1
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Kolli P, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ɛ restricts Zika virus infection in the female reproductive tract. PNAS NEXUS 2023; 2:pgad350. [PMID: 37954158 PMCID: PMC10639110 DOI: 10.1093/pnasnexus/pgad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Interferon ɛ (IFNɛ) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections. Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNɛ contributes to protection against ZIKV infection in vivo is unknown. In this study, we show that IFNɛ plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNɛ was expressed not only by epithelial cells in the FRT but also by immune and stromal cells at baseline or after exposure to viruses or specific Toll-like receptor (TLR) agonists. IFNɛ-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal but not subcutaneous ZIKV infection. IFNɛ deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNɛ protected Ifnɛ-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNɛ was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNɛ in mediating protection against the transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Priyanka Kolli
- Graduate School of Biological Sciences, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mirella Salvatore
- Departmentof Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Xu C, Wang A, Ebraham L, Sullivan L, Tasker C, Pizutelli V, Couret J, Hernandez C, Deb PQ, Fritzky L, Subbian S, Gao N, Lo Y, Salvatore M, Rivera A, Lemenze A, Fitzgerald-Bocarsly P, Tyagi S, Lu W, Beaulieu A, Chang TL. Interferon ε restricts Zika virus infection in the female reproductive tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535968. [PMID: 37066223 PMCID: PMC10104157 DOI: 10.1101/2023.04.06.535968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Interferon ε (IFNε) is a unique type I IFN that has been implicated in host defense against sexually transmitted infections (STIs). Zika virus (ZIKV), an emerging pathogen, can infect the female reproductive tract (FRT) and cause devastating diseases, particularly in pregnant women. How IFNε contributes to protection against ZIKV infection in vivo is unknown. Here, we show that IFNε plays a critical role in host protection against vaginal ZIKV infection in mice. We found that IFNε was expressed not only by epithelial cells in the FRT, but also by certain immune and other cells at baseline or after exposure to viruses or specific TLR agonists. IFNε-deficient mice exhibited abnormalities in the epithelial border and underlying tissue in the cervicovaginal tract, and these defects were associated with increased susceptibility to vaginal, but not subcutaneous ZIKV infection. IFNε-deficiency resulted in an increase in magnitude, duration, and depth of ZIKV infection in the FRT. Critically, intravaginal administration of recombinant IFNε protected Ifnε-/- mice and highly susceptible Ifnar1-/- mice against vaginal ZIKV infection, indicating that IFNε was sufficient to provide protection even in the absence of signals from other type I IFNs and in an IFNAR1-independent manner. Our findings reveal a potentially critical role for IFNε in mediating protection against transmission of ZIKV in the context of sexual contact.
Collapse
Affiliation(s)
- Chuan Xu
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Annie Wang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Laith Ebraham
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Liam Sullivan
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Carley Tasker
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Vanessa Pizutelli
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Jennifer Couret
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Cyril Hernandez
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Pratik Q. Deb
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Luke Fritzky
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Cell Biology, Rutgers, School of Art and Science-Newark, Newark, NJ 07103, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY10461
| | - Mirella Salvatore
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065
| | - Amariliz Rivera
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Alexander Lemenze
- Department of Pathology and Laboratory Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | | | - Sanjay Tyagi
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, and Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai 200032, China
| | - Aimee Beaulieu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Theresa L. Chang
- Public Health Research Institute, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
3
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
4
|
Schlievert PM, Kilgore SH, Benavides A, Klingelhutz AJ. Pathogen Stimulation of Interleukin-8 from Human Vaginal Epithelial Cells through CD40. Microbiol Spectr 2022; 10:e0010622. [PMID: 35297656 PMCID: PMC9045207 DOI: 10.1128/spectrum.00106-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 01/08/2023] Open
Abstract
Many bacterial and fungal pathogens cause disease across mucosal surfaces, and to a lesser extent through skin surfaces. Pathogens that potentially cause disease vaginally across epithelial cells include Staphylococcus aureus, group A and B streptococci, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. We have previously shown that staphylococcal and streptococcal superantigens induce inflammatory chemokines from vaginal epithelial cells through the immune costimulatory molecule CD40 through use of a CRISPR cas9 knockout mutant and complemented epithelial cell line. In this study, we show that the potential vaginal pathogens S. aureus, group A and B streptococci, E. coli, an Enterococcus faecalis strain, and C. albicans in part use CD40 to stimulate interleukin-8 (IL-8) production from human vaginal epithelial cells. In contrast, N. gonorrhoeae does not appear to use CD40 to signal IL-8 production. Normal flora Lactobacillus crispatus and an Enterococcus faecalis strain that produces reutericyclin do not induce IL-8. These data indicate that many potential pathogens, but no normal commensals, induce IL-8 to help disrupt the human vaginal epithelial barrier through CD40, thus providing a potential therapeutic target for drug development. IMPORTANCE Most bacterial and fungal pathogens cause disease across mucosal, and to a lesser extent, skin barriers with the help of induced chemokines from epithelial cells. In this study, we showed that potential vaginal pathogens Staphylococcus aureus, group A and B streptococci, some Enterococcus faecalis strains, Escherichia coli, and Candida albicans use the immune costimulatory molecule CD40 to induce the chemokine interleukin-8 production. In contrast, Neisseria gonorrhoeae does not use CD40 to stimulate interleukin-8. Normal flora lactobacilli and at least one E. faecalis strain do not induce interleukin-8.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Samuel H. Kilgore
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrea Benavides
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Ray JC, Smirnov A, Maurakis SA, Harrison SA, Ke E, Chazin WJ, Cornelissen CN, Criss AK. Adherence Enables Neisseria gonorrhoeae to Overcome Zinc Limitation Imposed by Nutritional Immunity Proteins. Infect Immun 2022; 90:e0000922. [PMID: 35156850 PMCID: PMC8929345 DOI: 10.1128/iai.00009-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (Gc) must overcome the limitation of metals such as zinc to colonize mucosal surfaces in its obligate human host. While the zinc-binding nutritional immunity proteins calprotectin (S100A8/A9) and psoriasin (S100A7) are abundant in human cervicovaginal lavage fluid, Gc possesses TonB-dependent transporters TdfH and TdfJ that bind and extract zinc from the human version of these proteins, respectively. Here we investigated the contribution of zinc acquisition to Gc infection of epithelial cells of the female genital tract. We found that TdfH and TdfJ were dispensable for survival of strain FA1090 Gc that was associated with Ect1 human immortalized epithelial cells, when zinc was limited by calprotectin and psoriasin. In contrast, suspension-grown bacteria declined in viability under the same conditions. Exposure to murine calprotectin, which Gc cannot use as a zinc source, similarly reduced survival of suspension-grown Gc, but not Ect1-associated Gc. We ruled out epithelial cells as a contributor to the enhanced growth of cell-associated Gc under zinc limitation. Instead, we found that attachment to glass was sufficient to enhance bacterial growth when zinc was sequestered. We compared the transcriptional profiles of WT Gc adherent to glass coverslips or in suspension, when zinc was sequestered with murine calprotectin or provided in excess, from which we identified open reading frames that were increased by zinc sequestration in adherent Gc. One of these, ZnuA, was necessary but not sufficient for survival of Gc under zinc-limiting conditions. These results show that adherence protects Gc from zinc-dependent growth restriction by host nutritional immunity proteins.
Collapse
Affiliation(s)
| | - Asya Smirnov
- University of Virginia, Charlottesville, Virginia, USA
| | - Stavros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Eugene Ke
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
6
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
7
|
Wang R, Trent ME, Bream JH, Nilles TL, Gaydos CA, Carson KA, Coleman JS. Mycoplasma genitalium Infection Is Not Associated With Genital Tract Inflammation Among Adolescent and Young Adult Women in Baltimore, Maryland. Sex Transm Dis 2022; 49:139-144. [PMID: 34321450 PMCID: PMC8755577 DOI: 10.1097/olq.0000000000001524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mycoplasma genitalium (MG) is a prevalent sexually transmitted infection, but little is known about the associated inflammatory signatures in the genital tract of adolescents and young adult women. METHODS Adolescents and young adult women aged 13 to 24 years were recruited. Demographic information, sexual behavior history, and medical history were collected. Vaginal swab samples were tested for MG, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, bacterial vaginosis, and measurement of 13 cytokines, chemokines, and antimicrobial proteins. Vaginal cytokine concentrations were compared by MG infection status. The strength of associations between multiple factors and MG infection was evaluated. RESULTS Of 215 participants, 16.7% (95% confidence interval [CI], 12.0%-22.4%) had MG infection. Inflammation was not associated with MG infection (P > 0.05). M. genitalium infection was associated with C. trachomatis infection (adjusted prevalence ratio [aPrR], 3.02; 95% CI, 1.69-5.39), bisexual behavior in the past 3 months (aPrR, 2.07; 95% CI, 1.18-3.64), genitourinary symptoms (aPrR, 2.06; 95% CI, 1.22-3.49), and self-reported Black race (aPrR, 3.53; 95% CI, 1.11-11.18). CONCLUSIONS Higher levels of genital tract cytokines were not associated with MG infection. C. trachomatis infection, bisexual behavior, self-reported Black race, and genitourinary symptoms were associated with an increased likelihood of MG infection.
Collapse
Affiliation(s)
- Runzhi Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria E. Trent
- Department of Pediatrics, Adolescent /Young Adult Medicine Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Immunology Training Program, Johns Hopkins School of Medicine
| | - Tricia L. Nilles
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Charlotte A. Gaydos
- Department of Medicine, Infectious Disease Division, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathryn A. Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jenell S. Coleman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Nicolò S, Tanturli M, Mattiuz G, Antonelli A, Baccani I, Bonaiuto C, Baldi S, Nannini G, Menicatti M, Bartolucci G, Rossolini GM, Amedei A, Torcia MG. Vaginal Lactobacilli and Vaginal Dysbiosis-Associated Bacteria Differently Affect Cervical Epithelial and Immune Homeostasis and Anti-Viral Defenses. Int J Mol Sci 2021; 22:ijms22126487. [PMID: 34204294 PMCID: PMC8234132 DOI: 10.3390/ijms22126487] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent infection with High Risk-Human Papilloma Viruses (HR-HPVs) is a primary cause of cervical cancer worldwide. Vaginal-dysbiosis-associated bacteria were correlated with the persistence of HR-HPVs infection and with increased cancer risk. We obtained strains of the most represented bacterial species in vaginal microbiota and evaluated their effects on the survival of cervical epithelial cells and immune homeostasis. The contribution of each species to supporting the antiviral response was also studied. Epithelial cell viability was affected by culture supernatants of most vaginal-dysbiosis bacteria, whereas Lactobacillus gasseri or Lactobacillus jensenii resulted in the best stimulus to induce interferon-γ (IFN-γ) production by human mononuclear cells from peripheral blood (PBMCs). Although vaginal-dysbiosis-associated bacteria induced the IFN-γ production, they were also optimal stimuli to interleukin-17 (IL-17) production. A positive correlation between IL-17 and IFN-γ secretion was observed in cultures of PBMCs with all vaginal-dysbiosis-associated bacteria suggesting that the adaptive immune response induced by these strains is not dominated by TH1 differentiation with reduced availability of IFN-γ, cytokine most effective in supporting virus clearance. Based on these results, we suggest that a vaginal microbiota dominated by lactobacilli, especially by L. gasseri or L. jensenii, may be able to assist immune cells with clearing HPV infection, bypasses the viral escape and restores immune homeostasis.
Collapse
Affiliation(s)
- Sabrina Nicolò
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Michele Tanturli
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Ilaria Baccani
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Chiara Bonaiuto
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
| | - Marta Menicatti
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Firenze, 50134 Firenze, Italy; (M.M.); (G.B.)
