1
|
Bovine Babesiosis in Turkey: Impact, Current Gaps, and Opportunities for Intervention. Pathogens 2020; 9:pathogens9121041. [PMID: 33322637 PMCID: PMC7763958 DOI: 10.3390/pathogens9121041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Bovine babesiosis is a global tick-borne disease that causes important cattle losses and has potential zoonotic implications. The impact of bovine babesiosis in Turkey remains poorly characterized, but several Babesia spp., including B. bovis, B. bigemina, and B. divergens, among others and competent tick vectors, except Rhipicephalus microplus, have been recently identified in the country. Bovine babesiosis has been reported in all provinces but is more prevalent in central and highly humid areas in low and medium altitude regions of the country housing approximately 70% of the cattle population. Current control measures include acaricides and babesicidal drugs, but not live vaccines. Despite the perceived relevant impact of bovine babesiosis in Turkey, basic research programs focused on developing in vitro cultures of parasites, point-of-care diagnostic methods, vaccine development, “omics” analysis, and gene manipulation techniques of local Babesia strains are scarce. Additionally, no effective and coordinated control efforts managed by a central animal health authority have been established to date. Development of state-of-the-art research programs in bovine babesiosis to address current gaps in knowledge and implementation of long-term plans to control the disease will surely result in important economic, nutritional, and public health benefits for the country and the region.
Collapse
|
2
|
Interplay between Attenuation- and Virulence-Factors of Babesia bovis and Their Contribution to the Establishment of Persistent Infections in Cattle. Pathogens 2019; 8:pathogens8030097. [PMID: 31277392 PMCID: PMC6789890 DOI: 10.3390/pathogens8030097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine babesiosis is an acute and persistent tick-borne global disease caused mainly by the intraerythrocytic apicomplexan parasites Babesia bovis and B. bigemina. B. bovis infected erythrocytes sequester in blood capillaries of the host (cytoadhesion), causing malaria-like neurological signs. Cytoadhesion and antigenic variation in B. bovis are linked to the expression of members of the Variant Erythrocyte Surface Antigen (VESA) gene family. Animals that survive acute B. bovis infection and those vaccinated with attenuated strains remain persistently infected, suggesting that B. bovis parasites use immune escape mechanisms. However, attenuated B. bovis parasites do not cause neurological signs in vaccinated animals, indicating that virulence or attenuation factors play roles in modulating parasite virulence phenotypes. Artificial overexpression of the SBP2t11 protein, a defined attenuation factor, was associated with reduced cytoadhesion, suggesting a role for this protein as a key modulator of virulence in the parasite. Hereby, we propose a model that might be functional in the modulation of B. bovis virulence and persistence that relies on the interplay among SBP2t, VESA proteins, cytoadhesion, and the immune responses of the host. Elucidation of mechanisms used by the parasite to establish persistent infection will likely contribute to the design of new methods for the control of bovine babesiosis.
Collapse
|
3
|
Expression analysis and biological characterization of Babesia sp. BQ1 (Lintan) (Babesia motasi-like) rhoptry-associated protein 1 and its potential use in serodiagnosis via ELISA. Parasit Vectors 2016; 9:313. [PMID: 27245213 PMCID: PMC4888343 DOI: 10.1186/s13071-016-1573-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 01/25/2023] Open
Abstract
Background In China, ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. It has a significant economic impact, and several Babesia motasi-like isolates have been recently shown to be responsible for ovine babesiosis in this country. Methods Full-length and C-terminal-truncated forms of the rap-1a61-1 gene of Babesia sp. BQ1 (Lintan) were cloned into the pET-30a plasmid and subsequently expressed as His-fusion proteins. The resulting recombinant RAP-1a proteins (rRAP-1a61-1 and rRAP-1a61-1/CT) were purified and evaluated as diagnostic antigens using Western blot analysis and ELISA. The native Babesia sp. BQ1 (Lintan) RAP-1 protein was recognized using Western blots and IFAT by antibodies that were raised in rabbits against rRAP-1a61-1/CT. The specificity, sensitivity and positive threshold values for rRAP-1a61-1/CT in ELISA were evaluated. Results Cross-reactivity was observed between rRAP-1a61-1/CT and positive sera for Babesia sp. BQ1 (Lintan), Babesia sp. BQ1 (Ningxian) and Babesia sp. Tianzhu isolates obtained from infected sheep. At one week post-inoculation, a significant increase was observed in the amount of antibodies produced against RAP-1a, and high levels of antibodies against RAP-1a were observed for 3 months (at 84 days p.i.). A total of 3198 serum samples were collected from small ruminants in 54 different regions in 23 provinces of China. These samples were tested using ELISA based on the rRAP-1a61-1/CT protein. The results indicated that the average positive rate was 36.02 %. Conclusions The present study suggests that rRAP-1a61-1/CT might be a potential diagnostic antigen for detecting several isolates of B. motasi-like parasites infection.
Collapse
|
4
|
Lee Y, Lee YS, Cho SY, Kwon HJ. Perspective of Peptide Vaccine Composed of Epitope Peptide, CpG-DNA, and Liposome Complex Without Carriers. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 99:75-97. [PMID: 26067817 DOI: 10.1016/bs.apcsb.2015.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The magnitude and specificity of cell-mediated and humoral immunity are critically determined by peptide sequences; peptides corresponding to the B- or T-cell receptor epitopes are sufficient to induce an effective immune response if delivered properly. Therefore, studies on the screening and application of peptide-based epitopes have been done extensively for the development of therapeutic antibodies and prophylactic vaccines. However, the efficacy of immune response and antibody production by peptide-based immunization is too limited for human application at the present. To improve the efficacy of vaccines, researchers formulated adjuvants such as alum, water-in-oil emulsion, and Toll-like receptor agonists. They also employed liposomes as delivering vehicles to stimulate immune responses. Here, we review our recent studies providing a potent method of epitope screening and antibody production without conventional carriers. We adopted Lipoplex(O), comprising a natural phosphodiester bond CpG-DNA and a specific liposome complex, as an adjuvant. Lipoplex(O) induces potent stimulatory activity in humans as well as in mice, and immunization of mice with several peptides along with Lipoplex(O) without general carriers induces significant production of each peptide-specific IgG2a. Immunization of peptide vaccines against virus-associated antigens in mice has protective effects against the viral infection. A peptide vaccine against carcinoma-associated antigen and the peptide-specific monoclonal antibody has functional effects against cancer cells in mouse models. In conclusion, we improved the efficacy of peptide vaccines in mice. Our strategy can be applied in development of therapeutic antibodies or in defense against pandemic infectious diseases through rapid screening of potent B-cell epitopes.
Collapse
Affiliation(s)
- Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Young Seek Lee
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | - Soo Young Cho
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science BK21, Program for Veterinary Science, Seoul National University, Seoul, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
5
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1563-1592. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
- Monica Florin-Christensen
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
- ADRU-ARS, United States Department of Agriculture, Pullman, WA 99164-6630, USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
| | - Daniela A Flores
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- ANPCyT, C1425FQD Ciudad Autonoma de Buenos Aires, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Argentina
- CONICET, C1033AAJ Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
DNA nanotechnology-based development of delivery systems for bioactive compounds. Eur J Pharm Sci 2014; 58:26-33. [DOI: 10.1016/j.ejps.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 12/25/2022]
|
7
|
Sauter MM, Gauger JJL, Brandt CR. Oligonucleotides designed to inhibit TLR9 block Herpes simplex virus type 1 infection at multiple steps. Antiviral Res 2014; 109:83-96. [PMID: 24995383 DOI: 10.1016/j.antiviral.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/10/2014] [Accepted: 06/23/2014] [Indexed: 01/09/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is an important human pathogen which requires activation of nuclear factor-kappa B (NFκB) during its replication cycle. The persistent nature of HSV-1 infection, and the emergence of drug-resistant strains, highlights the importance of research to develop new antiviral agents. Toll-like receptors (TLRs) play a prominent role during the early antiviral response by recognizing viral nucleic acid and gene products, activating NFκB, and stimulating the production of inflammatory cytokines. We demonstrate a significant effect on HSV-1 replication in ARPE-19 and Vero cells when oligonucleotides designed to inhibit TLR9 are added 2h prior to infection. A greater than 90% reduction in the yield of infectious virus was achieved at oligonucleotide concentrations of 10-20 μM. TLR9 inhibitory oligonucleotides prevented expression of essential immediate early herpes gene products as determined by immunofluorescence microscopy and Western blotting. TLR9 oligonucleotides also interfered with viral attachment and entry. A TLR9 inhibitory oligonucleotide containing five adjacent guanosine residues (G-ODN) exhibited virucidal activity and inhibited HSV-1 replication when added post-infection. The antiviral effect of the TLR9 inhibitory oligonucleotides did not depend on the presence of TLR9 protein, suggesting a mechanism of inhibition that is not TLR9 specific. TLR9 inhibitory oligonucleotides also reduced NFκB activity in nuclear extracts. Studies using these TLR inhibitors in the context of viral infection should be interpreted with caution.
