1
|
Kinetic Changes in B7 Costimulatory Molecules and IRF4 Expression in Human Dendritic Cells during LPS Exposure. Biomolecules 2022; 12:biom12070955. [PMID: 35883511 PMCID: PMC9313461 DOI: 10.3390/biom12070955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
A key aspect of the inflammatory phenomenon is the involvement of costimulatory molecules expressed by antigen-presenting cells (APCs) and their ability to secrete cytokines to set instructions for an adaptive immune response and to generate tolerance or inflammation. In a novel integrative approach, we aimed to evaluate the kinetic expression of the membrane and soluble B7 costimulatory molecules CD86, ICOS-L, PDL1, PDL2, the transcription factor Interferon Regulatory Factor 4 (IRF4), and the cytokines produced by monocyte-derived dendritic cells (Mo-DCs) after challenging them with different concentrations of stimulation with E. coli lipopolysaccharide (LPS) for different lengths of time. Our results showed that the stimuli concentration and time of exposure to an antigen are key factors in modulating the dynamic expression pattern of membrane and soluble B7 molecules and cytokines.
Collapse
|
2
|
Frascoli M, Coniglio L, Witt R, Jeanty C, Fleck-Derderian S, Myers DE, Lee TH, Keating S, Busch MP, Norris PJ, Tang Q, Cruz G, Barcellos LF, Gomez-Lopez N, Romero R, MacKenzie TC. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Sci Transl Med 2019; 10:10/438/eaan2263. [PMID: 29695455 DOI: 10.1126/scitranslmed.aan2263] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Healthy pregnancy is the most successful form of graft tolerance, whereas preterm labor (PTL) may represent a breakdown in maternal-fetal tolerance. Although maternal immune responses have been implicated in pregnancy complications, fetal immune responses against maternal antigens are often not considered. To examine the fetal immune system in the relevant clinical setting, we analyzed maternal and cord blood in patients with PTL and healthy term controls. We report here that the cord blood of preterm infants has higher amounts of inflammatory cytokines and a greater activation of dendritic cells. Moreover, preterm cord blood is characterized by the presence of a population of central memory cells with a type 1 T helper phenotype, which is absent in term infants, and an increase in maternal microchimerism. T cells from preterm infants mount a robust proliferative, proinflammatory response to maternal antigens compared to term infants yet fail to respond to third-party antigens. Furthermore, we show that T cells from preterm infants stimulate uterine myometrial contractility through interferon-γ and tumor necrosis factor-α. In parallel, we found that adoptive transfer of activated T cells directly into mouse fetuses resulted in pregnancy loss. Our findings indicate that fetal inflammation and rejection of maternal antigens can contribute to the signaling cascade that promotes uterine contractility and that aberrant fetal immune responses should be considered in the pathogenesis of PTL.
Collapse
Affiliation(s)
- Michela Frascoli
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Lacy Coniglio
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Russell Witt
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Cerine Jeanty
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | | | - Dana E Myers
- Obstetrics and Gynecology, University of California, San Francisco, CA 94143, USA
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Giovanna Cruz
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA. .,Department of Surgery, University of California, San Francisco, CA 94143, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Singla B, Ghoshal P, Lin H, Wei Q, Dong Z, Csányi G. PKCδ-Mediated Nox2 Activation Promotes Fluid-Phase Pinocytosis of Antigens by Immature Dendritic Cells. Front Immunol 2018; 9:537. [PMID: 29632528 PMCID: PMC5879126 DOI: 10.3389/fimmu.2018.00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/02/2018] [Indexed: 12/31/2022] Open
Abstract
Aims Macropinocytosis is a major endocytic pathway by which dendritic cells (DCs) internalize antigens in the periphery. Despite the importance of DCs in the initiation and control of adaptive immune responses, the signaling mechanisms mediating DC macropinocytosis of antigens remain largely unknown. The goal of the present study was to investigate whether protein kinase C (PKC) is involved in stimulation of DC macropinocytosis and, if so, to identify the specific PKC isoform(s) and downstream signaling mechanisms involved. Methods Various cellular, molecular and immunological techniques, pharmacological approaches and genetic knockout mice were utilized to investigate the signaling mechanisms mediating DC macropinocytosis. Results Confocal laser scanning microscopy confirmed that DCs internalize fluorescent antigens (ovalbumin) using macropinocytosis. Pharmacological blockade of classical and novel PKC isoforms using calphostin C abolished both phorbol ester- and hepatocyte growth factor-induced antigen macropinocytosis in DCs. The qRT-PCR experiments identified PKCδ as the dominant PKC isoform in DCs. Genetic studies demonstrated the functional role of PKCδ in DC macropinocytosis of antigens, their subsequent maturation, and secretion of various T-cell stimulatory cytokines, including IL-1α, TNF-α and IFN-β. Additional mechanistic studies identified NADPH oxidase 2 (Nox2) and intracellular superoxide anion as important players in DC macropinocytosis of antigens downstream of PKCδ activation. Conclusion The findings of the present study demonstrate a novel mechanism by which PKCδ activation via stimulation of Nox2 activity and downstream redox signaling promotes DC macropinocytosis of antigens. PKCδ/Nox2-mediated antigen macropinocytosis stimulates maturation of DCs and secretion of T-cell stimulatory cytokines. These findings may contribute to a better understanding of the regulatory mechanisms in DC macropinocytosis and downstream regulation of T-cell-mediated responses.
Collapse
Affiliation(s)
- Bhupesh Singla
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Pushpankur Ghoshal
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huiping Lin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gábor Csányi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Dick J, Hebling S, Becam J, Taha MK, Schubert-Unkmeir A. Comparison of the inflammatory response of brain microvascular and peripheral endothelial cells following infection with Neisseria meningitidis. Pathog Dis 2018; 75:3098218. [PMID: 28379411 DOI: 10.1093/femspd/ftx038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
The interaction of Neisseria meningitidis with both peripheral and brain endothelial cells is a critical event in the development of invasive meningococcal disease. In this study, we used in vitro models based on human brain microvascular endothelial cells (HBMEC), and peripheral endothelial EA.hy926 cells, to investigate their roles in the inflammatory response towards meningococcal infection. Both cell lines were infected with two pathogenic N. meningitidis isolates and secretion of the cytokine interleukin-6 (IL-6), the CXC chemokine IL-8 and the monocyte chemoattractant protein-1 (MCP-1) were estimated by ELISA. Neisseria meningitidis was able to stimulate the production of IL-6 and IL-8 by HBMEC and EA.hy926 cells in a time- and concentration-dependent manner. Interestingly, HBMEC released significant higher amounts of IL-6 and IL-8. Moreover, we observed that heat-killed bacteria stimulated high levels of IL-8. In addition, capsule expression had an inhibitory effect on IL-8 release. We extended our study and included serogroup C strains belonging to sequence type 11 clonal complex (cc) from a recent outbreak in France, as well as isolates belonging to the hypervirulent clonal complexes cc8, cc18, cc32 and cc269 and analyzed their ability to induce the secretion of IL-8 from both cell lines. Although individual variations were observed among different isolates, no clear correlations were observed between strain origin, clinical presentation and IL-8 levels.
Collapse
Affiliation(s)
- Julia Dick
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Sabrina Hebling
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Jérôme Becam
- Institute of Hygiene and Microbiology, Julius-Maximilians University, 97080 Würzburg, Germany
| | - Muhamed-Kheir Taha
- Institut Pasteur, Unit of Invasive Bacterial Infections, Paris 75015, France
| | | |
Collapse
|
5
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response. Infect Immun 2016; 84:3024-33. [PMID: 27481244 DOI: 10.1128/iai.00635-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Meningococcal outer membrane vesicles (OMVs) have been extensively investigated and successfully implemented as vaccines. They contain pathogen-associated molecular patterns, including lipopolysaccharide (LPS), capable of triggering innate immunity. However, Neisseria meningitidis contains an extremely potent hexa-acylated LPS, leading to adverse effects when its OMVs are applied as vaccines. To create safe OMV vaccines, detergent treatment is generally used to reduce the LPS content. While effective, this method also leads to loss of protective antigens such as lipoproteins. Alternatively, genetic modification of LPS can reduce its toxicity. In the present study, we have compared the effects of standard OMV isolation methods using detergent or EDTA with those of genetic modifications of LPS to yield a penta-acylated lipid A (lpxL1 and pagL) on the in vitro induction of innate immune responses. The use of detergent decreased both Toll-like receptor 4 (TLR4) and TLR2 activation by OMVs, while the LPS modifications reduced only TLR4 activation. Mutational removal of PorB or lipoprotein factor H binding protein (fHbp), two proteins known to trigger TLR2 signaling, had no effect, indicating that multiple TLR2 ligands are removed by detergent treatment. Detergent-treated OMVs and lpxL1 OMVs showed similar reductions of cytokine profiles in the human monocytic cell line MM6 and human dendritic cells (DCs). OMVs with the alternative penta-acylated LPS structure obtained after PagL-mediated deacylation showed reduced induction of proinflammatory cytokines interleukin-6 (IL-6) and IL-1β but not of IP-10, a typical TRIF-dependent chemokine. Taken together, these data show that lipid A modification can be used to obtain OMVs with reduced activation of innate immunity, similar to what is found after detergent treatment.
