1
|
Wang ZZ, Wang K, Xu LF, Su C, Gong JS, Shi JS, Ma XD, Xie N, Qian JY. Unlocking the Potential of Collagenases: Structures, Functions, and Emerging Therapeutic Horizons. BIODESIGN RESEARCH 2024; 6:0050. [PMID: 39381623 PMCID: PMC11458858 DOI: 10.34133/bdr.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/31/2024] [Indexed: 10/10/2024] Open
Abstract
Collagenases, a class of enzymes that are specifically responsible for collagen degradation, have garnered substantial attention because of their pivotal roles in tissue repair, remodeling, and medical interventions. This comprehensive review investigates the diversity, structures, and mechanisms of collagenases and highlights their therapeutic potential. First, it provides an overview of the biochemical properties of collagen and highlights its importance in extracellular matrix function. Subsequently, it meticulously analyzes the sources of collagenases and their applications in tissue engineering and food processing. Notably, this review emphasizes the predominant role played by microbial collagenases in commercial settings while discussing their production and screening methods. Furthermore, this study elucidates the methodology employed for determining collagenase activity and underscores the importance of an accurate evaluation for both research purposes and clinical applications. Finally, this review highlights the future research prospects for collagenases, with a particular focus on promoting wound healing and treating scar tissue formation and fibrotic diseases.
Collapse
Affiliation(s)
- Zhen-Zhen Wang
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Kang Wang
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Ling-Feng Xu
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| | - Xu-Dong Ma
- Cytori Therapeutics LLC., Shanghai 201802, PR China
| | - Nan Xie
- Cytori Therapeutics LLC., Shanghai 201802, PR China
| | - Jian-Ying Qian
- School of Life Sciences and Health Engineering,
Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
2
|
Waller SB, Galvão CC, Rodrigues RR, Aguirres CDL, Quatrin PHDN, Alves MLF, Ferreira MRA, Conceição FR. Clostridium perfringens antigens and challenges for development of vaccines against necrotic enteritis in poultry. Anaerobe 2024; 89:102902. [PMID: 39187174 DOI: 10.1016/j.anaerobe.2024.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Chickens with Necrotic Enteritis (NE), caused by Clostridium perfringens, exhibit acute and chronic symptoms that are difficult to diagnose, leading to significant economic losses. Vaccination is the best method for controlling and preventing NE. However, only two vaccines based on the CPA and NetB toxins have been commercialized, offering partial protection, highlighting the urgent need for more effective vaccines. OBJECTIVE This review aimed to identify promising antigens for NE vaccine formulation and discuss factors affecting their effectiveness. METHODS A systematic review using five scientific databases identified 30 eligible studies through the Rayyan tool, which were included for quality review. RESULTS We identified 25 promising antigens, including CPA, NetB, FBA, ZMP, CnaA, FimA, and FimB, categorized by their role in disease pathogenesis. This review discusses the biochemical, physiological, and genetic traits of recombinant antigens used in vaccine prototypes, their expression systems, and immunization potential in chickens challenged with virulent C. perfringens strains. Market supply challenges, immunogenic potential, vaccine platforms, adjuvants, and factors related to vaccination schedules-such as administration routes, dosing intervals, and age at immunization-are also addressed. Additionally, the study notes that vaccine formulations tested under mild challenges may not offer adequate field-level protection due to issues replicating aggressive conditions, strain virulence loss, and varied methodologies. CONCLUSIONS An ideal NE vaccine should incorporate multiple antigens, molecular adjuvants, and delivery systems via in ovo and oral routes. The review underscores the challenges in developing and validating NE vaccines and the urgent need for a standardized protocol to replicate aggressive challenges accurately.
Collapse
Affiliation(s)
- Stefanie Bressan Waller
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Cleiderson de Lima Aguirres
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | | | | | | | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Zhang K, Han Y. Thermostable Bacterial Collagenolytic Proteases: A Review. J Microbiol Biotechnol 2024; 34:1385-1394. [PMID: 38934777 PMCID: PMC11294657 DOI: 10.4014/jmb.2404.04051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Collagenolytic proteases are widely used in the food, medical, pharmaceutical, cosmetic, and textile industries. Mesophilic collagenases exhibit collagenolytic activity under physiological conditions, but have limitations in efficiently degrading collagen-rich wastes, such as collagen from fish scales, at high temperatures due to their poor thermostability. Bacterial collagenolytic proteases are members of various proteinase families, including the bacterial collagenolytic metalloproteinase M9 and the bacterial collagenolytic serine proteinase families S1, S8, and S53. Notably, the C-terminal domains of collagenolytic proteases, such as the pre-peptidase C-terminal domain, the polycystic kidney disease-like domain, the collagen-binding domain, the proprotein convertase domain, and the β-jelly roll domain, exhibit collagen-binding or -swelling activity. These activities can induce conformational changes in collagen or the enzyme active sites, thereby enhancing the collagen-degrading efficiency. In addition, thermostable bacterial collagenolytic proteases can function at high temperatures, which increases their degradation efficiency since heat-denatured collagen is more susceptible to proteolysis and minimizes the risk of microbial contamination. To date, only a few thermophile-derived collagenolytic proteases have been characterized. TSS, a thermostable and halotolerant subtilisin-like serine collagenolytic protease, exhibits high collagenolytic activity at 60°C. In this review, we present and summarize the current research on A) the classification and nomenclature of thermostable and mesophilic collagenolytic proteases derived from diverse microorganisms, and B) the functional roles of their C-terminal domains. Furthermore, we analyze the cleavage specificity of the thermostable collagenolytic proteases within each family and comprehensively discuss the thermostable collagenolytic protease TSS.