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Firenze, 50134 Firenze, Italy; (M.M.); (G.B.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Correspondence: (A.A.); (M.G.T.); Tel.: +39-0552758330 (A.A.); +39-0552758020 (M.G.T.)
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy; (S.N.); (M.T.); (G.M.); (A.A.); (I.B.); (C.B.); (S.B.); (G.N.); (G.M.R.)
- Correspondence: (A.A.); (M.G.T.); Tel.: +39-0552758330 (A.A.); +39-0552758020 (M.G.T.)
| |
Collapse
|
9
|
Bromberg DJ, Mayer KH, Altice FL. Identifying and managing infectious disease syndemics in patients with HIV. Curr Opin HIV AIDS 2020; 15:232-242. [PMID: 32487816 PMCID: PMC7376494 DOI: 10.1097/coh.0000000000000631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We will present recent articles focusing on HIV synergistic interactions with other sexually transmitted infections, tuberculosis, and hepatitis, as well as recent advances in the study of social and behavioral determinants that facilitate this clustering of infectious disease. For each synergistic interaction, we highlight evidence-based interventions that clinicians and policymakers should consider to tackle HIV and infectious disease syndemics. RECENT FINDINGS Significant advances in understanding the behavioral and structural determinants of HIV and other infectious disease synergisms have been made in the past years. Intervention strategies based on these new models have also been developed. It is now well understood that treating infectious disease syndemics will require a multidisciplinary and multipronged approach. SUMMARY HIV is synergistic with multiple other infectious diseases because the risk behaviors that lead to HIV acquisition may be similar to the other infections. The influence of HIV on the other infection may be due to immunosuppression associated with disease progression resulting in increased susceptibility (e.g., HIV and tuberculosis), especially when patients are not virologically suppressed using antiretroviral therapy. In reverse, another infectious disease may, when not treated, influence HIV disease progression. Social/structural determinants like homelessness, mass incarceration, and structural discrimination precipitate psychiatric comorbidity, substance use, and risky sex behavior which lead to the spread and co-occurrence of infectious disease.
Collapse
Affiliation(s)
- Daniel J Bromberg
- Department of Social and Behavioral Sciences, Yale University School of Public Health
- Yale Center for Interdisciplinary Research on AIDS, Yale University, New Haven, Connecticut
| | - Kenneth H Mayer
- The Fenway Institute, Fenway Health
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Frederick L Altice
- Yale Center for Interdisciplinary Research on AIDS, Yale University, New Haven, Connecticut
- Section of Infectious Diseases, Department of Medicine, Yale University School of Medicine
- Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Repurposing Fenamic Acid Drugs To Combat Multidrug-Resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2020; 64:AAC.02206-19. [PMID: 32393483 DOI: 10.1128/aac.02206-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
The rise of extensively drug-resistant and multidrug-resistant strains of Neisseria gonorrhoeae has occurred in parallel with the increasing demand for new drugs. However, the current methods of drug discovery are burdened with rigorous assessments and require more time than can be spared until gonococcal infections become difficult to control. To address this urgency, we utilized a drug-repurposing strategy and identified three clinically approved anthranilic acid drugs (tolfenamic acid, flufenamic acid, and meclofenamic acid) with potent antigonococcal activity, inhibiting 50% of the strains (MIC50) from 4 to 16 μg/ml. Furthermore, tolfenamic acid showed indifferent activity with antibiotics of choice for gonococcal infections, azithromycin and ceftriaxone, in checkerboard assays with a fractional inhibitory concentration index ranging from 0.75 to 1.5. Fenamic acids reduced a high inoculum of N. gonorrhoeae below the limit of detection within 12 h and exhibited a low frequency of resistance. Interestingly, the fenamic acids did not inhibit the growth of commensal Lactobacillus spp. that comprise the healthy female genital microbiota. Fenamic acids were also superior to ceftriaxone in reducing the burden of intracellular N. gonorrhoeae within infected endocervical cells by 99%. Furthermore, all three fenamic acids significantly reduced the expression of proinflammatory cytokines by infected endocervical cells. Finally, fenamic acids and other structurally related anthranilic acid derivatives were evaluated to ascertain a more in-depth structure-activity relationship (SAR) that revealed N-phenylanthranilic acid as a novel antigonorrheal scaffold. This SAR study will pave the road to repositioning more potent fenamic acids analogues against N. gonorrhoeae.
Collapse
|
11
|
Brannon JR, Dunigan TL, Beebout CJ, Ross T, Wiebe MA, Reynolds WS, Hadjifrangiskou M. Invasion of vaginal epithelial cells by uropathogenic Escherichia coli. Nat Commun 2020; 11:2803. [PMID: 32499566 PMCID: PMC7272400 DOI: 10.1038/s41467-020-16627-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Host-associated reservoirs account for the majority of recurrent and oftentimes recalcitrant infections. Previous studies established that uropathogenic E. coli - the primary cause of urinary tract infections (UTIs) - can adhere to vaginal epithelial cells preceding UTI. Here, we demonstrate that diverse urinary E. coli isolates not only adhere to, but also invade vaginal cells. Intracellular colonization of the vaginal epithelium is detected in acute and chronic murine UTI models indicating the ability of E. coli to reside in the vagina following UTI. Conversely, in a vaginal colonization model, E. coli are detected inside vaginal cells and the urinary tract, indicating that vaginal colonization can seed the bladder. More critically, bacteria are identified inside vaginal cells from clinical samples from women with a history of recurrent UTI. These findings suggest that E. coli can establish a vaginal intracellular reservoir, where it may reside safely from extracellular stressors prior to causing an ascending infection.
Collapse
Affiliation(s)
- John R Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
| | - Taryn L Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | - Michelle A Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA
| | | | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Nashville, TN, USA.
- Department of Urology, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Mechanisms of Endogenous HIV-1 Reactivation by Endocervical Epithelial Cells. J Virol 2020; 94:JVI.01904-19. [PMID: 32051273 DOI: 10.1128/jvi.01904-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/01/2020] [Indexed: 12/23/2022] Open
Abstract
Pharmacological HIV-1 reactivation to reverse latent infection has been extensively studied. However, HIV-1 reactivation also occurs naturally, as evidenced by occasional low-level viremia ("viral blips") during antiretroviral treatment (ART). Clarifying where blips originate from and how they happen could provide clues to stimulate latency reversal more effectively and safely or to prevent viral rebound following ART cessation. We studied HIV-1 reactivation in the female genital tract, a dynamic anatomical target for HIV-1 infection throughout all disease stages. We found that primary endocervical epithelial cells from several women reactivated HIV-1 from latently infected T cells. The endocervical cells' HIV-1 reactivation capacity further increased upon Toll-like receptor 3 stimulation with poly(I·C) double-stranded RNA or infection with herpes simplex virus 2 (HSV-2). Notably, acyclovir did not eliminate HSV-2-induced HIV-1 reactivation. While endocervical epithelial cells secreted large amounts of several cytokines and chemokines, especially tumor necrosis factor alpha (TNF-α), CCL3, CCL4, and CCL20, their HIV-1 reactivation capacity was almost completely blocked by TNF-α neutralization alone. Thus, immunosurveillance activities by columnar epithelial cells in the endocervix can cause endogenous HIV-1 reactivation, which may contribute to viral blips during ART or rebound following ART interruption.IMPORTANCE A reason that there is no universal cure for HIV-1 is that the virus can hide in the genome of infected cells in the form of latent proviral DNA. This hidden provirus is protected from antiviral drugs until it eventually reactivates to produce new virions. It is not well understood where in the body or how this reactivation occurs. We studied HIV-1 reactivation in the female genital tract, which is often the portal of HIV-1 entry and which remains a site of infection throughout the disease. We found that the columnar epithelial cells lining the endocervix, the lower part of the uterus, are particularly effective in reactivating HIV-1 from infected T cells. This activity was enhanced by certain microbial stimuli, including herpes simplex virus 2, and blocked by antibodies against the inflammatory cytokine TNF-α. Avoiding HIV-1 reactivation could be important for maintaining a functional HIV-1 cure when antiviral therapy is stopped.
Collapse
|
13
|
Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 2019:AAC.01225-19. [PMID: 31570391 DOI: 10.1128/aac.01225-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The U.S. Centers for Disease Control and Prevention (CDC) lists Neisseria gonorrhoeae as one of the most urgent antibiotic-resistant threats in the United States. This is due to the emergence of clinical isolates that have developed resistance to nearly every antibiotic used to treat gonorrhea and highlights the critical need to find new therapeutics. The present study discovered salicylamide, an analgesic and antipyretic drug, has antibacterial activity against 40 different antibiotic-resistant strains of N. gonorrhoeae (MIC 8-32 μg/ml) with low frequency of resistance <2.4x10-9 Interestingly, salicylamide did not inhibit growth of bacterial species in the vaginal microflora involved in defense against gonococcal infections, such as Lactobacillus gasseri, L. jensenii, L. johnsonii, and L. crispatus A time-kill assay revealed that salicylamide is a rapidly bactericidal drug as it eradicated a high inoculum of N. gonorrhoeae within 10 hours. Salicylamide was superior to the drug of choice, ceftriaxone, in reducing the burden of intracellular N. gonorrhoeae by 97% in infected endocervical cells. Furthermore, salicylamide outperformed ceftriaxone in reducing expression of the pro-inflammatory cytokine IL-8 from endocervical cells infected with N. gonorrhoeae A checkerboard assay revealed that salicylamide exhibited a synergistic interaction with tetracycline and an additive relationship with azithromycin and ciprofloxacin, and ceftriaxone. A more in-depth investigation of the structure-activity-relationship of derivatives of salicylamide revealed the amide and hydroxyl groups are important for anti-gonorrheal activity. In conclusion, this study identified salicylamide as a promising candidate for further investigation as a novel treatment option for multidrug-resistant gonorrhea.
Collapse
|
14
|
Stevens JS, Gray MC, Morisseau C, Criss AK. Endocervical and Neutrophil Lipoxygenases Coordinate Neutrophil Transepithelial Migration to Neisseria gonorrhoeae. J Infect Dis 2019; 218:1663-1674. [PMID: 29905822 DOI: 10.1093/infdis/jiy347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background Infection with Neisseria gonorrhoeae (GC) is characterized by robust neutrophil influx that is insufficient to clear the bacteria. Sustained neutrophilic inflammation contributes to serious clinical sequelae that particularly affect women, including pelvic inflammatory disease and infertility. Methods We established a 3-component system using GC, End1 polarized human endocervical cells, and primary human neutrophils to investigate neutrophil transepithelial migration following infection. Results Neutrophil migration across endocervical monolayers increased with the infectious dose and required GC-epithelial cell contact. Epithelial protein kinase C, cytosolic phospholipase A2, 12R-lipoxygenase (LOX), and eLOX3 hepoxilin synthase were required for neutrophil transmigration to GC, and migration was abrogated by blocking the MRP2 efflux pump and by adding recombinant soluble epoxide hydrolase. These results are all consistent with epithelial cell production of the neutrophil chemoattractant hepoxilin A3 (HXA3). Neutrophil transmigration was also accompanied by increasing apical concentrations of leukotriene B4 (LTB4). Neutrophil 5-lipoxygenase and active BLT1 receptor were required for apical LTB4 and neutrophil migration. Conclusions Our data support a model in which GC-endocervical cell contact infection stimulates HXA3 production, driving neutrophil migration that is amplified by neutrophil-derived LTB4. Therapeutic targeting of these pathways could limit inflammation and deleterious clinical sequelae in women with gonorrhea.