Collapse
Affiliation(s)
- Monica M Sauter
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Joshua J L Gauger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
8
|
Abu Lila AS, Uehara Y, Ishida T, Kiwada H. Application of Polyglycerol Coating to Plasmid DNA Lipoplex for the Evasion of the Accelerated Blood Clearance Phenomenon in Nucleic Acid Delivery. J Pharm Sci 2014; 103:557-66. [DOI: 10.1002/jps.23823] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 11/09/2022]
|
9
|
Leifer CA, Rose WA, Botelho F. Traditional biochemical assays for studying toll-like receptor 9. J Immunoassay Immunochem 2013; 34:1-15. [PMID: 23323977 DOI: 10.1080/15321819.2012.666222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the mechanistic basis of receptor activation and regulation can offer therapeutic targets for disease treatment. Evidence is emerging for a role of the normally foreign responsive Toll-like receptors (TLRs) in the development of autoimmunity through response to self-patterns. Regulatory mechanisms governing this class of receptors are poorly understood, and failures within this system likely contribute to development of autoimmunity. In this article, we review biochemical assays used to study one of the self-pattern responsive TLRs, TLR9, and suggest that these studies are critical for development of new targets for autoimmune therapies.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
10
|
Buchanan R, Popowych Y, Dagenais C, Arsic N, Mutwiri GK, Potter AA, Babiuk LA, Griebel PJ, Wilson HL. Interferon-gamma and B-cell Activating Factor (BAFF) promote bovine B cell activation independent of TLR9 and T-cell signaling. Vet Immunol Immunopathol 2012; 145:453-63. [PMID: 22264737 DOI: 10.1016/j.vetimm.2012.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 01/20/2023]
Abstract
We previously reported that CD21(+) B cells purified from bovine blood do not respond to CpG-ODN stimulation unless either CD14(+) monocytes or B-cell Activating Factor (BAFF), a cytokine produced by activated monocytes, are present. In this report, we present evidence that CD14(+) monocytes are critical for CpG-specific lymphocyte proliferation within the peripheral blood mononuclear cell (PBMC) population but that this response is not mediated by soluble factors produced by CpG-activated monocytes. We further determine that bovine monocytes stimulated with IFN-γ induce expression of the BAFF gene and that recombinant IFN-γ and BAFF induced robust B cell activation when cultured in the absence of CpG ODN. These data suggest that CpG-stimulated monocytes may indirectly promote B cell activation by promoting release of cytokines and/or other soluble factors from accessory cells which in turn act on CpG-stimulated B cells to promote antigen-independent and T cell independent B cell activation. Understanding the T cell independent signals that induce B cell activation has important implications for understanding B cell development in locations where T cells are limited and in understanding polyclonal B cell activation that may contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Rachelle Buchanan
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chu CY, Lee SC, Liu SS, Lin YM, Shen PC, Yu C, Lee KH, Zhao X, Lee JW. Cytosine-phosphate-guanine oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by keyhole limpet hemocyanin antigen in dairy cattle. Nucleic Acid Ther 2011; 21:323-32. [PMID: 21916610 DOI: 10.1089/nat.2010.0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adjuvants are important components of vaccine formulations. Effective adjuvants line innate and adaptive immunity by signaling through pathogen recognition receptors. Synthetic cytosine-phosphate-guanine (CpG) oligodeoxynucleotides (ODNs) have been shown to have potentials as adjuvants for vaccines. However, the immunostimulatory effect of CpG is species-specific and depends on the sequence of CpG motifs. A CpG ODN (2135), containing 3 identical copies of GTCGTT motif, was previously reported to have the strongest effects on bovine peripheral blood mononuclear cells (PBMC). Based on the sequence of 2135, we replaced the GTCGTT motif with 11 other sequences containing CG and investigated their effects on bovine lymphocyte proliferation. Results showed that the CpG ODNs containing 3 copies of GACGTT motif had the highest lymphocyte stimulation index (7.91±1.18), which was significantly (P<0.05) higher than that of 2135 (4.25±0.56). The CpG ODNs containing 3 copies of GACGTT motif also significantly increased the mRNA expression of interferon (IFN)-α, interleukin (IL)-12, and IL-21 in bovine PBMC. When dairy cows were immunized with the keyhole limpet hemocyanin (KLH) antigen formulated with CpG ODNs containing 3 copies of GACGTT, production of KLH-specific antibodies in serum and in milk whey was significantly (P<0.05) enhanced. IFN-γ in whole blood stimulated by KLH was also significantly (P<0.05) increased in cows immunized with KLH plus CpG ODNs. Our results indicate that CpG ODNs containing 3 copies of the GACGTT motifs is a potential adjuvant for bovine vaccines.
Collapse
Affiliation(s)
- Chun-Yen Chu
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Neipu, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ren J, Yang L, Xu H, Zhang Y, Wan M, Liu G, Zhao L, Wang L, Yu Y. CpG oligodeoxynucleotide and montanide ISA 206 adjuvant combination augments the immune responses of a recombinant FMDV vaccine in cattle. Vaccine 2011; 29:7960-5. [PMID: 21872635 DOI: 10.1016/j.vaccine.2011.08.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/26/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. To prevent the spread of FMDV, inactivated virus vaccines are used to immunize animals in developing countries. However, there are safety concerns. In addition, it is difficult to distinguish the vaccinated animals from those naturally infected ones. In our lab, we have developed a recombinant FMDV vaccine named A7. A7 contained multiple B cell and T cell epitopes, which reside in a capsid protein (VP1) of FMDV. To enhance its immunogenicity, A7 was formulated with CpG ODN RW03 in combination with Montanide ISA 206 (ISA), and the resultant vaccine (A7+ISA+CpG ODN RW03) was used to immunize mice and cattle. It was found that CpG ODN RW03 and ISA combination could facilitate A7 to induce a vigorous and long-lasting specific antibody response in mice and cattle. After FMDV challenge, 80% (4/5) of the calves immunized with A7+ISA+CpG ODN RW03 were protected, which was superior to those immunized with A7+ISA (25%, 1/4) or inactivated FMDV vaccine (50%, 2/4). These findings suggest that CpG ODN RW03 could be used with Montanide ISA 206 as a potent adjuvant for recombinant FMDV in cattle.
Collapse
Affiliation(s)
- Jiling Ren
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Buchanan RM, Popowych Y, Arsic N, Townsend HGG, Mutwiri GK, Potter AA, Babiuk LA, Griebel PJ, Wilson HL. B-cell activating factor (BAFF) promotes CpG ODN-induced B cell activation and proliferation. Cell Immunol 2011; 271:16-28. [PMID: 21724179 DOI: 10.1016/j.cellimm.2011.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 01/07/2023]
Abstract
It is controversial whether naïve B cells are directly activated in response to TLR9 ligand, CpG ODN. Although bovine blood-derived CD21(+) B cells express TLR9 and proliferate in response to CpG in mixed-cell populations, purified bovine B cells do not proliferate significantly in response to CpG ODN, even when the B cell receptor is engaged. When co-cultured with CD14(+) myeloid cells and/or B-cell activating factor (BAFF), a cytokine produced by activated myeloid cells, there was a significant increase in CpG-specific B cell proliferation, and the number of large B cells in general or positive for CD25, all of which are markers for B cell activation. These data suggest that activated myeloid cells and BAFF prime B cells for significant CpG-specific activation. Understanding the signals required to mediate efficient CpG-induced, antigen-independent and T-cell independent activation of B cells has implications for polyclonal B cell activation and the development of autoimmune diseases.
Collapse
Affiliation(s)
- Rachelle M Buchanan
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatchewan, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Adjuvants and delivery systems in veterinary vaccinology: current state and future developments. Arch Virol 2010; 156:183-202. [PMID: 21170730 DOI: 10.1007/s00705-010-0863-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 11/13/2010] [Indexed: 12/20/2022]
Abstract
Modern adjuvants should induce strong and balanced immune responses, and it is often desirable to induce specific types of immunity. As an example, efficient Th1-immunity-inducing adjuvants are highly in demand. Such adjuvants promote good cell-mediated immunity against subunit vaccines that have low immunogenicity themselves. The development of such adjuvants may take advantage of the increased knowledge of the molecular mechanisms and factors controlling these responses. However, knowledge of such molecular details of immune mechanisms is relatively scarce for species other than humans and laboratory rodents, and in addition, there are special considerations pertaining to the use of adjuvants in veterinary animals, such as production and companion animals. With a focus on veterinary animals, this review highlights a number of approaches being pursued, including cytokines, CpG oligonucleotides, microparticles and liposomes.
Collapse
|
15
|
Wilson HL, Kovacs-Nolan J, Latimer L, Buchanan R, Gomis S, Babiuk L, van Drunen Littel-van den Hurk S. A novel triple adjuvant formulation promotes strong, Th1-biased immune responses and significant antigen retention at the site of injection. Vaccine 2010; 28:8288-99. [PMID: 20959153 DOI: 10.1016/j.vaccine.2010.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/25/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Ovalbumin (OVA) was labeled with a near infra-red dye (*OVA) and formulated with the host defense peptide indolicidin (Indol), CpG oligodeoxynucleotide (ODN) 1826 (CpG) and/or poly(p-dicarboxylatophenoxy)-phosphazene (PP4). The immunogenicity of these *OVA formulations was evaluated in mice. All double and triple adjuvant combinations elicited strong antibody responses. *OVA formulated with CpG ODN in combination with indolicidin, PP4 or both induced only IFN-γ, while formulations with indolicidin and/or PP4 promoted predominantly IL-5 production. Overall, both IgG and IFN-γ production was superior when *OVA was combined with CpG/Indol/PP4. Furthermore, mice injected with *OVA formulated with CpG/Indol/PP4 contained detectable *OVA in the injection site two months post immunization. These results indicate that the CpG/Indol/PP4 combination promotes prolonged antigen retention and strong, antigen-specific Th1-biased immune responses.
