Initial studies demonstrated that P. murina exposure induced Mmp12 mRNA expression in whole lungs and alveolar macrophages (AMs), which was dependent on the presence of CD4+ T cells as well as signal transducer and activator of transcription 6. Mmp12 mRNA expression was upregulated in AMs by interleukin (IL)-4 treatment, but downregulated by interferon (IFN)-γ, indicating preferential expression in alternatively activated (M2a) macrophages. IL-4 treatment induced the 54-kDa proenzyme form of MMP12 and the 22-kDa fully processed and active form, whereas IFN-γ failed to induce either. Despite a reported antimicrobial role in macrophage phagolysosomes, mice deficient in MMP12 were not found to be more susceptible to lung infection with P. murina. Collectively, our data indicate that MMP12 induction is a component of the P. murina-induced M2 response and thus provides insight into the link between Pneumocystis colonization/infection and exacerbations in COPD.
Collapse
Affiliation(s)
- Michael P Nelson
- Dept. of Medicine, Univ. of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
33
|
Sivam S, Sciurba FC, Lucht LA, Zhang Y, Duncan SR, Norris KA, Morris A. Distribution of Pneumocystis jirovecii in lungs from colonized COPD patients. Diagn Microbiol Infect Dis 2011; 71:24-8. [PMID: 21851870 DOI: 10.1016/j.diagmicrobio.2011.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 12/23/2022]
Abstract
Pneumocystis jirovecii has been detected in lung tissue from patients with chronic obstructive pulmonary disease (COPD) and is associated with disease severity. The regional distribution of the organism in lungs is unknown, but differences in distribution of Pneumocystis could affect estimates of colonization prevalence. We examined the distribution of Pneumocystis in the lungs of 19 non-HIV-infected patients with COPD who were undergoing lung transplantation. DNA was extracted from explanted lungs. We found Pneumocystis colonization in lung tissue of 42.1% of patients with advanced COPD; however, there was significant regional variation in colonization between lung segments of individual patients. Colonization was detected more commonly in the lower and middle lobes than in the upper lobes. These findings suggest that single samples from an individual may underestimate the prevalence of Pneumocystis colonization and future studies may obtain a higher yield of Pneumocystis colonization detection when sampling the lower lobes.
Collapse
Affiliation(s)
- Sheila Sivam
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Smoking-related diseases, such as chronic obstructive pulmonary disease (COPD), are of particular concern in the HIV-infected population. Smoking rates are high in this population, and long-term exposure to cigarette smoke in the setting of HIV infection may increase the number of complications seen. Before the era of combination antiretroviral therapy, HIV-infected persons were noted to have an accelerated form of COPD, with significant emphysematous disease seen in individuals less than 40 years old. Unlike many of the AIDS-defining opportunistic infections, HIV-associated COPD may be more common in the current era of HIV because it is frequently reported in patients without a history of AIDS-related pulmonary complications and because many aging HIV-infected individuals have had a longer exposure to smoking and HIV. In this review, we document the epidemiology of HIV-associated COPD before and after the institution of combination antiretroviral therapy, review data suggesting that COPD is accelerated in those with HIV, and discuss possible mechanisms of HIV-associated COPD, including an increased susceptibility to chronic, latent infections; an aberrant inflammatory response; altered oxidant-antioxidant balance; increased apoptosis associated with HIV; and the effects of antiretroviral therapy.
Collapse
|
35
|
Gutiérrez S, Respaldiza N, Campano E, Martínez-Risquez MT, Calderón EJ, De La Horra C. Pneumocystis jirovecii colonization in chronic pulmonary disease. Parasite 2011; 18:121-6. [PMID: 21678787 PMCID: PMC3671413 DOI: 10.1051/parasite/2011182121] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pneumocystis jirovecii causes pneumonia in immunosuppressed individuals. However, it has been reported the detection of low levels of Pneumocystis DNA in patients without signs and symptoms of pneumonia, which likely represents colonization. Several studies performed in animals models and in humans have demonstrated that Pneumocystis induces a local and a systemic response in the host. Since P. jirovecii colonization has been found in patients with chronic pulmonary diseases it has been suggested that P. jirovecii may play a role in the physiopathology and progression of those diseases. In this report we revise P. jirovecii colonization in different chronic pulmonary diseases such us, chronic obstructive pulmonary disease, interstitial lung diseases, cystic fibrosis and lung cancer.