Collapse
Affiliation(s)
- Jacqueline S Stevens
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| | - Mary C Gray
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Research Center, University of California, Davis
| | - Alison K Criss
- Department of Microbiology, University of Virginia, Charlottesville.,Department of Immunology, University of Virginia, Charlottesville.,Department of Cancer Biology, University of Virginia, Charlottesville
| |
Collapse
|
15
|
Heydarian M, Yang T, Schweinlin M, Steinke M, Walles H, Rudel T, Kozjak-Pavlovic V. Biomimetic Human Tissue Model for Long-Term Study of Neisseria gonorrhoeae Infection. Front Microbiol 2019; 10:1740. [PMID: 31417529 PMCID: PMC6685398 DOI: 10.3389/fmicb.2019.01740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
Gonorrhea is the second most common sexually transmitted infection in the world and is caused by Gram-negative diplococcus Neisseria gonorrhoeae. Since N. gonorrhoeae is a human-specific pathogen, animal infection models are only of limited use. Therefore, a suitable in vitro cell culture model for studying the complete infection including adhesion, transmigration and transport to deeper tissue layers is required. In the present study, we generated three independent 3D tissue models based on porcine small intestinal submucosa (SIS) scaffold by co-culturing human dermal fibroblasts with human colorectal carcinoma, endometrial epithelial, and male uroepithelial cells. Functional analyses such as transepithelial electrical resistance (TEER) and FITC-dextran assay indicated the high barrier integrity of the created monolayer. The histological, immunohistochemical, and ultra-structural analyses showed that the 3D SIS scaffold-based models closely mimic the main characteristics of the site of gonococcal infection in human host including the epithelial monolayer, the underlying connective tissue, mucus production, tight junction, and microvilli formation. We infected the established 3D tissue models with different N. gonorrhoeae strains and derivatives presenting various phenotypes regarding adhesion and invasion. The results indicated that the disruption of tight junctions and increase in interleukin production in response to the infection is strain and cell type-dependent. In addition, the models supported bacterial survival and proved to be better suitable for studying infection over the course of several days in comparison to commonly used Transwell® models. This was primarily due to increased resilience of the SIS scaffold models to infection in terms of changes in permeability, cell destruction and bacterial transmigration. In summary, the SIS scaffold-based 3D tissue models of human mucosal tissues represent promising tools for investigating N. gonorrhoeae infections under close-to-natural conditions.
Collapse
Affiliation(s)
| | - Tao Yang
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Matthias Schweinlin
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Maria Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Heike Walles
- Research Center "Dynamic Systems: Systems Engineering" (CDS), Otto von-Guericke-University, Magdeburg, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
16
|
Wang Y, Ferrer-Espada R, Baglo Y, Goh XS, Held KD, Grad YH, Gu Y, Gelfand JA, Dai T. Photoinactivation of Neisseria gonorrhoeae: A Paradigm-Changing Approach for Combating Antibiotic-Resistant Gonococcal Infection. J Infect Dis 2019; 220:873-881. [PMID: 30629196 PMCID: PMC6667797 DOI: 10.1093/infdis/jiz018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is a major issue of public health, and there is a critical need for the development of new antigonococcal strategies. In this study, we investigated the effectiveness of antimicrobial blue light (aBL; wavelength, 405 nm), an innovative nonpharmacological approach, for the inactivation of N. gonorrhoeae. Our findings indicated that aBL preferentially inactivated N. gonorrhoeae, including antibiotic-resistant strains, over human vaginal epithelial cells in vitro. Furthermore, no aBL-induced genotoxicity to the vaginal epithelial cells was observed at the radiant exposure used to inactivate N. gonorrhoeae. aBL also effectively inactivated N. gonorrhoeae that had attached to and invaded into the vaginal epithelial cells in their cocultures. No gonococcal resistance to aBL developed after 15 successive cycles of inactivation induced by subtherapeutic exposure to aBL. Endogenous aBL-activatable photosensitizing porphyrins in N. gonorrhoeae were identified and quantified using ultraperformance liquid chromatography, with coproporphyrin being the most abundant species in all N. gonorrhoeae strains studied. Singlet oxygen was involved in aBL inactivation of N. gonorrhoeae. Together, these findings show that aBL represents a potential potent treatment for antibiotic-resistant gonococcal infection.
Collapse
Affiliation(s)
- Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yan Baglo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xueping S Goh
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Beijing
| | - Jeffrey A Gelfand
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Winters AD, Romero R, Gervasi MT, Gomez-Lopez N, Tran MR, Garcia-Flores V, Pacora P, Jung E, Hassan SS, Hsu CD, Theis KR. Does the endometrial cavity have a molecular microbial signature? Sci Rep 2019; 9:9905. [PMID: 31289304 PMCID: PMC6616349 DOI: 10.1038/s41598-019-46173-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/21/2019] [Indexed: 01/15/2023] Open
Abstract
Recent molecular studies concluded that the endometrium has a resident microbiota dominated by Lactobacillus spp. and is therefore similar to that of the vagina. These findings were largely derived from endometrial samples obtained through a transcervical catheter and thus prone to contamination. Herein, we investigated the molecular microbial profiles of mid-endometrial samples obtained through hysterectomy and compared them with those of the cervix, vagina, rectum, oral cavity, and controls for background DNA contamination. Microbial profiles were examined through 16S rRNA gene qPCR and sequencing. Universal bacterial qPCR of total 16S rDNA revealed a bacterial load exceeding that of background DNA controls in the endometrium of 60% (15/25) of the study subjects. Bacterial profiles of the endometrium differed from those of the oral cavity, rectum, vagina, and background DNA controls, but not of the cervix. The bacterial profiles of the endometrium and cervix were dominated by Acinetobacter, Pseudomonas, Cloacibacterium, and Comamonadaceae. Both 16S rRNA gene sequencing and Lactobacillus species-specific (L. iners & L crispatus) qPCR showed that Lactobacillus was rare in the endometrium. In conclusion, if there is a microbiota in the middle endometrium, it is not dominated by Lactobacillus as was previously concluded, yet further investigation using culture and microscopy is necessary.
Collapse
Affiliation(s)
- Andrew D Winters
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA. .,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA. .,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA. .,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA. .,Detroit Medical Center, Detroit, Michigan, USA.
| | - Maria Teresa Gervasi
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Nardhy Gomez-Lopez
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Maria Rosa Tran
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA.,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA. .,Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, Michigan, USA. .,Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, Detroit, Michigan, USA.
| |
Collapse
|
18
|
Wang Y, Ferrer-Espada R, Baglo Y, Gu Y, Dai T. Antimicrobial Blue Light Inactivation of Neisseria gonorrhoeae: Roles of Wavelength, Endogenous Photosensitizer, Oxygen, and Reactive Oxygen Species. Lasers Surg Med 2019; 51:815-823. [PMID: 31157931 DOI: 10.1002/lsm.23104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate the efficacy, safety, and mechanism of action of antimicrobial blue light (aBL) for the inactivation of Neisseria gonorrhoeae, the etiological agent of gonorrhea. STUDY DESIGN/MATERIALS AND METHODS The susceptibilities of N. gonorrhoeae (ATCC 700825) in planktonic suspensions to aBL at 405- and 470-nm wavelengths were compared. The roles of oxygen in the anti-gonococcal activity of aBL were studied by examining the effects of hypoxic condition (blowing N2 ) on the anti-gonococcal efficiency of 405-nm aBL. The presence, identification, and quantification of endogenous photosensitizers in N. gonorrhoeae cells and human vaginal epithelial cells (VK2/E6E7 cells) were determined using fluorescence spectroscopy and ultra-performance liquid chromatography (UPLC). Finally, the selectivity of aBL inactivation of N. gonorrhoeae over the host cells were investigated by irradiating the co-cultures of N. gonorrhoeae and human vaginal epithelial cells using 405-nm aBL. RESULTS About 3.12-log10 reduction of bacterial colony forming units (CFU) was achieved by 27 J/cm 2 exposure at 405 nm, while about 3.70-log10 reduction of bacterial CFU was achieved by 234 J/cm2 exposure at 470 nm. The anti-gonococcal efficacy of 405-nm aBL was significantly suppressed under hypoxic condition. Spectroscopic and UPLC analyses revealed the presence of endogenous porphyrins and flavins in N. gonorrhoeae. The concentrations of endogenous photosensitizers in N. gonorrhoeae (ATCC 700825) cells were more than 10 times higher than those in the VK2/E6E7 cells. In the co-cultures of N. gonorrhoeae and VK2/E6E7 cells, 405-nm aBL at 108 J/cm2 preferentially inactivated N. gonorrhoeae cells while sparing the vaginal epithelial cells. CONCLUSIONS aBL at 405-nm wavelength is more effective than 470-nm wavelength in inactivating N. gonorrhoeae while sparing the vaginal epithelial cells. Reactive oxygen species generated from the photochemical reactions between aBL and endogenous photosensitizers play a vital role in the anti-gonococcal activity of 405-nm aBL. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Raquel Ferrer-Espada
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| | - Yan Baglo
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114
| | - Ying Gu
- Department of Laser Medicine, Chinese PLA General Hospital, Medical School of Chinese PLA, 28 Fuxing Road, 100853, Beijing, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114.,Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Charlestown, Massachusetts, 02129
| |
Collapse
|
19
|
Sanyal A, Shen C, Ding M, Reinhart TA, Chen Y, Sankapal S, Gupta P. Neisseria gonorrhoeae uses cellular proteins CXCL10 and IL8 to enhance HIV-1 transmission across cervical mucosa. Am J Reprod Immunol 2019; 81:e13111. [PMID: 30903720 PMCID: PMC6540971 DOI: 10.1111/aji.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Problem Neisseria gonorrhoeae (NG) infection has been shown to increase sexual transmission of HIV‐1. However, the mechanism of NG‐induced enhanced HIV‐1 transmission is unknown. Methods (a) The cervical tissues were exposed to NG, and cytokine induction was monitored by measuring cytokine proteins in culture supernatants and cytokine mRNAs in tissues. (b) Transcription and replication of HIV‐1 in TZM‐bl, U1, and ACH2 cells were measured by Beta‐Gal activity and p24 proteins in the supernatant, respectively. (c) HIV‐1 transmission was assayed in an organ culture system by measuring transmitted HIV‐1 in supernatant and HIV‐1 gag mRNA in the tissues. (d) Transcriptome analysis was done using second generation sequencing. Results (a) NG induced membrane ruffling of epithelial layer, caused migration of CD3+ cells to the intraepithelial region, and induced high levels of inflammatory cytokines IL‐1β and TNF‐α. (b) NG‐induced supernatants (NGIS) increased HIV‐1 transcription, induced HIV‐1 from latently infected cells, and increased transmission of HIV‐1 across cervical mucosa. (c) Transcriptome analysis of the epithelial layer of the tissues exposed to NG, and HIV‐1 showed significant upregulation of CXCL10 and IL8. IL‐1β increased the induction of CXCL10 and IL‐8 expression in cervical mucosa with a concomitant increase in HIV‐1 transmission. Conclusion We present a model in which IL‐1β produced from cervical epithelium during NG exposure increases CXCL10 and IL8 in epithelia. This in turn causes upon HIV‐1 infection, the migration of HIV‐1 target cells toward the subepithelium, resulting in increased HIV‐1 transcription in the sub‐mucosa and subsequent enhancement of transmission across cervical mucosa.