Collapse
Affiliation(s)
- Heather L Wilson
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Goff WL, Bastos RG, Brown WC, Johnson WC, Schneider DA. The bovine spleen: interactions among splenic cell populations in the innate immunologic control of hemoparasitic infections. Vet Immunol Immunopathol 2010; 138:1-14. [PMID: 20692048 DOI: 10.1016/j.vetimm.2010.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/08/2010] [Accepted: 07/12/2010] [Indexed: 11/17/2022]
Abstract
Over the past several years, innate immunity has been recognized as having an important role as a front-line defense mechanism and as an integral part of the adaptive immune response. Innate immunity in cattle exposed to hemoparasites is spleen-dependent and age-related. In this review, we discuss general aspects of innate immunity and the cells involved in this aspect of the response to infection. We also provide examples of specific splenic regulatory and effector mechanisms involved in the response to Babesia bovis, an important tick-borne hemoparasitic disease of cattle. Evidence for the regulatory and effector role of bovine splenic monocytes and DC both in directing a type-1 response through interaction with splenic NK cells and γδT-cells will be presented.
Collapse
Affiliation(s)
- W L Goff
- Animal Disease Research Unit, USDA-ARS, 3003 ADBF/WSU, Pullman, WA 99164-6630, USA
| | | | | | | | | |
Collapse
|
17
|
Wattrang E. Phosphorothioate oligodeoxyribonucleotides induce in vitro proliferation of chicken B-cells. Vet Immunol Immunopathol 2009; 131:218-28. [PMID: 19447503 DOI: 10.1016/j.vetimm.2009.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 12/09/2008] [Accepted: 04/15/2009] [Indexed: 10/20/2022]
Abstract
The study aimed to evaluate short synthetic oligodeoxyribonucleotides (ODN) as inducers of proliferation of chicken peripheral blood mononuclear cells (PBMC) and to identify the proliferating cells. A panel of different ODN; with phosphodiester and/or phosphorothioate backbone, with and without CpG-motifs, was therefore assessed for in vitro induction of proliferation. Six complete phosphorothioate ODN induced proliferation of PBMC while the complete phosphodiester or chimeric phosphodiester/phosphorohiate ODN did not. Moreover, CpG-motifs were not essential for induction of proliferation as responses to CpG-ODN were similar to those of their GpC controls. Two stimulatory phosphorothioate ODN were also used in phosphodiester form. In this comparison, only the phosphorothioate ODN were active despite the identical nucleotide sequences of their phosphodiester counterparts. In order to deliver DNA to the cytoplasm and decrease degradation of ODN by nucleases, stimulating as well as inactive ODN were treated with lipofectin prior to induction. However, proliferative responses were not influenced by lipofectin treatment and in analogy, none of the inactive ODN induced proliferation after lipofectin treatment. Among PBMC, ODN-responding cells were identified as predominantly Bu-1, immunoglobulin and major histocompatibility complex class II expressing cells, while CD3 expressing cells were not responding. Using magnetic cell separation of Bu-1 expressing cells prior to culture it was found that Bu-1 depleted cells did not proliferate upon ODN stimulation while the Bu-1 enriched cells were able to proliferate upon this stimulus. Taken together, among ODN in the present panel, only phosphorothioate ODN induced proliferation of PBMC. Responses were induced regardless of the presence of CpG-motifs and were not influenced by addition of lipofectin. Amid the chicken PBMC, predominantly cells of a B-cell phenotype proliferated in response to ODN stimulation and they were able to respond to this stimulus without the presence of other cell types.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Virology, Immunobiology and Parasitology (SWEPAR), National Veterinary Institute, Uppsala, Sweden.
| |
Collapse
|
18
|
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res 2009; 40:37. [PMID: 19379662 PMCID: PMC2695028 DOI: 10.1051/vetres/2009020] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/16/2009] [Indexed: 12/24/2022] Open
Abstract
Babesia, the causal agent of babesiosis, are tick-borne apicomplexan protozoa. True babesiae (Babesia genus sensu stricto) are biologically characterized by direct development in erythrocytes and by transovarial transmission in the tick. A large number of true Babesia species have been described in various vertebrate and tick hosts. This review presents the genus then discusses specific adaptations of Babesia spp. to their hosts to achieve efficient transmission. The main adaptations lead to long-lasting interactions which result in the induction of two reservoirs: in the vertebrate host during low long-term parasitemia and throughout the life cycle of the tick host as a result of transovarial and transstadial transmission. The molecular bases of these adaptations in vertebrate hosts are partially known but few of the tick-host interaction mechanisms have been elucidated.
Collapse
Affiliation(s)
- Alain Chauvin
- Ecole nationale vétérinaire, UMR 1300 BIOEPAR, ENVN, Atlanpôle - La Chantrerie, BP 40706, F-44307 Nantes Cedex 03, France.
| | | | | | | | | |
Collapse
|
19
|
Nakamura K, Miyazato A, Xiao G, Hatta M, Inden K, Aoyagi T, Shiratori K, Takeda K, Akira S, Saijo S, Iwakura Y, Adachi Y, Ohno N, Suzuki K, Fujita J, Kaku M, Kawakami K. Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. THE JOURNAL OF IMMUNOLOGY 2008; 180:4067-74. [PMID: 18322216 DOI: 10.4049/jimmunol.180.6.4067] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism of host cell recognition of Cryptococcus neoformans, an opportunistic fungal pathogen in immunocompromised patients, remains poorly understood. In the present study, we asked whether the DNA of this yeast activates mouse bone marrow-derived myeloid dendritic cells (BM-DCs). BM-DCs released IL-12p40 and expressed CD40 upon stimulation with cryptococcal DNA, and the response was abolished by treatment with DNase, but not with RNase. IL-12p40 production and CD40 expression were attenuated by chloroquine, bafilomycin A, and inhibitory oligodeoxynucleotides (ODN) that suppressed the responses caused by CpG-ODN. Activation of BM-DCs by cryptococcal DNA was almost completely abrogated in TLR9 gene-disrupted (TLR9(-/-)) mice and MyD88(-/-) mice, similar to that by CpG-ODN. In addition, upon stimulation with whole yeast cells of acapsular C. neoformans, TLR9(-/-) BM-DCs produced a lower amount of IL-12p40 than those from wild-type mice, and TLR9(-/-) mice were more susceptible to pulmonary infection with this fungal pathogen than wild-type mice, as shown by increased number of live colonies in lungs. Treatment of cryptococcal DNA with methylase resulted in reduced IL-12p40 synthesis by BM-DCs. Furthermore, using a luciferase reporter assay, cryptococcal DNA activated NF-kappaB in HEK293 cells transfected with the TLR9 gene. Finally, confocal microscopy showed colocalization of fluorescence-labeled cryptococcal DNA with CpG-ODN and the findings merged in part with the distribution of TLR9 in BM-DCs. Our results demonstrate that cryptococcal DNA causes activation of BM-DCs in a TLR9-dependent manner and suggest that the CpG motif-containing DNA may contribute to the development of inflammatory responses after infection with C. neoformans.
Collapse
Affiliation(s)
- Kiwamu Nakamura
- Department of Infection Control and Laboratory Diagnostics, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McCluskie MJ, Krieg AM. Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol 2006; 311:155-78. [PMID: 17048708 DOI: 10.1007/3-540-32636-7_6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune system-with its remarkable ability to generate antigen-specific antibodies and T lymphocytes against pathogens never before "seen" by an organism-is one of the marvels of evolution. However, to generate these responses, the adaptive immune system requires activation by the innate immune system. Toll-like receptors (TLRs) are perhaps the best-understood family of innate immune receptors for detecting infections and stimulating adaptive immune responses. TLR9 appears to have evolved to recognize infections by a subtle structural difference between eukaryotic and prokaryotic/viral DNA; only the former frequently methylates CpG dinucleotides. Used as vaccine adjuvants, synthetic oligodeoxynucleotide (ODN) ligands for TLR9--CpG ODN--greatly enhance the speed and strength of the immune responses to vaccination.
