1
|
Bush A. Update in paediatric asthma. Curr Opin Pulm Med 2025; 31:279-286. [PMID: 39973758 DOI: 10.1097/mcp.0000000000001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
PURPOSE OF REVIEW The field of paediatric asthma is rapidly moving, with the advent of new biologicals for severe asthma and increased understanding of preschool wheeze amongst other developments and insights. RECENT FINDINGS There is increasing evidence of efficacy in children for biologics directed against Type 2 inflammation (especially mepolizumab and dupilumab) as well encouraging evidence that Tezepelumab may be effective against Type 2 low phenotypes. The importance of airway remodelling and infection in the pathophysiology of preschool wheeze is increasingly appreciated. The treatment of preschool wheeze is moving from symptom-based to biomarker driven therapies. Other important areas are prediction of risk of asthma attacks, the SMART regime, the importance of climate change and reducing greenhouse gas emissions from inhalers while ensuring adequate therapy for young children, the association of early adverse environmental factors including childhood poverty and deprivation and the switch to race-neutral lung function equations. SUMMARY We are increasingly moving towards personalized medicine and the use of biomarkers to guide treatment of wheeze at all ages, but we need to move from counting cells to determining their functional status. Airway wall structural changes rather than inflammation may drive the progression of preschool wheeze to school age asthma.
Collapse
Affiliation(s)
- Andrew Bush
- National Heart and Lung Institute, Imperial College, and Imperial Centre for Paediatrics and Child Health, Consultant Paediatric Chest Physician, Royal Brompton Hospital, London, UK
| |
Collapse
|
2
|
Burrows K, Ngai L, Chiaranunt P, Watt J, Popple S, Forde B, Denha S, Olyntho VM, Tai SL, Cao EY, Tejeda-Garibay S, Koenig JFE, Mayer-Barber KD, Streutker CJ, Hoyer KK, Osborne LC, Liu J, O'Mahony L, Mortha A. A gut commensal protozoan determines respiratory disease outcomes by shaping pulmonary immunity. Cell 2025; 188:316-330.e12. [PMID: 39706191 PMCID: PMC11761380 DOI: 10.1016/j.cell.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/07/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024]
Abstract
The underlying mechanisms used by the intestinal microbiota to shape disease outcomes of the host are poorly understood. Here, we show that the gut commensal protozoan, Tritrichomonas musculis (T.mu), remotely shapes the lung immune landscape to facilitate perivascular shielding of the airways by eosinophils. Lung-specific eosinophilia requires a tripartite immune network between gut-derived inflammatory group 2 innate lymphoid cells and lung-resident T cells and B cells. This network exacerbates the severity of allergic airway inflammation while hindering the systemic dissemination of pulmonary Mycobacterium tuberculosis. The identification of protozoan DNA sequences in the sputum of patients with severe allergic asthma further emphasizes the relevance of commensal protozoa in human disease. Collectively, these findings demonstrate that a commensal protozoan tunes pulmonary immunity via a gut-operated lung immune network, promoting both beneficial and detrimental disease outcomes in response to environmental airway allergens and pulmonary infections.
Collapse
Affiliation(s)
- Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jacqueline Watt
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sarah Popple
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Brian Forde
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Saven Denha
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Vitoria M Olyntho
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Eric Yixiao Cao
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Susana Tejeda-Garibay
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Joshua F E Koenig
- Schroeder Allergy and Immunology Research Institute, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA
| | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katrina K Hoyer
- Health Sciences Research Institute, University of California Merced, Merced, CA, USA
| | - Lisa C Osborne
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Liam O'Mahony
- Department of Medicine, University College Cork, Cork, Ireland
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Monack D, Butler D, Di Luccia B, Vilches-Moure J. Eosinophils Enhance Granuloma-Mediated Control of Persistent Salmonella Infection. RESEARCH SQUARE 2025:rs.3.rs-5610725. [PMID: 39801515 PMCID: PMC11722553 DOI: 10.21203/rs.3.rs-5610725/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Salmonella enterica can persist asymptomatically within tissues for extended periods. This remarkable feat is achieved through intricate host-pathogen interactions in immune cell aggregates called granulomas, wherein Salmonella find favorable cellular niches to exploit while the host limits its expansion and tissue dissemination. Here, using a mouse model of persistent Salmonella infection, we identify a host-protective role of eosinophils in control of Salmonella Typhimurium (STm) infection within the mesenteric lymph nodes (MLN), the main lymphoid tissue of STm persistence. Combining spatial transcriptomics and experimental manipulations, we found that macrophages responding to STm infection recruited eosinophils in a C-C motif chemokine ligand 11 (CCL11)-dependent manner and enhanced their activation. Eosinophil deficiencies increased Salmonella burdens, which was associated with altered granuloma size and impaired type-1 immunity in the MLN. Thus, eosinophils play a vital role in restraining Salmonella exploitation of granuloma macrophages at a key site of bacterial persistence.
Collapse
|
4
|
Gazzinelli-Guimaraes PH, Jones SM, Voehringer D, Mayer-Barber KD, Samarasinghe AE. Eosinophils as modulators of host defense during parasitic, fungal, bacterial, and viral infections. J Leukoc Biol 2024; 116:1301-1323. [PMID: 39136237 DOI: 10.1093/jleuko/qiae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/25/2024] [Indexed: 11/28/2024] Open
Abstract
Eosinophils, traditionally associated as central innate effector cells with type 2 immunity during allergic and helminth parasitic diseases, have recently been revealed to have important roles in tissue homeostasis as well as host defense in a broader variety of infectious diseases. In a dedicated session at the 2023 biennial conference of the International Eosinophil Society titled "Eosinophils in Host Defense," the multifaceted roles eosinophils play against diverse pathogens, ranging from parasites to fungi, bacteria, and viruses, were presented. In this review, the session speakers offer a comprehensive summary of recent discoveries across pathogen classes, positioning eosinophils as pivotal leukocytes in both host defense and pathology. By unraveling the intricacies of eosinophil engagement in host resistance, this exploration may provide valuable insights not only to understand specific underpinnings of eosinophil functions related to each class of pathogens but also to develop novel therapeutics effective against a broad spectrum of infectious diseases.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC 20037, United States
| | - Shelby M Jones
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - David Voehringer
- Department of Infection Biology, Universitätsklinikum Erlangen, Wasserturmstrasse 3-5, 91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Drive, Bethesda, MD 20892, United States
| | - Amali E Samarasinghe
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Children's Foundation Research Institute, 50 N Dunlap Street, Memphis, TN 38103, United States
| |
Collapse
|
5
|
Hu D, Huang J, Zhao W, Xu M, Ma Y, Gong Z, Zhang Q, Zhao H. A Low Eosinophil to Platelet Ratio as a Worse Prognostic Index for Emergency Department Attendance in Acute Exacerbation of COPD. Int J Chron Obstruct Pulmon Dis 2024; 19:139-147. [PMID: 38249823 PMCID: PMC10799650 DOI: 10.2147/copd.s442715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Purpose Identifying prognosis for patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is challenging. Eosinophils and platelet are involved in the development of COPD, which may predict adverse events. The objective of this study was to determine the effect of the eosinophil to platelet ratio (EPR) in predicting adverse events in patients with AECOPD who visited the emergency department. Patients and Methods The records of patients with AECOPD treated at Dalian Municipal Friendship Hospital from January 2018 to December 2020 were retrospectively reviewed. The relationship between the clinical characteristics and EPR, as cut-off value of 0.755, was evaluated. Results A total of 508 patients with an AECOPD (316 male, 192 female) were included. An optimal AUC cutoff of 0.755 for the EPR segregated the patients into 2 groups with significantly different mortality (25.3% vs 5.5%, P < 0.001). The same mortality risk with lower EPR was observed among the patients with emergency room attendance (35.6% vs 11.1%, P < 0.001). A model including EPR <0.755, exacerbation history, PaO2 <60mmHg, PaCO2 >50 mm Hg, hypoalbuminemia and age ≥80 was developed to predict death risk and showed good performance. Conclusion During severe COPD exacerbation, an EPR < 0.755 preceding therapy can predict worse outcomes in patients with an AECOPD.
Collapse
Affiliation(s)
- Dapeng Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
- Department of Emergency Medicine, Dalian Municipal Friendship Hospital, Dalian, Liaoning, 116001, People’s Republic of China
| | - Junwen Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Maosheng Xu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yanyan Ma
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Zhaoqian Gong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qian Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, NanFang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
6
|
First NJ, Parrish KM, Martínez-Pérez A, González-Fernández Á, Bharrhan S, Woolard M, McLachlan JB, Scott RS, Wang J, Gestal MC. Bordetella spp. block eosinophil recruitment to suppress the generation of early mucosal protection. Cell Rep 2023; 42:113294. [PMID: 37883230 PMCID: PMC11682855 DOI: 10.1016/j.celrep.2023.113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Bordetella spp. are respiratory pathogens equipped with immune evasion mechanisms. We previously characterized a Bordetella bronchiseptica mutant (RB50ΔbtrS) that fails to suppress host responses, leading to rapid clearance and long-lasting immunity against reinfection. This work revealed eosinophils as an exclusive requirement for RB50ΔbtrS clearance. We also show that RB50ΔbtrS promotes eosinophil-mediated B/T cell recruitment and inducible bronchus-associated lymphoid tissue (iBALT) formation, with eosinophils being present throughout iBALT for Th17 and immunoglobulin A (IgA) responses. Finally, we provide evidence that XCL1 is critical for iBALT formation but not maintenance, proposing a novel role for eosinophils as facilitators of adaptive immunity against B. bronchiseptica. RB50ΔbtrS being incapable of suppressing eosinophil effector functions illuminates active, bacterial targeting of eosinophils to achieve successful persistence and reinfection. Overall, our discoveries contribute to understanding cellular mechanisms for use in future vaccines and therapies against Bordetella spp. and extension to other mucosal pathogens.
