1
|
Ohlsson L, Isaxon C, Wrighton S, El Ouahidi W, Fornell L, Uller L, Ansar S, Voss U. Short-term exposure to urban PM 2.5 particles induces histopathological and inflammatory changes in the rat small intestine. Physiol Rep 2022; 10:e15249. [PMID: 35416410 PMCID: PMC9006536 DOI: 10.14814/phy2.15249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023] Open
Abstract
Air pollution and exposure to fine airborne particles with aerodynamic diameter <2.5 μm (PM2.5 ) negatively impacts human health. Airways constitute a primary route of exposure but PM2.5 -contaminated food, drinks as well as mucociliary and hepatobiliary clearance all constitute potential entry points into the intestine. This study evaluated intestinal histopathological and inflammatory changes as well as enteric neuronal numbers after short- or long-term exposure to urban PM2.5 . Using a nebulizer, male rats were exposed to a mist with a concentration of 5.3mg PM2.5 /m3 for 8 h (short term) or 1.8 mg PM2.5 /m3 for 3 h/day, 5 days/week for 8 weeks (long-term) with controls run in parallel. Samples were taken from three regions of the small intestine as well as the colon. Results showed that short-term exposure to PM2.5 induces mucosal lesions and reduces IL1β levels in the small intestine but not colon. No significant changes were observed after long-term exposure, suggesting the presence of intestinal adaptation to environmental stressors in the PM2.5 . To our knowledge, this is the first study to systematically characterize regional effects along the intestine.
Collapse
Affiliation(s)
- Lena Ohlsson
- Unit of Experimental Vascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol TechnologyDepartment of Design SciencesLund UniversityLundSweden
| | - Sebastian Wrighton
- Division of Infection MedicineDepartment of Clinical SciencesLund UniversityLundSweden
| | - Wissal El Ouahidi
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Lisa Fornell
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Lena Uller
- Unit of Respiratory ImmunopharmacologyDepartment of Experimental Medical SciencesLund UniversityLundSweden
| | - Saema Ansar
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| | - Ulrikke Voss
- Unit of Applied Neurovascular ResearchDepartment of Clinical SciencesLund UniversityLundSweden
| |
Collapse
|
2
|
Darlan DM, Rozi MF, Yulfi H. Overview of Immunological Responses and Immunomodulation Properties of Trichuris sp.: Prospects for Better Understanding Human Trichuriasis. Life (Basel) 2021; 11:188. [PMID: 33673676 PMCID: PMC7997218 DOI: 10.3390/life11030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022] Open
Abstract
Trichuris sp. infection has appeared as a pathological burden in the population, but the immunomodulation features could result in an opportunity to discover novel treatments for diseases with prominent inflammatory responses. Regarding the immunological aspects, the innate immune responses against Trichuris sp. are also responsible for determining subsequent immune responses, including the activation of innate lymphoid cell type 2 (ILC2s), and encouraging the immune cell polarization of the resistant host phenotype. Nevertheless, this parasite can establish a supportive niche for worm survival and finally avoid host immune interference. Trichuris sp. could skew antigen recognition and immune cell activation and proliferation through the generation of specific substances, called excretory/secretory (ESPs) and soluble products (SPs), which mainly mediate its immunomodulation properties. Through this review, we elaborate and discuss innate-adaptive immune responses and immunomodulation aspects, as well as the clinical implications for managing inflammatory-based diseases, such as inflammatory bowel diseases, allergic, sepsis, and other autoimmune diseases.
Collapse
Affiliation(s)
- Dewi Masyithah Darlan
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| | | | - Hemma Yulfi
- Department of Parasitology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (D.M.D.); (H.Y.)