Collapse
Affiliation(s)
- M J McCluskie
- Coley Pharmaceutical Group, Inc., 93 Worcester Street, Suite 101, Wellesley, MA 02481, USA
| | | |
Collapse
|
21
|
Booth JS, Nichani AK, Benjamin P, Dar A, Krieg AM, Babiuk LA, Mutwiri GK. Innate immune responses induced by classes of CpG oligodeoxynucleotides in ovine lymph node and blood mononuclear cells. Vet Immunol Immunopathol 2006; 115:24-34. [PMID: 17067685 DOI: 10.1016/j.vetimm.2006.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/25/2006] [Accepted: 09/21/2006] [Indexed: 01/13/2023]
Abstract
CpG ODN signal through Toll-like receptor 9 (TLR9) and trigger a cascade of events that lead to activation of innate and adaptive immune responses. Our current understanding of the immunobiology of host responses to CpG is based largely on studies on peripheral blood mononuclear cells (PBMC) and splenocytes. Little is known regarding CpG-induced responses in other lymphoid tissues. In the present study, we investigated responses induced by CpG in both PBMC and lymph nodes. Cells were isolated from the superficial cervical lymph node (LNC) and blood and then stimulated with CpG ODN (either A-, or B- or C-class ODN). Cytokine production was assayed by ELISA, and lymphocyte proliferation was determined by (3)H-thymidine incorporation. NK-like cytotoxicity was analyzed by lysis of (51)Cr-labelled target cells. All three classes of CpG induced IFNalpha and IFNgamma in LNC. In contrast, only A and C-class ODN induced IFNalpha and IFNgamma in PBMC. Moreover, the IFN levels in LNC were 20-40-fold higher than in PBMC. Furthermore, all classes of ODN induced higher IL-12 levels in LNC (five- to six-fold) than in PBMC. Both B and C-class ODN induced good proliferative responses in PBMC and LNC, but the A-class ODN did not induce proliferation of PBMC and only induced moderate proliferation of LNC. A-class ODN induced significant NK-like activity in LNC. Thus, all three classes of CpG ODN induced similar responses in LNC, and these responses were consistently higher than in PBMC. These observations indicate that CpG ODN-induced responses differ between blood and lymph nodes, and suggest that the functional classification of CpG ODN based on PBMC responses may not be directly applicable to cells from other immune tissues.
Collapse
Affiliation(s)
- Jayaum S Booth
- Vaccine & Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Sask., Canada S7N 5E3
| | | | | | | | | | | | | |
Collapse
|
22
|
Harris TH, Cooney NM, Mansfield JM, Paulnock DM. Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA. Infect Immun 2006; 74:4530-7. [PMID: 16861639 PMCID: PMC1539588 DOI: 10.1128/iai.01938-05] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation of a type I cytokine response is important for early resistance to infection with Trypanosoma brucei rhodesiense, the extracellular protozoan parasite that causes African sleeping sickness. The work presented here demonstrates that trypanosome DNA activates macrophages to produce factors that may contribute to this response. Initial results demonstrated that T. brucei rhodesiense DNA was present in the plasma of C57BL/6 and C57BL/6-scid mice following infection. Subsequently, the effect of trypanosome DNA on macrophages was investigated; parasite DNA was found to be less stimulatory than Escherichia coli DNA but more stimulatory than murine DNA, as predicted by the CG dinucleotide content. Trypanosome DNA stimulated the induction of a signal transduction cascade associated with Toll-like receptor signaling in RAW 264.7 macrophage cells. The signaling cascade led to expression of mRNAs, including interleukin-12 (IL-12) p40, IL-6, IL-10, cyclooxygenase-2, and beta interferon. The treatment of RAW 264.7 cells and bone marrow-derived macrophages with trypanosome DNA induced the production of NO, prostaglandin E2, and the cytokines IL-6, IL-10, IL-12, and tumor necrosis factor alpha. In all cases, DNase I treatment of T. brucei rhodesisense DNA abolished the activation. These results suggest that T. brucei rhodesiense DNA serves as a ligand for innate immune cells and may play an important contributory role in early stimulation of the host immune response during trypanosomiasis.
Collapse
Affiliation(s)
- Tajie H Harris
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School of Medicine and Public Health, 1300 University Avenue, Madison, Wisconsin 53706-1532, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Tick fever or cattle fever (babesiosis) is economically the most important arthropod-borne disease of cattle worldwide with vast areas of Australia, Africa, South and Central America and the United States continuously under threat. Tick fever was the first disease for which transmission by an arthropod to a mammal was implicated at the turn of the twentieth century and is the first disease to be eradicated from a continent (North America). This review describes the biology of Babesia spp. in the host and the tick, the scale of the problem to the cattle industry, the various components of control programmes, epidemiology, pathogenesis, immunity, vaccination and future research. The emphasis is on Babesia bovis and Babesia bigemina.
Collapse
Affiliation(s)
- R Bock
- Tock Fever Centre, Animal and Plant Health Service, Queensland Department of Primary Industries & Fisheries, 280 Grindle Road, Wacol Qld 4076, Australia.
| | | | | | | |
Collapse
|
24
|
Brown WC, Norimine J, Goff WL, Suarez CE, McElwain TF. Prospects for recombinant vaccines against Babesia bovis and related parasites. Parasite Immunol 2006; 28:315-27. [PMID: 16842268 DOI: 10.1111/j.1365-3024.2006.00849.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Babesial parasites infect cattle in tropical and temperate regions of the world and cause significant morbidity and mortality. Discovery of protective antigens that could be used in a killed vaccine has been slow and to date there are few promising vaccine candidates for cattle Babesia. This review describes mechanisms of protective innate and adaptive immune responses to babesial parasites and different strategies to identify potentially protective protein antigens of B. bovis, B. bigemina, and B. divergens. Successful parasites often cause persistent infection, and this paper also discusses how B. bovis evades and regulates the immune response to promote survival of parasite and host. Development of successful non-living recombinant vaccines will depend on increased understanding of protective immune mechanisms and availability of parasite genomes.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | |
Collapse
|
25
|
Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 2006; 37:511-39. [PMID: 16611561 DOI: 10.1051/vetres:2006014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022] Open
Abstract
In developing veterinary mucosal vaccines and vaccination strategies, mucosal adjuvants are one of the key players for inducing protective immune responses. Most of the mucosal adjuvants seem to exert their effect via binding to a receptor/or target cells and these properties were used to classify the mucosal adjuvants reviewed in the present paper: (1) ganglioside receptor-binding toxins (cholera toxin, LT enterotoxin, their B subunits and mutants); (2) surface immunoglobulin binding complex CTA1-DD; (3) TLR4 binding lipopolysaccharide; (4) TLR2-binding muramyl dipeptide; (5) Mannose receptor-binding mannan; (6) Dectin-1-binding ss 1,3/1,6 glucans; (7) TLR9-binding CpG-oligodeoxynucleotides; (8) Cytokines and chemokines; (9) Antigen-presenting cell targeting ISCOMATRIX and ISCOM. In addition, attention is given to two adjuvants able to prime the mucosal immune system following a systemic immunization, namely 1alpha, 25(OH)2D3 and cholera toxin.
Collapse
Affiliation(s)
- Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
26
|
Abstract
Babesia bovis causes an acute and often fatal infection in adult cattle, which if resolved, leads to a state of persistent infection in otherwise clinically healthy cattle. Persistently infected cattle are generally resistant to reinfection with related parasite strains, and this resistance in the face of infection is termed concomitant immunity. Young animals are generally more resistant than adults to B. bovis infection, which is dependent on the spleen. Despite the discovery of B. bovis over a century ago, there are still no safe and effective vaccines that protect cattle against this most virulent of babesial pathogens. Immunodominant antigens identified by serological reactivity and dominant T-cell antigens have failed to protect cattle against challenge. This review describes the innate and acquired immune mechanisms that define resistance in young calves and correlate with the development of concomitant immunity in older cattle following recovery from clinical disease. The first sections will discuss the innate immune responses by peripheral blood- and spleen-derived macrophages in cattle induced by B. bovis merozoites and their products that limit parasite replication, and comparison of natural killer cell responses in the spleens of young (resistant) and adult (susceptible) cattle. Later sections will describe a proteomic approach to discover novel antigens, especially those recognized by immune CD4+ T lymphocytes. Because immunodominant antigens have failed to stimulate protective immunity, identification of subdominant antigens may prove to be important for effective vaccines. Identification of CD4+ T-cell immunogenic proteins and their epitopes, together with the MHC class II restricting elements, now makes possible the development of MHC class II tetramers and application of this technology to both quantify antigen-specific lymphocytes during infection and discover novel antigenic epitopes. Finally, with the imminent completion of the B. bovis genome-sequencing project, strategies using combined genomic and proteomic approaches to identify novel vaccine candidates will be reviewed. The availability of an annotated B. bovis genome will, for the first time, enable identification of non-immunodominant proteins that may stimulate protective immunity.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | |
Collapse
|
27
|
Griebel PJ, Brownlie R, Manuja A, Nichani A, Mookherjee N, Popowych Y, Mutwiri G, Hecker R, Babiuk LA. Bovine toll-like receptor 9: a comparative analysis of molecular structure, function and expression. Vet Immunol Immunopathol 2005; 108:11-6. [PMID: 16098606 DOI: 10.1016/j.vetimm.2005.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Non-methylated CpG motifs, present in viral and bacterial DNA, are one of many pathogen-associated molecular patterns (PAMP) recognized by the mammalian innate immune system. Recognition of this PAMP occurs through a specific interaction with toll-like receptor 9 (TLR9) and this interaction can induce cytokine responses that influence both innate and adaptive immune responses. Previous investigations determined that both the flanking sequences in synthetic CpG oligodeoxynucleotides (CpG ODN) and the cellular pattern of TLR9 expression can influence species-specific responses to CpG ODN. Therefore, the structure, function and cellular distribution of bovine TLR9 were compared with what is known for mice and human. Analysis of the bovine TLR9 gene revealed greater sequence homology between cattle and humans than cattle and mice Similar CpG motifs induced optimal activation of both human and bovine leukocytes and these motifs were distinct from those which activated mouse leukocytes. Functional analyses with CpG ODN stimulated bovine blood leukocytes revealed that class A CpG ODN were more potent inducers of interferon-alpha (IFN-alpha) than class B CpG ODN. Furthermore, magnetic activated cell sorting of bovine blood leukocyte subpopulations implicated dendritic cells but not monocytes in the regulation of CpG ODN-induced IFN secretion. Thus, the cellular pattern of CpG ODN-induced responses in cattle shared many similarities with human leukocytes. Collectively, these analyses revealed substantial conservation of TLR9 structure and TLR9 function in blood leukocytes of humans, cattle and other domestic species.