Collapse
Affiliation(s)
- Anwesha Sanyal
- Department of Infectious Diseases and Microbiology, Pittsburgh, Pennsylvania
| | - Chengli Shen
- Department of Infectious Diseases and Microbiology, Pittsburgh, Pennsylvania
| | - Ming Ding
- Department of Infectious Diseases and Microbiology, Pittsburgh, Pennsylvania
| | | | - Yue Chen
- Department of Infectious Diseases and Microbiology, Pittsburgh, Pennsylvania
| | - Soni Sankapal
- Department of Infectious Diseases and Microbiology, Pittsburgh, Pennsylvania
| | - Phalguni Gupta
- Department of Infectious Diseases and Microbiology, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Inaba H, Nomura R, Kato Y, Takeuchi H, Amano A, Asai F, Nakano K, Lamont RJ, Matsumoto-Nakano M. Adhesion and invasion of gingival epithelial cells by Porphyromonas gulae. PLoS One 2019; 14:e0213309. [PMID: 30870452 PMCID: PMC6417775 DOI: 10.1371/journal.pone.0213309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022] Open
Abstract
Porphyromonas gulae, an animal periodontal pathogen, possess fimbriae classified into three genotypes (A-C) based on the diversity of fimA genes encoding FimA. Accumulating evidence suggests that P. gulae strains with type C fimbriae are more virulent as compared to those with other types. The ability of these organisms to adhere to and invade gingival epithelial cells has yet to be examined. P. gulae showed the greatest levels of adhesion and invasion at a multiplicity of infection of 100 for 90 min. P. gulae type C and some type B strains invaded gingival epithelial cells at significantly greater levels than the other strains, at the same level of efficiency as P. gingivalis with type II fimbriae. Adhesion and invasion of gingival epithelial cells by P. gulae were inhibited by cytochalasin D and sodium azide, indicating the requirements of actin polymerization and energy metabolism for those activities. Invasion within gingival epithelial cells was blocked by staurosporine, whereas those inhibitors showed little effects on adhesion, while nocodazole and cycloheximide had negligible effects on either adhesion or invasion. P. gulae proteases were found to be essential for adhesion and invasion of gingival epithelial cells, while its DNA and RNA, and protein synthesis were unnecessary for those activities. Additionally, α5β1 integrin antibodies significantly inhibited adhesion and invasion by P. gulae. This is the first report to characterize P. gulae adhesion and invasion of human gingival epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Yukio Kato
- Department of Veterinary Public Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hiroki Takeuchi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States of America
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Landig CS, Hazel A, Kellman BP, Fong JJ, Schwarz F, Agarwal S, Varki N, Massari P, Lewis NE, Ram S, Varki A. Evolution of the exclusively human pathogen Neisseria gonorrhoeae: Human-specific engagement of immunoregulatory Siglecs. Evol Appl 2019; 12:337-349. [PMID: 30697344 PMCID: PMC6346652 DOI: 10.1111/eva.12744] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea exclusively in humans and uses multiple strategies to infect, including acquisition of host sialic acids that cap and mask lipooligosaccharide termini, while restricting complement activation. We hypothesized that gonococci selectively target human anti-inflammatory sialic acid-recognizing Siglec receptors on innate immune cells to blunt host responses and that pro-inflammatory Siglecs and SIGLEC pseudogene polymorphisms represent host evolutionary adaptations to counteract this interaction. N. gonorrhoeae can indeed engage multiple human but not chimpanzee CD33rSiglecs expressed on innate immune cells and in the genitourinary tract--including Siglec-11 (inhibitory) and Siglec-16 (activating), which we detected for the first time on human cervical epithelium. Surprisingly, in addition to LOS sialic acid, we found that gonococcal porin (PorB) mediated binding to multiple Siglecs. PorB also bound preferentially to human Siglecs and not chimpanzee orthologs, modulating host immune reactions in a human-specific manner. Lastly, we studied the distribution of null SIGLEC polymorphisms in a Namibian cohort with a high prevalence of gonorrhea and found that uninfected women preferentially harbor functional SIGLEC16 alleles encoding an activating immune receptor. These results contribute to the understanding of the human specificity of N. gonorrhoeae and how it evolved to evade the human immune defense.
Collapse
Affiliation(s)
- Corinna S. Landig
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Ashley Hazel
- Department of Earth System ScienceStanford UniversityStanfordCalifornia
| | - Benjamin P. Kellman
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoLa JollaCalifornia
| | - Jerry J. Fong
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Flavio Schwarz
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| | - Sarika Agarwal
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Nissi Varki
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of PathologyUniversity of California, San DiegoLa JollaCalifornia
| | - Paola Massari
- Department of ImmunologyTufts University School of MedicineBostonMassachusetts
| | - Nathan E. Lewis
- Department of PediatricsUniversity of California, San DiegoLa JollaCalifornia
- Bioinformatics and Systems Biology Graduate ProgramUniversity of California, San DiegoLa JollaCalifornia
- Novo Nordisk Foundation Center for BiosustainabilityUniversity of California, San DiegoLa JollaCalifornia
| | - Sanjay Ram
- Department of MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusetts
| | - Ajit Varki
- Glycobiology Research and Training CenterUniversity of California, San DiegoLa JollaCalifornia
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCalifornia
- Department of MedicineUniversity of California, San DiegoLa JollaCalifornia
| |
Collapse
|
22
|
Specific Binding to Differentially Expressed Human Carcinoembryonic Antigen-Related Cell Adhesion Molecules Determines the Outcome of Neisseria gonorrhoeae Infections along the Female Reproductive Tract. Infect Immun 2018; 86:IAI.00092-18. [PMID: 29760215 DOI: 10.1128/iai.00092-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/05/2018] [Indexed: 02/07/2023] Open
Abstract
The gonococcal Opa proteins are an antigenically variable family of surface adhesins that bind human carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), CEACAM3, CEACAM5, and/or CEACAM6, cell surface glycoproteins that are differentially expressed on a broad spectrum of human cells and tissues. While they are presumed to be important for infection, the significance of various Opa-CEACAM-mediated cellular interactions in the context of the genital tract has remained unclear. Here, we observed that CEACAM1 and CEACAM5 are differentially expressed on epithelia lining the upper and lower portions of the human female genital tract, respectively. Using transgenic mouse lines expressing human CEACAMs in a manner that reflects this differential pattern, we considered the impact of Opa-CEACAM interactions during uncomplicated lower genital tract infections versus during pelvic inflammatory disease. Our results demonstrate that Opa-CEACAM5 binding on vaginal epithelia facilitates the long-term colonization of the lower genital tract, while Opa protein binding to CEACAM1 on uterine epithelia enhances gonococcal association and penetration into these tissues. While these Opa-dependent interactions with CEACAM-expressing epithelial surfaces promote infection, Opa binding by neutrophil-expressed CEACAMs counterbalances this by facilitating more effective gonococcal clearance. Furthermore, during uterine infections, CEACAM-dependent tissue invasion aggravates disease pathology by increasing the acute inflammatory response. Together, these findings demonstrate that the outcome of infection is determined by both the cell type-specific expression of human CEACAMs and the CEACAM specificity of the Opa variants expressed, which combine to determine the level of gonococcal association with the genital mucosa versus the extent of CEACAM-dependent inflammation and gonococcal clearance by neutrophils.
Collapse
|
23
|
Abstract
The host-adapted human pathogen Neisseria gonorrhoeae is the causative agent of gonorrhoea. Consistent with its proposed evolution from an ancestral commensal bacterium, N. gonorrhoeae has retained features that are common in commensals, but it has also developed unique features that are crucial to its pathogenesis. The continued worldwide incidence of gonorrhoeal infection, coupled with the rising resistance to antimicrobials and the difficulties in controlling the disease in developing countries, highlights the need to better understand the molecular basis of N. gonorrhoeae infection. This knowledge will facilitate disease prevention, surveillance and control, improve diagnostics and may help to facilitate the development of effective vaccines or new therapeutics. In this Review, we discuss sex-related symptomatic gonorrhoeal disease and provide an overview of the bacterial factors that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion, and we discuss the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Sarah Jane Quillin
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
24
|
Ritter JL, Genco CA. Neisseria gonorrhoeae-Induced Inflammatory Pyroptosis in Human Macrophages is Dependent on Intracellular Gonococci and Lipooligosaccharide. J Cell Death 2018; 11:1179066017750902. [PMID: 29434478 PMCID: PMC5805002 DOI: 10.1177/1179066017750902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/26/2022] Open
Abstract
Neisseria gonorrhoeae, the human obligate pathogen responsible for the sexually transmitted disease gonorrhea, has evolved several mechanisms to evade the host immune response. One such mechanism is the modulation of host cell death pathways. In this study, we defined cell death pathways induced by N gonorrhoeae in human monocyte-derived macrophages (MDMs). In a dose-dependent manner, N gonorrhoeae stimulation of MDMs resulted in caspase 1 and 4-dependent cell deaths, indicative of canonical and noncanonical pyroptosis, respectively. Internalization of bacteria or stimulation with lipooligosaccharide (LOS) specifically induced pyroptosis in MDMs and increased secretion of IL-1β. Collectively, our results demonstrate that N gonorrhoeae induces inflammatory pyroptosis in human macrophages due in part to intracellular LOS. We propose that this in turn may exacerbate inflammatory outcomes observed during mucosal infection.
Collapse
Affiliation(s)
- Jessica Leigh Ritter
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
25
|
Lennard K, Dabee S, Barnabas SL, Havyarimana E, Blakney A, Jaumdally SZ, Botha G, Mkhize NN, Bekker LG, Lewis DA, Gray G, Mulder N, Passmore JAS, Jaspan HB. Microbial Composition Predicts Genital Tract Inflammation and Persistent Bacterial Vaginosis in South African Adolescent Females. Infect Immun 2018; 86:e00410-17. [PMID: 29038128 PMCID: PMC5736802 DOI: 10.1128/iai.00410-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/10/2017] [Indexed: 11/20/2022] Open
Abstract
Young African females are at an increased risk of HIV acquisition, and genital inflammation or the vaginal microbiome may contribute to this risk. We studied these factors in 168 HIV-negative South African adolescent females aged 16 to 22 years. Unsupervised clustering of 16S rRNA gene sequences revealed three clusters (subtypes), one of which was strongly associated with genital inflammation. In a multivariate model, the microbiome compositional subtype and hormonal contraception were significantly associated with genital inflammation. We identified 40 taxa significantly associated with inflammation, including those reported previously (Prevotella, Sneathia, Aerococcus, Fusobacterium, and Gemella) as well as several novel taxa (including increased frequencies of bacterial vaginosis-associated bacterium 1 [BVAB1], BVAB2, BVAB3, Prevotella amnii, Prevotella pallens, Parvimonas micra, Megasphaera, Gardnerella vaginalis, and Atopobium vaginae and decreased frequencies of Lactobacillus reuteri, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners). Women with inflammation-associated microbiomes had significantly higher body mass indices and lower levels of endogenous estradiol and luteinizing hormone. Community functional profiling revealed three distinct vaginal microbiome subtypes, one of which was characterized by extreme genital inflammation and persistent bacterial vaginosis (BV); this subtype could be predicted with high specificity and sensitivity based on the Nugent score (≥9) or BVAB1 abundance. We propose that women with this BVAB1-dominated subtype may have chronic genital inflammation due to persistent BV, which may place them at a particularly high risk for HIV infection.