| |
Collapse
|
3
|
Gondek M, Knysz P, Pomorska-Mól M, Ziomek M, Bień-Kalinowska J. Acute phase protein pattern and antibody response in pigs experimentally infected with a moderate dose of Trichinella spiralis, T. britovi, and T. pseudospiralis. Vet Parasitol 2020; 288:109277. [PMID: 33130498 DOI: 10.1016/j.vetpar.2020.109277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present study was to evaluate the acute-phase protein (APP) response in three groups of pigs experimentally infected with a moderate infective dose, i.e. 1000 muscle larvae (ML) of Trichinella spiralis, 3000 ML of Trichinella britovi, and 2000 ML of Trichinella pseudospiralis. Over a 62-day period of infection, we examined the serum level and kinetics of the haptoglobin (Hp), C-reactive protein (CRP), serum amyloid A (SAA), and pig major acute-phase protein (pig-MAP). In addition, to better understand the immune response of pigs experimentally infected with three different species of Trichinella, the kinetics of IgG and IgM antibodies against excretory-secretory (ES) antigens of Trichinella ML were also investigated. In order to assess anti-Trichinella IgG dynamics, we used a commercial and an in-house ELISA based on both heterologous (T. spiralis) and homologous (T. spiralis, T. britovi, and T. pseudospiralis) Trichinella species ES antigens. Among the four APPs analyzed, the concentration of CRP and pig-MAP significantly increased only in T. britovi-infected swine when compared with control pigs. This took place as early as 6 days post-infection (dpi). Hp was the only APP whose concentration significantly increased in pigs infected with T. pseudospiralis, this occurring as late as on day 62 pi. Despite the statistical differences found, increases in pig-MAP, CRP, and Hp levels were rather mild and transitory; none of these proteins were found to be elevated in the serum of all experimental groups of pigs at the same time point after infection. Specific IgG antibodies against ES antigens of Trichinella ML were first detected by the commercial and in-house T. spiralis ML ES-antigen ELISAs on days 30, 36 and 36 pi in pigs experimentally infected with T. spiralis, T. britovi, and T. pseudospiralis, respectively. However, seroconversion in pigs experimentally infected with T. britovi was detected slightly earlier (30 dpi) when the ELISA based on homologous rather than heterologous ES antigens was applied. In serum samples from pigs infected with T. spiralis, statistically significant increases in the level of specific IgM antibodies against T. spiralis ML ES antigens were first detected on day 30 pi and after this time, their concentration began to decrease. No changes in the level of anti-Trichinella IgM were observed in T. britovi- or T. pseudospiralis-infected pigs throughout the entire period of the experiment.
Collapse
Affiliation(s)
- Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Knysz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Monika Ziomek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Justyna Bień-Kalinowska
- The Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland
| |
Collapse
|
4
|
Gondek M, Herosimczyk A, Knysz P, Ożgo M, Lepczyński A, Szkucik K. Comparative Proteomic Analysis of Serum from Pigs Experimentally Infected with Trichinella spiralis, Trichinella britovi, and Trichinella pseudospiralis. Pathogens 2020; 9:pathogens9010055. [PMID: 31940868 PMCID: PMC7168678 DOI: 10.3390/pathogens9010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Although the available proteomic studies have made it possible to identify and characterize Trichinella stage-specific proteins reacting with infected host-specific antibodies, the vast majority of these studies do not provide any information about changes in the global proteomic serum profile of Trichinella-infested individuals. In view of the above, the present study aimed to examine the protein expression profile of serum obtained at 13 and 60 days postinfection (d.p.i.) from three groups of pigs experimentally infected with Trichinella spiralis, Trichinella britovi, and Trichinella pseudospiralis and from uninfected, control pigs by two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The comparative proteomic analysis of the T. spiralis group vs. the control group revealed 5 differently expressed spots at both 13 and 60 d.p.i. Experimental infection with T. britovi induced significant expression changes in 3 protein spots at 13 d.p.i. and in 6 protein spots at 60 d.p.i. in comparison with the control group. Paired analyses between the group infected with T. pseudospiralis and the uninfected control group revealed 6 differently changed spots at 13 d.p.i. and 2 differently changed spots at 60 d.p.i. Among these 27 spots, 15 were successfully identified. Depending on the Trichinella species triggering the infection and the time point of serum collection, they were IgM heavy-chain constant region, antithrombin III-precursor, immunoglobulin gamma-chain, clusterin, homeobox protein Mohawk, apolipoprotein E precursor, serum amyloid P-component precursor, Ig lambda chains, complement C3 isoform X1, and apolipoprotein A-I. Our results demonstrate that various Trichinella species and different phases of the invasion produce a distinct, characteristic proteomic pattern in the serum of experimentally infected pigs.
Collapse
Affiliation(s)
- Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
- Correspondence: ; Tel.: +48-(81)-445-6256
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Przemysław Knysz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Krzysztof Szkucik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
| |
Collapse
|
5
|
Abstract
Approximately one-sixth of the worlds' population is infected with helminths and this class of parasite takes a major toll on domestic livestock. The majority of species of parasitic helminth that infect mammals live in the gut (the only niche for tapeworms) where they contact the hosts' epithelial cells. Here, the helminth-intestinal epithelial interface is reviewed in terms of the impact on, and regulation of epithelial barrier function, both intrinsic (epithelial permeability) and extrinsic (mucin, bacterial peptides, commensal bacteria) elements of the barrier. The data available on direct effects of helminths on epithelial permeability are scant, fragmentary and pales in comparison with knowledge of mobilization of immune reactions and effector cells in response to helminth parasites and how these impact intestinal barrier function. The interaction of helminth-host and helminth-host-bacteria is an important determinant of gut form and function and precisely defining these interactions will radically alter our understanding of normal gut physiology and pathophysiological reactions, revealing new approaches to infection with parasitic helminths, bacterial pathogens and idiopathic auto-inflammatory disease.