Collapse
|
7
|
Abstract
In the pathogen Neisseria meningitidis, a completely LPS-deficient but viable mutant can be obtained by insertional inactivation of the lpxA gene, encoding UDP-GlcNAc acyltransferase required for the first step of lipid A biosynthesis. The expression and assembly of integral outer membrane proteins in the absence of LPS is largely unaffected. However, the expression of iron limitation-inducible, cell surface-exposed lipoproteins is greatly reduced. Major changes were seen in the phospholipid composition, with a shift towards PE and PG species containing mostly shorter chain, saturated fatty acids. The presence of the capsular polysaccharide turned out to be essential for viability without LPS. The immunogenicity of outer membrane proteins in mice was greatly reduced for the LPS-deficient mutant, showing the importance of LPS as an internal adjuvant in such vaccines. Stimulation of MM6 cells and peripheral blood mononuclear cells showed that induction of TNF-α by whole meningococci was greatly reduced for the LPS-deficient mutant. However, even without LPS the mutant strain could still induce a significant inflammatory response.
Collapse
Affiliation(s)
- Peter van der Ley
- Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands,
| | - Liana Steeghs
- Laboratory of Vaccine Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
8
|
Brandtzaeg P, Bjerre A, Øvstebø R, Brusletto B, Joø GB, Kierulf P. Invited review: Neisseria meningitidis lipopolysaccharides in human pathology. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070060401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neisseria meningitidis causes meningitis, fulminant septicemia or mild meningococcemia attacking mainly children and young adults. Lipopolysaccharides (LPS) consist of a symmetrical hexa-acyl lipid A and a short oligosaccharide chain and are classified in 11 immunotypes. Lipid A is the primary toxic component of N. meningitidis . LPS levels in plasma and cerebrospinal fluid as determined by Limulus amebocyte lysate (LAL) assay are quantitatively closely associated with inflammatory mediators, clinical symptoms, and outcome. Patients with persistent septic shock, multiple organ failure, and severe coagulopathy reveal extraordinarily high levels of LPS in plasma. The cytokine production is compartmentalized to either the circulation or to the subarachnoid space. Mortality related to shock increases from 0% to > 80% with a 10-fold increase of plasma LPS from 10 to 100 endotoxin units/ml. Hemorrhagic skin lesions and thrombosis are caused by up-regulation of tissue factor which induces coagulation, and by inhibition of fibrinolysis by plasminogen activator inhibitor 1 (PAI-1). Effective antibiotic treatment results in a rapid decline of plasma LPS (half-life 1—3 h) and cytokines, and reduced generation of thrombin, and PAI-1. Early antibiotic treatment is mandatory. Three intervention trials to block lipid A have not significantly reduced the mortality of meningococcal septicemia.
Collapse
Affiliation(s)
- Petter Brandtzaeg
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway,
| | - Anna Bjerre
- Department of Pediatrics, UllevÅl University Hospital, University of Oslo, Oslo, Norway, Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Reidun Øvstebø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Berit Brusletto
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Gun Britt Joø
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| | - Peter Kierulf
- Department of Clinical Chemistry, UllevÅl University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacol Res 2015; 102:1-11. [DOI: 10.1016/j.phrs.2015.09.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/22/2022]
|
10
|
Ssemakalu CC, Ubomba-Jaswa E, Motaung KS, Pillay M. The Effect of Solar Irradiated Vibrio cholerae on the Secretion of Pro-Inflammatory Cytokines and Chemokines by the JAWS II Dendritic Cell Line In Vitro. PLoS One 2015; 10:e0130190. [PMID: 26066787 PMCID: PMC4465907 DOI: 10.1371/journal.pone.0130190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/16/2015] [Indexed: 11/18/2022] Open
Abstract
The use of solar irradiation to sterilize water prior to its consumption has resulted in the reduction of water related illnesses in waterborne disease endemic communities worldwide. Currently, research on solar water disinfection (SODIS) has been directed towards understanding the underlying mechanisms through which solar irradiation inactivates the culturability of microorganisms in water, enhancement of the disinfection process, and the health impact of SODIS water consumption. However, the immunological consequences of SODIS water consumption have not been explored. In this study, we investigated the effect that solar irradiated V. cholerae may have had on the secretion of cytokines and chemokines by the JAWS II dendritic cell line in vitro. The JAWS II dendritic cell line was stimulated with the different strains of V. cholerae that had been: (i) prepared in PBS, (ii) inactivated through a combination of heat and chemical, (iii) solar irradiated, and (iv) non-solar irradiated, in bottled water. As controls, LPS (1 μg/ml) and CTB (1 μg/ml) were used as stimulants. After 48 hours of stimulation the tissue culture media from each treatment was qualitatively and quantitatively analysed for the presence of IL-1α, IL-1β, IL-6, IL-7, IL-10, IL-12p40, IL-12p70, IL-15, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α, IL-23 and IL-27. Results showed that solar irradiated cultures of V. cholerae induced dendritic cells to secrete significant (p<0.05) levels of pro-inflammatory cytokines in comparison to the unstimulated dendritic cells. Furthermore, the amount of pro-inflammatory cytokines secreted by the dendritic cells in response to solar irradiated cultures of V. cholerae was not as high as observed in treatments involving non-solar irradiated cultures of V. cholerae or LPS. Our results suggest that solar irradiated microorganisms are capable of inducing the secretion of pro-inflammatory cytokines and chemokines. This novel finding is key towards understanding the possible immunological consequences of consuming SODIS treated water.
Collapse
Affiliation(s)
- Cornelius Cano Ssemakalu
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Eunice Ubomba-Jaswa
- Council for Scientific and Industrial Research, Natural Resources and the Environment, P.O. Box 395, Pretoria, 0001, Gauteng, South Africa
| | - Keolebogile Shirley Motaung
- Department of Biomedical Sciences, Tshwane University of Technology, 175 Nelson Mandela Drive, Arcadia Campus, Pretoria, 0001, Gauteng, South Africa
| | - Michael Pillay
- Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
- * E-mail:
| |
Collapse
|
11
|
Robinson RT. IL12Rβ1: the cytokine receptor that we used to know. Cytokine 2014; 71:348-59. [PMID: 25516297 DOI: 10.1016/j.cyto.2014.11.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 12/22/2022]
Abstract
Human IL12RB1 encodes IL12Rβ1, a type I transmembrane receptor that is an essential component of the IL12- and IL23-signaling complex. IL12RB1 is well-established as being a promoter of delayed type hypersensitivity (DTH), the immunological reaction that limits tuberculosis. However, recent data demonstrate that in addition to promoting DTH, IL12RB1 also promotes autoimmunity. The contradictory roles of IL12RB1 in human health raises the question, what are the factors governing IL12RB1 function in a given individual, and how is inter-individual variability in IL12RB1 function introduced? Here we review recent data that demonstrate individual variability in IL12RB1 function is introduced at the epigenetic, genomic polymorphism, and mRNA splicing levels. Where and how these differences contribute to disease susceptibility and outcome are also reviewed. Collectively, recent data support a model wherein IL12RB1 sequence variability - whether introduced at the genomic or post-transcriptional level - contributes to disease, and that human IL12RB1 is not as simple a gene as we once believed.
Collapse
Affiliation(s)
- Richard T Robinson
- Department of Microbiology and Molecular Genetics, The Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
12
|
Hallissey CM, Heyderman RS, Williams NA. Human tonsil-derived dendritic cells are poor inducers of T cell immunity to mucosally encountered pathogens. J Infect Dis 2013; 209:1847-56. [PMID: 24371254 DOI: 10.1093/infdis/jit819] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mucosal immune system must initiate and regulate protective immunity, while balancing this immunity with tolerance to harmless antigens and bacterial commensals. We have explored the hypothesis that mucosal dendritic cells (DC) control the balance between regulation and immunity, by studying the responses of human tonsil-derived DC to Neisseria meningitidis as a model organism. We show that tonsil DC are able to sample their antigenic environment, internalizing Nm and expressing high levels of HLA-DR and CD86. However, in comparison to monocyte-derived DC (moDC), they respond to pathogen encounter with only low level cytokine production, largely dominated by TGFβ. Functionally, tonsil DC also only stimulated low levels of antigen-specific T cell proliferation and cytokine production when compared to moDC. We therefore propose that the default role for DC in the nasopharynx is to maintain tolerance/ignorance of the large volume of harmless antigens and bacterial commensals encountered at the nasopharyngeal mucosa.
Collapse
Affiliation(s)
- Claire M Hallissey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|
13
|
Jones HE, Copland A, Hamstra HJ, Cohen J, Brown J, Klein N, van der Ley P, Dixon G. LOS oligosaccharide modification enhances dendritic cell responses to meningococcal native outer membrane vesicles expressing a non-toxic lipid A. Cell Microbiol 2013; 16:519-34. [PMID: 24152255 PMCID: PMC4204155 DOI: 10.1111/cmi.12231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/01/2023]
Abstract
Outer membrane vesicles (OMV) are released by many bacteria, and contain immunogenic antigens in addition to harmful inflammatory factors, like lipopolysaccharides. Chemically detoxified OMV have been used in vaccines against Neisseria meningitidis (Nm); however, little is known about their interaction with antigen presenting cells. In this study, we investigated the interaction of Nm OMV with human dendritic cells (DC) to gain further understanding of their biological activity. We engineered a novel serogroup B Nm that is unencapsulated (siaD), expresses pentacylated lipid A (lpxL1), hence conferring reduced toxicity, and expresses an lgtB oligosaccharide structure designed to target OMV to DC via DC-SIGN. We show that the lgtB moiety is critical for internalization of NOMV by DC. Furthermore, the lgtB moiety significantly enhances DC maturation, IL-10 and IL-23 production in the presence of a pentacylated lipid A. While different DC phenotypes were observed for each NOMV, this had little effect on Th1 and Th2 cell differentiation; however, lgtBsignificantly increased Th17 cell expansion in the presence of pentacylated lipid A. We believe that lpxL1/lgtB NOMV should be considered further as a vaccine vector, particularly considering the importance of lgtB in antigen uptake and further human studies on antigen-specific responses should be considered.