Collapse
Affiliation(s)
- Nicholas J First
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Katelyn M Parrish
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Amparo Martínez-Pérez
- CINBIO, Universidade de Vigo, Immunology Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Galicia, Spain
| | - África González-Fernández
- CINBIO, Universidade de Vigo, Immunology Group, Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Galicia, Spain
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Immunophenotyping Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Matthew Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Immunophenotyping Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA; Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA
| | - Monica C Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71106, USA.
| |
Collapse
|
7
|
Jiang W, Wang X, Su Y, Cai L, Li J, Liang J, Gu Q, Sun M, Shi L. Intranasal Immunization With a c-di-GMP-Adjuvanted Acellular Pertussis Vaccine Provides Superior Immunity Against Bordetella pertussis in a Mouse Model. Front Immunol 2022; 13:878832. [PMID: 35493458 PMCID: PMC9043693 DOI: 10.3389/fimmu.2022.878832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
Pertussis, caused by the gram-negative bacterium Bordetella pertussis, is a highly contagious respiratory disease. Intranasal vaccination is an ideal strategy to prevent pertussis, as the nasal mucosa represents the first-line barrier to B. pertussis infection. The current intramuscular acellular pertussis (aP) vaccines elicit strong antibody and Th2-biased responses but not necessary cellular and mucosal immunity. Here, we formulated two cyclic dinucleotide (CDN)-adjuvanted aP subunit vaccines, a mammalian 2’,3’-cGAMP-adjuvanted aP vaccine and a bacterial-derived c-di-GMP-adjuvanted aP vaccine, and evaluated their immunogenicity in a mouse model. We found that the aP vaccine alone delivered intranasally (IN) induced moderate systemic and mucosal humoral immunity but weak cellular immunity, whereas the alum-adjuvanted aP vaccine administered intraperitoneally elicited higher Th2 and systemic humoral immune responses but weaker Th1 and Th17 and mucosal immune responses. In contrast, both CDN-adjuvanted aP vaccines administered via the IN route induced robust humoral and cellular immunity systemically and mucosally. Furthermore, the c-di-GMP-adjuvanted aP vaccine generated better antibody production and stronger Th1 and Th17 responses than the 2′,3′-cGAMP-adjuvanted aP vaccine. In addition, following B. pertussis challenge, the group of mice that received IN immunization with the c-di-GMP-adjuvanted aP vaccine showed better protection than all other groups of vaccinated mice, with decreased inflammatory cell infiltration in the lung and reduced bacterial burden in both the upper and lower respiratory tracts. In summary, the c-di-GMP-adjuvanted aP vaccine can elicit a multifaceted potent immune response resulting in robust bacterial clearance in the respiratory tract, which indicates that c-di-GMP can serve as a potential mucosal adjuvant for the pertussis vaccine.
Collapse
Affiliation(s)
- Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Yuhao Su
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Lukui Cai
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Jiangli Liang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Qin Gu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China.,Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| |
Collapse
|
8
|
Diny NL, Schonfeldova B, Shapiro M, Winder ML, Varsani-Brown S, Stockinger B. The aryl hydrocarbon receptor contributes to tissue adaptation of intestinal eosinophils in mice. J Exp Med 2022; 219:e20210970. [PMID: 35238865 PMCID: PMC8899390 DOI: 10.1084/jem.20210970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Eosinophils are potent sources of inflammatory and toxic mediators, yet they reside in large numbers in the healthy intestine without causing tissue damage. We show here that intestinal eosinophils were specifically adapted to their environment and underwent substantial transcriptomic changes. Intestinal eosinophils upregulated genes relating to the immune response, cell-cell communication, extracellular matrix remodeling, and the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor with broad functions in intestinal homeostasis. Eosinophils from AHR-deficient mice failed to fully express the intestinal gene expression program, including extracellular matrix organization and cell junction pathways. AHR-deficient eosinophils were functionally impaired in the adhesion to and degradation of extracellular matrix, were more prone to degranulation, and had an extended life span. Lack of AHR in eosinophils had wider effects on the intestinal immune system, affecting the T cell compartment in nave and helminth-infected mice. Our study demonstrates that the response to environmental triggers via AHR partially shapes tissue adaptation of eosinophils in the small intestine.
Collapse
|
9
|
Bohrer AC, Castro E, Hu Z, Queiroz AT, Tocheny CE, Assmann M, Sakai S, Nelson C, Baker PJ, Ma H, Wang L, Zilu W, du Bruyn E, Riou C, Kauffman KD, Moore IN, Del Nonno F, Petrone L, Goletti D, Martineau AR, Lowe DM, Cronan MR, Wilkinson RJ, Barry CE, Via LE, Barber DL, Klion AD, Andrade BB, Song Y, Wong KW, Mayer-Barber KD. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med 2021; 218:e20210469. [PMID: 34347010 PMCID: PMC8348215 DOI: 10.1084/jem.20210469] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/16/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Host resistance to Mycobacterium tuberculosis (Mtb) infection requires the activities of multiple leukocyte subsets, yet the roles of the different innate effector cells during tuberculosis are incompletely understood. Here we uncover an unexpected association between eosinophils and Mtb infection. In humans, eosinophils are decreased in the blood but enriched in resected human tuberculosis lung lesions and autopsy granulomas. An influx of eosinophils is also evident in infected zebrafish, mice, and nonhuman primate granulomas, where they are functionally activated and degranulate. Importantly, using complementary genetic models of eosinophil deficiency, we demonstrate that in mice, eosinophils are required for optimal pulmonary bacterial control and host survival after Mtb infection. Collectively, our findings uncover an unexpected recruitment of eosinophils to the infected lung tissue and a protective role for these cells in the control of Mtb infection in mice.
Collapse
Affiliation(s)
- Andrea C. Bohrer
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ehydel Castro
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Zhidong Hu
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Artur T.L. Queiroz
- The KAB group, Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador Brazil
| | - Claire E. Tocheny
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Maike Assmann
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Shunsuke Sakai
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christine Nelson
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hui Ma
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Lin Wang
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Zilu
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Keith D. Kauffman
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tuberculosis Imaging Program
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases “L. Spallanzani,” Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research National Institute for Infectious Diseases, Istituto Di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Adrian R. Martineau
- Institute of Immunity and Transplantation, University College London, London, UK
| | - David M. Lowe
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Mark R. Cronan
- In Vivo Cell Biology of Infection Unit, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, UK
- Francis Crick Institute, London, UK
| | - Clifton E. Barry
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laura E. Via
- Tuberculosis Imaging Program, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Amy D. Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bruno B. Andrade
- The KAB group, Multinational Organization Network Sponsoring Translational and Epidemiological Research Initiative, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador Brazil
| | - Yanzheng Song
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ka-Wing Wong
- Department of Scientific Research, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Tuberculosis Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Krishack PA, Hollinger MK, Kuzel TG, Decker TS, Louviere TJ, Hrusch CL, Sperling AI, Verhoef PA. IL-33-mediated Eosinophilia Protects against Acute Lung Injury. Am J Respir Cell Mol Biol 2021; 64:569-578. [PMID: 33571420 PMCID: PMC8086044 DOI: 10.1165/rcmb.2020-0166oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pneumonia-induced lung injury and acute respiratory distress syndrome can develop because of an inappropriate inflammatory response to acute infections, leading to a compromised alveolar barrier. Recent work suggests that hospitalized patients with allergies/asthma are less likely to die of pulmonary infections and that there is a correlation between survival from acute respiratory distress syndrome and higher eosinophil counts; thus, we hypothesized that eosinophils associated with a type 2 immune response may protect against pneumonia-induced acute lung injury. To test this hypothesis, mice were treated with the type 2–initiating cytokine IL-33 intratracheally 3 days before induction of pneumonia with airway administration of a lethal dose of Staphylococcus aureus. Interestingly, IL-33 pretreatment promoted survival by inhibiting acute lung injury: amount of BAL fluid proinflammatory cytokines and pulmonary edema were both reduced, with an associated increase in oxygen saturation. Pulmonary neutrophilia was also reduced, whereas eosinophilia was strongly increased. This eosinophilia was key to protection; eosinophil reduction eliminated both IL-33–mediated protection against mortality and inhibition of neutrophilia and pulmonary edema. Together, these data reveal a novel role for eosinophils in protection against lung injury and suggest that modulation of pulmonary type 2 immunity may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
| | - Maile K Hollinger
- Section of Pulmonary and Critical Care, Department of Medicine.,Committee on Immunology, and
| | - Timothy G Kuzel
- Section of Pulmonary and Critical Care, Department of Medicine
| | - Trevor S Decker
- Section of Pulmonary and Critical Care, Department of Medicine
| | | | - Cara L Hrusch
- Section of Pulmonary and Critical Care, Department of Medicine
| | - Anne I Sperling
- Section of Pulmonary and Critical Care, Department of Medicine.,Committee on Immunology, and
| | - Philip A Verhoef
- Section of Pulmonary and Critical Care, Department of Medicine.,Committee on Immunology, and.,Section of Critical Care, Department of Pediatrics, University of Chicago, Chicago, Illinois; and.,Center for Integrated Health Research, Hawaii Permanente Medical Group, Kaiser Permanente Hawaii, Honolulu, Hawaii
| |
Collapse
|
11
|
Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Emerging Evidence for Pleiotropism of Eosinophils. Int J Mol Sci 2021; 22:ijms22137075. [PMID: 34209213 PMCID: PMC8269185 DOI: 10.3390/ijms22137075] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due to their numerous and variable surface receptors, which allows them to respond in very different manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses, as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of complexity to their roles in homeostasis and disease. Developing principally in the bone marrow by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils migrate from the blood to very different organs, performing multiple functions in tissue homeostasis as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an effective response against viral pathogens by their nuclease enzymatic activity and have been lately described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab, and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory cells and their involvement in pathological disorders and treatment.