Collapse
Affiliation(s)
- Derek M McKay
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Adam Shute
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| | - Fernando Lopes
- a Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology , Snyder Institute of Chronic Disease, Cumming School of Medicine, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
6
|
Muñoz-Carrillo JL, Contreras-Cordero JF, Muñoz-López JL, Maldonado-Tapia CH, Muñoz-Escobedo JJ, Moreno-García MA. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022]
Affiliation(s)
- J. L. Muñoz-Carrillo
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
- Laboratory of Immunology and Virology, Faculty of Biological Sciences; Autonomous University of Nuevo Leon; San Nicolás de los Garza Nuevo León México
| | - J. F. Contreras-Cordero
- Laboratory of Immunology and Virology, Faculty of Biological Sciences; Autonomous University of Nuevo Leon; San Nicolás de los Garza Nuevo León México
| | | | - C. H. Maldonado-Tapia
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| | - J. J. Muñoz-Escobedo
- Academic Unit of Odontology; Autonomous University of Zacatecas; Zacatecas México
| | - M. A. Moreno-García
- Laboratory of Cell Biology and Microbiology, Academic Unit of Biological Sciences; Autonomous University of Zacatecas; Zacatecas México
| |
Collapse
|
7
|
Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46:910-926. [PMID: 28636959 PMCID: PMC5551410 DOI: 10.1016/j.immuni.2017.05.011] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Collapse
Affiliation(s)
- Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Ming L, Peng RY, Zhang L, Zhang CL, Lv P, Wang ZQ, Cui J, Ren HJ. Invasion by Trichinella spiralis infective larvae affects the levels of inflammatory cytokines in intestinal epithelial cells in vitro. Exp Parasitol 2016; 170:220-226. [PMID: 27717772 DOI: 10.1016/j.exppara.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
As we all know, invasion of host intestinal epithelium is very important for T. spiralis to complete successfully their life cycle. However, the mechanisms that the intestinal infective larvae (IIL) invade and migrate in the intestinal epithailial cells (IECs) remain unclear until now. The related researches have been hindered since a readily operable in vitro normal model. In our earlier study, an in vitro normal IEC invasion model was established for the first time, and the abilities of the normal IECs to initiate mucosal inflammatory responses to invasion by the IIL in vitro were evaluated in this study. When the IIL were overlaid on the normal mouse IEC monolayers, they quickly within seconds invaded the monolayers and move within the IECs, leaving trails of damaged cells. Then the larvae were found to have started their molting at 12 h, and the complete cuticle was found at 24 h. The percentage of the first molt in the larvae was about 62.3%, and the percentage of the 2nd-4th molt was about 38.2% at 36 h. Real-time PCR showed that the mRNA levels of interleukin-1β (IL-1β), IL-8, epithelial neutrophil-activating peptide 78 (ENA-78), inducible nitric oxide synthase (iNOS), and monocyte chemotactic protein 2 (MCP-2) were elevated in the IECs after 7 h of infection after invasion by the IIL, and their levels were enhanced with the increase of larvae number. No changes in tumor necrosis factor-α (TNF-α) mRNA were observed after the IIL invasion. Secretion increases of IL-1β and IL-8 from the IEC monolayers invaded by T. spiralis were also detected by ELISA. Secretion increases of proinflammatory cytokines and inflammatory mediators in normal IECs can launch the acute inflammatory in response to the IIL invasion. This study would be helpful in further investigating the relationship between the host and T. spiralis, and the immune escape mechanisms of the niche established by T. spiralis.
Collapse
Affiliation(s)
- Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Ruo Yu Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Lei Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Chun Li Zhang
- Department of General Surgery, The People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Pin Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Jun Ren
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Clinical Laboratory of Henan Province, Zhengzhou 450052, China.
| |
Collapse
|
9
|
Roy A, Sawesi O, Pettersson U, Dagälv A, Kjellén L, Lundén A, Åbrink M. Serglycin proteoglycans limit enteropathy in Trichinella spiralis-infected mice. BMC Immunol 2016; 17:15. [PMID: 27267469 PMCID: PMC4897876 DOI: 10.1186/s12865-016-0155-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/01/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Serglycin proteoglycans are essential for maturation of secretory granules and for the correct granular storage of cationic proteases in hematopoietic cells, e.g. mast cells. However, little is known about the in vivo functions of serglycin proteoglycans during infection. Here we investigated the potential role of serglycin proteoglycans in host defense after infection with the nematode Trichinella spiralis. RESULTS Twelve days post infection lack of serglycin proteoglycans caused significantly increased enteropathy. The serglycin-deficient mice showed significantly increased intestinal worm burden, reduced recruitment of mast cells to the intestinal crypts, decreased levels of the mast cell proteases MCPT5 and MCPT6 in intestinal tissue, decreased serum levels of TNF-α, IL-1β, IL-10 and IL-13, increased levels of IL-4 and total IgE in serum, and increased intestinal levels of the neutrophil markers myeloperoxidase and elastase, as compared to wild type mice. At five weeks post infection, increased larvae burden and inflammation were seen in the muscle tissue of the serglycin-deficient mice. CONCLUSIONS Our results demonstrate that the serglycin-deficient mice were more susceptible to T. spiralis infection and displayed an unbalanced immune response compared to wild type mice. These findings point to an essential regulatory role of serglycin proteoglycans in immunity.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Osama Sawesi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Ulrika Pettersson
- Department of Pathology and Wildlife Diseases, The National Veterinary Institute, Uppsala, Sweden
| | - Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, The National Veterinary Institute, Uppsala, Sweden.,Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Section of Immunology, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007, Uppsala, Sweden.