Collapse
Affiliation(s)
- Philip J Griebel
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, Saskatoon, Sask., Canada S7N 5E3.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang LY, Ishii KJ, Akira S, Aliberti J, Golding B. Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. THE JOURNAL OF IMMUNOLOGY 2005; 175:3964-70. [PMID: 16148144 DOI: 10.4049/jimmunol.175.6.3964] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this report we provide evidence, for the first time, that bacterial DNA in the context of heat-killed Brucella abortus (HKBA) engages TLR9 in dendritic cells (DC), resulting in a Th1-like cytokine response. This is based on the findings that HKBA induction of IL-12p40 is: 1) abolished in DC from TLR9(-/-) mice; 2) blocked by suppressive oligodeoxynucleotides; 3) simulated by bacterial DNA derived from HKBA; and 4) abrogated by DNase or methylation of the DNA from HKBA. Furthermore, the effect of HKBA can be inhibited by chloroquine, indicating that endosomal acidification is required and supporting the notion that DNA from HKBA is interacting with TLR9 at the level of the endosome, as is the case with CpG oligodeoxynucleotides. In addition to DC, HKBA can elicit IL-12p40 secretion from macrophages, in which case the effect is wholly MyD88 dependent but only partially TLR9 dependent. This probably explains why HKBA effects in vivo are only partially reduced in TLR9(-/-), but absent in MyD88(-/-) mice. Because of their intimate interactions with T cells, the DC response is most likely to be critical for linking innate and adaptive immune responses, whereas the macrophage reaction may play a role in enhancing NK cell and bystander immune responses. In addition to IL-12p40, HKBA induces other Th1-like cytokines, namely, IFN-alpha and IFN-gamma, in a TLR9-dependent manner. These cytokines are important in protection against viruses and bacteria, and their induction enhances HKBA as a potential carrier for vaccines.
Collapse
Affiliation(s)
- Li-Yun Huang
- Division of Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
29
|
Aggarwal P, Pandey RM, Seth P. Augmentation of HIV-1 subtype C vaccine constructs induced immune response in mice by CpG motif 1826-ODN. Viral Immunol 2005; 18:213-23. [PMID: 15802966 DOI: 10.1089/vim.2005.18.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The greatest biomedical challenge of this century is to develop a preventive vaccine against Human Immunodeficiency Virus (HIV-1). For an HIV vaccine to be effective, it appears logical to develop new strategies that enhance the level of the immune response as well as steer it towards the desirable cellular type. In view of this, there is a need for rational inclusion of biological adjuvants into the HIV-1 vaccination strategies that could potentiate the immune responses both qualitatively and quantitatively. The adjuvant may include the immunostimulatory oligonucleotides containing CpG motifs, whose immunomodulatory characters are well established and represent the basis for an effective vaccine adjuvant. In our study, we investigated the use of an immunostimulatory oligonucleotide (or CpG motif), 1826-ODN to augment the immune response elicited by plasmid DNA vaccine constructs containing Indian subtype C HIV-1 envelope gp120 and gag-protease genes in Balb/c mouse model system. A dose of 2-microg CpG motifs/mouse was found to be optimum when co-administered with the DNA vaccine constructs with the peak level of humoral and cell mediated immune responses at 6 weeks post immunization. Murine IFN-gamma ELISpot assay demonstrated that the use of 1826-ODN led to a broad based and long term recognition of the subtype C envelope and gag peptides. The use of CpG motifs has been effective in augmenting the immune responses generated by the DNA constructs. Taken together, these results are an important advancement towards the design of future preclinical and clinical trials of these vaccine constructs.
Collapse
Affiliation(s)
- Priya Aggarwal
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | |
Collapse
|
30
|
Mena A, Nichani AK, Popowych Y, Ioannou XP, Godson DL, Mutwiri GK, Hecker R, Babiuk LA, Griebel P. Bovine and ovine blood mononuclear leukocytes differ markedly in innate immune responses induced by Class A and Class B CpG-oligodeoxynucleotide. Oligonucleotides 2005; 13:245-59. [PMID: 15000839 DOI: 10.1089/154545703322460621] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytosine-phosphate-guanosine (CpG)-DNA can induce an impressive array of innate immune responses that may directly or indirectly contribute to the clearance of infectious agents. Assays, such as lymphocyte proliferative responses, have been used to demonstrate that the immunostimulatory activity of CpG-DNA is conserved among a broad range of vertebrate species, but no studies have been completed to determine if qualitative differences exist among species for CpG-oligodeoxynucleotide (ODN)-induced innate immune responses. In this study, we assessed the capacity of a Class A (ODN 2216) and a Class B (ODN 2007) CpG-ODN to induce innate immune responses in two closely related species, ovine (n = 28) and bovine (n = 29). The secretion of interferon (IFN)-alpha and IFN-gamma and non-major histocompatability complex (MHC)-restricted cytotoxic activity were assayed with CpG-ODN-stimulated peripheral blood mononuclear cells (PBMC). These investigations revealed significant interspecies and intraspecies variation in the responses. As expected, ODN 2216 was a potent inducer of IFN-alpha secretion by both bovine and ovine PBMC, but ODN 2007 also induced dose-dependent, CpG-specific IFN-alpha secretion by ovine PBMC. In contrast, a significant dose-dependent, CpG-specific IFN-gamma secretion response was only observed following ODN 2216 stimulation of bovine PBMC. Furthermore, both ODN 2216 and ODN 2007 induced CpG-specific non-MHC-restricted cytotoxicity with ovine but not bovine PBMC. Finally, there was not a single assay in which PBMC from all sheep or cattle responded at a detectable level. A striking aspect of these results is that such marked differences in CpG-ODN induced innate responses existed both between and within two closely related species.
Collapse
Affiliation(s)
- Angelo Mena
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK. Canada S7N 5E3
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dalloul RA, Lillehoj HS, Okamura M, Xie H, Min W, Ding X, Heckert RA. In vivo effects of CpG oligodeoxynucleotide on Eimeria infection in chickens. Avian Dis 2005; 48:783-90. [PMID: 15666859 DOI: 10.1637/7154-010704r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poultry coccidiosis is the major parasitic disease of poultry and, until now, no recombinant vaccine has been developed. Short oligodeoxynucleotides (ODNs) containing unmethylated CpG motifs (CpG ODNs) have been shown to be effective immunoprotective agents and vaccine adjuvants in mammalian systems. Their use in poultry to protect against intracellular parasites has not been reported to date. The present work investigated the effects of CpG ODN treatment on host susceptibility to Eimeria infection in two chicken strains with different genetic background, SC and TK. The data show that CpG ODN enhanced the birds' resistance to coccidiosis in a normally susceptible chicken strain (TK), as shown by reduced oocyst shedding and improved weight gain. CpG treatment had a differential effect on body weight gains and serum antibody responses, depending on the chicken strain and ODN dose, delivery route, and backbone. This study shows for the first time that CpG ODNs could be used as immunoprotective agents in Eimeria-infected chickens to enhance resistance to the pathogen and improve performance. Future research is needed to optimize their use alone and as vaccine adjuvants that may lead to better and more efficient vaccine applications.