Collapse
Affiliation(s)
- José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Medicine Department, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| |
Collapse
|
12
|
Vaillant L, Oster P, McMillan B, Velin D. Gastric eosinophils are detrimental for Helicobacter pylori vaccine efficacy. Vaccine 2021; 39:3590-3601. [PMID: 34049736 DOI: 10.1016/j.vaccine.2021.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori (Hp) colonizes the human gastric mucosa with a high worldwide prevalence. Currently, Hp can be eradicated by the use of antibiotics. Due to the increase of antibiotic resistance, new therapeutic strategies need to be devised: one such approach being prophylactic vaccination. Pre-clinical and clinical data showed that a urease-based vaccine is efficient in decreasing Hp infection through the mobilization of T helper (Th)-dependent immune effectors, including eosinophils. Preliminary data have shown that upon vaccination and subsequent Hp infection, eosinophils accumulate in the gastric mucosa, suggesting a possible implication of this granulocyte subset in the vaccine-induced reduction of Hp infection. In our study, we confirm that activated eosinophils, expressing CD63, CD40, MHCII and PD-L1 at their cell surface, infiltrate the gastric mucosa during vaccine-induced reduction of Hp infection. Strikingly, we provide evidence that bone marrow derived eosinophils efficiently kill Hp in vitro, suggesting that eosinophils may participate to the vaccine-induced reduction of Hp infection. However, conversely to our expectations, the absence of eosinophils does not decrease the efficacy of this Hp vaccine in vivo. Indeed, vaccinated mice that have been genetically ablated of the eosinophil lineage or that have received anti-Sialic acid-binding immunoglobulin-like lectin F eosinophil-depleting antibodies, display a lower Hp colonization when compared to their eosinophil sufficient counterparts. Although the vaccine induces similar urease-specific humoral and Th responses in both eosinophil sufficient and deficient mice, a decreased production of anti-inflammatory cytokines, such as IL-10, TGFβ, and calgranulin B, was specifically observed in eosinophil depleted mice. Taken together, our results suggest that gastric eosinophils maintain an anti-inflammatory environment, thus sustaining chronic Hp infection. Because eosinophils are one of the main immune effectors mobilized by Th2 responses, our study strongly suggests that the formulation of an Hp vaccine needs to include an adjuvant that preferentially primes Hp-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Laurie Vaillant
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Brynn McMillan
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
13
|
Intestinal eosinophils, homeostasis and response to bacterial intrusion. Semin Immunopathol 2021; 43:295-306. [PMID: 33929602 PMCID: PMC8241669 DOI: 10.1007/s00281-021-00856-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023]
Abstract
Eosinophils are traditionally considered as end-stage effector cells involved in the pathogenesis of Th2 immune-mediated disorders as well as in the protection against parasite infection. However, this restricted view has recently been challenged by a series of studies revealing the highly plastic nature of these cells and implication in various homeostatic processes. Large numbers of eosinophils reside in the lamina propria of the gastrointestinal tract, at the front line of host defence, where they contribute to maintain the intestinal epithelial barrier function in the face of inflammation-associated epithelial cell damage. Eosinophils confer active protection against bacterial pathogens capable of penetrating the mucosal barrier through the release of cytotoxic compounds and the generation of extracellular DNA traps. Eosinophils also integrate tissue-specific cytokine signals such as IFN-γ, which synergise with bacterial recognition pathways to enforce different context-dependent functional responses, thereby ensuring a rapid adaptation to the ever-changing intestinal environment. The ability of eosinophils to regulate local immune responses and respond to microbial stimuli further supports the pivotal role of these cells in the maintenance of tissue homeostasis at the intestinal interface.
Collapse
|
14
|
Masterson JC, Menard-Katcher C, Larsen LD, Furuta GT, Spencer LA. Heterogeneity of Intestinal Tissue Eosinophils: Potential Considerations for Next-Generation Eosinophil-Targeting Strategies. Cells 2021; 10:cells10020426. [PMID: 33671475 PMCID: PMC7922004 DOI: 10.3390/cells10020426] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Eosinophils are implicated in the pathophysiology of a spectrum of eosinophil-associated diseases, including gastrointestinal eosinophilic diseases (EGIDs). Biologics that target the IL-5 pathway and are intended to ablate eosinophils have proved beneficial in severe eosinophilic asthma and may offer promise in treating some endotypes of EGIDs. However, destructive effector functions of eosinophils are only one side of the coin; eosinophils also play important roles in immune and tissue homeostasis. A growing body of data suggest tissue eosinophils represent a plastic and heterogeneous population of functional sub-phenotypes, shaped by environmental (systemic and local) pressures, which may differentially impact disease outcomes. This may be particularly relevant to the GI tract, wherein the highest density of eosinophils reside in the steady state, resident immune cells are exposed to an especially broad range of external and internal environmental pressures, and greater eosinophil longevity may uniquely enrich for co-expression of eosinophil sub-phenotypes. Here we review the growing evidence for functional sub-phenotypes of intestinal tissue eosinophils, with emphasis on the multifactorial pressures that shape and diversify eosinophil identity and potential targets to inform next-generation eosinophil-targeting strategies designed to restrain inflammatory eosinophil functions while sustaining homeostatic roles.
Collapse
Affiliation(s)
- Joanne C. Masterson
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Allergy, Inflammation & Remodeling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Leigha D. Larsen
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
| | - Glenn T. Furuta
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Lisa A. Spencer
- Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA; (J.C.M.); (C.M.-K.); (L.D.L.); (G.T.F.)
- GI and Liver Innate Immune Program, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-3277
| |
Collapse
|
15
|
Yang J, Yang J. Association Between Blood Eosinophils and Mortality in Critically Ill Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Retrospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2021; 16:281-288. [PMID: 33603354 PMCID: PMC7887152 DOI: 10.2147/copd.s289920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To explore the relationship between the blood eosinophil concentrations in the early stage and mortality in critically ill patients with acute exacerbation of chronic obstructive pulmonary disease. METHODS Patient data were extracted from the MIMIC-III V1.4 database. Only the acute exacerbation of chronic obstructive pulmonary disease patients with the first measurement time of blood eosinophil concentrations (%) between 24 hours before admission and 24 hours after admission was included. The logistic regression model was used to analyze the association between eosinophil and outcomes. RESULTS 1019 patients were included in the study. Two multivariate regression models were built. The adjusted odds ratio of in-hospital mortality, in-ICU mortality, hospital length of stay and ICU length of stay for initial blood eosinophil concentrations in model 1 (adjusted for SAPS Ⅱ, cardiac arrhythmias, solid tumor, metastatic cancer, liver disease, neutrophils) were 0.792 (95% CI: 0.643-0.976, p=0.028), 0.812 (95% CI: 0.645-1.022, p=0.076), 0.847 (95% CI: 0.772-0.930, p=0.001) and 0.914 (95% CI: 0.836-1.000, p=0.049) respectively. Meanwhile, in model 2 (adjusted for SOFA score, age, cardiac arrhythmias, solid tumor, metastatic cancer, liver disease, neutrophils) ORs were 0.785 (95% CI: 0.636-0.968, p=0.024), 0.807 (95% CI: 0.641-1.016, p=0.068), 0.854 (95% CI: 0.778-0.939, p=0.001) and 0.917 (95% CI: 0.838-1.004, p=0.060) respectively. The area under the ROC curve for eosinophil initial was 0.608 (95% CI: 0.559-0.657). The discriminatory eosinophil thresholds were 0.35% (sensitivity=0.59, specificity=0.61) for in-hospital mortality. CONCLUSION Increased blood eosinophils were associated with decreased in-hospital mortality and shorten hospital length of stay in critically ill patients with acute exacerbation of chronic obstructive pulmonary disease. A discriminatory eosinophil threshold of 0.35% for mortality was found, but further studies were needed to verify it.
Collapse
Affiliation(s)
- Jia Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Junchao Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, Anand K, Dureja H, Singh SK, Mishra V, Singh PK, Gulati M, Prasher P, Aljabali AAA, Tambuwala MM, Thangavelu L, Panneerselvam J, Gupta G, Zacconi FC, Shastri M, Jha NK, Xenaki D, MacLoughlin R, Oliver BG, Chellappan DK, Dua K. Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life Sci 2021; 267:118973. [PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
Collapse
Affiliation(s)
- Li-Yen Lee
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Geena Suet Yin Hew
- School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences and National Health Laboratory Service, University of the Free State, Bloemfontein, South Africa
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Madhur Shastri
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart 7005, Australia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, H91 HE94 Galway, Ireland; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia; School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
17
|
Disrupting Bordetella Immunosuppression Reveals a Role for Eosinophils in Coordinating the Adaptive Immune Response in the Respiratory Tract. Microorganisms 2020; 8:microorganisms8111808. [PMID: 33212993 PMCID: PMC7698589 DOI: 10.3390/microorganisms8111808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Recent findings revealed pivotal roles for eosinophils in protection against parasitic and viral infections, as well as modulation of adaptive immune responses in the gastric mucosa. However, the known effects of eosinophils within the respiratory tract remain predominantly pathological, associated with allergy and asthma. Simulating natural respiratory infections in mice, we examined how efficient and well-adapted pathogens can block eosinophil functions that contribute to the immune response. Bordetella bronchiseptica, a natural pathogen of the mouse, uses the sigma factor btrS to regulate expression of mechanisms that interfere with eosinophil recruitment and function. When btrS is disrupted, immunomodulators are dysregulated, and eosinophils are recruited to the lungs, suggesting they may contribute to much more efficient generation of adaptive immunity induced by this mutant. Eosinophil-deficient mice failed to produce pro-inflammatory cytokines, to recruit lymphocytes, to organize lymphoid aggregates that resemble Bronchus Associated Lymphoid Tissue (BALT), to generate an effective antibody response, and to clear bacterial infection from the respiratory tract. Importantly, the failure of eosinophil-deficient mice to produce these lymphoid aggregates indicates that eosinophils can mediate the generation of an effective lymphoid response in the lungs. These data demonstrate that efficient respiratory pathogens can block eosinophil recruitment, to inhibit the generation of robust adaptive immune responses. They also suggest that some post-infection sequelae involving eosinophils, such as allergy and asthma, might be a consequence of bacterial mechanisms that manipulate their accumulation and/or function within the respiratory tract.