| |
Collapse
|
10
|
Immune Homeostasis in Epithelial Cells: Evidence and Role of Inflammasome Signaling Reviewed. J Immunol Res 2015; 2015:828264. [PMID: 26355424 PMCID: PMC4556877 DOI: 10.1155/2015/828264] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
The epithelium regulates the interaction between the noxious xenogenous, as well as the microbial environment and the immune system, not only by providing a barrier but also by expressing a number of immunoregulatory membrane receptors, and intracellular danger sensors and their downstream effectors. Amongst these are a number of inflammasome sensor subtypes, which have been initially characterized in myeloid cells and described to be activated upon assembly into multiprotein complexes by microbial and environmental triggers. This review compiles a vast amount of literature that supports a pivotal role for inflammasomes in the various epithelial barriers of the human body as essential factors maintaining immune signaling and homeostasis.
Collapse
|
11
|
Mido S, Fath EM, Farid AS, Nonaka N, Oku Y, Horii Y. Trichinella spiralis: Infection changes serum paraoxonase-1 levels, lipid profile, and oxidative status in rats. Exp Parasitol 2012; 131:190-4. [DOI: 10.1016/j.exppara.2012.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 03/14/2012] [Accepted: 03/26/2012] [Indexed: 01/19/2023]
|
12
|
deSchoolmeester ML, Manku H, Else KJ. The innate immune responses of colonic epithelial cells to Trichuris muris are similar in mouse strains that develop a type 1 or type 2 adaptive immune response. Infect Immun 2006; 74:6280-6. [PMID: 17057095 PMCID: PMC1695505 DOI: 10.1128/iai.01609-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Trichuris muris resides in intimate contact with its host, burrowing within cecal epithelial cells. However, whether the enterocyte itself responds innately to T. muris is unknown. This study investigated for the first time whether colonic intestinal epithelial cells (IEC) produce cytokines or chemokines following T. muris infection and whether divergence of the innate response could explain differentially polarized adaptive immune responses in resistant and susceptible mice. Increased expression of mRNA for the proinflammatory cytokines gamma interferon (IFN-gamma) and tumor necrosis factor and the chemokine CCL2 (MCP-1) were seen after infection of susceptible and resistant strains, with the only difference in expression being a delayed increase in CCL2 in BALB/c IEC. These increases were ablated in MyD88-/- mice, and NF-kappaB p65 was phosphorylated in response to T. muris excretory/secretory products in the epithelial cell line CMT-93, suggesting involvement of the MyD88-NF-kappaB signaling pathway in IEC cytokine expression. These data reveal that IEC respond innately to T. muris. However, the minor differences identified between resistant and susceptible mice are unlikely to underlie the subsequent development of a susceptible type 1 (IFN-gamma-dominated) or resistant type 2 (interleukin-4 [IL-4]/IL-13-dominated) adaptive immune response.
Collapse
Affiliation(s)
- Matthew L deSchoolmeester
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | | | | |
Collapse
|
13
|
Dirgahayu P, Fukumoto S, Tademoto S, Kina Y, Hirai K. Excretory/secretory products from plerocercoids of Spirometra erinaceieuropaei suppress interleukin-1beta gene expression in murine macrophages. Int J Parasitol 2004; 34:577-84. [PMID: 15064122 DOI: 10.1016/j.ijpara.2003.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 12/12/2003] [Accepted: 12/16/2003] [Indexed: 12/27/2022]
Abstract
The present study shows that ES products from plerocercoids of Spirometra erinaceieuropaei suppressed interleukin-1beta mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages in the absence or presence of a cyclic AMP analogue, dibutyryl cyclic AMP. Investigation using the inhibitors of mitogen-activated protein kinase (MAPK) pathways revealed that extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase pathways are crucial for full induction of interleukin-1beta mRNA expression. ES products additionally suppressed interleukin-1beta mRNA expression in the cells treated with p38 mitogen-activated protein kinase inhibitor (SB203580) or extracellular signal-regulated protein kinase 1/2 inhibitor (PD98059). Western blot analysis showed that dibutyryl cyclic AMP enhanced lipopolysaccharide-induced phosphorylation of extracellular signal-regulated protein kinase 1/2, p38 mitogen-activated protein kinase and cyclic AMP responsive element binding protein (CREB) and, in turn, we demonstrated that ES products reduced the lipopolysaccharide and dibutyryl cyclic AMP-induced phosphorylation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase, but not cyclic AMP responsive element binding protein. These data demonstrate that ES products from the plerocercoids of S. erinaceieuropaei may evade induction of interleukin-1beta mRNA by inhibiting extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase pathways in lipopolysaccharide and/or dibutyryl cyclic AMP-stimulated macrophages.