Collapse
Affiliation(s)
- Kui Zhang
- College of Life Sciences and Technology, Longdong University, Qingyang 745000, P.R. China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang 745000, P.R. China
| | - Yapeng Han
- College of Life Sciences and Technology, Longdong University, Qingyang 745000, P.R. China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang 745000, P.R. China
| |
Collapse
|
4
|
Popoff MR. Overview of Bacterial Protein Toxins from Pathogenic Bacteria: Mode of Action and Insights into Evolution. Toxins (Basel) 2024; 16:182. [PMID: 38668607 PMCID: PMC11054074 DOI: 10.3390/toxins16040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024] Open
Abstract
Bacterial protein toxins are secreted by certain bacteria and are responsible for mild to severe diseases in humans and animals. They are among the most potent molecules known, which are active at very low concentrations. Bacterial protein toxins exhibit a wide diversity based on size, structure, and mode of action. Upon recognition of a cell surface receptor (protein, glycoprotein, and glycolipid), they are active either at the cell surface (signal transduction, membrane damage by pore formation, or hydrolysis of membrane compound(s)) or intracellularly. Various bacterial protein toxins have the ability to enter cells, most often using an endocytosis mechanism, and to deliver the effector domain into the cytosol, where it interacts with an intracellular target(s). According to the nature of the intracellular target(s) and type of modification, various cellular effects are induced (cell death, homeostasis modification, cytoskeleton alteration, blockade of exocytosis, etc.). The various modes of action of bacterial protein toxins are illustrated with representative examples. Insights in toxin evolution are discussed.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, F-75015 Paris, France
| |
Collapse
|
5
|
Massaro M, Ghersi G, de Melo Barbosa R, Campora S, Rigogliuso S, Sànchez-Espejo R, Viseras-Iborra C, Riela S. Nanoformulations based on collagenases loaded into halloysite/Veegum® clay minerals for potential pharmaceutical applications. Colloids Surf B Biointerfaces 2023; 230:113511. [PMID: 37597494 DOI: 10.1016/j.colsurfb.2023.113511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
The design and development of nanomaterials capable of penetrate cancer cells is fundamental when anticancer therapy is involved. The use of collagenase (Col) is useful since this enzyme can degrade collagen, mainly present in the tumor extracellular matrix. However, its use is often limited since collagenase suffers from inactivation and short half-life. Use of recombinant ultrapure collagenase or carrier systems for their delivery are among the strategies adopted to increase the enzyme stability. Herein, based on the more stability showed by recombinant enzymes and the possibility to use them in anticancer therapy, we propose a novel strategy to further increase their stability by using halloysite nanotubes (HNTs) as carrier. ColG and ColH were supramolecularly loaded onto HNTs and used as fillers for Veegum gels. The systems could be used for potential local administration of collagenases for solid tumor treatment. All techniques adopted for characterization showed that halloysite interacts with collagenases in different ways depending with the Col considered. Furthermore, the hydrogels showed a very slow release of the collagenases within 24 h. Finally, biological assays were performed by studying the digestion of a type-I collagen matrix highlighting that once released the Col still possessed some activity. Thus we developed carrier systems that could further increase the high recombinant collagenases stability, preventing their inactivation in future in vivo applications for potential local tumor treatment.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Giulio Ghersi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
| | - Raquel de Melo Barbosa
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - Simona Campora
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Salvatrice Rigogliuso
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy
| | - Rita Sànchez-Espejo
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - César Viseras-Iborra
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Serena Riela
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
| |
Collapse
|
6
|
Optimized Recombinant Expression and Characterization of Collagenase in Bacillus subtilis WB600. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: The collagenase encoding gene col was cloned into a pP43NMK vector and amplified in Escherichia coli JM109 cells. The shuttle vector pP43NMK was used to sub-clone the col gene to obtain the vector pP43NMK-col for the expression of collagenase in Bacillus subtilis WB600. The enzyme was characterized and the composition of the expression medium and culture conditions were optimized. Methods: The expressed recombinant enzyme was purified by ammonium sulfate, ultrafiltration, and through a nickel column. The purified collagenase had an activity of 9405.54 U/mg. Results: The recombinant enzyme exhibited optimal activity at pH 9.0 and 50 °C. Catalytic efficiency of the recombinant collagenase was inhibited by Fe3+ and Cu2+, but stimulated by Co2+, Ca2+, Zn2+, and Mg2+. The optimal conditions for its growth were at pH 7.0 and 35 °C, using 15 g/L of fructose and 36 g/L of yeast powder and peptone mixture (2:1) at 260 rpm with 11% inoculation. The maximal extracellular activity of the recombinant collagenase reached 2746.7 U/mL after optimization of culture conditions, which was 2.4-fold higher than that before optimization. Conclusions: This study is a first attempt to recombinantly express collagenase in B. subtilis WB600 and optimize its expression conditions, its production conditions, and possible scale-up.
Collapse
|
7
|
Mining transcriptome data: Utilization of environmentally regulated promoters for protein expression and purification in Clostridium perfringens. J Microbiol Methods 2022; 199:106519. [PMID: 35718279 DOI: 10.1016/j.mimet.2022.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Clostridium perfringens is a Gram-positive pathogen with low GC content. To identify genes that are transcribed at higher levels when the bacteria grow on a surface, we used RNA-seq in a previous study to measure global transcript levels of cells grown in three types of media on both plates and in liquid culture. We found the arcABDC-argR operon is induced >1000-fold when the cells were grown on plates than in liquid brain heart infusion (BHI). In addition, the pyrBICFZDE operon was transcribed >1000-fold higher in liquid BHI than on plates. Biochemical analysis of C. perfringens proteins is usually accomplished by cloning and expressing the relevant genes in Escherichia coli, a Gram-negative bacterium. Here we utilize both the arcA and pyrB promoters to express and purify proteins from C. perfringens plate and liquid-grown cultures, respectively. Three mg of the His-tagged cytoplasmic protein PilM were obtained when the pilM gene was expressed in cells grown on 10 BHI plates using the arcA promoter. Using the pyrB promoter, 0.85 mg of the C. perfringens His-tagged secreted toxin collagenase was purified from the culture supernatant of 500 ml of cells grown in liquid BHI. In the process of constructing clones, we found we can transform C. perfringens strain HN13 directly with DNA from an in vitro ligation mix, bypassing E. coli. These environmentally regulated promoters can be used to express clostridial or other low GC content genes for protein purification without the addition of an inducer molecule.
Collapse
|
8
|
Lee KW, Lillehoj HS. Role of Clostridium perfringens Necrotic Enteritis B-like Toxin in Disease Pathogenesis. Vaccines (Basel) 2021; 10:vaccines10010061. [PMID: 35062722 PMCID: PMC8780507 DOI: 10.3390/vaccines10010061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating enteric disease caused by Clostridium perfringens type A/G that impacts the global poultry industry by compromising the performance, health, and welfare of chickens. Coccidiosis is a major contributing factor to NE. Although NE pathogenesis was believed to be facilitated by α-toxin, a chromosome-encoded phospholipase C enzyme, recent studies have indicated that NE B-like (NetB) toxin, a plasmid-encoded pore-forming heptameric protein, is the primary virulence factor. Since the discovery of NetB toxin, the occurrence of NetB+ C. perfringens strains has been increasingly reported in NE-afflicted poultry flocks globally. It is generally accepted that NetB toxin is the primary virulent factor in NE pathogenesis although scientific evidence is emerging that suggests other toxins contribute to NE. Because of the complex nature of the host-pathogen interaction in NE pathogenesis, the interaction of NetB with other potential virulent factors of C. perfringens needs better characterization. This short review will summarize the primary virulence factors involved in NE pathogenesis with an emphasis on NetB toxin, and a new detection method for large-scale field screening of NetB toxin in biological samples from NE-afflicted commercial broiler flocks.