Collapse
|
18
|
Zhang X, Arnold IC, Müller A. Mechanisms of persistence, innate immune activation and immunomodulation by the gastric pathogen Helicobacter pylori. Curr Opin Microbiol 2020; 54:1-10. [PMID: 32007716 DOI: 10.1016/j.mib.2020.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
The gastric bacterium Helicobacter pylori efficiently evades innate immune detection and persistently colonizes its human host. Understanding the genetic determinants that H. pylori uses to establish and maintain persistence, along with their cellular targets, is key to our understanding of the pathogenesis of this extraordinarily successful bacterial colonizer of the human stomach. This review highlights recent advances in elucidating innate immune recognition of H. pylori, its interactions with myeloid cells and the consequences that this very local infection has for immune responses at extragastric sites in models of allergy, autoimmunity and parasitic infection. The human-specific, gram-negative gastric colonizer and carcinogen H. pylori represents the prototype of a persistent bacterial pathogen. It is transmitted during early childhood, typically from mother to infant, and is believed to persist in its human host from the cradle to the grave. The tremendous success of H. pylori in infecting and colonizing half of the world's population, and in continuously accompanying humans since they migrated out of Africa over 60000 years ago, can largely be attributed to its ability to manipulate the host immune system to its own advantage, and to thereby ensure its own persistence and chronicity. In his final years as an active PI, Stanley Falkow increasingly recognized the need to understand bacterial persistence strategies as a prerequisite of understanding the pathogenesis of chronic bacterial infections, and, inspired in large part by Denise Monack's work on Salmonella persistence, many of our discussions at the time revolved around this topic. Multiple labs have since made important contributions to our understanding of innate immune detection of H. pylori, the types and polarization of adaptive immune responses that ensue, the ability of H. pylori to skew such immune responses to its advantage, and its ability to manipulate the host immune system with far-reaching, even systemic consequences. This review attempts to cover some of these topics, with a particular focus on the most recent contributions by researchers in the field.
Collapse
Affiliation(s)
- Xiaozhou Zhang
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Chambers ED, White A, Vang A, Wang Z, Ayala A, Weng T, Blackburn M, Choudhary G, Rounds S, Lu Q. Blockade of equilibrative nucleoside transporter 1/2 protects against Pseudomonas aeruginosa-induced acute lung injury and NLRP3 inflammasome activation. FASEB J 2020; 34:1516-1531. [PMID: 31914698 PMCID: PMC7045807 DOI: 10.1096/fj.201902286r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Pseudomonas aeruginosa infections are increasingly multidrug resistant and cause healthcare-associated pneumonia, a major risk factor for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Adenosine is a signaling nucleoside with potential opposing effects; adenosine can either protect against acute lung injury via adenosine receptors or cause lung injury via adenosine receptors or equilibrative nucleoside transporter (ENT)-dependent intracellular adenosine uptake. We hypothesized that blockade of intracellular adenosine uptake by inhibition of ENT1/2 would increase adenosine receptor signaling and protect against P. aeruginosa-induced acute lung injury. We observed that P. aeruginosa (strain: PA103) infection induced acute lung injury in C57BL/6 mice in a dose- and time-dependent manner. Using ENT1/2 pharmacological inhibitor, nitrobenzylthioinosine (NBTI), and ENT1-null mice, we demonstrated that ENT blockade elevated lung adenosine levels and significantly attenuated P. aeruginosa-induced acute lung injury, as assessed by lung wet-to-dry weight ratio, BAL protein levels, BAL inflammatory cell counts, pro-inflammatory cytokines, and pulmonary function (total lung volume, static lung compliance, tissue damping, and tissue elastance). Using both agonists and antagonists directed against adenosine receptors A2AR and A2BR, we further demonstrated that ENT1/2 blockade protected against P. aeruginosa -induced acute lung injury via activation of A2AR and A2BR. Additionally, ENT1/2 chemical inhibition and ENT1 knockout prevented P. aeruginosa-induced lung NLRP3 inflammasome activation. Finally, inhibition of inflammasome prevented P. aeruginosa-induced acute lung injury. Our results suggest that targeting ENT1/2 and NLRP3 inflammasome may be novel strategies for prevention and treatment of P. aeruginosa-induced pneumonia and subsequent ARDS.
Collapse
Affiliation(s)
- Eboni D. Chambers
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexis White
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Zhengke Wang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Alfred Ayala
- Division of Surgical Research, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02908
| | - Tingting Weng
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Michael Blackburn
- Departments of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Alpert Medical School of Brown University, Providence, RI 02908
| |
Collapse
|
20
|
Yoon J, Um HN, Jang J, Bae YA, Park WJ, Kim HJ, Yoon MS, Chung IY, Jung Y. Eosinophil Activation by Toll-Like Receptor 4 Ligands Regulates Macrophage Polarization. Front Cell Dev Biol 2019; 7:329. [PMID: 31921842 PMCID: PMC6933835 DOI: 10.3389/fcell.2019.00329] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 01/21/2023] Open
Abstract
Eosinophils are terminally differentiated granulocytes that have long been considered as destructive cells associated with Th2 type immune responses such as allergic inflammation and helminth infections. Recently, eosinophils have been actively studied as multifunctional leukocytes regulating an array of physiological responses through interaction with other immune cells. In this study, we examined the expression and function of Toll-like receptors (TLRs) in eosinophilic EoL-1 cells and demonstrated the expression of a number of immune mediators in activated EoL-1 cells and their interaction with the macrophage cell line THP-1 upon TLR4 ligand stimulation. EoL-1 cells differentiated with butyrate increased expression of TLR3, TLR4, and TLR7 at mRNA and protein level with flow cytometry analysis. Mature eosinophils derived from human cord blood CD34+ cells were subjected to RNA-sequencing, and showed the expression of a panel of TLR transcripts and TLR4 was the most highly expressed TLR. Among the cognate ligands of TLR3, TLR4, and TLR7, lipopolysaccharide (LPS) or palmitic acid significantly increased mRNA expression of immune mediators in differentiated EoL-1 cells. Notably, Western blot analysis of palmitic acid-treated differentiated EoL-1 cells showed significantly up-regulated expression of Th2 type cytokines and transcription factors driving eosinophil differentiation. To evaluate functional significance of TLR4 ligand-stimulated eosinophils, we added conditioned media (CM) from EoL-1 cells to differentiated THP-1 cells and assessed the expression of M1 macrophage or M2 macrophage-related markers. M1 and M2 macrophage markers were significantly upregulated by CM from LPS and palmitic acid stimulated EoL-1 cells, respectively. In addition, the adipose tissue of obese mice, where eosinophils are decreased due to obesity-induced inflammation, showed significantly decreased frequency of M2 macrophages, despite an increase in the total macrophage numbers. Based on these collective data, we proposed that eosinophils regulate both inflammatory and anti-inflammatory polarization of macrophages through functional changes induced by different TLR4 ligands.
Collapse
Affiliation(s)
- Jiyoung Yoon
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea
| | - Han-Na Um
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Jinsun Jang
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Young-An Bae
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Woo-Jae Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Mee-Sup Yoon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, College of Medicine, Gachon University, Incheon, South Korea
| | - Il Yup Chung
- Department of Bionano Technology, Hanyang University, Ansan, South Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| |
Collapse
|
21
|
Simon HU, Yousefi S, Germic N, Arnold IC, Haczku A, Karaulov AV, Simon D, Rosenberg HF. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol 2019; 181:11-23. [PMID: 31786573 DOI: 10.1159/000504847] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Eosinophils and their secretory mediators play an important role in the pathogenesis of infectious and inflammatory disorders. Although eosinophils are largely evolutionally conserved, their physiologic functions are not well understood. Given the availability of new eosinophil-targeted depletion therapies, there has been a renewed interest in understanding eosinophil biology as these strategies may result in secondary disorders when applied over long periods of time. Recent data suggest that eosinophils are not only involved in immunological effector functions but also carry out tissue protective and immunoregulatory functions that actively contribute to the maintenance of homeostasis. Prolonged eosinophil depletion may therefore result in the development of secondary disorders. Here, we review recent literature pointing to important roles for eosinophils in promoting immune defense, antibody production, activation of adipose tissue, and tissue remodeling and fibrosis. We also reflect on patient data from clinical trials that feature anti-eosinophil therapeutics.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland, .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation,
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Angela Haczku
- University of California, Davis, Davis, California, USA
| | - Alexander V Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Toraldo DM, Conte L. Influence of the Lung Microbiota Dysbiosis in Chronic Obstructive Pulmonary Disease Exacerbations: The Controversial Use of Corticosteroid and Antibiotic Treatments and the Role of Eosinophils as a Disease Marker. J Clin Med Res 2019; 11:667-675. [PMID: 31636780 PMCID: PMC6785281 DOI: 10.14740/jocmr3875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease associated with loss of lung function, poorer quality of life, co-morbidities, significant mortality, and higher health care costs. Frequent acute exacerbations of COPD are sudden worsening of symptoms, the nature of which is associated with bacterial or viral infections. However, one-third of exacerbations remain of undetermined origin. Although it is largely discussed and controversial, current guidelines recommend treatment of exacerbations with bronchodilators, antibiotics, and systemic corticosteroids; this is despite being associated with limited benefits in term of reducing mortality, side effects and without paying attention to the heterogeneity of these exacerbations. Increasing evidence suggests that the lung microbiota plays an important role in COPD and numerous studies have reported differences in the microbiota between healthy and disease states, as well as between exacerbations and stable COPD, leading to the hypothesis that frequent acute exacerbation is more likely to experience significant changes in lung microbiota composition. These findings will need further examination to explain the causes of lung dysbiosis, namely microbial composition, the host response, including the recruitment of eosinophils, lifestyle, diet, cigarette smoking and the use of antibiotics and corticosteroids. It is now important to assess: 1) Whether alterations in the lung microbiota contribute to disease pathogenesis, especially in exacerbations of unknown origin; 2) The role of eosinophils; and 3) Whether the microbiota of the lung can be manipulated therapeutically to improve COPD exacerbation event and disease progression. In summary, we hypothesize that the alterations of the lung microbiota may explain the undetermined origins of exacerbations and that there is an urgent need to facilitate the design of intervention studies that aim at conserving the lung microbial flora.