Collapse
Affiliation(s)
- S Gutiérrez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
| | | | | | | | | | | |
Collapse
|
36
|
Calderón EJ, Friaza V, Dapena FJ, de La Horra C. Pneumocystis jirovecii and cystic fibrosis. Med Mycol 2011; 48 Suppl 1:S17-21. [PMID: 21067325 DOI: 10.3109/13693786.2010.505205] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pneumocystis jirovecii is an atypical opportunistic fungus with lung tropism and worldwide distribution that causes pneumonia in immunosuppressed individuals. The development of sensitive molecular techniques has led to the recognition of a colonization or carrier state of P. jirovecii, in which low levels of the organism are detected in persons who do not have pneumonia. Pneumocystis colonization has been described in individuals with various lung diseases, and accumulating evidence suggests that it may be a relevant issue with potential clinical impact. Only a few published studies carried out in Europe have evaluated the prevalence of Pneumocystis colonization in patients with cystic fibrosis, reporting ranges from 1.3-21.6%. The evolution of P. jirovecii colonization in cystic fibrosis patients is largely unknown. In a longitudinal study, none of the colonized patients developed pneumonia during a 1-year follow-up. Since patients with cystic fibrosis could act as major reservoirs and sources of infection for susceptible individuals further research is thus warranted to assess the true scope of the problem and to design rational preventive strategies if necessary. Moreover, it's necessary to elucidate the role of P. jirovecii infection in the natural history of cystic fibrosis in order to improve the clinical management of this disease.
Collapse
Affiliation(s)
- Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, CIBER de Epidemiología y Salud Pública, Seville, Spain.
| | | | | | | |
Collapse
|
37
|
Morris A, Crothers K, Beck JM, Huang L. An official ATS workshop report: Emerging issues and current controversies in HIV-associated pulmonary diseases. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2011; 8:17-26. [PMID: 21364216 PMCID: PMC5830656 DOI: 10.1513/pats.2009-047ws] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pulmonary diseases are major causes of morbidity and death in persons with HIV infection. Millions of people with HIV/AIDS throughout the world are at risk of opportunistic pneumonias such as tuberculosis, bacterial pneumonia, and Pneumocystis pneumonia. However, the availability of combination antiretroviral therapy has turned HIV into a chronic disease, and noninfectious lung diseases such as lung cancer, chronic obstructive pulmonary disease, and pulmonary arterial hypertension are also emerging as important causes of illness. Despite the importance of these diseases and the rapidly evolving understanding of their pathogenesis and epidemiology, few avenues exist for the discussion and dissemination of new clinical and basic insights. In May of 2008, the American Thoracic Society sponsored a 1-day workshop, "Emerging Issues and Current Controversies in HIV-Associated Pulmonary Diseases," which brought together basic and clinical researchers in HIV-associated pulmonary disease. A review of the literature was performed by workshop participants, and the workshop included 18 presentations on diverse topics summarized in this article.
Collapse
MESH Headings
- AIDS-Related Opportunistic Infections/diagnosis
- AIDS-Related Opportunistic Infections/drug therapy
- AIDS-Related Opportunistic Infections/epidemiology
- Anti-Bacterial Agents/therapeutic use
- Anti-HIV Agents/therapeutic use
- Antitubercular Agents/therapeutic use
- Comorbidity
- Female
- Humans
- Incidence
- Male
- Pneumonia, Bacterial/diagnosis
- Pneumonia, Bacterial/drug therapy
- Pneumonia, Bacterial/epidemiology
- Pneumonia, Pneumocystis/diagnosis
- Pneumonia, Pneumocystis/drug therapy
- Pneumonia, Pneumocystis/epidemiology
- Practice Guidelines as Topic
- Prognosis
- Risk Assessment
- Severity of Illness Index
- Societies, Medical
- Survival Rate
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/drug therapy
- Tuberculosis, Pulmonary/epidemiology
- United States/epidemiology
Collapse
|
38
|
The Human Lung Microbiome. METAGENOMICS OF THE HUMAN BODY 2011. [PMCID: PMC7121966 DOI: 10.1007/978-1-4419-7089-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human lower respiratory tract is considered sterile in normal healthy individuals (Flanagan et al., 2007; Speert, 2006) despite the fact that every day we breathe in multiple microorganisms present in the air and aspirate thousands of organisms from the mouth and nasopharynx. This apparent sterility is maintained by numerous interrelated components of the lung physical structures such as the mucociliary elevator and components of the innate and adaptive immune systems (discussed below) (reviewed in (Diamond et al., 2000; Gerritsen, 2000)). However, it is possible that the observed sterility might be a result of the laboratory practices applied to study the flora of the lungs. Historically, researchers faced with a set of diseases characterized by a changing and largely cryptic lung microbiome have lacked tools to study lung ecology as a whole and have concentrated on familiar, cultivatable candidate pathogens.