Collapse
Affiliation(s)
- Kyung-Woo Lee
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-0495
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA;
| |
Collapse
|
9
|
Badoei-Dalfard A, Monemi F, Hassanshahian M. One-pot synthesis and biochemical characterization of a magnetic collagenase nanoflower and evaluation of its biotechnological applications. Colloids Surf B Biointerfaces 2021; 211:112302. [PMID: 34954517 DOI: 10.1016/j.colsurfb.2021.112302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Recently, hierarchical magnetic enzyme nanoflowers have been found extensive attention for efficient enzyme immobilization due to high surface area, low mass transfer limitations, active site accessibility, promotion of the enzymatic performance, and facile reusing. Herein, we report the purification of the Bacillus collagenase and then synthesis of magnetic cross-linked collagenase-metal hybrid nanoflowers (mcCNFs). The catalytic efficiency (kcat/Km) value of the immobilized collagenase was 2.2 times more than that of the free collagenase. The collagenase activity of mcCNFs enhanced about 2.9 and 4.6 at 85 and 90 °C, respectively, compared to free collagenase. Thermal stability of mcCNFs increased about 31% and 24% after 3 h of incubation at 50 and 60 °C, respectively. After 10 cycles of reusing, the mCNFs collagenase showed 83% of its initial activity. Results showed that the mcCNFs revealed 1.4 times more activity than the free collagenase in 0.16% protein waste. Furthermore, the hydrolysis value of chicken pie protein wastes by the immobilized enzyme obtained 4 times more than the free collagenase after 240 min incubation at 40 °C. Finally, our results showed that the construction of mcCNFs is an efficient method to increase the enzymatic performance and has excessive potential for the hydrolysis of protein wastes in the food industry.
Collapse
Affiliation(s)
- Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Monemi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hassanshahian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
10
|
Geier RR, Rehberger TG, Smith AH. Comparative Genomics of Clostridium perfringens Reveals Patterns of Host-Associated Phylogenetic Clades and Virulence Factors. Front Microbiol 2021; 12:649953. [PMID: 34177831 PMCID: PMC8220089 DOI: 10.3389/fmicb.2021.649953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
Clostridium perfringens is an opportunistic pathogenic bacterium that infects both animals and humans. Clostridium perfringens genomes encode a diverse array of toxins and virulence proteins, which continues to expand as more genomes are sequenced. In this study, the genomes of 44 C. perfringens strains isolated from intestinal sections of diseased cattle and from broiler chickens from diseased and healthy flocks were sequenced. These newly assembled genomes were compared to 141 publicly available C. perfringens genome assemblies, by aligning known toxin and virulence protein sequences in the assemblies using BLASTp. The genes for alpha toxin, collagenase, a sialidase (nanH), and alpha-clostripain were present in at least 99% of assemblies analyzed. In contrast, beta toxin, epsilon toxin, iota toxin, and binary enterotoxin of toxinotypes B, C, D, and E were present in less than 5% of assemblies analyzed. Additional sequence variants of beta2 toxin were detected, some of which were missing the leader or signal peptide sequences and therefore likely not secreted. Some pore-forming toxins involved in intestinal diseases were host-associated, the netB gene was only found in avian isolates, while netE, netF, and netG were only present in canine and equine isolates. Alveolysin was positively associated with canine and equine strains and only present in a single monophyletic clade. Strains from ruminant were not associated with known virulence factors and, except for the food poisoning associated clade, were present across the phylogenetic diversity identified to date for C. perfringens. Many C. perfringens strains associated with food poisoning lacked the genes for hyaluronidases and sialidases, important for attaching to and digesting complex carbohydrates found in animal tissues. Overall, the diversity of virulence factors in C. perfringens makes these species capable of causing disease in a wide variety of hosts and niches.
Collapse
Affiliation(s)
| | | | - Alexandra H. Smith
- Arm and Hammer Animal and Food Production, Church & Dwight Co., Inc., Waukesha, WI, United States
| |
Collapse
|
11
|
Van Damme L, Cox N, Callens C, Dargatz M, Flügel M, Hark S, Thiemann F, Pelzer S, Haesebrouck F, Ducatelle R, Van Immerseel F, Goossens E. Protein Truncating Variants of colA in Clostridium perfringens Type G Strains. Front Cell Infect Microbiol 2021; 11:645248. [PMID: 33996628 PMCID: PMC8117337 DOI: 10.3389/fcimb.2021.645248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular matrix (ECM) degrading enzymes produced by Clostridium perfringens may play an important role during the initial phases of avian necrotic enteritis by facilitating toxin entry in the intestinal mucosa and destruction of the tissue. C. perfringens is known to produce several ECM-degrading proteases, such as kappa toxin, an extracellular collagenase that is encoded by the colA gene. In this study, the colA gene sequence of a collection of 48 C. perfringens strains, including pathogenic (i.e. toxinotype G) and commensal (i.e. toxinotype A) chicken derived strains and strains originating from other host species, was analyzed. Although the colA gene showed a high level of conservation (>96% nucleotide sequence identity), several gene variants carrying different nonsense mutations in the colA gene were identified, leading to the definition of four truncated collagenase variant types (I-IV). Collagenase variant types I, III and IV have a (nearly) complete collagenase unit but lack parts of the C-terminal recruitment domains, whereas collagenase variant types II misses the N-terminal part of collagenase unit. Gene fragments encoding a truncated collagenase were mainly linked with necrotic enteritis associated C. perfringens type G strains with collagenase variant types I and II being the most prevalent types. Gelatin zymography revealed that both recombinant full-length and variant type I collagenase have active auto-cleavage products. Moreover, both recombinant fragments were capable of degrading type I as well as type IV collagen, although variant type I collagenase showed a higher relative activity against collagen type IV as compared to full-length collagenase. Consequently, these smaller truncated collagenases might be able to break down collagen type IV in the epithelial basement membrane of the intestinal villi and so contribute to the initiation of the pathological process leading to necrotic enteritis.
Collapse
Affiliation(s)
- Lore Van Damme
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Natasja Cox
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chana Callens
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michelle Dargatz
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Monika Flügel
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Sarah Hark
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Frank Thiemann
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Stefan Pelzer
- Evonik Operations GmbH, Division Nutrition & Care - Animal Nutrition, Westfalen, Germany
| | - Freddy Haesebrouck
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Hoa Bach TM, Pham TH, Dinh TS, Takagi H. Characterization of collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3. Biosci Biotechnol Biochem 2020; 84:2293-2302. [PMID: 32741269 DOI: 10.1080/09168451.2020.1799748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High collagenolytic activity has been detected in pathogenic bacteria. Collagenase plays an essential role in the invasion step in animals and humans. In this study, we characterized collagenase found in the nonpathogenic bacterium Lysinibacillus sphaericus VN3, which was isolated from soil in Vietnam. The collagenase activity of the purified enzyme was strongly inhibited by Cu2+, but it was significantly increased by Zn2+. The purified enzyme with a molecular mass of approximately 110 kDa exhibited collagenolytic, gelatinolytic, and caseinolytic activity. The kinetic studies showed that this enzyme had greater hydrolyzing activity toward collagen and gelatin compared with casein. Based on the ratio V max/K m, collagen is likely to be the best substrate among three proteins. We found that this collagenase could digest small pieces of bovine skin and tendon into a collagen solution. Interestingly, at pH 6.0-8.0, the soluble collagen could form a collagen membrane, which is useful as a wound-healing biomaterial.