Collapse
Affiliation(s)
- Hannah E Jones
- Infectious Diseases Microbiology Unit, Institute of Child Health, UCL, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ebersole JL, Dawson DR, Morford LA, Peyyala R, Miller CS, Gonzaléz OA. Periodontal disease immunology: 'double indemnity' in protecting the host. Periodontol 2000 2013; 62:163-202. [PMID: 23574466 PMCID: PMC4131201 DOI: 10.1111/prd.12005] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the last two to three decades our understanding of the immunobiology of periodontal disease has increased exponentially, both with respect to the microbial agents triggering the disease process and the molecular mechanisms of the host engagement maintaining homeostasis or leading to collateral tissue damage. These foundational scientific findings have laid the groundwork for translating cell phenotype, receptor engagement, intracellular signaling pathways and effector functions into a 'picture' of the periodontium as the host responds to the 'danger signals' of the microbial ecology to maintain homeostasis or succumb to a disease process. These findings implicate the chronicity of the local response in attempting to manage the microbial challenge, creating a 'Double Indemnity' in some patients that does not 'insure' health for the periodontium. As importantly, in reflecting the title of this volume of Periodontology 2000, this review attempts to inform the community of how the science of periodontal immunology gestated, how continual probing of the biology of the disease has led to an evolution in our knowledge base and how more recent studies in the postgenomic era are revolutionizing our understanding of disease initiation, progression and resolution. Thus, there has been substantial progress in our understanding of the molecular mechanisms of host-bacteria interactions that result in the clinical presentation and outcomes of destructive periodontitis. The science has embarked from observations of variations in responses related to disease expression with a focus for utilization of the responses in diagnosis and therapeutic outcomes, to current investigations using cutting-edge fundamental biological processes to attempt to model the initiation and progression of soft- and hard-tissue destruction of the periodontium. As importantly, the next era in the immunobiology of periodontal disease will need to engage more sophisticated experimental designs for clinical studies to enable robust translation of basic biologic processes that are in action early in the transition from health to disease, those which stimulate microenvironmental changes that select for a more pathogenic microbial ecology and those that represent a rebalancing of the complex host responses and a resolution of inflammatory tissue destruction.
Collapse
|
15
|
Abstract
Dendritic cells (DC) play a key role in the development of natural immunity to microbes. The DC form a bridge between the innate and adaptive immune system by providing key instructions particularly to antigen naïve T-cells. The interaction of DC with T lymphocytes involves three signals: (1) antigen processing and presentation in context of MHC Class I and/or II, (2) expression of T cell co-stimulatory molecules, and (3) cytokine production. Studying the interactions of DCs with specific pathogens allows for better understanding of how protective immunity is generated, and may be particularly useful for assessing vaccine components. In this chapter, we describe methods to generate human monocyte-derived DCs and assess their maturation, activation, and function, using interaction with the gram-negative bacterial pathogen Neisseria meningitidis as a model.
Collapse
Affiliation(s)
- Hannah E Jones
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, UK.
| | | | | |
Collapse
|
16
|
Edwards LA, Nistala K, Mills DC, Stephenson HN, Zilbauer M, Wren BW, Dorrell N, Lindley KJ, Wedderburn LR, Bajaj-Elliott M. Delineation of the innate and adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni infection. PLoS One 2010; 5:e15398. [PMID: 21085698 PMCID: PMC2976761 DOI: 10.1371/journal.pone.0015398] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought. METHODOLOGY Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFNγ with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1β and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFNγ, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay. CONCLUSIONS Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFNγ, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni.
Collapse
Affiliation(s)
- Lindsey A. Edwards
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Kiran Nistala
- Rheumatology, Institute of Child Health, London, United Kingdom
| | - Dominic C. Mills
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Holly N. Stephenson
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| | - Matthias Zilbauer
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
- Paediatric Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Brendan W. Wren
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nick Dorrell
- Pathogen Molecular Biology Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Keith J. Lindley
- Autoimmunity and Surgery Units, Institute of Child Health, London, United Kingdom
| | | | - Mona Bajaj-Elliott
- Infectious Diseases and Microbiology, Institute of Child Health, London, United Kingdom
| |
Collapse
|
17
|
Ahmadzadeh E, Zarkesh-Esfahani H, Roghanian R, Akbar FN. Comparison of Helicobacter pylori and Escherichia coli in induction of TNF-alpha mRNA from human peripheral blood mononuclear cells. Indian J Med Microbiol 2010; 28:233-7. [PMID: 20644312 DOI: 10.4103/0255-0857.66482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE To investigate the difference between the abilities of Helicobacter pylori and Escherichia coli to induce expression of TNF-alpha in human peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS H pylori was isolated from gastric biopsy specimens. The mononuclear cells were isolated from human blood, cultured, and treated with either intact or sonicated E coli or H pylori, and mRNA expression for TNF-alpha was detected using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS TNF-alpha mRNA expression levels were significantly higher in PBMCs stimulated with E coli compared to those stimulated with H pylori at the same number and identical conditions (P < .001). The results also suggest that sonicated bacteria were significantly (P < .001) less stimulatory for PBMCs than intact bacteria for both E coli and H pylori. CONCLUSIONS The ability of different H pylori strains isolated from biopsy samples to stimulate TNF-alpha from PBMCs was significantly lower than that of E coli. Sonicated bacteria, as compared to intact bacteria, was a very poor inducer of TNF-alpha mRNA expression, suggesting that the conformation of lipopolysaccharides (LPS) on the outer leaflet of the outer membrane is not totally conserved in sonicated bacteria.
Collapse
Affiliation(s)
- E Ahmadzadeh
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, IR, Iran
| | | | | | | |
Collapse
|
18
|
34 kDa MOMP of Shigella flexneri promotes TLR2 mediated macrophage activation with the engagement of NF-kappaB and p38 MAP kinase signaling. Mol Immunol 2010; 47:1739-46. [PMID: 20347487 DOI: 10.1016/j.molimm.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/02/2010] [Accepted: 03/03/2010] [Indexed: 11/20/2022]
Abstract
The 34 kDa major outer membrane protein (MOMP) of Shigella flexneri 2a induces combinatorial expression of TLR2 and TLR6 on peritoneal macrophages of BALB/c mice. Between the two best-characterized TLRs, to date, TLR2 and TLR4, which are chiefly responsible for recognizing majority of bacterial products, TLR2 alone participates in recognition of 34 kDa MOMP. In addition to TLRs, MOMP enhances the mRNA expression of MyD88 and TRAF6 and induces the nuclear translocation of NF-kappaB as well as activates p38 MAP kinase, suggesting the involvement of these molecules in the mechanism of action of MOMP. 34 kDa MOMP also stimulates macrophages, up regulates the surface expression of MHC-II and B7-1 and enhances the production of different cytokines (such as ILp70, TNF-alpha, Il-6) and chemokines (like MIP-1 alpha, MIP-1 beta and RANTES). The ability of the protein in the activation of macrophages, i.e. the induction of nuclear translocation of NF-kappaB and secretion of cytokines are dependent on TLR2 expression as demonstrated by the lack of response by macrophages pre-treated with inhibitory TLR2 mAb. Moreover, it has been found that MOMP induced regulation of TLR2 gene expression is dependent on NF-kappaB and p38 MAP kinase in murine macrophages for the first time. The MOMP induced cytokines and chemokines profile reflect that the protein has the ability to translate innate towards type-1 adaptive response. In conclusion MOMP recognizes by and activates macrophages which may be an initiating event in the antibacterial host response.
Collapse
|
19
|
van Helden SFG, van den Dries K, Oud MM, Raymakers RAP, Netea MG, van Leeuwen FN, Figdor CG. TLR4-mediated podosome loss discriminates gram-negative from gram-positive bacteria in their capacity to induce dendritic cell migration and maturation. THE JOURNAL OF IMMUNOLOGY 2009; 184:1280-91. [PMID: 20038642 DOI: 10.4049/jimmunol.0900764] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic infections are caused by microorganisms that display effective immune evasion mechanisms. Dendritic cell (DC)-dependent T cell-mediated adaptive immunity is one of the mechanisms that have evolved to prevent the occurrence of chronic bacterial infections. In turn, bacterial pathogens have developed strategies to evade immune recognition. In this study, we show that gram-negative and gram-positive bacteria differ in their ability to activate DCs and that gram-negative bacteria are far more effective inducers of DC maturation. Moreover, we observed that only gram-negative bacteria can induce loss of adhesive podosome structures in DCs, a response necessary for the induction of effective DC migration. We demonstrate that the ability of gram-negative bacteria to trigger podosome turnover and induce DC migration reflects their capacity to selectively activate TLR4. Examining mice defective in TLR4 signaling, we show that this DC maturation and migration are mainly Toll/IL-1 receptor domain-containing adaptor-inducing IFNbeta-dependent. Furthermore, we show that these processes depend on the production of PGs by these DCs, suggesting a direct link between TLR4-mediated signaling and arachidonic metabolism. These findings demonstrate that gram-positive and gram-negative bacteria profoundly differ in their capacity to activate DCs. We propose that this inability of gram-positive bacteria to induce DC maturation and migration is part of the armamentarium necessary for avoiding the induction of an effective cellular immune response and may explain the frequent involvement of these pathogens in chronic infections.