Collapse
Affiliation(s)
- Paramasari Dirgahayu
- Division of Molecular Medical Zoology, Department of Microbiology and Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | | | | | | | | |
Collapse
|
14
|
Frydas S, Papaioannou N, Reale M, Barbacane RC, Conti P. MCP-1 and MIP-2 response in Trichinella spiralis infected mice treated with 4-deoxypyridoxine (4-DPD). Immunol Lett 2002; 83:31-7. [PMID: 12057852 DOI: 10.1016/s0165-2478(02)00045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemokines are involved in a number of pathophysiological conditions, such as inflammatory processes and are divided in two major subfamilies, C-X-C and C-C chemokines. The C-C chemokines are monocyte chemotactic protein 1-2-3-4-5, while C-X-C chemokines include MIP-2, IL-8, etc. We studied the levels of MCP-1 and MIP-2 in diaphragmatic and intercostal muscle tissue and serum in Trichinella spiralis infected mice treated and not treated with 4-deoxypyridoxine, a potent Vit. B6 antagonist which inhibits humoral and cellular immune response. MCP-1 and MIP-2 were measured in homogenized tissue and serum and determined by a specific ELISA. Here we found the levels of MCP-1 and MIP-2 in diaphragmatic and intercostal muscle tissue of T. spiralis infected mice were significantly increased after 10 days and peaked on day 20 post-infection; however, the levels of MIP-2 in mice treated with 4-DPD was lower than that of untreated mice at day 20. MCP-1 also peaked at days 20 and 40. Animals treated with 4-DPD also inhibited the production of MCP-1, compared with untreated animals. The maximum inhibition was at day 40. These inhibitory effects on MIP-2 and MCP-1 were also repeated in the serum determinations, but were not significant. This study demonstrates that MIP-2 and MCP-1 are stimulated in serum and tissue of T. spiralis infected mice and 4-DPD-treated animals significantly inhibited them.
Collapse
Affiliation(s)
- Stavros Frydas
- Department of Parasitology, Veterinary Faculty, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
15
|
Stadnyk AW, Dollard C, Issekutz TB, Issekutz AC. Neutrophil migration into indomethacin induced rat small intestinal injury is CD11a/CD18 and CD11b/CD18 co-dependent. Gut 2002; 50:629-35. [PMID: 11950807 PMCID: PMC1773205 DOI: 10.1136/gut.50.5.629] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neutrophils may exacerbate intestinal inflammatory diseases through secretion of proteolytic enzymes and reactive oxygen and nitrogen intermediates. AIMS To define the mechanisms involved in neutrophil infiltration into the non-steroidal anti-inflammatory disease inflamed intestine to develop strategies to regulate this process. METHODS The small intestinal epithelium of (15 mg/kg) indomethacin treated rats was examined for cytokine mRNA. The kinetics of neutrophil accumulation into the gastrointestinal tract (including lumen contents) of inflamed rats was determined using radiolabelled (111In) neutrophils injected intravenously followed by a three hour migration period. To determine which adhesion molecules were critical for migration, rats were also injected with function blocking monoclonal antibodies to the beta2 (CD11/CD18) integrins. RESULTS Interleukin 1beta, interleukin 1 receptor II, tumour necrosis factor alpha, and monocyte inflammatory peptide 2 but not monocyte chemoattractant protein 1 mRNA were detected in the epithelium within hours of indomethacin injection. Neutrophils were detectable in the small intestine and intestinal lumen by six hours and continued to accumulate until 48 hours post indomethacin injection. Neutrophil accumulation in the intestine was essentially blocked by anti-CD18, and partially blocked by either anti-CD11a or CD11b antibody treatment. Migration into the intestinal lumen was reduced by anti-CD11b. CONCLUSIONS The small intestinal epithelium acts as one source of cytokines with properties important in the recruitment of neutrophils. In turn, neutrophil migration into the indomethacin inflamed small intestine is mediated by CD11a/CD18 and CD11b/CD18.