Collapse
Affiliation(s)
- Thi Mai Hoa Bach
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi, Vietnam
| | - Thanh Huyen Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology , Hanoi, Vietnam
| | - Truong Son Dinh
- Department of Plant Biotechnology, Faculty of Biotechnology, Vietnam National University of Agriculture , Hanoi, Vietnam
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology , Nara, Japan
| |
Collapse
|
13
|
Popov VL, Sidorova NA, Bakhriyev II, Lavrukova OS. [Features of bone destruction due to the collagenase activity of bacteria of the Bacillus and Clostridium genera]. Sud Med Ekspert 2020; 63:54-58. [PMID: 32930536 DOI: 10.17116/sudmed20206305154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The purpose of work was to study the activity of collagenase biosynthesis by bacilli and clostridia isolated from the bone microflora in a pure culture at different periods of bone decomposition and at different values of acidity of the medium and the temperature of cultivation. The comparative collagenase activity of the strains of Bacillus mycoides, Bacillus subtilis, Clostridium putrificum, Clostridium sporogenes found in microflora of bone tissue was determined. The catalytic activity of collagenases was evaluated according to the modified method of agar blocks by the diameter of precipitation zone as a result of diffusion of enzyme into an agar medium with collagen. Within 6 months of experiment, the dynamics of changes in the number of collagenolytic strains was monitored. For all isolated Bacillus and Clostridium isolates, a steady increase in collagenase synthesis was observed throughout the study period, with the exception of Bac. subtilis, which is probably due to the acidity of medium, which did not correspond to the optimal pH range for this species. The optimum temperature for manifestation of the maximum collagenolytic activity of bacilli was 40 °C, and for clostridia - 30 °C. The study of proteolytically active species involved in the destruction of bone collagen is promising for the purposes of forensic examination. The use of bacterial enzymes in forensic practice remains a difficult task, however, the use of their substrate specificity can significantly expand the evidence base of the examinations.
Collapse
Affiliation(s)
- V L Popov
- First St. Petersburg State Medical University named after Acad. I.P. Pavlov, St. Petersburg, Russia
- State University of the Sea and River Fleet named after Admiral S.O. Makarov, St. Petersburg, Russia
| | - N A Sidorova
- Petrozavodsk State University, Petrozavodsk, Russia
| | - I I Bakhriyev
- Tashkent State Medical Academy, Tashkent, Uzbekistan
| | | |
Collapse
|
14
|
Alipour H, Raz A, Dinparast Djadid N, Zakeri S. Expression of a New Recombinant Collagenase Protein of Lucilia Sericata in SF9 Insect Cell as a Potential Method for Wound Healing. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2429. [PMID: 32671126 PMCID: PMC7357693 DOI: 10.30498/ijb.2019.92707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Today, the use of maggot therapy has become widespread due to the increase in chronic ulcers in the world. The recombinant production of secreted enzymes from these larvae is a novel non-invasive method for the treatment of chronic ulcers. Lucilia Sericata (L. sericata) collagenase (MMP-1) has been expressed in insect cells. Collagenase is an enzyme that is widely used in clinical therapy and industry. It has been indicated that collagenase is expressed and secreted in salivary glands of L. sericata while using for maggot debridement therapy. OBJECTIVES In the present study we decided to produce the recombinant form of collagenase enzyme in Spodoptera frugiperda (SF9) insect cells using the baculovirus expression system (Bac-to-Bac). MATERIALS AND METHODS cloned the coding sequences (residues 494-1705) of L. sericata collagenase into the pFastBacHTA as donor plasmid. After transposition in the bacmid of DH10Bac host, the bacmid was transfected into the Sf9 cell line, then the expressed recombinant collagenase (MMP-1) was purified using the Ni-NTA agarose. RESULTS The recombinant protein was verified by Western blotting. Furthermore, the biological activity of purified protein was measured in the presence of its specific substrate and its inhibitor, which was 67 IU.mL-1 based on our results, it was revealed that the characterized gene in our previous study codes L. sericata collagenesa enzyme. CONCLUSION Considering to the broad applications of collagenase in medical sciences, for the first time, we cloned the L. sericata collagenase (MMP-1) gene into the insect cell line to establish a method for the expression and purification of L. sericata collagenase (MMP-1). The result help for preparing and designing a safe and versatile recombinant drug in future.
Collapse
Affiliation(s)
- Hamzeh Alipour
- Research Center for Health Sciences, Institute of Health, Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Vibrio Proteases for Biomedical Applications: Modulating the Proteolytic Secretome of V. alginolyticus and V. parahaemolyticus for Improved Enzymes Production. Microorganisms 2019; 7:microorganisms7100387. [PMID: 31554228 PMCID: PMC6843219 DOI: 10.3390/microorganisms7100387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023] Open
Abstract
Proteolytic enzymes are of great interest for biotechnological purposes, and their large-scale production, as well as the discovery of strains producing new molecules, is a relevant issue. Collagenases are employed for biomedical and pharmaceutical purposes. The high specificity of collagenase-based preparations toward the substrate strongly relies on the enzyme purity. However, the overall activity may depend on the cooperation with other proteases, the presence of which may be essential for the overall enzymatic activity, but potentially harmful for cells and tissues. Vibrios produce some of the most promising bacterial proteases (including collagenases), and their exo-proteome includes several enzymes with different substrate specificities, the production and relative abundances of which strongly depend on growth conditions. We evaluated the effects of different media compositions on the proteolytic exo-proteome of Vibrio alginolyticus and its closely relative Vibrio parahaemolyticus, in order to improve the overall proteases production, as well as the yield of the desired enzymes subset. Substantial biological responses were achieved with all media, which allowed defining culture conditions for targeted improvement of selected enzyme classes, besides giving insights in possible regulatory mechanisms. In particular, we focused our efforts on collagenases production, because of the growing biotechnological interest due to their pharmaceutical/biomedical applications.
Collapse
|
16
|
Shekhter AB, Balakireva AV, Kuznetsova NV, Vukolova MN, Litvitsky PF, Zamyatnin AA. Collagenolytic Enzymes and their Applications in Biomedicine. Curr Med Chem 2019; 26:487-505. [PMID: 28990520 DOI: 10.2174/0929867324666171006124236] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 01/31/2023]
Abstract
Nowadays, enzymatic therapy is a very promising line of treatment for many different diseases. There is a group of disorders and conditions, caused by fibrotic and scar processes and associated with the excessive accumulation of collagen that needs to be catabolized to normalize the connective tissue content. The human body normally synthesizes special extracellular enzymes, matrix metalloproteases (MMPs) by itself. These enzymes can cleave components of extracellular matrix (ECM) and different types of collagen and thus maintain the balance of the connective tissue components. MMPs are multifunctional enzymes and are involved in a variety of organism processes. However, under pathological conditions, the function of MMPs is not sufficient, and these enzymes fail to deal with disease. Thus, medical intervention is required. Enzymatic therapy is a very effective way of treating such collagen-associated conditions. It involves the application of exogenous collagenolytic enzymes that catabolize excessive collagen at the affected site and lead to the successful elimination of disease. Such collagenolytic enzymes are synthesized by many organisms: bacteria, animals (especially marine organisms), plants and fungi. The most studied and commercially available are collagenases from Clostridium histolyticum and from the pancreas of the crab Paralithodes camtschatica, due to their ability to effectively hydrolyse human collagen without affecting other tissues, and their wide pH ranges of collagenolytic activity. In the present review, we summarize not only the data concerning existing collagenase-based medications and their applications in different collagen-related diseases and conditions, but we also propose collagenases from different sources for their potential application in enzymatic therapy.