Collapse
Affiliation(s)
- Rami A Dalloul
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, ARS, USDA, Beltsville, MD 20705, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Verfaillie T, Cox E, Goddeeris BM. Immunostimulatory capacity of DNA vaccine vectors in porcine PBMC: a specific role for CpG-motifs? Vet Immunol Immunopathol 2005; 103:141-51. [PMID: 15626469 DOI: 10.1016/j.vetimm.2004.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 07/15/2004] [Accepted: 09/03/2004] [Indexed: 11/19/2022]
Abstract
With the development of DNA vaccines in pigs, the possibility was investigated that the nature and the amount of certain CpG-motifs present on plasmid DNA might have an effect on their immunostimulatory capacity. A panel of three CpG-oligodeoxynucleotides (ODN) and three eukaryotic expression vectors currently used in experimental DNA vaccines in pigs (pcDNA1, pcDNA3.1 and pCI) were screened for their immunostimulatory activity on porcine PBMC by evaluating in vitro the lymphocyte proliferative responses and cytokine profiles (IL-1alpha, IL-2, IL-4, IL-6, IL-10, IFN-gamma, TGF-beta, TNF-alpha). The vectors were chosen so that they differed in number and nature of certain CpG-motifs present on their backbone. CpG-ODN A (5'ATCGAT3') and to a lesser extend CpG-ODN C (5'AACGTT3') significantly enhanced the proliferation of porcine PBMC in contrast to CpG-ODN B (5'GACGTT3') where no effect was observed. Furthermore, CpG-ODN A significantly induced IL-6 and TNF-alpha together with elevated levels of IFN-gamma and IL-2 mRNA expression even though considerable heterogeneity was observed in the response of individual pigs. Comparison of the three vectors showed significantly increased proliferative responses for both pcDNA3.1 and pCI combined with a significant increase in IL-6 mRNA levels for pCI. For pcDNA1, proliferation was absent together with significantly decreased levels of IL-6 and IFN-gamma. CpG-ODN and plasmids both suppressed the TGF-beta and IL-1alpha mRNA expression. Taken together, these data confirm the identity of an optimal immunostimulating CpG-motif in pigs (5'-ggTGCATCGATGCAG-3') and demonstrates that the choice of the vector or the insertion of immunostimulatory motifs can be important in the future design of DNA vaccines in pigs, although further research is necessary to explore the possible link between certain CpG-motifs and the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- T Verfaillie
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
33
|
Mutwiri GK, Nichani AK, Babiuk S, Babiuk LA. Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release 2005; 97:1-17. [PMID: 15147800 DOI: 10.1016/j.jconrel.2004.02.022] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Accepted: 02/23/2004] [Indexed: 02/05/2023]
Abstract
Synthetic oligodeoxynucleotides (ODN) containing CpG sequences are recognized as a "danger" signal by the immune system of mammals. As a consequence, CpG ODN stimulate innate and adaptive immune responses in humans and a variety of animal species. Indeed, the potential of CpG ODN as therapeutic agents and vaccine adjuvants has been demonstrated in animal models of infectious diseases, allergy and cancer and are currently undergoing clinical trials in humans. While CpG ODN are potent activators of the immune system, their biologic activity is often transient, subsequently limiting their therapeutic application. Modifications in the CpG ODN backbone chemistry, various delivery methods including mixing or cross-linking of ODN to other carrier compounds have been shown to significantly enhance the biologic activity of ODN. However, the exact mechanisms that mediate this enhancement of activity are not well understood and may include local cell recruitment and activation, cytokine production, upregulation of receptor expression and increasing the half-life of ODN through creation of a depot. We will review the various approaches that have been used in enhancing the immunostimulatory effects of CpG ODN in vivo and also discuss the possible mechanisms that may be involved in this enhancement.
Collapse
Affiliation(s)
- George K Mutwiri
- Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3.
| | | | | | | |
Collapse
|
34
|
Krieg AM. CpG Oligodeoxynucleotides for Mucosal Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Sugimoto K, Ohata M, Miyoshi J, Ishizaki H, Tsuboi N, Masuda A, Yoshikai Y, Takamoto M, Sugane K, Matsuo S, Shimada Y, Matsuguchi T. A serine/threonine kinase, Cot/Tpl2, modulates bacterial DNA-induced IL-12 production and Th cell differentiation. J Clin Invest 2004; 114:857-66. [PMID: 15372110 PMCID: PMC516257 DOI: 10.1172/jci20014] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 07/27/2004] [Indexed: 12/31/2022] Open
Abstract
A serine/threonine protein kinase, Cot/Tpl2, is indispensable for extracellular signal-regulated kinase (ERK) activation and production of TNF-alpha and PGE2 in LPS-stimulated macrophages. We show here that Cot/Tpl2 is also activated by other Toll-like receptor (TLR) ligands. Bacterial DNA rich in the dinucleotide CG (CpG-DNA), unlike LPS or synthetic lipopeptide, activated ERK in a Cot/Tpl2-independent manner. Peritoneal macrophages and bone marrow-derived DCs from Cot/Tpl2-/- mice produced significantly more IL-12 in response to CpG-DNA than those from WT mice. Enhanced IL-12 production in Cot/Tpl2-/- macrophages is, at least partly, regulated at the transcriptional level, and the elevated IL-12 mRNA level in Cot/Tpl2-/- macrophages is accompanied by decreased amounts of IL-12 repressors, such as c-musculoaponeurotic fibrosarcoma (c-Maf) and GATA sequence in the IL-12 promoter-binding protein (GA-12-binding protein; GAP-12) in the nucleus. Consistently, Cot/Tpl2-/- mice showed Th1-skewed antigen-specific immune responses upon OVA immunization and Leishmania major infection in vivo. These results indicate that Cot/Tpl2 is an important negative regulator of Th1-type adaptive immunity, that it achieves this regulation by inhibiting IL-12 production from accessory cells, and that it might be a potential target molecule in CpG-DNA-guided vaccination.
Collapse
Affiliation(s)
- Kenji Sugimoto
- Division of Host Defense, Center for Neural Disease and Cancer, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Faldyna M, Pechova A, Krejci J. Chromium Supplementation Enhances Antibody Response to Vaccination with Tetanus Toxoid in Cattle. ACTA ACUST UNITED AC 2003; 50:326-31. [PMID: 14535930 DOI: 10.1046/j.1439-0450.2003.00680.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nineteen multiparous late-pregnant dairy cows were divided into an experimental group (n = 10) and a control group (n = 9). Animals in the experimental group were fed a diet supplemented with chromium chelate admixed into wheat meal at 5 mg per animal per day. The supplementation was started 4 weeks before calving and stopped by the end of week 3 after calving. All the cows were vaccinated with tetanus toxoid in the fifth and sixth week of lactation. Monitoring of the characteristics of non-specific immunity did not show any significant between-group differences in total and differential leucocyte counts, percentages of lymphocyte subpopulations, activities of lectin-stimulated lymphocytes, phagocytic activities, and the contents of total immunoglobulins and lysozyme in blood sera. Tetanus toxoid-specific antibody titres, those of the IgG2 isotype in particular, were higher in the experimental group than in the control animals. These results indicate that chromium supplementation at the level used in this experiment modulated the regulation of functions of the immune system.
Collapse
Affiliation(s)
- M Faldyna
- Veterinary Research Institute, Brno, Czech Republic.
| | | | | |
Collapse
|
37
|
Zhang Y, Palmer GH, Abbott JR, Howard CJ, Hope JC, Brown WC. CpG ODN 2006 and IL-12 are comparable for priming Th1 lymphocyte and IgG responses in cattle immunized with a rickettsial outer membrane protein in alum. Vaccine 2003; 21:3307-18. [PMID: 12804862 DOI: 10.1016/s0264-410x(03)00176-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunostimulatory oligodeoxynucleotides containing unmethylated CpG dinucleotides (CpG ODN) stimulate IL-12-dependent Th1 dominated cytokine and enhanced IgG responses when co-delivered with antigen to mice. However, the CpG ODN sequences that are optimal for each mammalian species may differ. Previously, we demonstrated that a CpG ODN containing the GTCGTT motif was optimal for stimulating bovine B cell proliferation, and induced IL-6, IL-12 and IFN-gamma production by peripheral blood mononuclear cells (PBMC). The current study was designed to test the hypothesis that the nuclease resistant phosphorothioate modified ODN 2006 (TCGTCGTTTTGTCGTTTTGTCGTT) would induce antigen-specific type 1 cytokine and enhanced IgG responses similar to those induced by IL-12. To test this adjuvant effect, calves were immunized with Anaplasma marginale major surface protein 2 (MSP2) with alum alone or combined with CpG ODN 2006, non-CpG ODN R2006 or IL-12. MSP2-specific IgG1 and IgG2 responses developed more rapidly in calves given IL-12, ODN 2006 or ODN R2006, but the highest IgG1 titers were obtained in CpG ODN-immunized calves. Antigen-specific lymphocyte proliferation and frequency of IFN-gamma-secreting cells were significantly increased in CpG ODN 2006- or IL-12-treated calves, and antigen-stimulated PBMC from these calves also expressed higher levels of IFN-gamma transcripts and lower levels of IL-4 transcripts. No differences in IL-10 mRNA expression were detected among the groups. These results indicate that CpG ODN 2006 is an effective vaccine adjuvant for stimulating both antibody and IFN-gamma mediated cellular immune responses in cattle.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The use of bacteria and bacterial extracts for immunotherapy has a checkered past. Recent developments in immunology reveal that these nonspecific immune activators actually work by triggering specific receptors that are expressed by subsets of immune cells. Identification of these receptors and the molecular signaling pathways that they activate has enabled a new era of specific targeted immunotherapy using chemically synthesized mimics of pathogen molecules.
Collapse
Affiliation(s)
- Arthur M Krieg
- Coley Pharmaceutical Group, Wellesley, Massachusetts 02481, USA.
| |
Collapse
|
39
|
Crawley A, Raymond C, Wilkie BN. Control of immunoglobulin isotype production by porcine B-cells cultured with cytokines. Vet Immunol Immunopathol 2003; 91:141-54. [PMID: 12543550 DOI: 10.1016/s0165-2427(02)00293-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cytokines regulate immunoglobulin (Ig) isotype production following the Th1/Th2 paradigm, derived from studies of inbred mice. In pigs, it is not known which, if any, Ig isotypes may reflect a Th1/Th2 response. To evaluate this, purified porcine CD21(+) B-cells were co-cultured with Staphylococcus aureus Cowan strain 1 or Escherichia coli lipopolysaccharide as B-cell mitogens together with recombinant human IL-2, and recombinant porcine (rp) interferon (IFN)-gamma, IL-12 or IL-10. While the mitogens increased B-cell proliferation, cytokines had no additional effect. A quantitative competitive enzyme-immuno assay was used to measure concentrations of porcine IgM, IgG(1) and IgG(2) in B-cell culture supernatants. In vitro, porcine B-cells produced IgG(2), 106 +/- 17.3 microg/ml; IgG(1) 107 +/- 38.3 microg/ml and IgM 25.6 +/- 8.45 microg/ml. In some individuals, Th1 cytokines such as rpIFN-gamma and IL-12, enhanced IgG(2) in the face of low concentrations of IgG(1). Furthermore, individual responses, in some cases, tended to be diametrically opposed, reminiscent of previously documented categorical immune responses in pigs such that some individuals produced high concentrations of IgG(1) in response to the various doses of rp cytokines, while others produced lower concentrations. Pigs may generate a high IgG(1):IgG(2) ratio in response to rpIL-10, and possibly to other Th2-associated cytokines. However, B-cell response to rp cytokines in vitro exhibits marked variation by pig, a feature that is likely a function of highly variable individual genotypes and their interaction with complex environments.