Collapse
Affiliation(s)
- Suzanne F G van Helden
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Mittal R, Bulgheresi S, Emami C, Prasadarao NV. Enterobacter sakazakii targets DC-SIGN to induce immunosuppressive responses in dendritic cells by modulating MAPKs. THE JOURNAL OF IMMUNOLOGY 2009; 183:6588-99. [PMID: 19846880 DOI: 10.4049/jimmunol.0902029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enterobacter sakazakii (ES) is an emerging pathogen that causes meningitis and necrotizing enterocolitis in infants. Dendritic cells (DCs) are professional phagocytic cells that play an essential role in host defense against invading pathogens; however, the interaction of ES with DCs is not known. In this study, we demonstrate that ES targets DC-specific ICAM nonintegrin (DC-SIGN) to survive in myeloid DCs for which outer membrane protein A (OmpA) expression in ES is critical, although it is not required for uptake. In addition, DC-SIGN expression was sufficient to cause a significant invasion by ES in HeLa cells and intestinal epithelial cells, which are normally not invaded by ES. OmpA(+) ES prevented the maturation of DCs by triggering the production of high levels of IL-10 and TGF-beta and by suppressing the activation of MAPKs. Pretreatment of DCs with Abs to IL-10 and TGF-beta or of bacteria with anti-OmpA Abs significantly enhanced the maturation markers on DCs. Furthermore, DCs pretreated with various inhibitors of MAPKs prohibited the increased production of proinflammatory cytokines stimulated by LPS or OmpA(-) ES. LPS pretreatment followed by OmpA(+) ES infection of DCs failed to induce maturation of DCs, indicating that OmpA(+) ES renders the cells in immunosuppressive state to external stimuli. Similarly, OmpA(+) ES-infected DCs failed to present Ag to T cells as indicated by the inability of T cells to proliferate in MLR. We conclude that ES interacts with DC-SIGN to subvert the host immune responses by disarming MAPK pathway in DCs.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
21
|
Davenport V, Groves E, Horton RE, Hobbs CG, Guthrie T, Findlow J, Borrow R, Naess LM, Oster P, Heyderman RS, Williams NA. Mucosal Immunity in Healthy Adults after Parenteral Vaccination with Outer‐Membrane Vesicles fromNeisseria meningitidisSerogroup B. J Infect Dis 2008; 198:731-40. [PMID: 18636953 DOI: 10.1086/590669] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Victoria Davenport
- Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mittal R, Prasadarao NV. Outer Membrane Protein A Expression inEscherichia coliK1 Is Required to Prevent the Maturation of Myeloid Dendritic Cells and the Induction of IL-10 and TGF-β. THE JOURNAL OF IMMUNOLOGY 2008; 181:2672-82. [DOI: 10.4049/jimmunol.181.4.2672] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Differential activation of human and mouse Toll-like receptor 4 by the adjuvant candidate LpxL1 of Neisseria meningitidis. Infect Immun 2008; 76:3801-7. [PMID: 18490457 DOI: 10.1128/iai.00005-08] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis LpxL1 lipopolysaccharide (LPS) bearing penta-acylated lipid A is considered a promising adjuvant candidate for inclusion in future N. meningitidis vaccines, as it elicits a markedly reduced endotoxic response in human macrophages relative to that in wild-type (hexa-acylated) LPS, while it is an equally effective adjuvant in mice. As dendritic cells (DC) and Toll-like receptors (TLR) are regarded as central mediators in the initiation of an immune response, here we evaluated the ability of LpxL1 LPS to mature and to activate human DC and examined its TLR4-/MD-2-activating properties. Unexpectedly, purified LpxL1 LPS displayed minimal human DC-stimulating properties compared to wild-type LPS. Although whole bacteria induced DC maturation and activation irrespective of their type of LPS, the LpxL1 mutant failed to activate the human recombinant TLR4/MD-2 complex expressed in HeLa cells. Similarly, purified LpxL1 LPS was unable to activate human TLR4/MD-2 and it even acted as an antagonist of wild-type LPS. Both wild-type and LpxL1 LPSs activated the murine TLR4/MD-2 complex, consistent with their abilities to induce maturation and activation of murine DC. Assays with cells transfected with different combinations of human and murine TLR4 and MD-2 indicated that TLR4 was a more-major determinant of the LPS response than MD-2. The species-specific activation of the TLR4/MD-2 complex by LpxL1 LPS may have an impact on the use of LpxL1 LPS as an adjuvant and the use of murine immunization models in human meningococcal vaccine development.
Collapse
|
24
|
Jones HE, Strid J, Osman M, Uronen-Hansson H, Dixon G, Klein N, Wong SYC, Callard RE. The role of beta2 integrins and lipopolysaccharide-binding protein in the phagocytosis of dead Neisseria meningitidis. Cell Microbiol 2008; 10:1634-45. [PMID: 18397383 DOI: 10.1111/j.1462-5822.2008.01154.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Phagocytosis of microbial pathogens is essential for the host immune response to infection. Our previous work has shown that lipooligosaccharide (LOS) expression on the surface of Neisseria meningitidis (Nm) is essential for phagocytosis, but the receptor involved remained unclear. In this study, we show that human CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are phagocytic receptors for Nm as illustrated by the capacity of CR3- and CR4-transfected Chinese hamster ovary (CHO) cells to facilitate Nm uptake. A CR3-signalling mutant failed to internalize Nm, showing that the ability of CR3 to signal is essential for phagocytosis. Internalization of Nm by CR3-transfected CHO cells could be inhibited by the presence of CR3-specific antibodies. Furthermore, dendritic cells from leukocyte adhesion deficiency-1 patients, who have diminished expression of beta2 integrins, showed markedly reduced phagocytosis of Nm. The CR3-mediated phagocytosis required the presence of lipopolysaccharide-binding protein (LBP). Furthermore, the expression of LOS by Nm was essential for LBP binding and phagocytosis via CR3. These results reveal a critical role of CR3 and LBP in the phagocytosis of Nm and provide important insights into the initial interaction meningococci have with the immune system.
Collapse
Affiliation(s)
- Hannah E Jones
- Immunobiology and Infectious Diseases and Microbiology Units, Institute of Child Health, University College London, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jones HE, Uronen-Hansson H, Callard RE, Klein N, Dixon GLJ. The differential response of human dendritic cells to live and killed Neisseria meningitidis. Cell Microbiol 2008; 9:2856-69. [PMID: 17991045 DOI: 10.1111/j.1462-5822.2007.01001.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is currently no effective vaccine for Neisseria meningitidis (Nm) serogroup B. Generation of optimal immune responses to meningococci could be achieved by targeting meningococcal antigens to human dendritic cells (DCs). Recent studies have shown that diverse DC responses and subsequent generation of protective immunity can be observed if the microbes are viable or killed. This is important because the host is likely to be exposed to both live and killed bacteria during natural infection. There are currently few data on comparative DC responses to live and killed meningococci. We show here that exposure of human DC to live meningococci does not result in a typical maturation response, as determined by the failure to upregulate CD40, CD86, HLA-DR and HLA-Class I. Despite this, live meningococci were potent inducers of IL-12 and IL-10, although the ratios of these cytokines differed from those to killed organisms. Our data also suggest that enhanced phagocytosis of killed organisms compared with live may be responsible for the differential cytokine responses, involving an autocrine IL-10-dependent mechanism. The consequences of these findings upon the effectiveness of antigen presentation and T-cell responses are currently under investigation.
Collapse
Affiliation(s)
- Hannah E Jones
- Infectious Diseases and Microbiology Unit and Immunobiology Unit, Institute of Child Health, UCL, London, UK
| | | | | | | | | |
Collapse
|
26
|
Mazzon C, Baldani-Guerra B, Cecchini P, Kasic T, Viola A, de Bernard M, Aricò B, Gerosa F, Papini E. IFN-gamma and R-848 dependent activation of human monocyte-derived dendritic cells by Neisseria meningitidis adhesin A. THE JOURNAL OF IMMUNOLOGY 2007; 179:3904-16. [PMID: 17785828 DOI: 10.4049/jimmunol.179.6.3904] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A soluble recombinant form of Neisseria meningitidis adhesin A (NadADelta351-405), proposed as a constituent of anti-meningococcal B vaccines, is here shown to specifically interact with and immune-modulate human monocyte-derived dendritic cells (mo-DCs). After priming with IFN-gamma and stimulation with NadADelta351-405, mo-DCs strongly up-regulated maturation markers CD83, CD86, CD80, and HLA-DR, secreted moderate quantities of TNF-alpha, IL-6, and IL-8, and produced a slight, although significant, amount of IL-12p70. Costimulation of mo-DCs with NadADelta351-405 and the imidoazoquinoline drug R-848, believed to mimic bacterial RNA, increased CD86 in an additive way, but strongly synergized the secretion of IL-12p70, IL-1, IL-6, TNF-alpha, and MIP-1alpha, especially after IFN-gamma priming. CD86/CD80 overexpression correlated with the occupation of high-(kd approximately 80 nM) and low-(kd approximately 4 muM) affinity binding sites for NadADelta351-405. Alternatively, secretion of IL-12p70 and TNF-alpha, IL-6, and IL-8 corresponded to the occupation of high- or low-affinity receptors, respectively. Mo-DCs matured by IFN-gamma and NadADelta351-405 supported the proliferation of naive CD4+ T lymphocytes, inducing the differentiation of both IFN-gamma and IL-4 producing phenotypes. Our data show that NadA not only is a good immunogen but is as well endowed with a proimmune, self-adjuvating, activity.