Collapse
Affiliation(s)
- Anatoly B Shekhter
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Natalia V Kuznetsova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Marina N Vukolova
- Sechenov First Moscow State Medical University, Department of Pathophysiology, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Petr F Litvitsky
- Sechenov First Moscow State Medical University, Department of Pathophysiology, Trubetskaya Str. 8, Moscow, 119991, Russian Federation
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8, Moscow, 119991, Russian Federation.,Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119992, Russian Federation
| |
Collapse
|
17
|
Bridel S, Olsen AB, Nilsen H, Bernardet JF, Achaz G, Avendaño-Herrera R, Duchaud E. Comparative Genomics of Tenacibaculum dicentrarchi and "Tenacibaculum finnmarkense" Highlights Intricate Evolution of Fish-Pathogenic Species. Genome Biol Evol 2018; 10:452-457. [PMID: 29360975 PMCID: PMC5793721 DOI: 10.1093/gbe/evy020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 01/03/2023] Open
Abstract
The genus Tenacibaculum encompasses several species pathogenic for marine fish. Tenacibaculum dicentrarchi and "Tenacibaculum finnmarkense" (Quotation marks denote species that have not been validly named.) were retrieved from skin lesions of farmed fish such as European sea bass or Atlantic salmon. They cause a condition referred to as tenacibaculosis and severe outbreaks and important fish losses have been reported in Spanish, Norwegian, and Chilean marine farms. We report here the draft genomes of the T. dicentrarchi and "T. finnmarkense" type strains. These genomes were compared with draft genomes from field isolates retrieved from Chile and Norway and with previously published Tenacibaculum genomes. We used Average Nucleotide Identity and core genome-based phylogeny as a proxy index for species boundary delineation. This work highlights evolution of closely related fish-pathogenic species and suggests that homologous recombination likely contributes to genome evolution. It also corrects the species affiliation of strain AYD7486TD claimed by Grothusen et al. (2016).
Collapse
Affiliation(s)
- Sébastien Bridel
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France.,Labofarm, Finalab, Loudéac, France.,Université de Versailles Saint-Quentin-En-Yvelines, Montigny-Le-Bretonneux, France
| | | | | | | | - Guillaume Achaz
- Atelier de Bioinformatique, UMR 7205 ISyEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Eric Duchaud
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
18
|
Functional profiling of circulating tumor cells with an integrated vortex capture and single-cell protease activity assay. Proc Natl Acad Sci U S A 2018; 115:9986-9991. [PMID: 30224472 DOI: 10.1073/pnas.1803884115] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tumor cells are hypothesized to use proteolytic enzymes to facilitate invasion. Whether circulating tumor cells (CTCs) secrete these enzymes to aid metastasis is unknown. A quantitative and high-throughput approach to assay CTC secretion is needed to address this question. We developed an integrated microfluidic system that concentrates rare cancer cells >100,000-fold from 1 mL of whole blood into ∼50,000 2-nL drops composed of assay reagents within 15 min. The system isolates CTCs by size, exchanges fluid around CTCs to remove contaminants, introduces a matrix metalloprotease (MMP) substrate, and encapsulates CTCs into microdroplets. We found CTCs from prostate cancer patients possessed above baseline levels of MMP activity (1.7- to 200-fold). Activity of CTCs was generally higher than leukocytes from the same patient (average CTC/leukocyte MMP activity ratio, 2.6 ± 1.5). Higher MMP activity of CTCs suggests active proteolytic processes that may facilitate invasion or immune evasion and be relevant phenotypic biomarkers enabling companion diagnostics for anti-MMP therapies.
Collapse
|
19
|
|
20
|
Marine microbes as a valuable resource for brand new industrial biocatalysts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Goossens E, Valgaeren BR, Pardon B, Haesebrouck F, Ducatelle R, Deprez PR, Van Immerseel F. Rethinking the role of alpha toxin in Clostridium perfringens-associated enteric diseases: a review on bovine necro-haemorrhagic enteritis. Vet Res 2017; 48:9. [PMID: 28209206 PMCID: PMC5314468 DOI: 10.1186/s13567-017-0413-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/12/2017] [Indexed: 11/23/2022] Open
Abstract
Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium perfringens type A strains. The disease mainly affects calves under intensive rearing conditions and is characterized by sudden death associated with small intestinal haemorrhage, necrosis and mucosal neutrophil infiltration. The common assumption that, when causing intestinal disease, C. perfringens relies upon specific, plasmid-encoded toxins, was recently challenged by the finding that alpha toxin, which is produced by all C. perfringens strains, is essential for necro-haemorrhagic enteritis. In addition to alpha toxin, other C. perfringens toxins and/or enzymes might contribute to the pathogenesis of necro-haemorrhagic enteritis. These additional virulence factors might contribute to breakdown of the protective mucus layer during initial stage of pathogenesis, after which alpha toxin, either or not in synergy with other toxins such as perfringolysin O, can act on the mucosal tissue. Furthermore, alpha toxin alone does not cause intestinal necrosis, indicating that other virulence factors might be needed to cause the extensive tissue necrosis observed in necro-haemorrhagic enteritis. This review summarizes recent research that has increased our understanding of the pathogenesis of bovine necro-haemorrhagic enteritis and provides information that is indispensable for the development of novel control strategies, including vaccines.
Collapse
Affiliation(s)
- Evy Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bonnie R Valgaeren
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Piet R Deprez
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| |
Collapse
|
22
|
Abfalter CM, Schönauer E, Ponnuraj K, Huemer M, Gadermaier G, Regl C, Briza P, Ferreira F, Huber CG, Brandstetter H, Posselt G, Wessler S. Cloning, Purification and Characterization of the Collagenase ColA Expressed by Bacillus cereus ATCC 14579. PLoS One 2016; 11:e0162433. [PMID: 27588686 PMCID: PMC5010206 DOI: 10.1371/journal.pone.0162433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Bacterial collagenases differ considerably in their structure and functions. The collagenases ColH and ColG from Clostridium histolyticum and ColA expressed by Clostridium perfringens are well-characterized collagenases that cleave triple-helical collagen, which were therefore termed as ´true´ collagenases. ColA from Bacillus cereus (B. cereus) has been added to the collection of true collagenases. However, the molecular characteristics of B. cereus ColA are less understood. In this study, we identified ColA as a secreted true collagenase from B. cereus ATCC 14579, which is transcriptionally controlled by the regulon phospholipase C regulator (PlcR). B. cereus ATCC 14579 ColA was cloned to express recombinant wildtype ColA (ColAwt) and mutated to a proteolytically inactive (ColAE501A) version. Recombinant ColAwt was tested for gelatinolytic and collagenolytic activities and ColAE501A was used for the production of a polyclonal anti-ColA antibody. Comparison of ColAwt activity with homologous proteases in additional strains of B. cereus sensu lato (B. cereus s.l.) and related clostridial collagenases revealed that B. cereus ATCC 14579 ColA is a highly active peptidolytic and collagenolytic protease. These findings could lead to a deeper insight into the function and mechanism of bacterial collagenases which are used in medical and biotechnological applications.