Collapse
|
39
|
Relationship of Pneumocystis jiroveci humoral immunity to prevention of colonization and chronic obstructive pulmonary disease in a primate model of HIV infection. Infect Immun 2010; 78:4320-30. [PMID: 20660609 DOI: 10.1128/iai.00507-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary colonization by the opportunistic pathogen Pneumocystis jiroveci is common in HIV(+) subjects and has been associated with development of chronic obstructive pulmonary disease (COPD). Host and environmental factors associated with colonization susceptibility are undefined. Using a simian-human immunodeficiency virus (SHIV) model of HIV infection, the immunologic parameters associated with natural Pneumocystis jiroveci transmission were evaluated. SHIV-infected macaques were exposed to P. jiroveci by cohousing with immunosuppressed, P. jiroveci-colonized macaques in two independent experiments. Serial plasma and bronchoalveolar lavage (BAL) fluid samples were examined for changes in antibody titers to recombinant Pneumocystis-kexin protein (KEX1) and evidence of Pneumocystis colonization by nested PCR of BAL fluid. In experiment 1, 10 of 14 monkeys became Pneumocystis colonized (Pc(+)) by 8 weeks post-SHIV infection, while 4 animals remained Pneumocystis colonization negative (Pc(-)) throughout the study. In experiment 2, 11 of 17 animals became Pneumocystis colonized by 16 weeks post-SHIV infection, while 6 monkeys remained Pc(-). Baseline plasma KEX1-IgG titers were significantly higher in monkeys that remained Pc(-), compared to Pc(+) monkeys, in experiments 1 (P = 0.013) and 2 (P = 0.022). Pc(-) monkeys had greater percentages of Pneumocystis-specific memory B cells after SHIV infection compared to Pc(+) monkeys (P = 0.037). After SHIV infection, Pc(+) monkeys developed progressive obstructive pulmonary disease, whereas Pc(-) monkeys maintained normal lung function throughout the study. These results demonstrate a correlation between the KEX1 humoral response and the prevention of Pneumocystis colonization and obstructive lung disease in the SHIV model. In addition, these results indicate that an effective Pneumocystis-specific memory B-cell response is maintained despite progressive loss of CD4(+) T cells during SHIV infection.
Collapse
|
40
|
Catherinot E, Lanternier F, Bougnoux ME, Lecuit M, Couderc LJ, Lortholary O. Pneumocystis jirovecii Pneumonia. Infect Dis Clin North Am 2010; 24:107-38. [PMID: 20171548 DOI: 10.1016/j.idc.2009.10.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pneumocystis jirovecii has gained attention during the last decade in the context of the AIDS epidemic and the increasing use of cytotoxic and immunosuppressive therapies. This article summarizes current knowledge on biology, pathophysiology, epidemiology, diagnosis, prevention, and treatment of pulmonary P jirovecii infection, with a particular focus on the evolving pathophysiology and epidemiology. Pneumocystis pneumonia still remains a severe opportunistic infection, associated with a high mortality rate.
Collapse
Affiliation(s)
- Emilie Catherinot
- Université Paris Descartes, Service de Maladies Infectieuses et Tropicales, 149 Rue de Sèvres, Centre d'Infectiologie Necker-Pasteur, Hôpital Necker-Enfants Malades, Paris 75015, France
| | | | | | | | | | | |
Collapse
|
41
|
Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun 2009; 78:1214-20. [PMID: 20008540 DOI: 10.1128/iai.00963-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke exposure increases the risk of pulmonary and invasive infections caused by Streptococcus pneumoniae, the most commonly isolated organism from patients with community-acquired pneumonia. Despite this association, the mechanisms by which cigarette smoke exposure diminishes host defense against S. pneumoniae infections are poorly understood. In this study, we compared the responses of BALB/c mice following an intratracheal challenge with S. pneumoniae after 5 weeks of exposure to room air or cigarette smoke in a whole-body exposure chamber in vivo and the effects of cigarette smoke on alveolar macrophage phagocytosis of S. pneumoniae in vitro. Bacterial burdens in cigarette smoke-exposed mice were increased at 24 and 48 h postinfection, and this was accompanied by a more pronounced clinical appearance of illness, hypothermia, and increased lung homogenate cytokines interleukin-1beta (IL-1beta), IL-6, IL-10, and tumor necrosis factor alpha (TNF-alpha). We also found greater numbers of neutrophils in bronchoalveolar lavage fluid recovered from cigarette smoke-exposed mice following a challenge with heat-killed S. pneumoniae. Interestingly, overnight culture of alveolar macrophages with 1% cigarette smoke extract, a level that did not affect alveolar macrophage viability, reduced complement-mediated phagocytosis of S. pneumoniae, while the ingestion of unopsonized bacteria or IgG-coated microspheres was not affected. This murine model provides robust additional support to the hypothesis that cigarette smoke exposure increases the risk of pneumococcal pneumonia and defines a novel cellular mechanism to help explain this immunosuppressive effect.