Collapse
Affiliation(s)
- A W Stadnyk
- Dalhousie Inflammation Group and Department of Pediatrics, and Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
16
|
Rosbottom A, Knight PA, McLachlan G, Thornton EM, Wright SW, Miller HRP, Scudamore CL. Chemokine and cytokine expression in murine intestinal epithelium following Nippostrongylus brasiliensis infection. Parasite Immunol 2002; 24:67-75. [PMID: 11874561 DOI: 10.1046/j.0141-9838.2001.00437.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection of mice with the nematode parasite Nippostrongylus brasiliensis results in a well characterized intestinal mastocytosis with intraepithelial migration of mucosal mast cells (MMC). The molecules mediating this response are unknown. We examined expression of several putative mast cell chemoattractants in intestinal epithelium following N. brasiliensis infection. Expression of the chemokines monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1 alpha (MIP-1alpha), RANTES (regulated on activation normal T-cell expressed and secreted), fractalkine, and thymocyte expressed chemokine (TECK); and the cytokines stem cell factor (SCF) and transforming growth factor beta1 (TGFbeta1), was constitutive and no alteration was detected following infection. MCP-1 expression was also constitutive but at much lower levels and increased expression was detected on days 7 and 14 postinfection. Expression of MCP-1 in whole jejunum was at much higher levels than in epithelium. Constitutive expression of MCP-1, MIP-1alpha and TGFbeta1 was also detected in cultured bone marrow-derived homologues of MMC. In an intestinal epithelial cell line (CMT-93), there was constitutive expression of SCF, TGFalpha1, fractalkine and MCP-1. The results show that, in vivo, epithelium is a potentially important source of mast cell chemoattractants.
Collapse
Affiliation(s)
- Anne Rosbottom
- Department of Veterinary Pathology, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Tliba O, Sibille P, Boulard C, Chauvin A. Early hepatic cytokine mRNA expression in experimental rat fasciolosis. Vet Parasitol 2002; 103:237-49. [PMID: 11750117 DOI: 10.1016/s0304-4017(01)00584-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the development of the cellular response, particularly with respect to Th1 and Th2 cytokine mRNA levels, in rat liver during the first 14 days of experimental infection with Fasciola hepatica. We analysed the panel of cytokines involved in initiation of the inflammatory and immune response. The levels of various mRNAs, particularly those primarily associated with the acute inflammatory response, and those commonly associated with T-cell proliferation and differentiation, were assessed by reverse transcription-polymerase chain reaction (RT-PCR) in liver samples. We also investigated the immune and inflammatory mediators balance in the liver, draining lymph node and spleen, by RT-competitive PCR quantification of mRNA levels for IL-4, IL-10 and IFN-gamma. Our data provide the first evidence that, in the early phase of infection, the inflammatory response in the liver of infected animals is transiently depressed or delayed. A Th0 profile was initially observed in the liver and hepatic lymph node, which developed into a Th2 profile 2 weeks after infection in the liver only. In the spleen, cytokine down-regulation was initiated and maintained during this period, suggesting that the parasite acts differently locally and in the periphery.
Collapse
Affiliation(s)
- O Tliba
- Laboratoire d'Immunopathologie des Maladies Parasitaires, Centre de Tours, Institut National de la Recherche Agronomique (INRA), Station de Pathologie Aviaire et de Parasitologie 37380 Nouzilly, France.
| | | | | | | |
Collapse
|
18
|
Frydas S, Papaioannou N, Papazachariadou M, Xatzistilianou M, Vlemmas I, Merlitti D, Castellani ML, Schiavone C, Tulli A, Di Gioacchino M. A spectrum of antibody (IgG. IgG1, IgM) response in mice infected with trichinella spiralis treated with L-mimosine. Int J Immunopathol Pharmacol 2002; 15:19-26. [PMID: 12593784 DOI: 10.1177/039463200201500103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to demonstrate the anti-inflammatory effects of L-mimosine on chronic inflammation, by investigating its effect on the immunological response of BALB/c mice infected with the nematode parasite Trichinella spiralis. Specific anti-parasite immunoglobulins (IgG, IgG1 and IgM) were detected by the ELISA method in the serum of both the treated and the untreated animals at different periods of time for 60 days post infection. Two groups consisting of 18 mice each were used. The mice were 6 weeks of age. Both groups were infected with 220 larvae (L1-T. spiralis) per os: one group was administered an intraperitoneal injection of L-mimosine (200 &mgr;g/100 ml/dose) for 27 days (the first injection started 7 days before infection) and the second group was administered an intraperitoneal injection of saline solution (100 &mgr;l/dose). Parasite specific IgG, IgG1 and IgM levels were determined in the sera of infected, untreated mice. The levels of IgG and IgG1 were increased following infection and remained elevated throughout the experimental period, while IgM was significantly decreased on the 50th day post-infection. These levels were found to be lower in the L-mimosine treated infected mice, compared to the untreated mice. The inhibition started from day 10 and continued until day 60. In healthy animals, the production of immunoglobulins was not measurable. Non-infected animals treated with L-mimosine also showed no detectable anti-parasite specific immunoglobulins.