Collapse
Affiliation(s)
- Domenico Maurizio Toraldo
- Department of Rehabilitation, Respiratory Care Unit, ASL/Lecce, Italy
- Both authors contributed equally to this manuscript
| | - Luana Conte
- Laboratory of Biomedical Physics and Environment, Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Lecce, Italy
- Interdisciplinary Laboratory of Applied Research in Medicine (DReAM), University of Salento, “V. Fazzi” Hospital, Lecce, Italy
- Both authors contributed equally to this manuscript
| |
Collapse
|
23
|
Chen PK, Hsiao YH, Pan SW, Su KC, Perng DW, Ko HK. Independent factors associate with hospital mortality in patients with acute exacerbation of chronic obstructive pulmonary disease requiring intensive care unit admission: Focusing on the eosinophil-to-neutrophil ratio. PLoS One 2019; 14:e0218932. [PMID: 31291271 PMCID: PMC6619993 DOI: 10.1371/journal.pone.0218932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
Background Factors associated with hospital mortality are unclear in patients with acute exacerbation of COPD (AECOPD) requiring intensive care unit (ICU) admission. We aimed to characterize these patients and identify factors associated with hospital mortality. Patients and methods We used a retrospective observational case-control design and recruited patients between January 2015 and March 2017. Of 146 patients enrolled, 24 (16.4%) died during their hospital stay, while 122 survived. Results Multivariate logistic regression analyses revealed factors associated with hospital mortality: age (adjusted odds ratio [AOR] 1.12, 95% CI: 1.03–1.23), C-reactive protein (CRP) level >7.5 mg/dL at the emergency room (AOR 4.52, 95% CI: 1.27–16.04), peak eosinophil-to-neutrophil ratio (ENR)×102 on days 8–14 of treatment (AOR 0.22, 95% CI: 0.08–0.63), and in-hospital complications (AOR 4.23, 95% CI: 1.12–15.98) (all P<0.05). After receiver operating characteristic curve analyses, cutoff level for peak ENR×102 was 0.224. To examine the synergistic effects of CRP level and peak ENR, we divided patients into four groups: (G0, reference group) Peak ENR×102 >0.224 on days 8–14 and initial CRP <7.5 mg/dL; (G1) Peak ENR×102 >0.224 on days 8–14 and initial CRP >7.5 mg/dL; (G2) Peak ENR×102 <0.224 on days 8–14 and initial CRP <7.5 mg/dL; and (G3) Peak ENR×102 <0.224 on days 8–14 and initial CRP >7.5 mg/dL. For G2 and G3 patients, the AOR of mortality was significantly different from that of the reference group (G2: AOR 10.00, P = 0.020; G3: AOR 61.79, P<0.001). The relationship between 28-day mortality and the four groups was statistically significant (log-rank test, P<0.001). Conclusion Older age, initial CRP >7.5 mg/dL, peak ENR on days 8–14, and in-hospital complications were associated with hospital mortality in patients with AECOPD requiring ICU admission. Patients with both biomarkers, initial CRP >7.5 mg/dL, and peak ENR×102 <0.224 on days 8–14 of treatment, had an increased risk of hospital mortality.
Collapse
Affiliation(s)
- Pei-Ku Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yi-Han Hsiao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Public Health, Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Kang-Cheng Su
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Diahn-Warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- * E-mail: (HKK); (DWP)
| | - Hsin-Kuo Ko
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- * E-mail: (HKK); (DWP)
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Eosinophils are short-lived granulocytes that contain a variety of proteins and lipids traditionally associated with host defense against parasites. The primary goal of this review is to examine more recent evidence that challenged this rather outdated role of eosinophils in the context of pulmonary infections with helminths, viruses, and bacteria. RECENT FINDINGS While eosinophil mechanisms that counter parasites, viruses, and bacteria are similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include direct killing and immunoregulation, as well as some mechanisms by which parasite survival/growth is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. Although sacrificial, eosinophil DNA emitted in response to bacteria helps trap bacteria to limit dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional cells that are active participants in host defense against lung pathogens. Eosinophils recognize and differentially respond to invading pathogens, allowing them to deploy innate defense mechanisms to contain and clear the infection, or modulate the immune response. Modern technology and animal models have unraveled hitherto unknown capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
25
|
Simon SCS, Utikal J, Umansky V. Opposing roles of eosinophils in cancer. Cancer Immunol Immunother 2019; 68:823-833. [PMID: 30302498 PMCID: PMC11028063 DOI: 10.1007/s00262-018-2255-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022]
Abstract
Eosinophils are a subset of granulocytes mostly known for their ability to combat parasites and induce allergy. Although they were described to be related to cancer more than 100 years ago, their role in tumors is still undefined. Recent observations revealed that they display regulatory functions towards other immune cell subsets in the tumor microenvironment or direct cytotoxic functions against tumor cells, leading to either antitumor or protumor effects. This paradoxical role of eosinophils was suggested to be dependent on the different factors in the TME. In addition, the clinical relevance of these cells has been recently addressed. In most cases, the accumulation of eosinophils both in the tumor tissue, called tumor-associated tissue eosinophilia, and in the peripheral blood were reported to be prognostic markers for a better outcome of cancer patients. In immunotherapy of cancer, particularly in therapy with immune checkpoint inhibitors, eosinophils were even shown to be a potential predictive marker for a beneficial clinical response. A better understanding of their role in cancer progression will help to establish them as prognostic and predictive markers and to design strategies for targeting eosinophils.
Collapse
Affiliation(s)
- Sonja C S Simon
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
26
|
Krishack PA, Louviere TJ, Decker TS, Kuzel TG, Greenberg JA, Camacho DF, Hrusch CL, Sperling AI, Verhoef PA. Protection against Staphylococcus aureus bacteremia-induced mortality depends on ILC2s and eosinophils. JCI Insight 2019; 4:124168. [PMID: 30721149 DOI: 10.1172/jci.insight.124168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
The dysregulated, unbalanced immune response of sepsis results in a mortality exceeding 20%, yet recent findings by our group indicate that patients with allergic, type 2-mediated immune diseases are protected from developing sepsis. We evaluated CD4+ Th cell polarization among patients with Staphylococcus aureus bacteremia and confirmed that survivors had a higher percentage of circulating Th2 cells but lower frequencies of Th17 cells and neutrophils early in the course of infection. To establish the mechanism of this protection, we used a mouse model of lethal S. aureus bacteremia and found that intratracheal pretreatment with the type 2-initiating cytokine IL-33 activated pulmonary type 2 innate lymphoid cells (ILC2s) and promoted eosinophilia. In addition, stimulation of type 2 immunity before lethal infection suppressed the pulmonary neutrophilic response to S. aureus. Mice lacking functional ILC2s did not respond to IL-33 and were not protected from lethal bacteremia, but treatment of these mice with the type 2 cytokines IL-5 and IL-13 rescued them from death. Depletion of eosinophils abrogated IL-33-mediated protection, indicating that eosinophilia is also necessary for the survival benefit. Thus, we have identified a potentially novel mechanism by which type 2 immunity can balance dysregulated septic inflammatory responses, thereby clarifying the protective benefit of type 2 immune diseases on sepsis mortality.
Collapse
Affiliation(s)
- Paulette A Krishack
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Tyler J Louviere
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Trevor S Decker
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Timothy G Kuzel
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Jared A Greenberg
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rush University, Chicago, Illinois, USA
| | - Daniel F Camacho
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Cara L Hrusch
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA
| | - Anne I Sperling
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA.,Committee on Immunology, and
| | - Philip A Verhoef
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, Chicago, Illinois, USA.,Committee on Immunology, and.,Department of Pediatrics, Section of Critical Care, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
27
|
Ernst P. Blood eosinophils in COPD and the future risk of pneumonia. Eur Respir J 2018; 52:52/1/1800981. [PMID: 30054350 DOI: 10.1183/13993003.00981-2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/12/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Pierre Ernst
- McGill University, Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
28
|
Arnold IC, Artola-Borán M, Tallón de Lara P, Kyburz A, Taube C, Ottemann K, van den Broek M, Yousefi S, Simon HU, Müller A. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med 2018; 215:2055-2072. [PMID: 29970473 PMCID: PMC6080907 DOI: 10.1084/jem.20172049] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
Arnold et al. report that eosinophils in the gastrointestinal tract are conditioned by IFN-γ to restrict Th1 responses and promote tissue homeostasis. Eosinophils control Th1 cells in acute and chronic infection and in the steady state and possess bactericidal properties. Eosinophils are predominantly known for their contribution to allergy. Here, we have examined the function and regulation of gastrointestinal eosinophils in the steady-state and during infection with Helicobacter pylori or Citrobacter rodentium. We find that eosinophils are recruited to sites of infection, directly encounter live bacteria, and activate a signature transcriptional program; this applies also to human gastrointestinal eosinophils in humanized mice. The genetic or anti–IL-5–mediated depletion of eosinophils results in improved control of the infection, increased inflammation, and more pronounced Th1 responses. Eosinophils control Th1 responses via the IFN-γ–dependent up-regulation of PD-L1. Furthermore, we find that the conditional loss of IFN-γR in eosinophils phenocopies the effects of eosinophil depletion. Eosinophils further possess bactericidal properties that require their degranulation and the deployment of extracellular traps. Our results highlight two novel functions of this elusive cell type and link it to gastrointestinal homeostasis and anti-bacterial defense.