Collapse
|
42
|
Airway obstruction is increased in pneumocystis-colonized human immunodeficiency virus-infected outpatients. J Clin Microbiol 2009; 47:3773-6. [PMID: 19759224 DOI: 10.1128/jcm.01712-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the relationship of Pneumocystis colonization, matrix metalloprotease levels in sputum, and airway obstruction in a cohort of human immunodeficiency virus (HIV)-infected outpatients. Pneumocystis-colonized subjects had worse obstruction of airways and higher levels of matrix metalloprotease-12 in sputa, suggesting that Pneumocystis colonization may be important in HIV-associated chronic obstructive pulmonary disease.
Collapse
|
43
|
Linke MJ, Ashbaugh AD, Demland JA, Walzer PD. Pneumocystis murina colonization in immunocompetent surfactant protein A deficient mice following environmental exposure. Respir Res 2009; 10:10. [PMID: 19228388 PMCID: PMC2650685 DOI: 10.1186/1465-9921-10-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 02/19/2009] [Indexed: 12/19/2022] Open
Abstract
Background Pneumocystis spp. are opportunistic pathogens that cause pneumonia in immunocompromised humans and animals. Pneumocystis colonization has also been detected in immunocompetent hosts and may exacerbate other pulmonary diseases. Surfactant protein A (SP-A) is an innate host defense molecule and plays a role in the host response to Pneumocystis. Methods To analyze the role of SP-A in protecting the immunocompetent host from Pneumocystis colonization, the susceptibility of immunocompetent mice deficient in SP-A (KO) and wild-type (WT) mice to P. murina colonization was analyzed by reverse-transcriptase quantitative PCR (qPCR) and serum antibodies were measured by enzyme-linked immunosorbent assay (ELISA). Results Detection of P. murina specific serum antibodies in immunocompetent WT and KO mice indicated that the both strains of mice had been exposed to P. murina within the animal facility. However, P. murina mRNA was only detected by qPCR in the lungs of the KO mice. The incidence and level of the mRNA expression peaked at 8–10 weeks and declined to undetectable levels by 16–18 weeks. When the mice were immunosuppressed, P. murina cyst forms were also only detected in KO mice. P. murina mRNA was detected in SCID mice that had been exposed to KO mice, demonstrating that the immunocompetent KO mice are capable of transmitting the infection to immunodeficient mice. The pulmonary cellular response appeared to be responsible for the clearance of the colonization. More CD4+ and CD8+ T-cells were recovered from the lungs of immunocompetent KO mice than from WT mice, and the colonization in KO mice depleted CD4+ cells was not cleared. Conclusion These data support an important role for SP-A in protecting the immunocompetent host from P. murina colonization, and provide a model to study Pneumocystis colonization acquired via environmental exposure in humans. The results also illustrate the difficulties in keeping mice from exposure to P. murina even when housed under barrier conditions.
Collapse
Affiliation(s)
- Michael J Linke
- Research Service, Veterans Affairs Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
44
|
Critical roles of inflammation and apoptosis in improved survival in a model of hyperoxia-induced acute lung injury in Pneumocystis murina-infected mice. Infect Immun 2009; 77:1053-60. [PMID: 19124601 DOI: 10.1128/iai.00967-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis infections increase host susceptibility to additional insults that would be tolerated in the absence of infection, such as hyperoxia. In an in vivo model using CD4-depleted mice, we previously demonstrated that Pneumocystis murina pneumonia causes significant mortality following an otherwise nonlethal hyperoxic insult. Infected mice demonstrated increased pulmonary inflammation and alveolar epithelial cell apoptosis compared to controls. To test the mechanisms underlying these observations, we examined expression of components of the Fas-Fas ligand pathway in P. murina-infected mice exposed to hyperoxia. Hyperoxia alone increased expression of Fas on the surface of type II alveolar epithelial cells; conversely, infection with P. murina led to increased lung expression of Fas ligand. We hypothesized that inhibition of inflammatory responses or direct inhibition of alveolar epithelial cell apoptosis would improve survival in P. murina-infected mice exposed to hyperoxia. Mice were depleted of CD4(+) T cells and infected with P. murina and then were exposed to >95% oxygen for 4 days, followed by return to normoxia. Experimental groups received vehicle, dexamethasone, or granulocyte-macrophage colony-stimulating factor (GM-CSF). Compared with the vehicle-treated group, treatment with dexamethasone reduced Fas ligand expression and significantly improved survival. Similarly, treatment with GM-CSF, an agent we have shown protects alveolar epithelial cells against apoptosis, decreased Fas ligand expression and also improved survival. Our results suggest that the dual stresses of P. murina infection and hyperoxia induce lung injury via activation of the Fas-Fas ligand pathway and that corticosteroids and GM-CSF reduce mortality in P. murina-infected mice exposed to hyperoxic stress by inhibition of inflammation and apoptosis.
Collapse
|