Collapse
Affiliation(s)
- Cristina Mazzon
- Centro Ricerche Interdipartimentale Biotecnologie Innovative and Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pajón R, Niebla O, Yero D, Pérez O, Cabrera O, Findlow J, Balmer P, Borrow R. On the neisserial vaccine quest: Neisseria Vaccines 2007. Expert Rev Anti Infect Ther 2007; 5:545-50. [PMID: 17678419 DOI: 10.1586/14787210.5.4.545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rolando Pajón
- Meningococcal Research Department, Center for Genetic Engineering and Biotechnology, Cubanacán Havana, Cuba.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Schultz H, Hume J, Zhang DS, Gioannini TL, Weiss JP. A Novel Role for the Bactericidal/Permeability Increasing Protein in Interactions of Gram-Negative Bacterial Outer Membrane Blebs with Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2477-84. [PMID: 17675509 DOI: 10.4049/jimmunol.179.4.2477] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bactericidal/permeability-increasing protein (BPI) is thought to play an important role in killing and clearance of Gram-negative bacteria and the neutralization of endotoxin. A possible role for BPI in clearance of cell-free endotoxin has also been suggested based on studies with purified endotoxin aggregates and blood monocytes. Because the interaction of BPI with cell-free endotoxin, during infection, occurs mainly in tissue and most likely in the form of shed bacterial outer membrane vesicles ("blebs"), we examined the effect of BPI on interactions of metabolically labeled ([(14)C]-acetate) blebs purified from Neisseria meningitidis serogroup B with either human monocyte-derived macrophages or monocyte-derived dendritic cells (MDDC). BPI produced a dose-dependent increase (up to 3-fold) in delivery of (14)C-labeled blebs to MDDC, but not to monocyte-derived macrophages in the presence or absence of serum. Both, fluorescently labeled blebs and BPI were internalized by MDDC under these conditions. The closely related LPS-binding protein, in contrast to BPI, did not increase association of the blebs with MDDC. BPI-enhanced delivery of the blebs to MDDC did not increase cell activation but permitted CD14-dependent signaling by the blebs as measured by changes in MDDC morphology, surface expression of CD80, CD83, CD86, and MHC class II and secretion of IL-8, RANTES, and IP-10. These findings suggest a novel role of BPI in the interaction of bacterial outer membrane vesicles with dendritic cells that may help link innate immune recognition of endotoxin to Ag delivery and presentation.
Collapse
Affiliation(s)
- Hendrik Schultz
- Inflammation Program, University of Iowa and Iowa City Veterans Affairs Medical Center, IA, USA
| | | | | | | | | |
Collapse
|
29
|
Arjcharoen S, Wikraiphat C, Pudla M, Limposuwan K, Woods DE, Sirisinha S, Utaisincharoen P. Fate of a Burkholderia pseudomallei lipopolysaccharide mutant in the mouse macrophage cell line RAW 264.7: possible role for the O-antigenic polysaccharide moiety of lipopolysaccharide in internalization and intracellular survival. Infect Immun 2007; 75:4298-304. [PMID: 17576760 PMCID: PMC1951188 DOI: 10.1128/iai.00285-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is a facultative intracellular gram-negative bacterium that can survive and multiply inside macrophages. One of the mechanisms by which B. pseudomallei escapes macrophage killing is by interfering with the expression of inducible nitric oxide synthase (iNOS). However, the bacterial components that modulate antimicrobial activity of the macrophage have not been fully elucidated. In the present study, we demonstrated that B. pseudomallei strain SRM117, a lipopolysaccharide (LPS) mutant that lacks the O-antigenic polysaccharide moiety, was more susceptible to macrophage killing during the early phase of infection than the parental wild-type strain (1026b). Unlike the wild type, the LPS mutant could readily stimulate Y701-STAT-1 phosphorylation (pY701-STAT-1) and interferon-regulatory factor 1 (IRF-1) expression, both of which are essential transcription factors of iNOS. Neutralizing antibody against beta interferon was able to inhibit the phosphorylation of Y701-STAT-1 and the expression of IRF-1 and iNOS, all of which resulted in an increased rate of intracellular replication. These data suggest that the O-antigenic polysaccharide moiety of B. pseudomallei modulates the host cell response, which in turn controls the intracellular fate of B. pseudomallei inside macrophages.
Collapse
Affiliation(s)
- S Arjcharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | | | | | | | | | | | |
Collapse
|
30
|
Davenport V, Groves E, Hobbs CG, Williams NA, Heyderman RS. Regulation of Th-1 T cell-dominated immunity to Neisseria meningitidis within the human mucosa. Cell Microbiol 2006; 9:1050-61. [PMID: 17166235 DOI: 10.1111/j.1462-5822.2006.00851.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neisseria meningitidis is commonly carried asymptomatically in the upper respiratory tract and only occasionally invades the bloodstream and meninges to cause disease. Naturally acquired immunity appears protective but the nature of the cellular immune response within the mucosa is uncertain. We show that following in vitro stimulation with N. meningitidis serogroup B (MenB) antigens, approximately 66% of the dividing mucosal CD4(+)CD45RO(+) memory population express the Th1-associated IL18-R while the remainder express CRTH2, a Th2-associated marker. The pro-inflammatory bias of this anti-MenB response is not evident in blood, demonstrating compartmentalization at the induction site; and occurs in the presence or absence of lipopolysacharide indicating that these responses are already fully committed. Depletion of CD25(+) cells reveals suppression of the effector CD4(+) T cell response restricted to the mucosa and most marked in children (i.e. those at greatest risk of disease). Mucosal T-regulatory cell (Treg) activity is partially overcome by blocking the human glucocorticoid-induced TNF receptor (GITR) and is not seen following stimulation with antigens from another mucosal pathogen, influenza virus. Pro-inflammatory, antimeningococcal T cell responses may limit invasive disease at the mucosa but Treg induction while reducing immunopathological damage, may also restrict the effectiveness of the protective response, particularly in children.
Collapse
Affiliation(s)
- Victoria Davenport
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK
| | | | | | | | | |
Collapse
|
31
|
Plant L, Wan H, Jonsson AB. Non-lipooligosaccharide-mediated signalling via Toll-like receptor 4 causes fatal meningococcal sepsis in a mouse model. Cell Microbiol 2006; 9:657-69. [PMID: 17026481 DOI: 10.1111/j.1462-5822.2006.00816.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Meningococcal lipooligosaccharide (LOS) is a major inflammatory mediator of fulminant meningococcal sepsis and meningitis with disease severity correlating with circulating concentrations of LOS and proinflammatory cytokines. In this study we show that the proinflammatory response to live meningococci in a mouse model of sepsis involves TLR4, but can develop independently of the expression of LOS. This is supported by data showing that in vivo an isogenic LOS-deficient strain, lpxA, induced equivalent disease severity and similar proinflammatory responses as the serogroup C wild-type parent strain FAM20. This response was abolished in TLR4-/- mice, and neither the wild-type strain of meningococci nor the LOS-deficient mutant was able to cause fatal sepsis in these mice. Mouse survival correlated with low levels of cytokines and chemokines, the chemotactic complement factor C5a and neutrophil levels in blood at 24 h post infection. These data suggest that during meningococcal sepsis the recognition of one or more unidentified non-LOS component(s) by TLR4 is important in stimulating proinflammatory responses, and that fatality associated with meningococcal sepsis in mice is induced by the proinflammatory host response.
Collapse
Affiliation(s)
- Laura Plant
- Smittskyddsinstitutet, Swedish Institute for Infectious Disease Control, Karolinska Institutet, Nobelsväg 18, 171 77 Solna, Sweden.
| | | | | |
Collapse
|
32
|
Shida K, Kiyoshima-Shibata J, Nagaoka M, Watanabe K, Nanno M. Induction of Interleukin-12 by Lactobacillus Strains Having a Rigid Cell Wall Resistant to Intracellular Digestion. J Dairy Sci 2006; 89:3306-17. [PMID: 16899663 DOI: 10.3168/jds.s0022-0302(06)72367-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Some strains of lactobacilli can stimulate macrophages and dendritic cells to secrete IL-12, which plays a key role in activating innate immunity. We examined the IL-12-inducing ability of 47 Lactobacillus strains belonging to 10 species in mouse peritoneal macrophages, and characterized the properties important for the induction of IL-12. Although considerable differences in IL-12-inducing ability were observed among the strains tested, almost all strains belonging to the Lactobacillus casei group (L. casei, Lactobacillus rhamnosus, and Lactobacillus zeae) or to Lactobacillus fermentum induced high levels of IL-12. Phagocytosis of lactobacilli was necessary for IL-12 induction, and the strains with strong IL-12 induction were relatively resistant to lysis in the macrophages. The sensitivity of Lactobacillus strains to in vitro treatment with M-1 enzyme, a member of the N-acetylmuramidases, was negatively correlated with IL-12-inducing ability. Using a probiotic strain, L. casei strain Shirota (LcS), we showed that the cell wall of LcS could be digested by long-term treatment with a high dose of M-1 enzyme and that the IL-12-inducing ability was diminished according to the duration of the enzyme treatment. The soluble polysaccharide-peptidoglycan complex released from the cell wall of LcS did not induce IL-12, whereas the insoluble intact cell wall of LcS induced IL-12. These results suggest that the intact cell wall structure of lactobacilli is an important element in the ability to induce IL-12 and that Lactobacillus strains having a rigid cell wall resistant to intracellular digestion effectively stimulate macrophages to induce IL-12.