Collapse
Affiliation(s)
- Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland
| | | | - Andreas Kyburz
- Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen-Ruhrlandklinik, Essen, Germany
| | - Karen Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zürich, Zurich, Switzerland
| |
Collapse
|
29
|
Yang Z, Wei Z, Hermosilla C, Taubert A, He X, Wang X, Gong P, Li J, Zhang X. Caprine Monocytes Release Extracellular Traps against Neospora caninum In Vitro. Front Immunol 2018; 8:2016. [PMID: 29403487 DOI: 10.3389/fimmu.2017.02016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022] Open
Abstract
Neospora caninum is an obligate intracellular apicomplexan parasite that causes reproductive loss and severe economic losses in dairy and goat industry. In the present study, we aim to investigate the effects of N. caninum tachyzoites on the release of extracellular traps (ETs) in caprine monocytes and furthermore elucidated parts of its molecular mechanisms. N. caninum tachyzoite-induced monocytes-derived ETs formation was detected by scanning electron microscopy. H3 and myeloperoxidase (MPO) within monocyte-ETs structures were examined using laser scanning confocal microscopy analyses. The results showed that N. caninum tachyzoites were not only able to trigger ETs formation in caprine monocytes, but also that monocyte-released ETs were capable of entrapping viable tachyzoites. Histones and MPO were found to be decorating the DNA within the monocytes derived-ETs structures thus proving the classical components of ETs. Furthermore, inhibitors of NADPH oxidase-, MPO-, ERK 1/2-, or p38 MAPK-signaling pathway significantly decreased N. caninum tachyzoite-triggered caprine monocyte-derived ETosis. This is the first report of ETs release extruded from caprine monocytes after N. caninum exposure and thus showing that this early innate immune effector mechanism might be relevant during the acute phase of caprine neosporosis.
Collapse
Affiliation(s)
- Zhengtao Yang
- College of Basic Medical Sciences, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Carlos Hermosilla
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Faculty of Veterinary Medicine, Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Xuexiu He
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaocen Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xichen Zhang
- College of Basic Medical Sciences, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
30
|
O'Flaherty SM, Sutummaporn K, Häggtoft WL, Worrall AP, Rizzo M, Braniste V, Höglund P, Kadri N, Chambers BJ. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo. Scand J Immunol 2017; 85:417-424. [PMID: 28426135 DOI: 10.1111/sji.12554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c+ cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell.
Collapse
Affiliation(s)
- S M O'Flaherty
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - K Sutummaporn
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - W L Häggtoft
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A P Worrall
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Rizzo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - V Braniste
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - P Höglund
- Department of Medicine Huddinge, HERM, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - N Kadri
- Department of Medicine Huddinge, HERM, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - B J Chambers
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
31
|
Bafadhel M, Pavord ID, Russell REK. Eosinophils in COPD: just another biomarker? THE LANCET RESPIRATORY MEDICINE 2017; 5:747-759. [PMID: 28601554 DOI: 10.1016/s2213-2600(17)30217-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/05/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Eosinophils are innate immune cells that, under certain conditions, can be recruited to the lungs, where they have an incompletely understood role in health and disease. Eosinophils have been found in the airways, tissues, and circulation of patients with COPD, during both stable disease and exacerbations. Epidemiological studies and post-hoc analyses of clinical trials of corticosteroid treatment for COPD have shown that the blood eosinophil count is associated with the risk of COPD exacerbations, mortality, decline in FEV1, and response to both inhaled and systemic corticosteroids. Further studies are urgently needed to explore the contribution of eosinophils to the mechanism of disease in COPD and to identify their association with levels of clinical risk. In this review, we explore the role of the eosinophil as a biomarker and mediator of disease in COPD.
Collapse
Affiliation(s)
- Mona Bafadhel
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ian D Pavord
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard E K Russell
- Respiratory Medicine Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Chaney SB, Ganesh K, Mathew-Steiner S, Stromberg P, Roy S, Sen CK, Wozniak DJ. Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Wound Repair Regen 2017; 25:541-549. [PMID: 28466497 DOI: 10.1111/wrr.12527] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Chronic skin wounds are a significant human health concern and are often complicated by infection with Pseudomonas aeruginosa and Staphylococcus aureus, particularly methicillin resistant S. aureus (MRSA). Translating the knowledge gained from extensive study of virulence mechanisms and pathogenesis of these bacterial species to new treatment modalities has been lacking in part due to a paucity of animal models able to recapitulate human disease. Our groups recently described a novel porcine chronic burn wound model for the study of bacterial infection; however, the histopathology of infection has yet to be described. The objective of this study is to define the histopathology of this model using important human chronic wound bacterial isolates. Porcine full-thickness burn wounds topically inoculated with P. aeruginosa strain PAO1, MRSA S. aureus strain USA300 or both bacteria were used to define and quantify histopathologic lesions. The development of a systemic, well-defined rubric for analysis allowed for evaluation of differences between infection groups. These differences, which included epithelial migration and proliferation, stromal necrosis, fluid accumulation and intensity and character of the innate and adaptive inflammatory cell responses, were identified temporally between infection groups. Mono-species infected wounds developed a hyper-proliferative wound edge. Coinfected wounds at day 35 had the largest wound sizes, increased amounts of neutrophilic inflammation, immaturity of the wound bed, and retention of necrotic tissue. Infection, regardless of species, inhibited wound contracture at all time points evaluated. Most importantly, this model recapitulated key features of chronic human wounds. Thus, this model will allow researchers to study novel treatment modalities in a biologically relevant animal model while monitoring both host and bacterial responses.
Collapse
Affiliation(s)
- Sarah B Chaney
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| | - Kasturi Ganesh
- Department of Surgery, Comprehensive Wound Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Shomita Mathew-Steiner
- Department of Surgery, Comprehensive Wound Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Paul Stromberg
- Department of Veterinary Bioscience, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Sashwati Roy
- Department of Surgery, Comprehensive Wound Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Chandan K Sen
- Department of Surgery, Comprehensive Wound Center, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio
| |
Collapse
|
33
|
Strandmark J, Steinfelder S, Berek C, Kühl AA, Rausch S, Hartmann S. Eosinophils are required to suppress Th2 responses in Peyer's patches during intestinal infection by nematodes. Mucosal Immunol 2017; 10:661-672. [PMID: 27805618 DOI: 10.1038/mi.2016.93] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 09/14/2016] [Indexed: 02/04/2023]
Abstract
Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin (Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway hyperreactivity. Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue during enteric infections is unknown. We infected eosinophil-deficient ΔdblGATA-1 mice with the Th2-inducing small intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4+ T cells during acute infection, a finding strictly limited to Peyer's patches (PP). The increase in IL-4-producing cells in ΔdblGATA-1 mice was particularly evident within the CXCR5+PD-1+ T-follicular helper cell population and was associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast, infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgA+ germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA production.
Collapse
Affiliation(s)
- J Strandmark
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - S Steinfelder
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - C Berek
- Deutsches Rheuma Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - A A Kühl
- Department of Internal Medicine, Rheumatology and Clinical Immunology/Research Center ImmunoSciences (RCIS), Charité-University Medicine Berlin, Berlin, Germany
| | - S Rausch
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - S Hartmann
- Institute of Immunology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Reddy VRAP, Trus I, Nauwynck HJ. Presence of DNA extracellular traps but not MUC5AC and MUC5B mucin in mucoid plugs/casts of infectious laryngotracheitis virus (ILTV) infected tracheas of chickens. Virus Res 2016; 227:135-142. [PMID: 27756631 DOI: 10.1016/j.virusres.2016.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/24/2016] [Accepted: 09/28/2016] [Indexed: 01/21/2023]
Abstract
Although it has been speculated that the tracheal obstructions and asphyxiation during acute infectious laryngotracheitis (ILT) are due to mucoid plugs/casts formed by mucus hypersecretion, there are no reports demonstrating this. Hence, in the present study, we first examined if the main respiratory mucins, MUC5AC and MUC5B, are expressed in the mucosae of larynx, trachea and bronchi of mock-inoculated and ILTV infected chickens. Second, the tracheas with plugs/casts were stained for mucins (MUC5AC and MUC5B) and nuclear material (traps). MUC5AC and MUC5B were produced by the mucosae of larynx, trachea and bronchi of mock-inoculated chickens. Interestingly, MUC5AC and MUC5B were exclusively present in the dorsal tracheal region of the cranial and middle part of trachea of mock-inoculated chickens. In ILTV infected chickens, the tracheal lumen diameter was almost 40% reduced and was associated with a strongly increased tracheal mucosal thickness. MUC5AC and MUC5B were scarcely observed in larynx, trachea and bronchi, and in tracheal plugs/casts of ILTV infected birds. Surprisingly, DNA fibrous structures were observed in connection with nuclei of 10.0±7.3% cells, present in tracheal plugs/casts. Upon inoculation of isolated blood heterophils with ILTV, DNA fibrous structures were observed in 2.0±0.1% nuclei of ILTV inoculated blood heterophils at 24hours post inoculation (hpi). In conclusion, the tracheal obstructions and suffocation of ILTV infected chickens are due to a strong thickening of the mucosa (inflammation) resulting in a reduced tracheal lumen diameter and the presence of mucoid plugs/casts containing stretched long DNA-fibrous structures (traps) but not MUC5AC and MUC5B mucins.