Collapse
Affiliation(s)
- A Crawley
- Department of Pathobiology, University of Guelph, Guelph, Ont, Canada N1G 2W1.
| | | | | |
Collapse
|
40
|
Mutwiri G, Pontarollo R, Babiuk S, Griebel P, van Drunen Littel-van den Hurk S, Mena A, Tsang C, Alcon V, Nichani A, Ioannou X, Gomis S, Townsend H, Hecker R, Potter A, Babiuk LA. Biological activity of immunostimulatory CpG DNA motifs in domestic animals. Vet Immunol Immunopathol 2003; 91:89-103. [PMID: 12543546 DOI: 10.1016/s0165-2427(02)00246-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial DNA contains a much higher frequency of CpG dinucleotides than are present in mammalian DNA. Furthermore, bacterial CpG dinucleotides are often not methylated. It is thought that these two features in combination with specific flanking bases constitute a CpG motif that is recognized as a "danger" signal by the innate immune system of mammals and therefore an immune response is induced when these motifs are encountered. These immunostimulatory activities of bacterial CpG DNA can also be achieved with synthetic CpG oligodeoxynucleotides (ODN). Recognition of CpG motifs by the innate immune system requires engagement of Toll-like receptor 9 (TLR-9), which induces cell signaling and subsequently triggers a pro-inflammatory cytokine response and a predominantly Th1-type immune response. CpG ODN-induced innate and adaptive immune responses can result in protection in various mouse models of disease. Based on these observations, clinical trials are currently underway in humans to evaluate CpG ODN therapies for cancer, allergy and infectious disease. However, potential applications for immunostimulatory CpG ODN in species of veterinary importance are just being explored. In this review, we will highlight what is presently known about the immunostimulatory effects of CpG ODN in domestic animals.
Collapse
Affiliation(s)
- G Mutwiri
- Veterinary Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7N 5E3.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pontarollo RA, Babiuk LA, Hecker R, van Drunen Littel-van den Hurk S. Augmentation of cellular immune responses to bovine herpesvirus-1 glycoprotein D by vaccination with CpG-enhanced plasmid vectors. J Gen Virol 2002; 83:2973-2981. [PMID: 12466473 DOI: 10.1099/0022-1317-83-12-2973] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potential of CpG-enhanced plasmid DNA vectors encoding a truncated secreted form of bovine herpesvirus-1 (BHV-1) glycoprotein D (tgD) to induce enhanced immune responses in cattle was investigated. We created tgD expression plasmids containing 0, 40 or 88 copies of the hexamer 5' GTCGTT 3', a known pan-activating CpG motif in several species. The total tgD-specific IgG titre of calves immunized with these plasmids did not correlate with the CpG content of the plasmid backbone. However, the pBISIA88-tgD-vaccinated group showed a significantly lower IgG1:IgG2 ratio than calves immunized with pBISIA40-tgD or pMASIA-tgD, which has no CpG motifs inserted. Antigen-specific lymphocyte proliferation and IFN-gamma secretion by peripheral blood mononuclear cells correlated positively with the CpG content of the vectors. In contrast, calves that received a killed BHV-1 vaccine had an IgG1-predominant isotype and low lymphocyte proliferation and IFN-gamma levels. Following challenge, the pBISIA88-tgD-immunized group developed the greatest anamnestic response, the highest BHV-1 neutralization titres in serum and a significantly lower level of virus shedding than the saline control group. However, there were no significant differences in clinical symptoms of infection between the DNA-immunized groups and the saline control group. These data indicate that CpG-enhanced plasmids induce augmented immune responses and could be used to vaccinate against pathogens requiring a strong cellular response for protection.
Collapse
Affiliation(s)
- R A Pontarollo
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaS7N 5E31
| | - L A Babiuk
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, CanadaS7N 5E31
| | - R Hecker
- Qiagen GmbH, 40724 Hilden, Germany2
| | | |
Collapse
|
42
|
Estes DM, Brown WC. Type 1 and type 2 responses in regulation of Ig isotype expression in cattle. Vet Immunol Immunopathol 2002; 90:1-10. [PMID: 12406650 DOI: 10.1016/s0165-2427(02)00201-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulation of humoral immune responses is multifactorial involving appropriate activation, costimulation and the presence of specific soluble factors. Polarized type 1 or type 2 humoral responses in the laboratory mouse have been linked to expression of specific cytokines and thus can be used to provide insight into the type of response generated by infection. For example, IFN-gamma has been linked to IgG2a and IgG3 production, IL-4 to IgG1 and IgE production and TGF-beta to IgA production. Unlike the laboratory mouse, generally housed under defined conditions, highly skewed isotype expression patterns generally occur in cattle in chronic infections. A few examples of polarized responses have been noted in chronic experimental or naturally occurring infections including F. hepatica, M. paratuberculosis, C. parvum and B. abortus. In vitro studies using purified bovine B cells and various forms of costimulation and cytokines have demonstrated that isotype responses can be polarized under certain experimental conditions in vitro. That is, IgG1 expression is positively regulated by IL-4 and IgG2 expression is positively regulated by IFN-gamma. Other as yet unidentified factors may play pivotal roles in regulating humoral immune responses in large ruminant species in vivo. This possibility is best exemplified by recent studies using DNA vaccines in cattle that have been demonstrated in the mouse to be generally polarizing to a type 1 response. Surprisingly, studies in cattle using plasmid DNA as vaccination material show an almost exclusive IgG1 response. Based on a number of studies using T cell clones and various biological assays, it is clear that the classical roles of many cytokines in the laboratory mouse do not extrapolate entirely or at all to cattle. Thus, the design of adjuvants and immune modulators should be based on studies done in cattle or using bovine cells. Based on studies to date, several "holes" in the cytokine repertoire exist and these roles may be assumed by unique factors or activities of other known cytokines.
Collapse
Affiliation(s)
- D Mark Estes
- Program for the Prevention of Animal Infectious Diseases, Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
43
|
Abstract
This review summarizes recent work from our laboratory demonstrating the activation of B lymphocytes, macrophages and dendritic cells by DNA from three different protozoan parasites of cattle and humans that is qualitatively similar to the now well-described effects of CpG-containing bacterial DNA. This novel mechanism of protozoan parasite recognition by the innate immune system could facilitate recovery from acute infection or contribute to infection-related pathology.
Collapse
Affiliation(s)
- Wendy C Brown
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA.
| | | |
Collapse
|
44
|
Abstract
Unmethylated CpG motifs are prevalent in bacterial but not vertebrate genomic DNAs. Oligodeoxynucleotides (ODN) containing CpG motifs activate host defense mechanisms leading to innate and acquired immune responses. The recognition of CpG motifs requires Toll-like receptor (TLR) 9, which triggers alterations in cellular redox balance and the induction of cell signaling pathways including the mitogen activated protein kinases (MAPKs) and NF kappa B. Cells that express TLR-9, which include plasmacytoid dendritic cells (PDCs) and B cells, produce Th1-like proinflammatory cytokines, interferons, and chemokines. Certain CpG motifs (CpG-A) are especially potent at activating NK cells and inducing IFN-alpha production by PDCs, while other motifs (CpG-B) are especially potent B cell activators. CpG-induced activation of innate immunity protects against lethal challenge with a wide variety of pathogens, and has therapeutic activity in murine models of cancer and allergy. CpG ODN also enhance the development of acquired immune responses for prophylactic and therapeutic vaccination.