Collapse
Affiliation(s)
- Carmen M. Abfalter
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Esther Schönauer
- Department of Molecular Biology, Division of Structural Biology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, India
| | - Markus Huemer
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Molecular Biology, Division of Allergy and Immunology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Peter Briza
- Department of Molecular Biology, Division of Allergy and Immunology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Fatima Ferreira
- Department of Molecular Biology, Division of Allergy and Immunology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Christian G. Huber
- Department of Molecular Biology, Division of Chemistry and Bioanalytics, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, Division of Structural Biology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Gernot Posselt
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Salzburg, Austria
- * E-mail:
| |
Collapse
|
23
|
Chioma O, Aruni AW, Milford TA, Fletcher HM. Filifactor alocis collagenase can modulate apoptosis of normal oral keratinocytes. Mol Oral Microbiol 2016; 32:166-177. [PMID: 27149930 DOI: 10.1111/omi.12163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2016] [Indexed: 12/22/2022]
Abstract
To successfully colonize host cells, pathogenic bacteria must circumvent the host's structural barrier such as the collagen-rich extracellular matrix (ECM), as a preliminary step to invasion and colonization of the periodontal tissue. Filifactor alocis possesses a putative Peptidase U32 family protein (HMPREF0389_00504) with collagenase activity that may play a significant role in colonization of host tissue during periodontitis by breaking down collagen into peptides and disruption of the host cell. Domain architecture of the HMPREF0389_00504 protein predicted the presence of a characteristic PrtC-like collagenase domain, and a peptidase domain. Our study demonstrated that the recombinant F. alocis peptidase U32 protein (designated PrtFAC) can interact with, and degrade, type I collagen, heat-denatured collagen and gelatin in a calcium-dependent manner. PrtFAC decreased viability and induced apoptosis of normal oral keratinocytes (NOKs) in a time and dose-dependent manner. Transcriptome analysis of NOK cells treated with PrtFAC showed an upregulation of the genes encoding human pro-apoptotic proteins: Apoptotic peptidase activating factor 1 (Apaf1) cytochrome C, as well as caspase 3 and caspase 9, suggesting the involvement of the mitochondrial apoptotic pathway. There was a significant increase in caspase 3/7 activity in NOK cells treated with PrtFAC. Taken together, these findings suggest that F. alocis PrtFAC protein may play a role in the virulence and pathogenesis of F. alocis.
Collapse
Affiliation(s)
- O Chioma
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - A W Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - T-A Milford
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
24
|
Pal GK, PV S. Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition. RSC Adv 2016. [DOI: 10.1039/c5ra23316j] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbial collagenases are promising enzymes in view of their extensive industrial and biological applications.
Collapse
Affiliation(s)
- Gaurav Kumar Pal
- Academy of Scientific and Innovative Research
- Meat and Marine Sciences Department
- CSIR-Central Food Technological Research Institute
- Mysuru-570020
- India
| | - Suresh PV
- Academy of Scientific and Innovative Research
- Meat and Marine Sciences Department
- CSIR-Central Food Technological Research Institute
- Mysuru-570020
- India
| |
Collapse
|
25
|
Zhang XX, Li Y, Wang SY, Wang YY, Du KL, Xu JY, Lei LS, Feng X, Liang XY, Ruan HH. Identification of a collagenase produced by Bacillus cereus R75E isolated from human colostrum. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s000368381505018x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases. Appl Environ Microbiol 2015; 81:6098-107. [PMID: 26150451 DOI: 10.1128/aem.00883-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial collagenolytic proteases are important because of their essential role in global collagen degradation and because of their virulence in some human bacterial infections. Bacterial collagenolytic proteases include some metalloproteases of the M9 family from Clostridium or Vibrio strains, some serine proteases distributed in the S1, S8, and S53 families, and members of the U32 family. In recent years, there has been remarkable progress in discovering new bacterial collagenolytic proteases and in investigating the collagen-degrading mechanisms of bacterial collagenolytic proteases. This review provides comprehensive insight into bacterial collagenolytic proteases, especially focusing on the structures and collagen-degrading mechanisms of representative bacterial collagenolytic proteases in each family. The roles of bacterial collagenolytic proteases in human diseases and global nitrogen cycling, together with the biotechnological and medical applications for these proteases, are also briefly discussed.
Collapse
|
27
|
Abstract
Bacterial collagenases are metalloproteinases involved in the degradation of the extracellular matrices of animal cells, due to their ability to digest native collagen. These enzymes are important virulence factors in a variety of pathogenic bacteria. Nonetheless, there is a lack of scientific consensus for a proper and well-defined classification of these enzymes and a vast controversy regarding the correct identification of collagenases. Clostridial collagenases were the first ones to be identified and characterized and are the reference enzymes for comparison of newly discovered collagenolytic enzymes. In this review we present the most recent data regarding bacterial collagenases and overview the functional and structural diversity of bacterial collagenases. An overall picture of the molecular diversity and distribution of these proteins in nature will also be given. Particular aspects of the different proteolytic activities will be contextualized within relevant areas of application, mainly biotechnological processes and therapeutic uses. At last, we will present a new classification guide for bacterial collagenases that will allow the correct and straightforward classification of these enzymes.