Collapse
Affiliation(s)
- Vishwanatha R A P Reddy
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
35
|
Eosinophile Granulozyten. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Rosenberg HF. Eosinophils. ENCYCLOPEDIA OF IMMUNOBIOLOGY 2016. [PMCID: PMC7173586 DOI: 10.1016/b978-0-12-374279-7.03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eosinophils have been traditionally understood as end-stage, primarily cytotoxic effector cells. Recent studies have had profound impact on this limited view and have led to new research on the functions and capabilities of this unique leukocyte lineage. Novel insights into eosinophil development, localization, modes of degranulation, and the nature of their granule contents have provided a better understanding of these cells as immunomodulatory mediators in health and disease.
Collapse
|
37
|
Human Blood-Circulating Basophils Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol 2015; 89:8050-62. [PMID: 26018157 DOI: 10.1128/jvi.01021-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Granulocytes are a category of white blood cells, comprising mainly basophils, neutrophils, and eosinophils, and participate in various inflammatory reactions and defense against pathogens. Here, we investigated the role of human blood granulocytes in the dissemination of HIV-1. These cells were found to express a variety of HIV-1 attachment factors (HAFs). Basophils expressed HAFs dendritic cell (DC)-specific intercellular adhesion molecule 3 (ICAM3)-grabbing nonintegrin (DC-SIGN), DC immunoreceptor (DCIR), heparan sulfate proteoglycan (HSPG), and α4β7 integrin and mediated the most efficient capture of HIV-1 on the cell surface. Neutrophils were found to express DCIR and demonstrated limited efficiency of viral capture. Eosinophils expressed α4β7 integrin but exhibited little or no virus-binding capacity. Intriguingly, following direct contact with CD4+ T cells, viruses harbored on the surface of basophils were transferred to T cells. The contact between basophils and CD4+ T cells and formation of infectious synapses appeared necessary for efficient HIV-1 spread. In HIV-1-infected individuals, the frequency of basophils remained fairly stable over the course of disease, regardless of CD4+ T depletion or the emergence of AIDS-associated opportunistic infections. Collectively, our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. Thus, strategies designed to prevent basophil-mediated viral capture and transfer may be developed into a new form of therapy. IMPORTANCE Cell-associated HIV-1 infection has been proposed to play a pivotal role in the spread of HIV-1 infection. Here, we demonstrated that human blood-circulating granulocytes, particularly basophils, can capture HIV-1 and mediate viral trans-infection of CD4+ T cells. The expression of a variety of HIV-1 attachment factors, such as the C-type lectins, etc., facilitates viral capture and transfer. Intriguingly, the frequency of basophils in patients with different levels of CD4+ T counts remains fairly stable during the course of disease. Our results provide novel insights into the roles of granulocytes, particularly basophils, in HIV-1 dissemination. We suggest that strategies designed to prevent basophil-mediated viral capture and transfer may be a new direction for the development of anti-HIV therapy.
Collapse
|
38
|
Travers J, Rothenberg ME. Eosinophils in mucosal immune responses. Mucosal Immunol 2015; 8:464-75. [PMID: 25807184 PMCID: PMC4476057 DOI: 10.1038/mi.2015.2] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/28/2014] [Indexed: 02/06/2023]
Abstract
Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation, and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines, and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells.
Collapse
|
39
|
Spencer LA, Bonjour K, Melo RCN, Weller PF. Eosinophil secretion of granule-derived cytokines. Front Immunol 2014; 5:496. [PMID: 25386174 PMCID: PMC4209865 DOI: 10.3389/fimmu.2014.00496] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022] Open
Abstract
Eosinophils are tissue-dwelling leukocytes, present in the thymus, and gastrointestinal and genitourinary tracts of healthy individuals at baseline, and recruited, often in large numbers, to allergic inflammatory foci and sites of active tissue repair. The biological significance of eosinophils is vast and varied. In health, eosinophils support uterine and mammary gland development, and maintain bone marrow plasma cells and adipose tissue alternatively activated macrophages, while in response to tissue insult eosinophils function as inflammatory effector cells, and, in the wake of an inflammatory response, promote tissue regeneration, and wound healing. One common mechanism driving many of the diverse eosinophil functions is the regulated and differential secretion of a vast array of eosinophil-derived cytokines. Eosinophils are distinguished from most other leukocytes in that many, if not all, of the over three dozen eosinophil-derived cytokines are pre-synthesized and stored within intracellular granules, poised for very rapid, stimulus-induced secretion. Eosinophils engaged in cytokine secretion in situ utilize distinct pathways of cytokine release that include classical exocytosis, whereby granules themselves fuse with the plasma membrane and release their entire contents extracellularly; piecemeal degranulation, whereby granule-derived cytokines are selectively mobilized into vesicles that emerge from granules, traverse the cytoplasm and fuse with the plasma membrane to release discrete packets of cytokines; and eosinophil cytolysis, whereby intact granules are extruded from eosinophils, and deposited within tissues. In this latter scenario, extracellular granules can themselves function as stimulus-responsive secretory-competent organelles within the tissue. Here, we review the distinctive processes of differential secretion of eosinophil granule-derived cytokines.
Collapse
Affiliation(s)
- Lisa A Spencer
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Kennedy Bonjour
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF) , Juiz de Fora , Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF) , Juiz de Fora , Brazil
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
40
|
Jung Y, Rothenberg ME. Roles and regulation of gastrointestinal eosinophils in immunity and disease. THE JOURNAL OF IMMUNOLOGY 2014; 193:999-1005. [PMID: 25049430 DOI: 10.4049/jimmunol.1400413] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophils have historically been considered to be destructive end-stage effector cells that have a role in parasitic infections and allergic reactions by the release of their granule-derived cytotoxic proteins. However, an increasing number of experimental observations indicate that eosinophils also are multifunctional leukocytes involved in diverse inflammatory and physiologic immune responses. Under homeostatic conditions, eosinophils are particularly abundant in the lamina propria of the gastrointestinal tract, where their involvement in various biological processes within the gastrointestinal tract has been posited. In this review, we summarize the molecular steps involved in eosinophil development and describe eosinophil trafficking to the gastrointestinal tract. We synthesize the current findings on the phenotypic and functional properties of gastrointestinal eosinophils and the accumulating evidence that they have a contributory role in gastrointestinal disorders, with a focus on primary eosinophilic gastrointestinal disorders. Finally, we discuss the potential role of eosinophils as modulators of the intestinal immune system.
Collapse
Affiliation(s)
- YunJae Jung
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon 406-799, Republic of Korea
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| |
Collapse
|
41
|
Allergic airway inflammation decreases lung bacterial burden following acute Klebsiella pneumoniae infection in a neutrophil- and CCL8-dependent manner. Infect Immun 2014; 82:3723-39. [PMID: 24958709 DOI: 10.1128/iai.00035-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Th17 cytokines interleukin-17A (IL-17A), IL-17F, and IL-22 are critical for the lung immune response to a variety of bacterial pathogens, including Klebsiella pneumoniae. Th2 cytokine expression in the airways is a characteristic feature of asthma and allergic airway inflammation. The Th2 cytokines IL-4 and IL-13 diminish ex vivo and in vivo IL-17A protein expression by Th17 cells. To determine the effect of IL-4 and IL-13 on IL-17-dependent lung immune responses to acute bacterial infection, we developed a combined model in which allergic airway inflammation and lung IL-4 and IL-13 expression were induced by ovalbumin sensitization and challenge prior to acute lung infection with K. pneumoniae. We hypothesized that preexisting allergic airway inflammation decreases lung IL-17A expression and airway neutrophil recruitment in response to acute K. pneumoniae infection and thereby increases the lung K. pneumoniae burden. As hypothesized, we found that allergic airway inflammation decreased the number of K. pneumoniae-induced airway neutrophils and lung IL-17A, IL-17F, and IL-22 expression. Despite the marked reduction in postinfection airway neutrophilia and lung expression of Th17 cytokines, allergic airway inflammation significantly decreased the lung K. pneumoniae burden and postinfection mortality. We showed that the decreased lung K. pneumoniae burden was independent of IL-4, IL-5, and IL-17A and partially dependent on IL-13 and STAT6. Additionally, we demonstrated that the decreased lung K. pneumoniae burden associated with allergic airway inflammation was both neutrophil and CCL8 dependent. These findings suggest a novel role for CCL8 in lung antibacterial immunity against K. pneumoniae and suggest new mechanisms of orchestrating lung antibacterial immunity.