Collapse
Affiliation(s)
- K Shida
- Yakult Central Institute for Microbiological Research, 1796 Yaho, Kunitachi, Tokyo 186-8650, Japan.
| | | | | | | | | |
Collapse
|
33
|
Drakes ML, Czinn SJ, Blanchard TG. Regulation of murine dendritic cell immune responses by Helicobacter felis antigen. Infect Immun 2006; 74:4624-33. [PMID: 16861650 PMCID: PMC1539598 DOI: 10.1128/iai.00289-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter infections are present in approximately 50% of humans, causing severe illnesses such as gastritis and malignancies. Dendritic cells (DC) are critical antigen-presenting cells which link innate and adaptive immune responses. The mechanism of dendritic cell regulation in Helicobacter-induced gastritis is poorly understood. These studies characterized DC isolated from the lamina propria of Helicobacter-infected mice and analyzed innate and adaptive immune responses elicited by Helicobacter antigen (Ag)-pulsed DC. The presence of DC was elevated in the gastric lamina propria infiltrate of infected mice in comparison with controls. After treatment with Helicobacter felis Ag, DC were polarized to secrete interleukin-6 as the dominant cytokine. In the presence of DC and Helicobacter Ag, responder allogeneic T cells in culture exhibited limited cell division. We suggest that the response of DC and T cells to Helicobacter Ag is critical to the chronic persistence of Helicobacter-induced gastritis.
Collapse
Affiliation(s)
- Maureen L Drakes
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| | | | | |
Collapse
|
34
|
Uli L, Castellanos-Serra L, Betancourt L, Domínguez F, Barberá R, Sotolongo F, Guillén G, Pajón Feyt R. Outer membrane vesicles of the VA-MENGOC-BC vaccine against serogroup B of Neisseria meningitidis: Analysis of protein components by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2006; 6:3389-99. [PMID: 16673438 DOI: 10.1002/pmic.200500502] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neisseria meningitidis is a Gram-negative bacterium responsible for significant mortality worldwide. While effective polysaccharides-based vaccines exist against serogroups A, C, W135, and Y, no similar vaccine is suitable for children under 4 years against disease caused by serogroup B strains. Therefore, major vaccine efforts against this serogroup are based on outer membrane vesicles (OMVs), containing major outer membrane proteins. The OMV-based vaccine produced by the Finlay Institute in Cuba (VA-MENGOC-BC) contributed to the rapid decline of the epidemic in this Caribbean island. While the content of major proteins in this vaccine has been discussed, no detailed work of an outer membrane proteomic map of this, or any other, commercially available OMV-derived product has been published so far. Since OMVs exhibit a large bias toward a few major proteins and usually contain a high content of lipids, establishing the adequate conditions for high resolution, 2-DE of this kind of preparation was definitely a technical challenge. In this work, 2-DE and MS have been used to generate a proteomic map of this product, detailing the presence of 31 different proteins, and it allows the identification of new putative protective protein components it contains.
Collapse
Affiliation(s)
- Liliam Uli
- Finlay Institute, Serum and Vaccines Production Center, Habana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ben Nasr A, Haithcoat J, Masterson JE, Gunn JS, Eaves-Pyles T, Klimpel GR. Critical role for serum opsonins and complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in phagocytosis of Francisella tularensis by human dendritic cells (DC): uptake of Francisella leads to activation of immature DC and intracellular survival of the bacteria. J Leukoc Biol 2006; 80:774-86. [PMID: 16857732 DOI: 10.1189/jlb.1205755] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Francisella tularensis is one of the most infectious human pathogens known. Although much has been learned about the immune response of mice using an attenuated live vaccine strain (LVS) derived from F. tularensis subspecies holarctica (Type B), little is known about the responses of human monocyte-derived immature dendritic cells (DC). Here, we show that optimal phagocytosis of LVS by DC is dependent on serum opsonization. We demonstrate that complement factor C3-derived opsonins and the major complement receptors expressed by DC, the integrins CR3 (CD11b/CD18) and CR4 (CD11c/CD18), play a critical role in this adhesion-mediated phagocytosis. LVS induced proinflammatory cytokine production and up-regulation of costimulatory surface proteins (CD40, CD86, and MHC Class II) on DC but resisted killing. Once taken up, LVS grew intracellularly, resulting in DC death. DC maturation and cytokine production were induced by direct contact/phagocytosis of LVS or interaction with soluble products of the bacteria, and enhanced activation was seen when LVS was pretreated with serum. Sonicated LVS and supernatants from LVS cultures were potent activators of DC, but LVS LPS failed to activate DC maturation or cytokine production. Serum-treated LVS rapidly induced (within 6 h) a number of cytokines including IL-10, a potent suppressor of macrophage functions and down-regulator of Th1-like responses and the Th1 response inducer IL-12. These results suggest that the simultaneous production of an activating (IL-12, IL-1beta, and TNF-alpha) and a suppressing (IL-10) cytokine profile could contribute to the immunopathogenesis of tularemia.
Collapse
Affiliation(s)
- Abdelhakim Ben Nasr
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kang SSW, Kauls LS, Gaspari AA. Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol 2006; 54:951-83; quiz 983-6. [PMID: 16713451 DOI: 10.1016/j.jaad.2005.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/28/2005] [Accepted: 05/03/2005] [Indexed: 10/24/2022]
Abstract
UNLABELLED Toll-like receptors are a recently identified group of receptors that are an important component of the immune system. Thus far, ten different receptors have been identified and have unique tissue distribution, ligand binding properties, cellular signaling pathways, and cytokine production profiles. Importantly, ligand binding has been shown to regulate both the adaptive and host immune response; thus, defects in this pathway have the potential to lead to increased susceptibility to infection and inflammatory dysregulation. In this article, the burgeoning literature pertinent to the discovery and signaling mechanisms are reviewed in addition to the discussion of the important role Toll-like receptors may play in the pathogenesis of numerous skin diseases. LEARNING OBJECTIVE At the completion of this learning activity, participants should be familiar with the role of Toll-like receptors in host defenses and their relevance to dermatologic diseases.
Collapse
Affiliation(s)
- Sammy S W Kang
- Department of Dermatology, Weil Medical College, Cornell University, New York, New York, USA
| | | | | |
Collapse
|
37
|
Etchart N, Baaten B, Andersen SR, Hyland L, Wong SYC, Hou S. Intranasal immunisation with inactivated RSV and bacterial adjuvants induces mucosal protection and abrogates eosinophilia upon challenge. Eur J Immunol 2006; 36:1136-44. [PMID: 16619288 DOI: 10.1002/eji.200535493] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We have previously shown that following intranasal exposure to influenza virus, specific plasma cells are generated in the nasal-associated lymphoid tissue (NALT) and maintained for the life of the animal. However, we also showed that following infection with respiratory syncytial virus (RSV), specific plasma cells are generated in the NALT but wane quickly and are not maintained even after challenge, even though RSV-specific serum antibody responses remain robust. Only infection with influenza virus generated sterilising immunity, implying a role for these long-lived plasma cells in protection. We show here that the RSV-specific IgA NALT plasma cell population and lung antibody levels can be substantially boosted, both at acute and memory time points, by intranasal immunisation with inactivated RSV (iRSV) in combination with bacterial outer membrane vesicles (OMV) compared to live RSV alone. Finally, challenge with live RSV showed that immunisation with iRSV and OMV protect against both virus replication in the lung and the eosinophil infiltrate generated by either live RSV or iRSV alone. These data show that immunisation with iRSV and OMV maintains a NALT RSV-specific plasma cell population and generates an efficient protective immune response following RSV infection.
Collapse
Affiliation(s)
- Nathalie Etchart
- Lung Immunology group, The Edward Jenner Institute for Vaccine Research, Compton, Newbury, Berkshire, UK
| | | | | | | | | | | |
Collapse
|
38
|
Plant L, Wan H, Jonsson AB. MyD88-dependent signaling affects the development of meningococcal sepsis by nonlipooligosaccharide ligands. Infect Immun 2006; 74:3538-46. [PMID: 16714586 PMCID: PMC1479290 DOI: 10.1128/iai.00128-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Toll-like receptors (TLRs) and the adaptor myeloid differentiation factor 88 (MyD88) are important in the innate immune defenses of the host to microbial infections. Meningococcal ligands signaling via TLRs control inflammatory responses, and stimulation can result in fulminant meningococcal sepsis. In this study, we show that the responses to nonlipooligosaccharide (non-LOS) ligands of meningococci are MyD88 dependent. An isogenic LOS-deficient mutant of the serogroup C meningococcal strain FAM20 caused fatal disease in wild type C57BL/6 mice that was not observed in MyD88-/- mice. Fatality correlated with high proinflammatory cytokine and C5a levels in serum, high neutrophil numbers in blood, and increased bacteremia at 24 h postinfection in the wild-type mice. Infection with the parent strain FAM20 resulted in fatality in 100% of the wild-type mice and 50% of the MyD88-/- mice. We conclude that both LOS and another neisserial ligand cause meningococcal sepsis in an in vivo mouse model and confirm that meningococcal LOS can act via both the MyD88- dependent and -independent pathways, while the non-LOS meningococcal ligand(s) acts only via the MyD88-dependent pathway.