Collapse
Affiliation(s)
- Ana Sofia Duarte
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| | - Antonio Correia
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| | - Ana Cristina Esteves
- a Department of Biology and Cesam , University of Aveiro, Campus Universitario de Santiago , Aveiro , Portugal
| |
Collapse
|
28
|
Petrova D, Vlahov S, Dalev P. Purification and Characterization of a Thermostable Alkaline Collagenase from Thermoactinomyces Sp. E-21 Strain. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2001.10819127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J. Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 2013; 209:1105-15. [PMID: 24277745 DOI: 10.1093/infdis/jit659] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Leptospirosis is a global zoonotic disease. Transmission of Leptospira from animals to humans occurs through contact with water contaminated with leptospire-containing urine of infected animals. However, the molecular basis for the invasiveness of Leptospira and transmission of leptospirosis remains unknown. METHODS Activity of Leptospira interrogans strain Lai colA gene product (ColA) to hydrolyze different collagenic substrates was determined by spectrophotometry. Expression and secretion of ColA during infection were detected by reverse-transcription quantitative polymerase chain reaction and Western blot assay. The colA gene-deleted (ΔcolA) and colA gene-complemented (CΔcolA) mutants were generated to determine the roles of ColA in transcytosis in vitro and virulence in hamsters. RESULTS Recombinant or native ColA hydrolyzed all the tested substrates in which type III collagen was the favorite substrate with 2.16 mg/mL Km and 35.6 h(-)(1) Kcat values. Coincubation of the spirochete with HUVEC or HEK293 cells directly caused the significant elevation of ColA expression and secretion. Compared with wild-type strain, ΔcolA mutant displayed much-attenuated transcytosis through HEK293 and HUVEC monolayers, and less leptospires in blood, lung, liver, kidney and urine and 25-fold-decreased 50% lethal dose and milder histopathological injury in hamsters. CONCLUSIONS The product of colA gene is a collagenase as a crucial virulence factor in the invasiveness and transmission of L. interrogans.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pruteanu M, Shanahan F. Digestion of epithelial tight junction proteins by the commensal Clostridium perfringens. Am J Physiol Gastrointest Liver Physiol 2013; 305:G740-8. [PMID: 24072681 DOI: 10.1152/ajpgi.00316.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enteric microbiota contributes to the pathogenesis of inflammatory bowel disease, but the pathways involved and bacterial participants may vary in different hosts. We previously reported that some components of the human commensal microbiota, particularly Clostridium perfringens (C. perfringens), have the proteolytic capacity for host matrix degradation and reduce transepithelial resistance. Here, we examined the C. perfringens-derived proteolytic activity against epithelial tight junction proteins using human intestinal epithelial cell lines. We showed that the protein levels of E-cadherin, occludin, and junctional adhesion molecule 1 decrease in colonic cells treated with C. perfringens culture supernatant. E-cadherin ectodomain shedding in C. perfringens-stimulated intestinal epithelial cells was detected with antibodies against the extracellular domain of E-cadherin, and we demonstrate that this process occurs in a time- and dose-dependent manner. In addition, we showed that the filtered sterile culture supernatant of C. perfringens has no cytotoxic activity on the human intestinal cells at the concentrations used in this study. The direct cleavage of E-cadherin by the proteases from the C. perfringens culture supernatant was confirmed by C. perfringens supernatant-induced in vitro degradation of the human recombinant E-cadherin. We conclude that C. perfringens culture supernatant mediates digestion of epithelial cell junctional proteins, which is likely to enable access to the extracellular matrix components by the paracellular pathway.
Collapse
Affiliation(s)
- Mihaela Pruteanu
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg 69117, Germany.
| | | |
Collapse
|
31
|
|
32
|
Yung PY, Kjelleberg S, Thomas T. A polyphasic approach to the exploration of collagenolytic activity in the bacterial community associated with the marine sponge Cymbastela concentrica. FEMS Microbiol Lett 2011; 321:24-9. [PMID: 21569081 DOI: 10.1111/j.1574-6968.2011.02306.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Collagen is an important, extracellular structural protein for metazoans and provides a rich nutrient source for bacteria that possess collagen-degrading enzymes. In a symbiotic host system, collagen degradation could benefit the bacteria, but would be harmful for the eukaryotic host. Using a polyphasic approach, we investigated the presence of collagenolytic activity in the bacterial community hosted by the marine sponge Cymbastela concentrica. Functional screening for collagenase activity using metagenomic library clones (227 Mbp) and cultured isolates of sponge's bacterial community, as well as bioinformatic analysis of metagenomic shotgun-sequencing data (106,679 predicted genes) were used. The results show that the abundant members of the bacterial community contain very few genes encoding for collagenolytic enzymes, while some low-abundance sponge isolates possess collagenolytic activities. These findings indicate that collagen is not a preferred nutrient source for the majority of the members of the bacterial community associated with healthy C. concentrica, and that some low-abundance bacteria have collagenase activities that have the potential to harm the sponge through tissue degradation.
Collapse
Affiliation(s)
- Pui Yi Yung
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
33
|
Pruteanu M, Hyland NP, Clarke DJ, Kiely B, Shanahan F. Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases. Inflamm Bowel Dis 2011; 17:1189-200. [PMID: 20853433 DOI: 10.1002/ibd.21475] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 08/02/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Proteolytic degradation of the extracellular matrix, a feature of mucosal homeostasis and tissue renewal, also contributes to the complications of intestinal inflammation. Whether this proteolytic activity is entirely host-derived, or, in part, produced by the gut microbiota, is unknown. METHODS We screened the bacterial colonies for gelatinolytic activity from fecal samples of 20 healthy controls, 23 patients with ulcerative colitis, and 18 with Crohn's disease (CD). In addition, the genes encoding metalloproteases were detected by conventional or real-time polymerase chain reaction (PCR). RESULTS Gelatinolytic activity was found in approximately one-quarter of samples regardless of the presence of inflammation and without any attempt to enhance the sensitivity of the culture-based screen. This was associated with a diversity of bacteria, particularly in CD, but was predominantly linked with Clostridium perfringens. Culture supernatants from C. perfringens degraded gelatin, azocoll, type I collagen, and basement membrane type IV collagen, but different isolates varied in the degree of proteolytic activity. Results were confirmed by detection of the C. perfringens colA gene (encoding collagenase) in fecal DNA, again regardless of the presence or absence of inflammation. However, the biologic significance and potential implications of microbial-derived proteolytic activity were confirmed by reduced transepithelial resistance (TER) after exposure of rat distal colon to culture supernatants of C. perfringens in Ussing chambers. CONCLUSIONS The study shows that microbial-derived proteolytic activity has the capacity to contribute to mucosal homeostasis and may participate in the pathogenesis of inflammatory bowel disease.
Collapse
|
34
|
Cloning of a novel collagenase gene from the gram-negative bacterium Grimontia (Vibrio) hollisae 1706B and its efficient expression in Brevibacillus choshinensis. J Bacteriol 2011; 193:3049-56. [PMID: 21515782 DOI: 10.1128/jb.01528-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The collagenase gene was cloned from Grimontia (Vibrio) hollisae 1706B, and its complete nucleotide sequence was determined. Nucleotide sequencing showed that the open reading frame was 2,301 bp in length and encoded an 84-kDa protein of 767 amino acid residues. The deduced amino acid sequence contains a putative signal sequence and a zinc metalloprotease consensus sequence, the HEXXH motif. G. hollisae collagenase showed 60 and 59% amino acid sequence identities to Vibrio parahaemolyticus and Vibrio alginolyticus collagenase, respectively. In contrast, this enzyme showed < 20% sequence identity with Clostridium histolyticum collagenase. When the recombinant mature collagenase, which consisted of 680 amino acids with a calculated molecular mass of 74 kDa, was produced by the Brevibacillus expression system, a major gelatinolytic protein band of ~ 60 kDa was determined by zymographic analysis. This result suggested that cloned collagenase might undergo processing after secretion. Moreover, the purified recombinant enzyme was shown to possess a specific activity of 5,314 U/mg, an ~ 4-fold greater activity than that of C. histolyticum collagenase.