Collapse
Affiliation(s)
- Katie Lennard
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Smritee Dabee
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Shaun L Barnabas
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Enock Havyarimana
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Anna Blakney
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Gerrit Botha
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla N Mkhize
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - David A Lewis
- Western Sydney Sexual Health Centre, Parramatta, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
- Sydney Medical School-Westmead, University of Sydney, Sydney, Australia
- National Institute for Communicable Diseases, Sandringham, Johannesburg, South Africa
| | - Glenda Gray
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Cape Town, South Africa
| | - Nicola Mulder
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- National Health Laboratory Service, Johannesburg, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Asymptomatic anorectal Chlamydia trachomatis and Neisseria gonorrhoeae infections are associated with systemic CD8+ T-cell activation. AIDS 2017; 31:2069-2076. [PMID: 28692536 DOI: 10.1097/qad.0000000000001580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Oral preexposure prophylaxis (PrEP) has been established as a pivotal strategy in HIV prevention. However, bacterial sexually transmitted infections (STIs), such as Chlamydia trachomatis and Neisseria gonorrhoeae, are also highly prevalent. Although the presence of STI-related mucosal lesions is a known risk factor for HIV acquisition, the potential increase in risk associated with asymptomatic STIs is not completely understood. Recent data demonstrated higher T-cell activation is a risk factor for sexually acquired HIV-1 infection. We examined the effect of asymptomatic C. trachomatis and N. gonorrhoeae anorectal infection on systemic immune activation, potentially increasing the risk of HIV acquisition. METHODS We analyzed samples from participants of PrEP Brasil, a demonstration study of daily oral emtricitabine/tenofovir disoproxil fumarate HIV PrEP among healthy MSM, for T-cell activation by flow cytometry. We included 34 asymptomatic participants with anorectal swab for C. trachomatis and/or N. gonorrhoeae infection, whereas negative for other STIs, and 35 controls. RESULTS We found a higher frequency of human leukocyte antigen DRCD38 CD8 T cells (1.5 vs. 0.9%, P < 0.005) and with memory phenotype in the group with asymptomatic C. trachomatis and/or N. gonorrhoeae infection. Exhaustion and senescence markers were also significant higher in this group. No difference was observed in the soluble CD14 levels. CONCLUSION Our findings suggest asymptomatic anorectal C. trachomatis and/or N. gonorrhoeae increase systemic immune activation, potentially increasing the risk of HIV acquisition. Regular screening and treatment of asymptomatic STIs should be explored as adjuvant tools for HIV prevention.
Collapse
|
27
|
Thurman AR, Yousefieh N, Chandra N, Kimble T, Asin S, Rollenhagen C, Anderson SM, Herold BC, Freiermuth JL, Starkman BS, Mesquita PM, Richardson-Harman N, Cunningham T, Hillier S, Rabe L, Schwartz JL, Doncel GF. Comparison of Mucosal Markers of Human Immunodeficiency Virus Susceptibility in Healthy Premenopausal Versus Postmenopausal Women. AIDS Res Hum Retroviruses 2017; 33:807-819. [PMID: 28398069 DOI: 10.1089/aid.2016.0320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to characterize cervicovaginal (CV) mucosal factors modulating susceptibility to human immunodeficiency virus (HIV) acquisition in healthy premenopausal (PRE) and postmenopausal (POST) women before and after treatment with estradiol (E2). We compared CV mucosal epithelial histology and immune cells, vaginal microbiota, antimicrobial activity of and soluble mucosal protein concentrations in the CV fluid lavage (CVL), and p24 antigen production after ex vivo infection of ectocervical tissues with HIV-1BaL among PRE women (n = 20) in the follicular and luteal phases of the menstrual cycle and POST women (n = 17) at baseline and after ∼1 month of treatment with 0.01% vaginal E2 cream. Compared to PRE women, we measured higher levels of p24 antigen after ex vivo infection in tissues from POST women. POST women had a significantly thinner vaginal epithelium with decreased tight junction proteins and a higher density of mucosal immune T cells and lower levels of CD1a antigen-presenting cells, antimicrobial peptides, and inflammatory cytokines in the CVL (p values <.05). POST women had higher vaginal pH and lower vaginal Lactobacilli (p values <.05) than PRE women. After vaginal E2 therapy, CV endpoints and ex vivo HIV replication in POST tissues were similar to those observed in PRE tissues. The CV mucosa in POST women is thinned and compromised, with increased HIV-target immune cells and decreased antimicrobial factors, being more susceptible to HIV infection. After POST women receive topical E2 treatment, mucosal endpoints are similar to PRE levels.
Collapse
Affiliation(s)
- Andrea Ries Thurman
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Nazita Yousefieh
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Neelima Chandra
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Thomas Kimble
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Susana Asin
- V.A. Medical Center, White River Junction, Vermont
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Christiane Rollenhagen
- V.A. Medical Center, White River Junction, Vermont
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Sharon M. Anderson
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | | | | | | | | | | | - Tina Cunningham
- Center for Health Analytics and Discovery, Eastern Virginia Medical School, Norfolk, Virginia
| | - Sharon Hillier
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lorna Rabe
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Jill L. Schwartz
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Gustavo F. Doncel
- CONRAD Clinical Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
28
|
Moreau MR, Massari P, Genco CA. The ironclad truth: how in vivo transcriptomics and in vitro mechanistic studies shape our understanding of Neisseria gonorrhoeae gene regulation during mucosal infection. Pathog Dis 2017; 75:3829888. [PMID: 28520925 PMCID: PMC5808646 DOI: 10.1093/femspd/ftx057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted infections worldwide. This obligate human pathogen has been extensively studied in vitro, where bacterial factors that are known to contribute to gonococcal disease and their regulation are relatively well defined. However, these in vitro experimental conditions only loosely replicate the host specific environment encountered by the bacteria in vivo. We recently reported on the complete gonococcal transcriptome expressed during natural human mucosal infection using RNA-seq analysis. Gene transcripts expressed in vivo (in vivo expressed factors) included genes encoding antibiotic resistance determinants, and a large number of hypothetical genes. A comparison of the gonococcal transcriptome expressed in vivo with the corresponding strain grown in vitro identified sets of genes regulated by infection, including those regulated by iron and the transcriptional regulatory protein Fur. We highlight here the role of Fur and gonococcal-specific regulatory processes important for infection and pathogenicity. We have determined that the genes controlled by Fur follow the same expression pattern in vivo as described previously in vitro, confirming Fur's regulatory role during infection. Collectively, these studies provide new insights into how bacterial fitness and pathogenicity are modulated during human mucosal infection.
Collapse
Affiliation(s)
- Matthew R. Moreau
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paola Massari
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Caroline A. Genco
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
29
|
Verma V, Dhanda RS, Møller NF, Yadav M. Inflammasomes and Their Role in Innate Immunity of Sexually Transmitted Infections. Front Immunol 2016; 7:540. [PMID: 27994587 PMCID: PMC5136550 DOI: 10.3389/fimmu.2016.00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
Inflammasomes are multiprotein complexes present in the cytosol as pattern recognition receptors or as sensors of damage-associated molecular patterns. After recognition of microbe-associated molecular patterns or host-derived danger signals, nucleotide oligomerization domain-like receptors oligomerize to form inflammasomes. The activation of inflammasomes results in an alarm, which is raised to alert adjacent cells through the processing and release of a number of other substrates present in the cytosol. A wide array of inflammasomes and their adapter molecules have been identified in the host’s innate immune system in response to various pathogens. Components of specific pathogens activate different inflammasomes, which once activated in response to pathogen-induced infection, induce the activation of caspases, and the release of mature forms of interleukin-1β (IL-1β) and IL-18. Identifying the mechanisms underlying pathogen-induced inflammasome activation is important if we are to develop novel therapeutic strategies to target sexually transmitted infections (STIs) related pathogens. This information is currently lacking in literature. In this review, we have discussed the role of various inflammasomes in sensing different STIs, as well as the beneficial or detrimental effects of inflammasome signaling in host resistance. Additionally, we have discussed both canonical and non-canonical processing of IL-1β induced with respect to particular infections. Overall, these findings transform our understanding of both the basic biology and clinical relevance of inflammasomes.
Collapse
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi , New Delhi , India
| | - Rakesh Singh Dhanda
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research (PGIMER) , Chandigarh , India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
30
|
Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42:928-41. [PMID: 26805040 PMCID: PMC4958600 DOI: 10.3109/1040841x.2015.1105782] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Gonorrhea is a major, global public health problem for which there is no vaccine. The continuing emergence of antibiotic-resistant strains raises concerns that untreatable Neisseria gonorrhoeae may become widespread in the near future. Consequently, there is an urgent need for increased efforts towards the development of new anti-gonococcal therapeutics and vaccines, as well as suitable models for potential pre-clinical vaccine trials. Several current issues regarding gonorrhea are discussed herein, including the global burden of disease, the emergence of antibiotic-resistance, the status of vaccine development and, in particular, a focus on the model systems available to evaluate drug and vaccine candidates. Finally, alternative approaches to evaluate vaccine candidates are presented. Such approaches may provide valuable insights into the protective mechanisms, and correlates of protection, required to prevent gonococcal transmission, local infection and disease sequelae.
Collapse
Affiliation(s)
- Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital and The Ohio State UniversityColumbus,
OH,
USA
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University,
Gold Coast,
Australia
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Women who have genital inflammation are at increased risk of sexual HIV infection. The purpose of this review is to evaluate the mechanisms for this relationship, causes of genital inflammation, and strategies to manage this condition. RECENT FINDINGS We have recently shown in a cohort of South African women that HIV seroconversion was associated with persistently raised genital inflammatory cytokines (including MIP-1α, MIP-1β, and IP-10). Elevated inflammatory cytokine concentrations may facilitate HIV infection by recruiting and activating HIV target cells and disrupting the mucosal epithelial barrier. Bacterial vaginosis and sexually transmitted infections (STIs), which are predominantly asymptomatic in women, cause lower genital tract inflammation and increased HIV acquisition risk. In Africa, where syndromic management of STIs and bacterial vaginosis is standard-of-care, the substantial burden of asymptomatic infections has likely contributed to high-HIV incidence rates. SUMMARY A genital inflammatory profile contributes to the high risk of HIV acquisition in African women. STIs and bacterial vaginosis are poorly managed in Africa and other developing nations and as such remain major drivers of persistent genital inflammation and HIV acquisition among these women.
Collapse
|
32
|
Jung EY, Park KH, Han BR, Cho SH, Ryu A. Measurement of Interleukin 8 in Cervicovaginal Fluid in Women With Preterm Premature Rupture of Membranes: A Comparison of Amniotic Fluid Samples. Reprod Sci 2016; 24:142-147. [PMID: 27233755 DOI: 10.1177/1933719116651149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cervicovaginal fluid (CVF) samples may be a feasible alternative to amniotic fluid (AF) sampling in women with preterm premature rupture of the membranes (PPROMs), because PPROM causes AF to spill into the CVF. We aimed to assess the correlation and limits of agreement of interleukin 8 (IL-8) levels between CVF and AF in women with PPROM and to compare the clinical value of CVF IL-8 to AF IL-8 for the prediction of microbial invasion of amniotic cavity (MIAC). A retrospective cohort observational study was conducted on 85 women with singleton pregnancies (24-34 weeks) presenting with PPROM. The CVF samples were obtained simultaneously with AF samples retrieved by transabdominal amniocentesis. The levels of IL-8 in paired CVF and AF samples were measured with enzyme-linked immunosorbent assay in the same plate in duplicate using the same dilutions. The prevalence of a positive AF culture was 40% (34 of 85). The CVF IL-8 levels were significantly and positively correlated with AF IL-8 levels ( r = 0.778). However, the level of agreement between CVF and AF IL-8 levels yielded a Cohen κ statistic of 0.276. Paired Student t test revealed that the difference between CVF and AF IL-8 levels was statistically significant. The area under the curve for AF IL-8 was significantly higher than that for CVF IL-8 ( P = .013). In women with PPROM, IL-8 levels in CVF were significantly correlated with, but were significantly different from, those in AF samples. The CVF IL-8 has moderate predictive capability for the risk of MIAC, but this is inferior to AF IL-8.