Collapse
Affiliation(s)
- Laura Plant
- Department of Medical Biochemistry and Microbiology, Biomedical Centrum, Uppsala University, 751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
39
|
Steeghs L, van Vliet SJ, Uronen-Hansson H, van Mourik A, Engering A, Sanchez-Hernandez M, Klein N, Callard R, van Putten JPM, van der Ley P, van Kooyk Y, van de Winkel JGJ. Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol 2006; 8:316-25. [PMID: 16441441 DOI: 10.1111/j.1462-5822.2005.00623.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neisseria meningitidis lipopolysaccharide (LPS) has been identified as a major determinant of dendritic cell (DC) function. Here we report that one of a series of meningococcal mutants with defined truncations in the lacto-N-neotetraose outer core of the LPS exhibited unique strong adhesion and internalization properties towards DC. These properties were mediated by interaction of the GlcNAc(beta1-3)-Gal(beta1-4)-Glc-R oligosaccharide outer core of lgtB LPS with the dendritic-cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) lectin receptor. Activation of DC-SIGN with this novel oligosaccharide ligand skewed T-cell responses driven by DC towards T helper type 1 activity. Thus, the use of lgtB LPS may provide a powerful instrument to selectively induce the desired arm of the immune response and potentially increase vaccine efficacy.
Collapse
Affiliation(s)
- Liana Steeghs
- Utrecht University, Department of Infectious Diseases and Immunology, PO Box 80.165, 3508 TD Utrecht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Amedei A, Cappon A, Codolo G, Cabrelle A, Polenghi A, Benagiano M, Tasca E, Azzurri A, D’Elios MM, Del Prete G, de Bernard M. The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J Clin Invest 2006; 116:1092-101. [PMID: 16543949 PMCID: PMC1401483 DOI: 10.1172/jci27177] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/24/2006] [Indexed: 12/13/2022] Open
Abstract
The Helicobacter pylori neutrophil-activating protein (HP-NAP) is a virulence factor of H. pylori that stimulates in neutrophils high production of oxygen radicals and adhesion to endothelial cells. We report here that HP-NAP is a TLR2 agonist able to induce the expression of IL-12 and IL-23 by neutrophils and monocytes. Addition in culture of HP-NAP, as an immune modulator, to antigen-induced T cell lines resulted in a remarkable increase in the number of IFN-gamma-producing T cells and decrease of IL-4-secreting cells, thus shifting the cytokine profile of antigen-activated human T cells from Th2 to a Th1 cytotoxic phenotype. We also found that in vivo HP-NAP elicited an antigen-specific Th1-polarized T cell response in the gastric mucosa of H. pylori-infected patients. These data indicate HP-NAP as an important factor of H. pylori able to elicit cells of the innate immune system to produce IL-12 and IL-23, and they suggest it as a new tool for promoting Th1 immune responses.
Collapse
Affiliation(s)
- Amedeo Amedei
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Andrea Cappon
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Gaia Codolo
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Anna Cabrelle
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Alessandra Polenghi
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Marisa Benagiano
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Elisabetta Tasca
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Annalisa Azzurri
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Mario Milco D’Elios
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Gianfranco Del Prete
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Marina de Bernard
- Department of Internal Medicine, University of Florence, Florence, Italy.
Department of Biomedical Sciences, University of Padua, Padua, Italy.
Venetian Institute of Molecular Medicine, Padua, Italy.
Department of Clinical and Experimental Medicine and
Department of Biology, University of Padua, Padua, Italy.
Department of Biomedicine, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| |
Collapse
|
41
|
Kurzai O, Schmitt C, Claus H, Vogel U, Frosch M, Kolb-Mäurer A. Carbohydrate composition of meningococcal lipopolysaccharide modulates the interaction of Neisseria meningitidis with human dendritic cells. Cell Microbiol 2006; 7:1319-34. [PMID: 16098219 DOI: 10.1111/j.1462-5822.2005.00559.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Meningococcal lipopolysaccharide (LPS) is of crucial importance for the pathogenesis of invasive infection. We show that sialylation and elongation of the alpha-chain effectively shields viable unencapsulated Neisseria meningitidis from recognition by human dendritic cells (DC). In contrast, beta- and gamma- chain of the LPS carbohydrate moiety play only a minor role in the interaction with DC. The protective function of the LPS for the bacteria can be counteracted in vivo by phase variation of the lgtA gene encoding LPS glycosyltransferase A. Capsule expression protects N. meningitidis efficiently from recognition and phagocytosis by DC independent of the LPS structure. Despite the significant impact of LPS composition on the adhesion and phagocytosis of N. meningitidis no differences were found in terms of cytokine levels secreted by DC for IL1-beta, IL-6, IL-8, TNF-alpha, IFN-gamma and GM-CSF. However, significantly lower levels of the regulatory mediator IL-10 were induced by encapsulated strains in comparison to isogenic unencapsulated derivatives. IL-10 secretion was shown to depend on phagocytosis because poly alpha-2,8 sialic acid did not influence IL-10 secretion. The use of truncated LPS isoforms in vaccine preparations can therefore not only result in attenuation but also in more efficient targeting of DC.
Collapse
Affiliation(s)
- Oliver Kurzai
- Institute of Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Heyderman RS, Davenport V, Williams NA. Mucosal immunity and optimizing protection with meningococcal serogroup B vaccines. Trends Microbiol 2006; 14:120-4. [PMID: 16469496 DOI: 10.1016/j.tim.2006.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 12/20/2005] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
Candidate Neisseria meningitidis serogroup B vaccines that are based on outer-membrane vesicles induce protective immunity in adults but provide neither crossprotection for infants nor long-lasting immunity. We suggest that this lack of vaccine efficacy is not solely because the best antigens are yet to be identified but also results from inappropriate programming of the immune response. Natural carriage of N. meningitidis and related bacteria leads to the development of protective immunity both at the mucosal surface and in the circulation. We propose that vaccine strategies that mimic this natural immunization process would better-optimize vaccine-induced protective immunity. Thus, mucosal immunization before a systemic booster vaccination could provide the solution and reduce the necessity for multiple injections to achieve immunity.
Collapse
Affiliation(s)
- Robert S Heyderman
- Department of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
43
|
Newton PJ, Weller IVD, Williams IG, Miller RF, Copas A, Tedder RS, Katz DR, Chain BM. Monocyte derived dendritic cells from HIV-1 infected individuals partially reconstitute CD4 T-cell responses. AIDS 2006; 20:171-80. [PMID: 16511409 DOI: 10.1097/01.aids.0000202649.95655.8c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The study tests the hypothesis that monocyte derived dendritic cells from HIV-1 infected individuals are normal and can restore impaired CD4 T-cell antigen specific responses. DESIGN Monocyte derived dendritic cells were isolated from individuals at three different stages of HIV-1 infection with a wide spectrum of viral load and CD4 T-cell counts, and from healthy volunteers. The cell surface phenotype and allogeneic stimulatory potential of these dendritic cells was documented. CD4 T-cell responses to HIV p24, tetanus toxoid and purified protein derivative were measured using either unfractionated peripheral blood mononuclear cells, or purified dendritic cell/T-cell cultures. RESULTS Dendritic cells from all three HIV-1 infected groups did not differ from each other or from healthy volunteers in terms of cell surface phenotype or allogeneic stimulatory potential using T cells from healthy volunteers. Dendritic cells from immunosuppressed antiretroviral naive individuals enhanced the autologous recall proliferative responses both to HIV-1 p24, and third party antigens tetanus toxoid and purified protein derivative, both in terms of the proportion of responding individuals, and median proliferation. CONCLUSION Antigen presentation by dendritic cells partially restores impaired antigen specific CD4 T-cell responses associated with HIV-1 infection. Immunization strategies which target dendritic cells may therefore offer significant advantages in the ability to stimulate HIV-specific protective immune responses.
Collapse
Affiliation(s)
- Philippa J Newton
- Department of Immunology and Molecular Pathology, University College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Humphries HE, Triantafilou M, Makepeace BL, Heckels JE, Triantafilou K, Christodoulides M. Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 2005; 7:415-30. [PMID: 15679844 DOI: 10.1111/j.1462-5822.2004.00471.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of Neisseria meningitidis with cells of the meninges are critical to progression of the acute, compartmentalized intracranial inflammatory response that is characteristic of meningococcal meningitis. An important virulence mechanism of the bacteria is the ability to shed outer membrane (OM) blebs containing lipopolysaccharide (LPS), which has been assumed to be the major pro-inflammatory molecule produced during meningitis. Comparison of cytokine induction by human meningeal cells following infection with wild-type meningococci, LPS-deficient meningococci or after treatment with OM isolated from both organisms, demonstrated the involvement of non-LPS bacterial components in cell activation. Significantly, recognition of LPS-replete OM did not depend on host cell expression of Toll-like receptor (TLR)4, the accessory protein MD-2 or CD14, or the recruitment of LPS-accessory surface proteins heat shock protein (HSP)70, HSP90alpha, chemokine receptor CXCR4 and growth differentiation factor (GDF)5. In addition, recognition of LPS-deficient OM was not associated with the expression of TLR2 or any of these other molecules. These data suggest that during meningococcal meningitis innate recognition of both LPS and non-LPS modulins is dependent on the expression of as yet uncharacterized pattern recognition receptors on cells of the meninges. Moreover, the biological consequences of cellular activation by non-LPS modulins suggest that clinical intervention strategies based solely on abrogating the effects of LPS are likely to be only partially effective.