Collapse
Affiliation(s)
- S. Frydas
- Dept. Parasitology, Veterinary Faculty, Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Waterhouse CC, Joseph RR, Stadnyk AW. Endogenous IL-1 and type II IL-1 receptor expression modulate anoikis in intestinal epithelial cells. Exp Cell Res 2001; 269:109-16. [PMID: 11525644 DOI: 10.1006/excr.2001.5303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We previously reported that IL-1beta and the decoy receptor for IL-1 (IL-1RII) are expressed by intestinal epithelial cells (IEC) during detachment-induced cell death, or "anoikis." We now investigated whether IL-1 regulates anoikis. Skewing the balance in favor of IL-1, by blocking IL-1RII or by adding IL-1beta to detached rat IEC-18 cells, reduced cell death. The protective effect of anti-IL-1RII was reversed by blocking IL-1beta, confirming the anti-apoptotic effect was due to endogenous IL-1beta. Added IL-1beta also rescued cells from anoikis and was associated with considerable aggregation of the detached cells. Aggregate formation and the anti-apoptotic effect of added IL-1beta were prevented by blocking E-cadherin, indicating that IL-1 promoted aggregation and indirectly, survival. On the other hand, treating detached cells with IL-1beta and an anti-beta(1) integrin antibody abolished the protective effect of IL-1beta but not the aggregates. We conclude that the anti-apoptotic effect of IL-1 is mediated through a beta(1) integrin-dependent event secondary to cell-cell adhesion. This illustrates a previously uncharacterized role for IL-1 in the intestine wherein this cytokine may facilitate the preservation of the epithelial monolayer integrity.
Collapse
Affiliation(s)
- C C Waterhouse
- Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
20
|
Waterhouse CC, Joseph RR, Winsor GL, Lacombe TA, Stadnyk AW. Monocyte Chemoattractant Protein-1 Production by Intestinal Epithelial CellsIn Vitro:A Role for p38 in Epithelial Chemokine Expression. J Interferon Cytokine Res 2001; 21:223-30. [PMID: 11359653 DOI: 10.1089/107999001750169853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The intestinal epithelial cell (IEC) represents the first cellular barrier to infection. Consistent with this sentinel role, IEC are known to produce a variety of chemokines in response to bacterial infection or proinflammatory cytokines. These chemokines act as potent leukocyte activators and chemoattractants in vivo. In this report, we begin to characterize the regulation of expression of the chemokine monocyte chemoattractant protein-1 (MCP-1) in the rat small intestinal IEC-18 line. Following stimulation with either interleukin-1beta (IL-1beta) or lipopolysaccharide (LPS), IEC-18 cells produced MCP-1, with IL-1 proving a more effective stimulus than LPS at both the mRNA and protein levels. Expression of MCP-1 due to either stimulus was inhibited by tyrosine kinase inhibitors, prompting us to investigate potential phosphotyrosine-dependent targets responsible for MCP-1 expression. We detected activation of p38, a member of the mitogen-activated protein kinase family, following either IL-1 or LPS treatment. Specific inhibition of this kinase using the compound SB203580 caused a destabilization of MCP-1 mRNA. These data point to a role for p38 in the regulation of MCP-1 mRNA expression by the IEC.
Collapse
Affiliation(s)
- C C Waterhouse
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS Canada
| | | | | | | | | |
Collapse
|
21
|
Stadnyk AW, Dollard CD, Issekutz AC. Neutrophil migration stimulates rat intestinal epithelial cell cytokine expression during helminth infection. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.6.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Andrew C. Issekutz
- Department of Pediatrics, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Halifax, Nova Scotia, Canada
- Pathology, Dalhousie University, and the Dalhousie Inflammation Group, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Abstract
Intestinal epithelial cells have been shown to produce IL-1beta in vivo. This gene expression is rapid and precedes most determinants of inflammation, suggesting a pivotal role for IL-1beta in the early events leading to inflammation. To better understand the mechanisms leading to this IL-1beta production, we have developed an in vitro model system employing a nontransformed intestinal epithelial cell line that does not constitutively express IL-1beta. Following detachment, these cells rapidly expressed IL-1beta mRNA. This expression was enhanced, but not induced, by LPS. IL-1beta protein was detected by immunoprecipitation in the culture medium from passaged IEC-18 but not intracellularly, suggesting an efficient secretion of the molecule following induction. Interestingly, culture supernatants from passaged cells were without IL-1 bioactivity, suggesting the presence of an inhibitor as well. RT-PCR and Western blot analysis showed expression of IL-1RII by IEC-18 following detachment, possibly explaining the observed lack of bioactivity. These results indicate a novel pathway for IL-1beta production and suggest that proinflammatory effects of IEC-derived IL-1 may be modulated by the simultaneous production of IL-1 antagonists.