Collapse
Affiliation(s)
- Eun Young Jung
- 1 Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyo Hoon Park
- 1 Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Bo Ryoung Han
- 1 Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo-Hyun Cho
- 1 Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Aeli Ryu
- 2 Department of Obstetrics and Gynecology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
33
|
Effects of Female Sex Hormones on Susceptibility to HSV-2 in Vaginal Cells Grown in Air-Liquid Interface. Viruses 2016; 8:v8090241. [PMID: 27589787 PMCID: PMC5035955 DOI: 10.3390/v8090241] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/05/2023] Open
Abstract
The lower female reproductive tract (FRT) is comprised of the cervix and vagina, surfaces that are continuously exposed to a variety of commensal and pathogenic organisms. Sexually transmitted viruses, such as herpes simplex virus type 2 (HSV-2), have to traverse the mucosal epithelial lining of the FRT to establish infection. The majority of current culture systems that model the host-pathogen interactions in the mucosal epithelium have limitations in simulating physiological conditions as they employ a liquid-liquid interface (LLI), in which both apical and basolateral surfaces are submerged in growth medium. We designed the current study to simulate in vivo conditions by growing an immortalized vaginal epithelial cell line (Vk2/E6E7) in culture with an air-liquid interface (ALI) and examined the effects of female sex hormones on their growth, differentiation, and susceptibility to HSV-2 under these conditions, in comparison to LLI cultures. ALI conditions induced Vk2/E6E7 cells to grow into multi-layered cultures compared to the monolayers present in LLI conditions. Vk2 cells in ALI showed higher production of cytokeratin in the presence of estradiol (E2), compared to cells grown in progesterone (P4). Cells grown under ALI conditions were exposed to HSV-2-green fluorescent protein (GFP) and the highest infection and replication was observed in the presence of P4. Altogether, this study suggests that ALI cultures more closely simulate the in vivo conditions of the FRT compared to the conventional LLI cultures. Furthermore, under these conditions P4 was found to confer higher susceptibility to HSV-2 infection in vaginal cells. The vaginal ALI culture system offers a better alternative to study host-pathogen interactions.
Collapse
|
34
|
Characterization of the Neisseria gonorrhoeae Iron and Fur Regulatory Network. J Bacteriol 2016; 198:2180-91. [PMID: 27246574 DOI: 10.1128/jb.00166-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED The Neisseria gonorrhoeae ferric uptake regulator (Fur) protein controls expression of iron homeostasis genes in response to intracellular iron levels. In this study, using transcriptome sequencing (RNA-seq) analysis of an N. gonorrhoeae fur strain, we defined the gonococcal Fur and iron regulons and characterized Fur-controlled expression of an ArsR-like DNA binding protein. We observed that 158 genes (8% of the genome) showed differential expression in response to iron in an N. gonorrhoeae wild-type or fur strain, while 54 genes exhibited differential expression in response to Fur. The Fur regulon was extended to additional regulators, including NrrF and 13 other small RNAs (sRNAs), and two transcriptional factors. One transcriptional factor, coding for an ArsR-like regulator (ArsR), exhibited increased expression under iron-replete conditions in the wild-type strain but showed decreased expression across iron conditions in the fur strain, an effect that was reversed in a fur-complemented strain. Fur was shown to bind to the promoter region of the arsR gene downstream of a predicted σ(70) promoter region. Electrophoretic mobility shift assay (EMSA) analysis confirmed binding of the ArsR protein to the norB promoter region, and sequence analysis identified two additional putative targets, NGO1411 and NGO1646. A gonococcal arsR strain demonstrated decreased survival in human endocervical epithelial cells compared to that of the wild-type and arsR-complemented strains, suggesting that the ArsR regulon includes genes required for survival in host cells. Collectively, these results demonstrate that the N. gonorrhoeae Fur functions as a global regulatory protein to repress or activate expression of a large repertoire of genes, including additional transcriptional regulatory proteins. IMPORTANCE Gene regulation in bacteria in response to environmental stimuli, including iron, is of paramount importance to both bacterial replication and, in the case of pathogenic bacteria, successful infection. Bacterial DNA binding proteins are a common mechanism utilized by pathogens to control gene expression under various environmental conditions. Here, we show that the DNA binding protein Fur, expressed by the human pathogen Neisseria gonorrhoeae, controls the expression of a large repertoire of genes and extends this regulon by controlling expression of additional DNA binding proteins. One of these proteins, an ArsR-like regulator, was required for N. gonorrhoeae survival within host cells. These results show that the Fur regulon extends to additional regulatory proteins, which together contribute to gonococcal mechanisms of pathogenesis.
Collapse
|
35
|
In Vitro Activity of Quaternary Ammonium Surfactants against Streptococcal, Chlamydial, and Gonococcal Infective Agents. Antimicrob Agents Chemother 2016; 60:3323-32. [PMID: 26976875 DOI: 10.1128/aac.00166-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/09/2016] [Indexed: 11/20/2022] Open
Abstract
Quaternary ammonium compounds (QAC) are widely used, cheap, and chemically stable disinfectants and topical antiseptics with wide-spectrum antimicrobial activities. Within this group of compounds, we recently showed that there are significant differences between the pharmacodynamics of n-alkyl quaternary ammonium surfactants (QAS) with a short (C12) alkyl chain when in vitro toxicities toward bacterial and mammalian epithelial cells are compared. These differences result in an attractive therapeutic window that justifies studying short-chain QAS as prophylactics for sexually transmitted infections (STI) and perinatal vertically transmitted urogenital infections (UGI). We have evaluated the antimicrobial activities of short-chain (C12) n-alkyl QAS against several STI and UGI pathogens as well as against commensal Lactobacillus species. Inhibition of infection of HeLa cells by Neisseria gonorrhoeae and Chlamydia trachomatis was studied at concentrations that were not toxic to the HeLa cells. We show that the pathogenic bacteria are much more susceptible to QAS toxic effects than the commensal vaginal flora and that QAS significantly attenuate the infectivity of N. gonorrhoeae and C. trachomatis without affecting the viability of epithelial cells of the vaginal mucosa. N-Dodecylpyridinium bromide (C12PB) was found to be the most effective QAS. Our results strongly suggest that short-chain (C12) n-alkyl pyridinium bromides and structurally similar compounds are promising microbicide candidates for topical application in the prophylaxis of STI and perinatal vertical transmission of UGI.
Collapse
|
36
|
Younes JA, Reid G, van der Mei HC, Busscher HJ. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response. Pathog Dis 2016; 74:ftw029. [PMID: 27060097 DOI: 10.1093/femspd/ftw029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 11/12/2022] Open
Abstract
ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm.
Collapse
Affiliation(s)
- Jessica A Younes
- University of Groningen and University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Gregor Reid
- Human Microbiology and Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4V2, Canada Departments of Microbiology and Immunology, and Surgery, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of BioMedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
37
|
Francis SC, Hou Y, Baisley K, van de Wijgert J, Watson-Jones D, Ao TT, Herrera C, Maganja K, Andreasen A, Kapiga S, Coulton GR, Hayes RJ, Shattock RJ. Immune Activation in the Female Genital Tract: Expression Profiles of Soluble Proteins in Women at High Risk for HIV Infection. PLoS One 2016; 11:e0143109. [PMID: 26814891 PMCID: PMC4729472 DOI: 10.1371/journal.pone.0143109] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/30/2015] [Indexed: 01/20/2023] Open
Abstract
Soluble cervicovaginal biomarkers of inflammation, immune activation and risk of HIV acquisition are needed to reliably assess the safety of new biomedical prevention strategies including vaccines and microbicides. However, a fuller understanding of expression profiles in women at high risk for HIV infection is crucial to the effective use of these potential biomarkers in Phase 3 trial settings. We have measured 45 soluble proteins and peptides in cervicovaginal lavage samples from 100 HIV negative women at high risk for HIV infection. Women were followed over one menstrual cycle to investigate modulation by hormonal contraception, menstrual cycle phase, recent sexual exposure and intravaginal practices. Women using injectable DMPA had increased concentration of several soluble proteins of the innate and adaptive immune system, including IL-1α, IL-1β, IL-2, MIP-1β, IP-10, IL-8, TGF-β, HBD4, IgA, IgG1, and IgG2. Women using combined oral contraceptives had a similar signature. There were differences in concentrations among samples from post-ovulation compared to pre-ovulation, notably increased immunoglobulins. Increased prostate-specific antigen, indicative of recent sexual exposure, was correlated with increased IL-6, MCP-1, and SLPI, and decreased GM-CSF and HBD3. The identified signature profiles may prove critical in evaluating the potential safety and impact on risk of HIV acquisition of different biomedical intervention strategies.
Collapse
Affiliation(s)
- Suzanna C. Francis
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania, United Republic of Tanzania
- * E-mail:
| | - Yanwen Hou
- Division of Basic Medical Sciences, St. George's Medical School, University of London, London, United Kingdom
| | - Kathy Baisley
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Janneke van de Wijgert
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Deborah Watson-Jones
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania, United Republic of Tanzania
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Trong T. Ao
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania, United Republic of Tanzania
| | - Carolina Herrera
- Mucosal Infection and Immunity Group, Imperial College, Department of Medicine, London, United Kingdom
| | - Kaballa Maganja
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania, United Republic of Tanzania
| | - Aura Andreasen
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania, United Republic of Tanzania
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Saidi Kapiga
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania, United Republic of Tanzania
| | - Gary R. Coulton
- Division of Basic Medical Sciences, St. George's Medical School, University of London, London, United Kingdom
| | - Richard J. Hayes
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robin J. Shattock
- Mucosal Infection and Immunity Group, Imperial College, Department of Medicine, London, United Kingdom
| |
Collapse
|
38
|
Keogan S, Siegert K, Wigdahl B, Krebs FC. Variability in human semen content and its potential effects in the female reproductive tract. ACTA ACUST UNITED AC 2016. [DOI: 10.7243/2054-0841-4-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Thurman AR, Kimble T, Herold B, Mesquita PM, Fichorova RN, Dawood HY, Fashemi T, Chandra N, Rabe L, Cunningham TD, Anderson S, Schwartz J, Doncel G. Bacterial Vaginosis and Subclinical Markers of Genital Tract Inflammation and Mucosal Immunity. AIDS Res Hum Retroviruses 2015. [PMID: 26204200 DOI: 10.1089/aid.2015.0006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial vaginosis (BV) has been linked to an increased risk of human immunodeficiency virus (HIV) acquisition and transmission in observational studies, but the underlying biological mechanisms are unknown. We measured biomarkers of subclinical vaginal inflammation, endogenous antimicrobial activity, and vaginal flora in women with BV and repeated sampling 1 week and 1 month after completion of metronidazole therapy. We also compared this cohort of women with BV to a healthy control cohort without BV. A longitudinal, open label study of 33 women with a Nugent score of 4 or higher was conducted. All women had genital swabs, cervicovaginal lavage (CVL) fluid, and cervicovaginal biopsies obtained at enrollment and received 7 days of metronidazole treatment. Repeat sampling was performed approximately 1 week and 1 month after completion of therapy. Participant's baseline samples were compared to a healthy, racially matched control group (n=13) without BV. The CVL from women with resolved BV (Nugent 0-3) had significantly higher anti-HIV activity, secretory leukocyte protease inhibitor (SLPI), and growth-related oncogene alpha (GRO-α) levels and their ectocervical tissues had significantly more CD8 cells in the epithelium. Women with persistent BV after treatment had significantly higher levels of interleukin-1β, tumor necrosis factor alpha (TNF-α), and intercellular adhesion molecule 1 (ICAM-1) in the CVL. At study entry, participants had significantly greater numbers of CCR5(+) immune cells and a higher CD4/CD8 ratio in ectocervical tissues prior to metronidazole treatment, compared to a racially matched cohort of women with a Nugent score of 0-3. These data indicate that BV is associated with changes in select soluble immune mediators, an increase in HIV target cells, and a reduction in endogenous antimicrobial activity, which may contribute to the increased risk of HIV acquisition.