Collapse
Affiliation(s)
- Holly E Humphries
- Molecular Microbiology, Division of Infection, Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | |
Collapse
|
45
|
Kranzer K, Söllner L, Aigner M, Lehn N, Deml L, Rehli M, Schneider-Brachert W. Impact of Helicobacter pylori virulence factors and compounds on activation and maturation of human dendritic cells. Infect Immun 2005; 73:4180-9. [PMID: 15972508 PMCID: PMC1168582 DOI: 10.1128/iai.73.7.4180-4189.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recently, we and others have shown that Helicobacter pylori induces dendritic cell (DC) activation and maturation. However, the impact of virulence factors on the interplay between DCs and H. pylori remains elusive. Therefore, we investigated the contribution of cag pathogenicity island (PAI) and VacA status on cytokine release and up-regulation of costimulatory molecules in H. pylori-treated DCs. In addition, to characterize the stimulatory capacity of H. pylori compounds in more detail, we studied the effect of formalin-inactivated and sonicated H. pylori, as well as secreted H. pylori molecules, on DCs. Incubation of DCs with viable or formalin-inactivated H. pylori induced comparable secretion of interleukin-6 (IL-6), IL-8, IL-10, IL-12, IL-1beta, and tumor necrosis factor (TNF). In contrast, IL-12 and IL-1beta release was significantly reduced in DCs treated with sonicated bacteria and secreted bacterial molecules. Treatment of sonicated H. pylori preparations with polymyxin B resulted in a significant reduction of IL-8 and IL-6 secretion, suggesting that H. pylori-derived lipopolysaccharide at least partially contributes to activation of immature DCs. In addition, the capacity of H. pylori-pulsed DCs to activate allogeneic T cells was not affected by cag PAI and VacA. Pretreatment of DC with cytochalasin D significantly inhibited secretion of IL-12, IL-1beta, and TNF, indicating that phagocytosis of H. pylori contributes to maximal activation of DCs. Taken together, our results suggest that DC activation and maturation, as well as DC-mediated T-cell activation, are independent of the cag PAI and VacA status of H. pylori.
Collapse
Affiliation(s)
- Katharina Kranzer
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Rodríguez T, Pérez O, Ménager N, Ugrinovic S, Bracho G, Mastroeni P. Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery. Vaccine 2005; 23:1312-21. [PMID: 15652674 DOI: 10.1016/j.vaccine.2004.07.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 07/19/2004] [Indexed: 11/17/2022]
Abstract
Exposure to proteoliposomes from serogroup B Neisseria meningitidis (PL) induced up-regulation of MHC-II, MHC-I, CD40, CD80 and CD86 expression on the surface of murine bone marrow-derived dendritic cells (DC). CD40, CD80 and CD86 were up-regulated on bone marrow-derived macrophages (MPhi) upon stimulation with PL. Both DC and MPhi released TNFalpha, but only DC produced IL12(p70) in response to PL. A small increase in the expression of MHC-II, CD40 and CD86, as well as production of IL12(p70), was observed on the cell surface of DC, but not MPhi from LPS-non-responder C3H/HeJ after exposure to PL. DC, but not MPhi, incubated with PL containing ovalbumin (PL-OVA) presented OVA-specific peptides to CD4+ and CD8+ OVA-specific T-cell hybridomas. These data clearly indicate that PL exert an immunomodulatory effect on DC and MPhi, with some contribution of non-LPS components besides the main role of LPS. The work also shows the potential of PL as a general system to deliver antigens to DC for presentation to CD4+ and CD8+ T-cells.
Collapse
Affiliation(s)
- Tamara Rodríguez
- Department of Immunology, Finlay Institute, PO Box 16017, Havana, Cuba
| | | | | | | | | | | |
Collapse
|
47
|
Robinson K, Taraktsoglou M, Rowe KSJ, Wooldridge KG, Ala'Aldeen DAA. Secreted proteins from Neisseria meningitidis mediate differential human gene expression and immune activation. Cell Microbiol 2004; 6:927-38. [PMID: 15339268 DOI: 10.1111/j.1462-5822.2004.00410.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Meningococcal secreted proteins (MSPs) have been poorly characterized. We hypothesized that MSPs play essential roles in host--bacterial interactions and in the pathogenesis of disease. In order to test this, we examined differential host gene expression in human meningeal-derived cells, in response to endotoxin-depleted MSPs compared to live bacteria. Using expression arrays, upregulated expression of several pro-inflammatory and apoptosis-related genes was found to be induced by MSPs. The transcription and translation of representative genes was confirmed by using various methods. Increased interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) gene transcription was confirmed using real-time PCR. Upregulated IL-8, IL-6, ICAM-1 and COX-2 protein expression were confirmed by ELISA, flow cytometry or Western immunoblots. Furthermore, exposure of cells to MSPs or live meningococci induced a small significant resistance effect to staurosporine-induced apoptosis. Secreted meningococcal virulence factors are therefore important in inducing host inflammatory responses and resistance to apoptosis, and they are worthy of extensive investigation.
Collapse
Affiliation(s)
- Karen Robinson
- Molecular Bacteriology and Immunology Group, Division of Microbiology and Infectious Diseases, University Hospital, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
48
|
Sokolova O, Heppel N, Jägerhuber R, Kim KS, Frosch M, Eigenthaler M, Schubert-Unkmeir A. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell Microbiol 2004; 6:1153-66. [PMID: 15527495 DOI: 10.1111/j.1462-5822.2004.00422.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis traversal across the blood-cerebrospinal fluid barrier is an essential step in the pathogenesis of bacterial meningitis. We have previously shown that invasion of human brain microvascular endothelial cells (HBMEC) by meningococci is mediated by bacterial outer membrane protein Opc that binds fibronectin, thereby anchoring the bacterium to the integrin alpha 5 beta 1-receptor on the endothelial cell surface. However, subsequent signal transduction mechanisms essential for or regulated by N. meningitidis adhesion and invasion, or HBMEC responses to N. meningitidis are unknown. In this report we investigated the role of c-Jun N-terminal kinases 1 and 2 (JNK1 and JNK2), p38 mitogen-activated (MAP) kinase and protein tyrosine kinases in endothelial-N. meningitidis interaction. Binding of meningococci to HBMEC phosphorylated and activated JNK1 and JNK2 and p38 MAPK as well as their direct substrates c-Jun and MAP kinase activated kinase-2 (MAPKAPK-2), respectively. Non-invasive meningococcal strains lacking opc gene (opc mutants and sequence type 11 complex meningococci) still activated p38 MAPK, however, failed to activate JNK. Inhibition of JNK1 and JNK2 significantly reduced internalization of N. meningitidis by HBMEC without affecting its adherence. Blocking the endothelial integrin alpha 5 beta 1 also decreased N. meningitidis-induced JNK activation in HBMEC. These findings indicate the crucial role of JNK signalling pathway in N. meningitidis invasion in HBMEC. In contrast, p38 MAPK pathway was important for the control of interleukin-6 (IL-6) and IL-8 release by HBMEC. Genistein, a protein tyrosine kinase inhibitor, decreased both invasion of N. meningitidis into HBMEC and IL-6 and IL-8 release, indicating that protein tyrosine kinases, which link signals from integrins to intracellular signalling pathways are essential for both bacterial internalization and cytokine secretion by HBMEC.
Collapse
Affiliation(s)
- Olga Sokolova
- Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Mesa C, De León J, Rigley K, Fernández LE. Very small size proteoliposomes derived from Neisseria meningitidis: an effective adjuvant for Th1 induction and dendritic cell activation. Vaccine 2004; 22:3045-52. [PMID: 15297054 DOI: 10.1016/j.vaccine.2004.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Recent findings about pathogens and innate immune system interactions have opened new opportunities for adjuvants designs. We have elaborated a new approach, in which gangliosides are incorporated into the outer membrane complex of Neisseria meningitidis (Nm) to form very small size proteoliposomes (VSSP). VSSP, used as monotherapy, demonstrated a unique ability to render immunogenic highly tolerated gangliosides. These results drove our attention to the immunopotentiating properties of VSSP. Here, we examined the VSSP adjuvant effect on the humoral and cellular responses, dendritic cell (DC) activation, and differentiation of Th cells. Also, the role of LPS in VSSP effect was dissected. This study reveals that VSSP is a potent adjuvant for dendritic cells activation and Th1 differentiation.
Collapse
Affiliation(s)
- Circe Mesa
- Vaccine's Department, Centre of Molecular Immunology, 216 esq 15, Atabey, Playa, CP 16040 Havana, Cuba.
| | | | | | | |
Collapse
|
50
|
Abstract
Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli.
Collapse
Affiliation(s)
- M Stephen Trent
- Department of Microbiology, East Tennessee State University, J.H. Quillen College of Medicine, Johnson City, 37164, USA.
| |
Collapse
|