Collapse
Affiliation(s)
- C C Waterhouse
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, B3J 3G9, Canada
| | | |
Collapse
|
23
|
Frydas S, Reale M, Vacalis D, Barbacane RC, Placido FC, Cataldo I, Di Gioacchino M, Karagouni E, Dotsika E, Anogiannakis G, Trakatellis A, Conti P. IgG, IgG1 and IgM response in Trichinella spiralis-infected mice treated with 4-deoxypirydoxine or fed a Vitamin B6-deficient diet. Mol Cell Biochem 1999; 194:47-52. [PMID: 10391123 DOI: 10.1023/a:1006996603605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to investigate the effect of pyridoxine (Vitamin B6) deficiency on the immunological response of BALB/c mice infected with the parasite T. spiralis. Specific anti-parasite IgM and IgG immunoglobulins were detected by ELISA method in the serum of treated animals at different periods for 60 days post infection. Vitamin B6-deficiency was induced in two separate groups of mice by either (1) maintaining the mice on a Vitamin B6-deficient synthetic pellet diet for 40 days before infection, or (2) by daily intraperitoneal injection of 8 x 10(5) M/100 microl of 4-Deoxypyridoxine (4-DPD), a potent antagonist of Vitamin B6 for 20 days prior to infection. These two groups of mice were then injected with 100 larvae (L1-T. spiralis) per os. Parasite burdens in the mice were observed by light microscopy. Cysts were present in the diaphragms of the mice after 60 days post-infection. Parasite specific IgG, as well as IgG1 levels were determined in the sera of infected mice fed a normal diet. These levels were found to be lower in the 4-DPD-treated mice compared to the untreated mice. The inhibition started from the 10th day and continued to the 60th day, and in the 4-DPD-treated group the inhibition initiated after 24 h to 60 days. IgM level also was depressed by 4-DPD, starting from 24 h after injection of the compound. In mice fed Vitamin B6-deficient diets the levels of IgG were lower than in mice fed normal diets. These results show that BALB/c mice infected with T. spiralis and fed either a Vitamin B6-deficient diet or a diet which included the Vitamin B6-antagonist, 4-DPD, both influence the course of IgG, IgG1 and IgM production.
Collapse
Affiliation(s)
- S Frydas
- Department of Parasitology, Veterinary Faculty, Aristotle University, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li CK, Seth R, Gray T, Bayston R, Mahida YR, Wakelin D. Production of proinflammatory cytokines and inflammatory mediators in human intestinal epithelial cells after invasion by Trichinella spiralis. Infect Immun 1998; 66:2200-6. [PMID: 9573108 PMCID: PMC108182 DOI: 10.1128/iai.66.5.2200-2206.1998] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epithelial cells are the first point of host contact for invasive intestinal pathogens and may initiate mucosal inflammatory responses via production of proinflammatory cytokines and mediators. The aim of the present study was to investigate in vitro the initial invasion of a parasitic nematode (Trichinella spiralis), to measure the early production of specific epithelial cytokines and inflammatory mediators after invasion, and to compare these responses with those to invasive bacteria. Monolayers of human colonic epithelial cell lines (HT29, T84, and Caco-2) were infected by T. spiralis or Listeria monocytogenes. Bile-activated infective larvae of T. spiralis invaded and migrated into the epithelial cell monolayers, leaving trails of dead cells. Transmission electron microscopy studies of damaged cells along the trail showed a progressive increase in size, disruption of cell membranes, loss or dilution of cytoplasmic proteins, and swelling of mitochondria and nuclei. However, no nuclear fragmentation was observed. With reverse transcription-PCR and an enzyme-linked oligonucleotide chemiluminescent assay, mRNA transcripts of interleukin-1beta (IL-1beta), IL-8, and epithelial neutrophil-activating peptide 78 were shown to increase in epithelial cells invaded by T. spiralis or L. monocytogenes, but only L. monocytogenes elicited increased inducible nitric oxide synthase (iNOS) mRNA. No increase in tumor necrosis factor alpha or transforming growth factor beta mRNA was seen after T. spiralis invasion. Increased levels of IL-8 were also released from the basolateral surfaces of infected monolayers as detected by sandwich enzyme-linked immunosorbent assay. Induction and secretion of proinflammatory cytokines in epithelial cells after nematode or bacterial invasion may initiate the acute inflammatory response of the small intestine. The upregulation of iNOS in bacterial infections may contribute to mucosal defense and may also be associated with subsequent cell death, whereas different mechanisms appear to operate after nematode invasion.
Collapse
Affiliation(s)
- C K Li
- Department of Life Science, University of Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|