Collapse
Affiliation(s)
- Arthur M Krieg
- Department of Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA.
| |
Collapse
|
45
|
Van der Stede Y, Verdonck F, Vancaeneghem S, Cox E, Goddeeris BM. CpG-oligodinucleotides as an effective adjuvant in pigs for intramuscular immunizations. Vet Immunol Immunopathol 2002; 86:31-41. [PMID: 11943328 DOI: 10.1016/s0165-2427(02)00008-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, the effect of two oligodeoxynucleotide (ODN) sequences 5'GCT-AGA-CGT-TAG-CGT-3' (CpG-ODN) and 5'-GCT-AGA-GCT-TAG-GCT-3' (GpC-ODN) on the antigen-specific antibody and cellular immune response after intramuscular immunizations with OVA was analyzed in pigs. Pigs immunized with OVA supplemented with these ODNs showed a significantly enhanced primary antibody response in comparison with the control group which received OVA without ODN. This enhanced primary antibody response appeared ODN-sequence-independent as similar effects were seen in both ODN-groups. The OVA-specific antibody titers obtained after a single injection of antigen combined with either of both ODNs were as high as the titers in the control group after two injections. Furthermore, the ODN-supplemented animals showed significantly higher OVA-specific IgA antibodies in their saliva and nasal secretions at some time points after the first immunization. Proliferation assays showed that CpG- as well as GpC-ODN significantly enhanced the antigen-specific as well as the mitogen-induced proliferation in different lymphoid tissues. Furthermore, 48h after the third immunization the CpG-group showed a significantly decreased IL-6 mRNA expression in cells of the local draining lymph node but no significant difference in TGF-beta (Th3-like) and IL-10 (Th2-like). The ODN injected animals showed the tendency to have higher IFN-gamma (Th1-like) mRNA-expression in comparison with the control group. To our knowledge, these are the first in vivo studies in pigs, which demonstrate the appropriateness of CpG-ODN as immunostimulating adjuvants in vaccines for farm animals.
Collapse
Affiliation(s)
- Y Van der Stede
- Faculty of Veterinary Medicine, Laboratory of Veterinary Immunology, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Wernette CM, Smith BF, Barksdale ZL, Hecker R, Baker HJ. CpG oligodeoxynucleotides stimulate canine and feline immune cell proliferation. Vet Immunol Immunopathol 2002; 84:223-36. [PMID: 11777536 DOI: 10.1016/s0165-2427(01)00410-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Oligodeoxynucleotides (ODNs) with unmethylated CpG dinucleotide motifs may be useful as non-specific immune system stimulants and adjuvants for protein or nucleic acid vaccines in humans and other primates. They may also be useful in cancer immunotherapy and in the modulation of allergic responses or mucosal immunity. To begin to determine the potential utility of CpG ODN technology in small animal veterinary medicine, we developed procedures to analyze the effects of CpG ODN on canine and feline blood, spleen and lymph node (LN) cells. We find that certain CpG ODN cause good lymphocyte proliferation (as monitored by [(3)H]-thymidine incorporation) in both canine and feline spleen and LN cells, but not in blood. This overall stimulatory effect of CpG ODN on spleen and LN cells is CpG dependent. The reverse sequences, GpC ODNs, do not cause significant lymphocyte proliferation in the cat; however, dogs are more sensitive to stimulation by the non-specific immune effects of the phosphorothioate backbone. We conclude that unmethylated CpG ODNs may also have potential uses as immune stimulants for vaccines and other antimicrobial agents in veterinary medicine for companion animals.
Collapse
Affiliation(s)
- Catherine M Wernette
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5525, USA.
| | | | | | | | | |
Collapse
|
47
|
Pontarollo RA, Rankin R, Babiuk LA, Godson DL, Griebel PJ, Hecker R, Krieg AM, van Drunen Littel-van den Hurk S. Monocytes are required for optimum in vitro stimulation of bovine peripheral blood mononuclear cells by non-methylated CpG motifs. Vet Immunol Immunopathol 2002; 84:43-59. [PMID: 11825597 DOI: 10.1016/s0165-2427(01)00379-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacterial DNA and synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs within certain flanking base pairs are recognized as a danger signal by the innate immune system of vertebrates. Using lymphocyte proliferative response (LPR) and IFN-gamma secretion assays, a panel of 38 ODN was screened for immunostimulatory activity on bovine peripheral blood mononuclear cells. ODN composed of a nuclease resistant phosphorothioate backbone and a leading 5'-TCGTCGTT-3' motif with two 5'-GTCGTT-3' motifs were highly stimulatory in both assays. Flow cytometric analysis and cell-specific surface marker labeling determined that B-cells (surface IgM(+)) were the primary cell population responding in the LPR assay. Depletion of T cells (CD3(+)) from the PBMC population did not affect IFN-gamma secretion or B-cell proliferation when cultured with CpG-ODN. However, depletion of monocytes (DH59B(+)) completely abrogated the ability of CpG-ODN to stimulate IFN-gamma secretion, and significantly reduced the B-cell proliferative response. These data establish the identity of an optimal immunostimulatory CpG motif for cattle and demonstrate that monocytes play a pivotal role in the ability of cell populations to respond to CpG-ODN. These data provide insight for future studies investigating the mechanism of CpG-ODN bioactivity and its application in novel vaccine formulations and immunotherapy.
Collapse
Affiliation(s)
- R A Pontarollo
- Veterinary Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Sask., S7N 5E3, Saskatoon, Canada
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Brown WC. Molecular approaches to elucidating innate and acquired immune responses to Babesia bovis, a protozoan parasite that causes persistent infection. Vet Parasitol 2001; 101:233-48. [PMID: 11707299 DOI: 10.1016/s0304-4017(01)00569-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For many vector-transmitted protozoal parasites, immunological control of acute infection leads to a state of persistent infection during which parasitemias may cycle unnoticed in infected but otherwise clinically healthy animals. Achieving persistent infection is a strategy that favors parasitism, since both host and, therefore, parasite survive, and endemically infected animal populations provide a reservoir of parasites continually available for subsequent transmission. Examples of the major economically important protozoan pathogens that cause persistent infection in mammals include the related Theileria and Babesia parasites as well as Trypanosoma species. Control of acute infection and maintenance of clinical immunity against subsequent infection are determined by the interplay of innate and acquired immune responses. This review will focus on approaches taken to gain an understanding of the molecular basis for innate and acquired immunity against the hemoprotozoan parasite of cattle, Babesia bovis. Knowledge of mechanisms used by the parasite to survive within infected cattle from acute to persistent infection combined with definition of the correlates of protective immunity in cattle should be applicable to designing effective vaccines.
Collapse
Affiliation(s)
- W C Brown
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
49
|
Rankin R, Pontarollo R, Ioannou X, Krieg AM, Hecker R, Babiuk LA, van Drunen Littel-van den Hurk S. CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2001; 11:333-40. [PMID: 11763350 DOI: 10.1089/108729001753231713] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oligodinucleotides containing CpG motifs stimulate vertebrate immune cells in vitro, have proven efficacy in murine disease models and are currently being tested in human clinical trials as therapies for cancer, allergy, and infectious disease. As there are no known immunostimulatory motifs for veterinary species, the potential of CpG DNA as a veterinary pharmaceutical has not been investigated. Here, optimal CpG motifs for seven veterinary and three laboratory species are described. The preferential recognition of a GTCGTT motif was strongly conserved across two vertebrate phyla, although a GACGTT motif was optimal for inbred strains of mice and rabbits. In a subsequent adjuvanticity trial, the in vitro screening methodology was validated in sheep, representing the first demonstration of CpG DNA efficacy in a veterinary species. These results should provide candidate immunostimulant and therapeutic drugs for veterinary use and enable the testing of CpG DNA in large animal models of human disease.
Collapse
Affiliation(s)
- R Rankin
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Shoda LK, Brayton KA, Estes DM, Palmer GH, Brown WC. Induction of interleukin-6 and interleukin-12 in bovine B lymphocytes, monocytes, and macrophages by a CpG oligodeoxynucleotide (ODN 2059) containing the GTCGTT motif. J Interferon Cytokine Res 2001; 21:871-81. [PMID: 11711000 DOI: 10.1089/107999001753238123] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial DNA and synthetic oligodeoxynucleotides (ODN) that contain unmethylated CpG dinucleotides flanked by certain bases (CpG ODN) have been shown to activate murine and human B cells and to induce proinflammatory cytokines by monocytes/macrophages and dendritic cells (DC). However, the CpG ODN sequences optimal for mice and humans are different. In the current study, the effects of CpG ODN, which were defined to stimulate strong responses in either mouse or human leukocytes, were compared for stimulation of bovine B lymphocyte proliferation and macrophage cytokine mRNA expression. The optimal CpG ODN was then tested for induction of cytokines in peripheral blood mononuclear cells (PBMC) and purified B lymphocytes, monocytes, and macrophages. At a high ODN concentration (40 microM), all but two CpG ODN tested stimulated B cell proliferation, which was dependent on unmethylated CpG motifs. CpG ODN 2059 containing the GTCGTT motif shown to activate human leukocytes also promoted the highest level of bovine B cell proliferation at a lower concentration (10 microM) when compared with CpG ODN containing AACGTT or GACGTT motifs active for murine leukocytes. Furthermore, ODN 2059 induced interleukin-6 (IL-6) production by B lymphocytes and IL-6 and IL-12 production by PBMC, monocytes, and macrophages. In contrast, IL-1beta and tumor necrosis factor-alpha (TNF-alpha) production was either very low or undetectable. Consistent with increased IL-12 production, ODN 2059 also stimulated interferon-gamma (IFN-gamma) production by PBMC. Importantly, the levels of cytokines induced by ODN 2059 were comparable to those generated in response to Escherichia coli DNA. The weak TNF-alpha response combined with the vigorous IL-6 and IL-12 response to ODN 2059 indicate the potential use of this CpG ODN as an adjuvant to enhance both antibody-mediated and IFN-gamma-mediated macrophage activation, which are important for protection against disease caused by intracellular pathogens of cattle.
Collapse
Affiliation(s)
- Y Zhang
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|