Collapse
|
42
|
Muñoz Caro T, Hermosilla C, Silva LMR, Cortes H, Taubert A. Neutrophil extracellular traps as innate immune reaction against the emerging apicomplexan parasite Besnoitia besnoiti. PLoS One 2014; 9:e91415. [PMID: 24618849 PMCID: PMC3950022 DOI: 10.1371/journal.pone.0091415] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/11/2014] [Indexed: 12/20/2022] Open
Abstract
Besnoitia besnoiti infection in cattle is an important emerging protozoan disease in Europe causing economic losses and severe clinical signs, such as generalized dermatitis, orchitis, and vulvitis in affected animals. Neutrophil extracellular trap (NET) formation was recently demonstrated as an important effector mechanism of PMN acting against several invading pathogens. In the present study, interactions of bovine PMN with tachyzoites of B. besnoiti were investigated in this respect in vitro. For the demonstration and quantification of NETs, extracellular DNA was stained by Sytox Orange or Pico Green. Fluorescent illustrations as well as scanning electron microscopy analyses (SEM) showed PMN-promoted NET formation rapidly being induced upon contact with B. besnoiti tachyzoites. Co-localization of extracellular DNA with histones, neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite entrapping structures confirmed the classical characteristics of NET. Exposure of PMN to viable, UV attenuated and dead tachyzoites showed a significant induction of NET formation, but even tachyzoite homogenates significantly promoted NETs when compared to negative controls. NETs were abolished by DNase treatment and were reduced after PMN preincubation with NADPH oxidase-, NE- and MPO-inhibitors. Tachyzoite-triggered NET formation led to parasite entrapment as quantitative assays indicated that about one third of tachyzoites were immobilized in NETs. In consequence, tachyzoites were hampered from active invasion of host cells. Thus, transfer of tachyzoites, previously being confronted with PMN, to adequate host cells resulted in significantly reduced infection rates when compared to PMN-free infection controls. To our knowledge, we here report for the first time B. besnoiti-induced NET formation. Our results indicate that PMN-triggered extracellular traps may represent an important effector mechanism of the host early innate immune response against B. besnoiti which may lead to diminishment of initial parasite infection rates during the acute infection phase.
Collapse
Affiliation(s)
- Tamara Muñoz Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
- * E-mail:
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Liliana M. R. Silva
- ICAAM–Instituto Ciências Agrárias e Ambientais Mediterrânicas, University of Évora, Évora, Portugal
| | - Helder Cortes
- ICAAM–Instituto Ciências Agrárias e Ambientais Mediterrânicas, University of Évora, Évora, Portugal
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
43
|
Eosinophil deficiency compromises lung defense against Aspergillus fumigatus. Infect Immun 2013; 82:1315-25. [PMID: 24379296 DOI: 10.1128/iai.01172-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Exposure to the mold Aspergillus fumigatus may result in allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, or invasive aspergillosis (IA), depending on the host's immune status. Neutrophil deficiency is the predominant risk factor for the development of IA, the most life-threatening condition associated with A. fumigatus exposure. Here we demonstrate that in addition to neutrophils, eosinophils are an important contributor to the clearance of A. fumigatus from the lung. Acute A. fumigatus challenge in normal mice induced the recruitment of CD11b+ Siglec F+ Ly-6G(lo) Ly-6C(neg) CCR3+ eosinophils to the lungs, which was accompanied by an increase in lung Epx (eosinophil peroxidase) mRNA levels. Mice deficient in the transcription factor dblGATA1, which exhibit a selective deficiency in eosinophils, demonstrated impaired A. fumigatus clearance and evidence of germinating organisms in the lung. Higher burden correlated with lower mRNA expression of Epx (eosinophil peroxidase) and Prg2 (major basic protein) as well as lower interleukin 1β (IL-1β), IL-6, IL-17A, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and CXCL1 levels. However, examination of lung inflammatory cell populations failed to demonstrate defects in monocyte/macrophage, dendritic cell, or neutrophil recruitment in dblGATA1-deficient mice, suggesting that the absence of eosinophils in dlbGATA1-deficient mice was the sole cause of impaired lung clearance. We show that eosinophils generated from bone marrow have potent killing activity against A. fumigtaus in vitro, which does not require cell contact and can be recapitulated by eosinophil whole-cell lysates. Collectively, our data support a role for eosinophils in the lung response after A. fumigatus exposure.
Collapse
|
44
|
Impact of surfactant protein D, interleukin-5, and eosinophilia on Cryptococcosis. Infect Immun 2013; 82:683-93. [PMID: 24478083 DOI: 10.1128/iai.00855-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that initiates infection following inhalation. As a result, the pulmonary immune response provides a first line of defense against C. neoformans. Surfactant protein D (SP-D) is an important regulator of pulmonary immune responses and is typically host protective against bacterial and viral respiratory infections. However, SP-D is not protective against C. neoformans. This is evidenced by previous work from our laboratory demonstrating that SP-D-deficient mice infected with C. neoformans have a lower fungal burden and live longer than wild-type (WT) control animals. We hypothesized that SP-D alters susceptibility to C. neoformans by dysregulating the innate pulmonary immune response following infection. Thus, inflammatory cells and cytokines were compared in the bronchoalveolar lavage fluid from WT and SP-D(-/-) mice after C. neoformans infection. Postinfection, mice lacking SP-D have reduced eosinophil infiltration and interleukin-5 (IL-5) in lung lavage fluid. To further explore the interplay of SP-D, eosinophils, and IL-5, mice expressing altered levels of eosinophils and/or IL-5 were infected with C. neoformans to assess the role of these innate immune mediators. IL-5-overexpressing mice have increased pulmonary eosinophilia and are more susceptible to C. neoformans infection than WT mice. Furthermore, susceptibility of SP-D(-/-) mice to C. neoformans infection could be restored to the level of WT mice by increasing IL-5 and eosinophils by crossing the IL-5-overexpressing mice with SP-D(-/-) mice. Together, these studies support the conclusion that SP-D increases susceptibility to C. neoformans infection by promoting C. neoformans-driven pulmonary IL-5 and eosinophil infiltration.
Collapse
|
45
|
Muniz VS, Baptista-Dos-Reis R, Neves JS. Functional extracellular eosinophil granules: a bomb caught in a trap. Int Arch Allergy Immunol 2013; 162:276-82. [PMID: 24136351 DOI: 10.1159/000354934] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eosinophils store a wide range of preformed proteins, including cationic proteins and cytokines, within their morphologically unique granules. Recently, we have demonstrated that cell-free eosinophil granules are functional, independent, secretory organelles and that clusters of cell-free granules are commonly found at tissue sites associated with various pathologic conditions. Cytolytic release of intact eosinophil granules produces extracellular organelles that are fully capable of ligand-elicited, active, secretory responses and are hence able to act as 'cluster bombs' that amplify the differential secretory properties of eosinophils. Herein, we review recent progress in elucidating the molecular mechanisms involved in the cytolytical release of intact cell-free functional eosinophil granules in a process associated with the liberation of eosinophil DNA traps (nets), a known aspect of the innate response recognized in various immune cells and pathological conditions. We also discuss the importance of clusters of cell-free eosinophil granules trapped in eosinophil DNA nets in disease and speculate on their potential role(s) in immunity as well as compare available data on DNA-releasing neutrophils.
Collapse
Affiliation(s)
- Valdirene S Muniz
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
46
|
Goldmann O, Medina E. The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 2013; 3:420. [PMID: 23335924 PMCID: PMC3542634 DOI: 10.3389/fimmu.2012.00420] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/20/2012] [Indexed: 12/13/2022] Open
Abstract
The release of extracellular traps (ETs) is a recently described mechanism of innate immune response to infection. Although ETs have been intensely investigated in the context of neutrophil antimicrobial effector mechanisms, other immune cells such as mast cells, eosinophils, and macrophages can also release these structures. The different ETs have several features in common, regardless of the type of cells from which they originated, including a DNA backbone with embedded antimicrobial peptides, proteases, and histones. However, they also exhibit remarkable individual differences such as the type of sub-cellular compartments from where the DNA backbone originates (e.g., nucleus or mitochondria), the proportion of responding cells within the pool, and/or the molecular mechanism/s underlying the ETs formation. This review summarizes the knowledge accumulated in recent years regarding the complex and expanding world of ETs and their role in immune function with particular emphasis on the role of other immune cells rather than on neutrophils exclusively.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel diseases (IBDs, e.g., Crohn's disease and ulcerative colitis) are thought to be a consequence of an uncontrolled inflammatory response against luminal antigens, including commensal bacteria. The observed link between eosinophil levels and severity and remission rates in IBD has led to speculation that eosinophils may contribute to the antimicrobial inflammatory response in IBD. RECENT FINDINGS Eosinophils express the necessary cellular machinery (innate immune receptors, proinflammatory cytokines, antibacterial proteins, and DNA traps) to mount an efficient antibacterial response; however, the rapid decline in eosinophil numbers following acute systemic bacterial infection suggests a very limited role for eosinophils in bacterial responses. SUMMARY We describe the clinical evidence of eosinophil involvement in IBD, summarize the in-vitro and in-vivo evidence of eosinophil antibacterial activity and the biology of eosinophils focusing on eosinophil-mediated bactericidal mechanisms and the involvement of eosinophil-derived granule proteins in this response, and conceptualize the contribution of eosinophils to a response against commensal bacteria in IBD.
Collapse
Affiliation(s)
- Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | |
Collapse
|
48
|
Eosinophils and Anti-Pathogen Host Defense. EOSINOPHILS IN HEALTH AND DISEASE 2013. [PMCID: PMC7156009 DOI: 10.1016/b978-0-12-394385-9.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr Opin Immunol 2012; 24:736-9. [DOI: 10.1016/j.coi.2012.08.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/22/2012] [Indexed: 01/01/2023]
|
50
|
Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 2012. [PMID: 23154224 DOI: 10.1038/nri334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have profoundly altered this simplistic view of eosinophils and their function. New insights into the molecular pathways that control the development, trafficking and degranulation of eosinophils have improved our understanding of the immunomodulatory functions of these cells and their roles in promoting homeostasis. Likewise, recent developments have generated a more sophisticated view of how eosinophils contribute to the pathogenesis of different diseases, including asthma and primary hypereosinophilic syndromes, and have also provided us with a more complete appreciation of the activities of these cells during parasitic infection.
Collapse
Affiliation(s)
- Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|