Collapse
Affiliation(s)
| | - Thomas Kimble
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia
| | - Betsy Herold
- Albert Einstein College of Medicine, Bronx, New York
| | | | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hassan Y. Dawood
- Laboratory of Genital Tract Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Titilayo Fashemi
- Laboratory of Genital Tract Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Lorna Rabe
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | | | | | - Jill Schwartz
- CONRAD, Eastern Virginia Medical School, Arlington, Virginia
| | - Gustavo Doncel
- CONRAD, Eastern Virginia Medical School, Norfolk, Virginia
- CONRAD, Eastern Virginia Medical School, Arlington, Virginia
| |
Collapse
|
40
|
Fichorova RN, Chen PL, Morrison CS, Doncel GF, Mendonca K, Kwok C, Chipato T, Salata R, Mauck C. The Contribution of Cervicovaginal Infections to the Immunomodulatory Effects of Hormonal Contraception. mBio 2015; 6:e00221-15. [PMID: 26330510 PMCID: PMC4556810 DOI: 10.1128/mbio.00221-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/23/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Particular types of hormonal contraceptives (HCs) and genital tract infections have been independently associated with risk of HIV-1 acquisition. We examined whether immunity in women using injectable depot medroxyprogesterone acetate (DMPA), combined oral contraceptives (COC), or no HCs differs by the presence of cervicovaginal infections. Immune mediators were quantified in cervical swabs from 832 HIV-uninfected reproductive-age Ugandans and Zimbabweans. Bacterial infections and HIV were diagnosed by PCR, genital herpes serostatus by enzyme-linked immunosorbent assay (ELISA), altered microflora by Nugent score, and Trichomonas vaginalis and Candida albicans infection by wet mount. Generalized linear models utilizing Box-Cox-Power transformation examined associations between levels of mediators, infection status, and HCs. In no-HC users, T. vaginalis was associated with broadest spectrum of aberrant immunity (higher interleukin 1β [IL-1β], IL-8, macrophage inflammatory protein 3α [MIP-3α], β-defensin 2 [BD2], and IL-1 receptor antigen [IL-1RA]). In women with a normal Nugent score and no genital infection, compared to the no-HC group, COC users showed higher levels of IL-1β, IL-6, IL-8, and IL-1RA, while DMPA users showed higher levels of RANTES and lower levels of BD2, both associated with HIV seroconversion. These effects of COC were blunted in the presence of gonorrhea, chlamydia, trichomoniasis, candidiasis, and an abnormal Nugent score; however, RANTES was increased among COC users with herpes, chlamydia, and abnormal Nugent scores. The effect of DMPA was exacerbated by lower levels of IL-1RA in gonorrhea, chlamydia, or herpes, SLPI in gonorrhea, and IL-1β, MIP-3α, and IL-1RA/IL1β ratio in trichomoniasis. Thus, the effects of HC on cervical immunity depend on the genital tract microenvironment, and a weakened mucosal barrier against HIV may be a combined resultant of genital tract infections and HC use. IMPORTANCE In this article, we show that in young reproductive-age women most vulnerable to HIV, hormonal contraceptives are associated with altered cervical immunity in a manner dependent on the presence of genital tract infections. Through altered immunity, hormones may predispose women to bacterial and viral pathogens; conversely, a preexisting specific infection or disturbed vaginal microbiota may suppress the immune activation by levonorgestrel or exacerbate the suppressed immunity by DMPA, thus increasing HIV risk by their cumulative action. Clinical studies assessing the effects of contraception on HIV susceptibility and mucosal immunity may generate disparate results in populations that differ by microbiota background or prevalence of undiagnosed genital tract infections. A high prevalence of asymptomatic infections among HC users that remain undiagnosed and untreated raises even more concerns in light of their combined effects on biomarkers of HIV risk. The molecular mechanisms of the vaginal microbiome's simultaneous interactions with hormones and HIV remain to be elucidated.
Collapse
Affiliation(s)
- Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Kevin Mendonca
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Robert Salata
- Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
41
|
Neisseria gonorrhoeae Modulates Cell Death in Human Endocervical Epithelial Cells through Export of Exosome-Associated cIAP2. Infect Immun 2015; 83:3410-7. [PMID: 26077759 DOI: 10.1128/iai.00732-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 01/07/2023] Open
Abstract
Several bacterial pathogens persist and survive in the host by modulating host cell death pathways. We previously demonstrated that Neisseria gonorrhoeae, a Gram-negative pathogen responsible for the sexually transmitted infection gonorrhea, protects against exogenous induction of apoptosis in human cervical epithelial cells. However, induction of cell death by N. gonorrhoeae has also been reported in other cell types. The mechanisms by which N. gonorrhoeae modulates cell death are not clear, although a role for the inhibitor of apoptosis-2 (cIAP2) has been proposed. In this study, we confirmed that N. gonorrhoeae induces production of cIAP2 in human cervical epithelial cells. High levels of intracellular cIAP2 were detected early after N. gonorrhoeae stimulation, which was followed by a marked decrease at 24 h. At this time point, we observed increased levels of extracellular cIAP2 associated with exosomes and an overall increase in production of exosomes. Inhibition of cIAP2 in N. gonorrhoeae-stimulated epithelial cells resulted in increased cell death and interleukin-1β (IL-1β) production. Collectively these results indicate that N. gonorrhoeae stimulation of human endocervical epithelial cells induces the release of cIAP2, an essential regulator of cell death and immune signaling.
Collapse
|
42
|
Zalenskaya IA, Joseph T, Bavarva J, Yousefieh N, Jackson SS, Fashemi T, Yamamoto HS, Settlage R, Fichorova RN, Doncel GF. Gene Expression Profiling of Human Vaginal Cells In Vitro Discriminates Compounds with Pro-Inflammatory and Mucosa-Altering Properties: Novel Biomarkers for Preclinical Testing of HIV Microbicide Candidates. PLoS One 2015; 10:e0128557. [PMID: 26052926 PMCID: PMC4459878 DOI: 10.1371/journal.pone.0128557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation and immune activation of the cervicovaginal mucosa are considered factors that increase susceptibility to HIV infection. Therefore, it is essential to screen candidate anti-HIV microbicides for potential mucosal immunomodulatory/inflammatory effects prior to further clinical development. The goal of this study was to develop an in vitro method for preclinical evaluation of the inflammatory potential of new candidate microbicides using a microarray gene expression profiling strategy. METHODS To this end, we compared transcriptomes of human vaginal cells (Vk2/E6E7) treated with well-characterized pro-inflammatory (PIC) and non-inflammatory (NIC) compounds. PICs included compounds with different mechanisms of action. Gene expression was analyzed using Affymetrix U133 Plus 2 arrays. Data processing was performed using GeneSpring 11.5 (Agilent Technologies, Santa Clara, CA). RESULTS Microarraray comparative analysis allowed us to generate a panel of 20 genes that were consistently deregulated by PICs compared to NICs, thus distinguishing between these two groups. Functional analysis mapped 14 of these genes to immune and inflammatory responses. This was confirmed by the fact that PICs induced NFkB pathway activation in Vk2 cells. By testing microbicide candidates previously characterized in clinical trials we demonstrated that the selected PIC-associated genes properly identified compounds with mucosa-altering effects. The discriminatory power of these genes was further demonstrated after culturing vaginal cells with vaginal bacteria. Prevotella bivia, prevalent bacteria in the disturbed microbiota of bacterial vaginosis, induced strong upregulation of seven selected PIC-associated genes, while a commensal Lactobacillus gasseri associated to vaginal health did not cause any changes. CONCLUSIONS In vitro evaluation of the immunoinflammatory potential of microbicides using the PIC-associated genes defined in this study could help in the initial screening of candidates prior to entering clinical trials. Additional characterization of these genes can provide further insight into the cervicovaginal immunoinflammatory and mucosal-altering processes that facilitate or limit HIV transmission with implications for the design of prevention strategies.
Collapse
Affiliation(s)
- Irina A Zalenskaya
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Theresa Joseph
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Jasmin Bavarva
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nazita Yousefieh
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Suzanne S Jackson
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Titilayo Fashemi
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hidemi S Yamamoto
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Settlage
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Raina N Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gustavo F Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|
43
|
Cross-Sectional Analysis of Selected Genital Tract Immunological Markers and Molecular Vaginal Microbiota in Sub-Saharan African Women, with Relevance to HIV Risk and Prevention. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:526-38. [PMID: 25761460 DOI: 10.1128/cvi.00762-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/08/2015] [Indexed: 01/08/2023]
Abstract
Data on immune mediators in the genital tract and the factors that modulate them in sub-Saharan women are limited. Cervicovaginal lavage (CVL) samples from 430 sexually active women from Kenya, South Africa, and Rwanda were analyzed for 12 soluble immune mediators using Bio-Plex and Meso Scale Discovery multiplex platforms, as well as single enzyme-linked immunosorbent assays. Ten bacterial species were quantified in vaginal swab samples. Bacterial vaginosis (BV) was defined by Nugent scoring. CVL samples from HIV-infected women showed a clear-cut proinflammatory profile. Pregnant women, adolescents, and women engaging in traditional vaginal practices differed in specific soluble markers compared to reference groups of adult HIV-negative women. Cervical mucus, cervical ectopy, abnormal vaginal discharge, and having multiple sex partners were each associated with an increase in inflammatory mediators. The levels of interleukin-1α (IL-1α), IL-1β, IL-6, IL-12(p70), and IL-8 were elevated, whereas the IL-1RA/IL-1(α+β) ratio decreased in women with BV. The level of gamma interferon-induced protein 10 was lower in BV-positive than in BV-negative women, suggesting its suppression as a potential immune evasion mechanism by BV-associated bacteria. Lactobacillus crispatus and Lactobacillus vaginalis were associated with decreased proinflammatory cytokines and each BV-associated species with increased proinflammatory cytokines. Remarkably, the in vitro anti-HIV activity of CVL samples from BV-positive women was stronger than that of BV-negative women. In conclusion, we found significant associations of factors, including vaginal microbiota, which can influence immune mediators in the vaginal environment in sexually active women. These factors need to be considered when establishing normative levels or pathogenic cutoffs of biomarkers of inflammation and associated risks in African women.
Collapse
|
44
|
Neisseria gonorrhoeae elicits extracellular traps in primary neutrophil culture while suppressing the oxidative burst. mBio 2015; 6:mBio.02452-14. [PMID: 25670773 PMCID: PMC4337578 DOI: 10.1128/mbio.02452-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neisseria gonorrhoeae (the gonococcus) causes gonorrhea and is uniquely adapted to survive within the human reproductive tract. Gonococci evade host immune surveillance in part by varying their pili and opacity-associated proteins. These variable surface antigens influence interactions with host epithelial and immune cells. A potent polymorphonuclear leukocyte (PMN) response is a hallmark of symptomatic gonococcal infection, with vast numbers of PMNs recruited to the site of infection. A large body of literature describes gonococcus-PMN interactions, but the factors driving the outcome of infection are not fully understood. Gonococci have been described to both induce and suppress the PMN oxidative burst, but we determined that gonococci differentially affect induction of the PMN oxidative burst depending on the multiplicity of infection (MOI). Infecting PMN at an MOI of <20 gonococci elicits an oxidative burst, while an MOI of >20 suppresses the burst. Oxidative burst in response to gonococci is enhanced by, but does not require, expression of pili or opacity proteins. Neutrophil extracellular traps (NETs) were observed in gonococcus-infected PMNs, a process which requires an oxidative burst, yet gonococci induced NETs under suppressing conditions. The NETs were unable to kill gonococci despite killing the common vaginal bacterium Lactobacillus crispatus. Thus, gonococci influence PMN biology to promote their own survival by suppressing the oxidative burst of PMNs and stimulating the formation of NETs, which do not effectively kill gonococci, illustrating how N. gonorrhoeae has evolved to modulate PMN responses to promote infection. Neisseria gonorrhoeae, the gonococcus, is the only causative agent of gonorrhea and is exclusively found within the human host. Gonococci stochastically vary the composition of antigens on their surface to evade immune surveillance. We used gonococcal mutants which stably express different surface antigens to dissect interactions between gonococci and primary human polymorphonuclear leukocytes (PMNs). We found that gonococci, depending on the number of bacteria present, either induce or suppress the oxidative burst of PMNs regardless of other stimuli. Gonococci also cause PMNs to release DNA, forming neutrophil extracellular traps (NETs) independently of the oxidative burst. The NETs were unable to kill gonococci but were able to kill commensal bacteria, suggesting that NET production can help gonococci outcompete other bacterial species. We propose that gonococci have evolved to manipulate PMN responses to promote their own survival during infection.
Collapse
|
45
|
Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection. PLoS One 2014; 9:e114208. [PMID: 25460012 PMCID: PMC4252111 DOI: 10.1371/journal.pone.0114208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023] Open
Abstract
The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.
Collapse
|
46
|
Gaurav C, Goutam R, Rohan KN, Sweta KT, Abhay CS, Amit GK. (Copper-curcumin) β-cyclodextrin vaginal gel: delivering a novel metal-herbal approach for the development of topical contraception prophylaxis. Eur J Pharm Sci 2014; 65:183-91. [PMID: 25266573 DOI: 10.1016/j.ejps.2014.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/17/2014] [Accepted: 09/19/2014] [Indexed: 11/25/2022]
Abstract
Delivering a safe and effective topical vaginal contraceptive is the need of present era. We explored the potential of a metal (copper) and herbal moiety (curcumin) for this topical contraceptive prophylaxis. Complex of copper and curcumin (Cu-Cur) was synthesized and the concerns regarding its aqueous solubility was resolved by including it into the hydrophobic cavity of β-cyclodextrin (β-CD) as (Cu-Cur)CD inclusion complex. Dose assessment was made on the basis of in-vitro spermicidal assays and cell cytotoxicity studies. Finally the (Cu-Cur)CD loaded vaginal gel was prepared, characterized and evaluated for in-vitro spermicidal activity and preclinical toxicity studies. Spectral and morphological characterizations confirmed the synthesis of (Cu-Cur) and (Cu-Cur)CD inclusion complex. Spermicidal assays and Hela cell cytotoxic data revealed an optimized 1.5% (Cu-Cur)CD for further studies. 1.5% w/w (Cu-Cur)CD loaded carbopol 974p gel provided 100% motility even at 2-fold dilution and preclinical toxicity studies in Rats and Rabbits revealed its highly safe profile. The hypothesis of considering metal-herbal complex and its cyclodextrin complex has worked and the well planned strategy of including it in (β-CD) cavity provided a preeminent platform for vaginal delivery. In-vitro assays and preclinical toxicity analysis confirmed its potential to be used as highly safe and effective prophylaxis.
Collapse
Affiliation(s)
- Chauhan Gaurav
- DBT Lab, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Rath Goutam
- DBT Lab, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Kesarkar N Rohan
- Department of Virology, Haffkine Institute for Training Research and Testing, Parel, Mumbai, India
| | - Kothari T Sweta
- Department of Virology, Haffkine Institute for Training Research and Testing, Parel, Mumbai, India
| | - Chowdhary S Abhay
- Department of Virology, Haffkine Institute for Training Research and Testing, Parel, Mumbai, India
| | - Goyal K Amit
- DBT Lab, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
47
|
McClure R, Massari P. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens. Front Immunol 2014; 5:386. [PMID: 25161655 PMCID: PMC4129373 DOI: 10.3389/fimmu.2014.00386] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/29/2014] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling.
Collapse
Affiliation(s)
- Ryan McClure
- Department of Microbiology, Boston University School of Medicine , Boston, MA , USA
| | - Paola Massari
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
48
|
Masson L, Mlisana K, Little F, Werner L, Mkhize NN, Ronacher K, Gamieldien H, Williamson C, Mckinnon LR, Walzl G, Abdool Karim Q, Abdool Karim SS, Passmore JAS. Defining genital tract cytokine signatures of sexually transmitted infections and bacterial vaginosis in women at high risk of HIV infection: a cross-sectional study. Sex Transm Infect 2014; 90:580-7. [PMID: 25107710 DOI: 10.1136/sextrans-2014-051601] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Sexually transmitted infections (STI) and bacterial vaginosis (BV) cause female genital tract inflammation. This inflammation, which is often present in the absence of symptoms, is associated with increased susceptibility to HIV infection. We aimed to evaluate genital cytokine profiles and the degree of inflammation associated with common STIs and BV. METHODS HIV-uninfected women (n=227) were screened for BV, Chlamydia trachomatis, Neisseria gonorrhoeae, Herpes simplex virus type 2 (HSV-2), and Trichomonas vaginalis. Concentrations of 42 cytokines in cervicovaginal lavages and 13 cytokines in plasma were measured using Luminex. Changes in cytokine profiles were evaluated using Mann-Whitney U test, logistic regression and factor analysis. p Values were adjusted for multiple comparisons using a false discovery rate step-down procedure. RESULTS Women with chlamydia or gonorrhoea had the highest genital cytokine concentrations, with 17/42 and 14/42 cytokines upregulated compared with women with no infection, respectively. BV was associated with elevated proinflammatory cytokine concentrations, but lower chemokine and haematopoietic cytokine concentrations. HSV-2 reactivation was associated with lower levels of inflammation, while trichomoniasis did not cause significant differences in genital cytokine concentrations. Genital infections did not influence plasma cytokine concentrations. Although certain STIs, in particular chlamydia and gonorrhoea, were associated with high genital cytokine concentrations, only 19% of women with an STI/BV had clinical signs. CONCLUSIONS Chlamydia was associated with the highest genital cytokine levels, followed by gonorrhoea, HSV-2, trichomoniasis, and BV. In regions where HIV is prevalent and STIs are managed syndromically, better STI/BV screening is urgently needed, as certain infections were found to be highly inflammatory.
Collapse
Affiliation(s)
- Lindi Masson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, South Africa Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Koleka Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa Department of Medical Microbiology, University of KwaZulu Natal, Durban, South Africa National Health Laboratory Services, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Lise Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Nonhlanhla N Mkhize
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, South Africa National Institute of Communicable Diseases, Johannesburg, South Africa
| | - Katharina Ronacher
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Molecular and Cellular Biology, Stellenbosch University, Cape Town, South Africa
| | - Hoyam Gamieldien
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, South Africa
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, South Africa Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Lyle R Mckinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and MRC Centre for Molecular and Cellular Biology, Stellenbosch University, Cape Town, South Africa
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa Columbia University, New York, New York, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa Columbia University, New York, New York, USA
| | - Jo-Ann S Passmore
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Medical School, Cape Town, South Africa Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa National Health Laboratory Services, South Africa
| |
Collapse
|
49
|
Cervical inflammation and immunity associated with hormonal contraception, pregnancy, and HIV-1 seroconversion. J Acquir Immune Defic Syndr 2014; 66:109-17. [PMID: 24413042 DOI: 10.1097/qai.0000000000000103] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Hormonal contraception (HC), younger age, and pregnancy have been associated with increased HIV risk in some studies. We sought to elucidate the biological mechanisms for these associations. DESIGN Case-control selection of specimens from a large, prospective, clinical study. METHODS We enrolled and followed 4531 HIV-negative women from Uganda and Zimbabwe using either the injectable depo-medroxyprogesterone acetate (DMPA), combined oral contraception, or no HC (NH). Innate immunity mediators were measured in cervical samples collected from women at their visit before HIV seroconversion (n = 199) and matched visits from women remaining HIV uninfected (n = 633). Generalized linear models were applied after Box-Cox power transformation. RESULTS Higher RANTES and lower secretory leukocyte protease inhibitor (SLPI) levels were associated with HIV seroconversion. DMPA users had higher RANTES and lower BD-2 levels. Most inflammation-promoting and/or inflammation-inducible mediators were higher [interleukin (IL)-1β, IL-6, IL-8, MIP-3α, vascular endothelial growth factor, and SLPI], and the protective BD-2 and IL-1RA:IL-1β ratio were lower among combined oral contraception users. Pregnant women showed a similar cervical immunity status (higher IL-1β, IL-6, IL-8, vascular endothelial growth factor, SLPI, and IL-1RA; lower IL-1RA:IL-1β). Age <25 years was associated with lower SLPI, IL-8, MIP-3α but higher IL-1RA:IL-1β. Zimbabwean women (with higher HIV seroconversion rates) had overall higher pro-inflammatory and lower anti-inflammatory protein levels than Ugandan women. CONCLUSIONS HC use, pregnancy, and young age alter cervical immunity in different ways known to increase risk of HIV, for example, through increased levels of pro-inflammatory cytokines or decreased levels of SLPI. Higher levels of RANTES may be one factor underlying a possible association between DMPA use and risk of HIV acquisition.
Collapse
|
50
|
Govender Y, Avenant C, Verhoog NJD, Ray RM, Grantham NJ, Africander D, Hapgood JP. The injectable-only contraceptive medroxyprogesterone acetate, unlike norethisterone acetate and progesterone, regulates inflammatory genes in endocervical cells via the glucocorticoid receptor. PLoS One 2014; 9:e96497. [PMID: 24840644 PMCID: PMC4026143 DOI: 10.1371/journal.pone.0096497] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/07/2014] [Indexed: 12/20/2022] Open
Abstract
Clinical studies suggest that the injectable contraceptive medroxyprogesterone acetate (MPA) increases susceptibility to infections such as HIV-1, unlike the injectable contraceptive norethisterone enanthate (NET-EN). We investigated the differential effects, molecular mechanism of action and steroid receptor involvement in gene expression by MPA as compared to NET and progesterone (P4) in the End1/E6E7 cell line model for the endocervical epithelium, a key point of entry for pathogens in the female genital mucosa. MPA, unlike NET-acetate (NET-A) and P4, increases mRNA expression of the anti-inflammatory GILZ and IκBα genes. Similarly, MPA unlike NET-A, decreases mRNA expression of the pro-inflammatory IL-6, IL-8 and RANTES genes, and IL-6 and IL-8 protein levels. The predominant steroid receptor expressed in the End1/E6E7 and primary endocervical epithelial cells is the glucocorticoid receptor (GR), and GR knockdown experiments show that the anti-inflammatory effects of MPA are mediated by the GR. Chromatin-immunoprecipitation results suggest that MPA, unlike NET-A and P4, represses pro-inflammatory cytokine gene expression in cervical epithelial cells via a mechanism involving recruitment of the GR to cytokine gene promoters, like the GR agonist dexamethasone. This is at least in part consistent with direct effects on transcription, without a requirement for new protein synthesis. Dose response analysis shows that MPA has a potency of ∼24 nM for transactivation of the anti-inflammatory GILZ gene and ∼4–20 nM for repression of the pro-inflammatory genes, suggesting that these effects are likely to be relevant at injectable contraceptive doses of MPA. These findings suggest that in the context of the genital mucosa, these GR-mediated glucocorticoid-like effects of MPA in cervical epithelial cells are likely to play a critical role in discriminating between the effects on inflammation caused by different progestins and P4 and hence susceptibility to genital infections, given the predominant expression of the GR in primary endocervical epithelial cells.
Collapse
Affiliation(s)
- Yashini Govender
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Nicolette J. D. Verhoog
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Roslyn M. Ray
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Nicholas J. Grantham
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch, Western Province, South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, Western Province, South Africa
- * E-mail:
| |
Collapse
|