Collapse
|
35
|
Tanaka H, Nariya H, Suzuki M, Houchi H, Tamai E, Miyata S, Okabe A. High-level production and purification of clostripain expressed in a virulence-attenuated strain of Clostridium perfringens. Protein Expr Purif 2010; 76:83-9. [PMID: 20940055 DOI: 10.1016/j.pep.2010.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Clostripain (CLO) produced by Clostridium histolyticum is an arginine-specific endopeptidase with the potential for applicability to diverse medical and industrial uses. In this study, we developed an expression system allowing high-level production and efficient purification of recombinant CLO (rCLO). Our expression system comprises pCLO, an rCLO expressing vector, and Clostridium perfringens 13Δ6, an in-frame deletion strain as to six genes encoding major virulence factors and secretory proteins. rCLO was purified from the culture supernatant of C. perfringens 13Δ6/pCLO by ammonium sulfate precipitation, hydroxyapatite chromatography, and affinity chromatography on benzamidine-Sepharose. From 200 ml of culture supernatant 4.5 mg of purified rCLO was obtained. N-Terminal amino acid sequencing and molecular mass determination of the purified rCLO and commercially available CLO revealed that the two enzymes have identical subunits, a 38.1-kDa heavy chain and a 15.0-kDa light chain, indicating that rCLO is processed in the same manner as CLO. Analysis of the enzymatic activities toward N-benzoyl-L-arginine p-nitroanilide and acyl-L-lysine p-nitroanilide showed that rCLO and CLO exhibit strict specificity for arginine at the P1 position, and that the specific activity of the former is approximately 2-fold higher than that of the latter. These results indicate that the new method involving a virulence-attenuated C. perfringens strain is useful for preparing large amounts of high-grade rCLO.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture. Microbiology (Reading) 2010; 156:561-569. [DOI: 10.1099/mic.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of Clostridium histolyticum. To determine the biochemical and biological properties of the C. perfringens homologue (Clp), it was purified from the culture supernatant of a recombinant C. perfringens strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward N-benzoyl-l-arginine p-nitroanilide (Bz-l-arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz-dl-arginine pNA rather than Bz-dl-lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.
Collapse
|
37
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
38
|
Mukherjee J, Webster N, Llewellyn LE. Purification and characterization of a collagenolytic enzyme from a pathogen of the great barrier reef sponge, Rhopaloeides odorabile. PLoS One 2009; 4:e7177. [PMID: 19777058 PMCID: PMC2744872 DOI: 10.1371/journal.pone.0007177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
Background In recent years there has been a global increase in reports of disease affecting marine sponges. While disease outbreaks have the potential to seriously impact on the survival of sponge populations, the ecology of the marine environment and the health of associated invertebrates, our understanding of sponge disease is extremely limited. Methodology/Principal Findings A collagenolytic enzyme suspected to enhance pathogenicity of bacterial strain NW4327 against the sponge Rhopaloeides odorabile was purified using combinations of size exclusion and anion exchange chromatography. After achieving a 77-fold increase in specific activity, continued purification decreased the yield to 21-fold with 7.2% recovery (specific activity 2575 collagen degrading units mg−1protein) possibly due to removal of co-factors. SDS-PAGE of the partially pure enzyme showed two proteins weighing approximately 116 and 45 kDa with the heavier band being similar to reported molecular weights of collagenases from Clostridium and marine Vibrios. The enzyme degraded tissue fibres of several sponge genera suggesting that NW4327 could be deleterious to other sponge species. Activity towards casein and bird feather keratin indicates that the partially purified collagenase is either a non-selective protease able to digest collagen or is contaminated with non-specific proteases. Enzyme activity was highest at pH 5 (the internal pH of R. odorabile) and 30°C (the average ambient seawater temperature). Activity under partially anaerobic conditions also supports the role of this enzyme in the degradation of the spongin tissue. Cultivation of NW4327 in the presence of collagen increased production of collagenase by 30%. Enhanced enzyme activity when NW4327 was cultivated in media formulated in sterile natural seawater indicates the presence of other factors that influence enzyme synthesis. Conclusions/Significance Several aspects of the sponge disease etiology were revealed, particularly the strong correlation with the internal tissue chemistry and environmental temperature. This research provides a platform for further investigations into the virulence mechanisms of sponge pathogens.
Collapse
Affiliation(s)
- Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Nicole Webster
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Lyndon E. Llewellyn
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
39
|
Wu Q, Li C, Li C, Chen H, Shuliang L. Purification and Characterization of a Novel Collagenase from Bacillus pumilus Col-J. Appl Biochem Biotechnol 2009; 160:129-39. [DOI: 10.1007/s12010-009-8673-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 05/18/2009] [Indexed: 10/20/2022]
|
40
|
Ducka P, Eckhard U, Schönauer E, Kofler S, Gottschalk G, Brandstetter H, Nüss D. A universal strategy for high-yield production of soluble and functional clostridial collagenases in E. coli. Appl Microbiol Biotechnol 2009; 83:1055-65. [PMID: 19333597 PMCID: PMC3085789 DOI: 10.1007/s00253-009-1953-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 11/29/2022]
Abstract
Clostridial collagenases are foe and friend: on the one hand, these enzymes enable host infiltration and colonization by pathogenic clostridia, and on the other hand, they are valuable biotechnological tools due to their capacity to degrade various types of collagen and gelatine. However, the demand for high-grade preparations exceeds supply due to their pathogenic origin and the intricate purification of homogeneous isoforms. We present the establishment of an Escherichia coli expression system for a variety of constructs of collagenase G (ColG) and H (ColH) from Clostridium histolyticum and collagenase T (ColT) from Clostridium tetani, mimicking the isoforms in vivo. Based on a setup of five different expression strains and two expression vectors, 12 different constructs were expressed, and a flexible purification platform was established, consisting of various orthogonal chromatography steps adaptable to the individual needs of the respective variant. This fast, cost-effective, and easy-to-establish platform enabled us to obtain at least 10 mg of highly pure mono-isoformic protein per liter of culture, ideally suited for numerous sophisticated downstream applications. This production and purification platform paves the way for systematic screenings of recombinant collagenases to enlighten the biochemical function and to identify key residues and motifs in collagenolysis.
Collapse
Affiliation(s)
- Paulina Ducka
- Department of Molecular Biology, University of Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
Production of apoptosis-inducing substances from soybean protein by Clostridium butyricum: characterization of their toxic effects on human colon carcinoma cells. Cancer Lett 2009; 277:190-8. [PMID: 19147278 DOI: 10.1016/j.canlet.2008.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/21/2022]
Abstract
Microbial metabolism of soybean constituents is known to produce novel active substances as a chemopreventive agent during the fermentation, and enterobacteria are expected to produce chemopreventive agents as a consequence of metabolizing soybean constituents in the intestinal tract. Then, the conditioned medium was prepared by culturing an enterobacterium Clostridium butyricum (C. butyricum) with soybean protein, and its direct effect on human colon carcinoma HCT116 cells was examined. The conditioned medium was shown to induce the cell death, and suggested to contain novel apoptosis-inducing substances. Thus, enterobacteria are predicted to produce anti-tumor substances from food-derived proteins within the intestinal tract.
Collapse
|
42
|
|
43
|
Viratyosin W, Ingsriswang S, Pacharawongsakda E, Palittapongarnpim P. Genome-wide subcellular localization of putative outer membrane and extracellular proteins in Leptospira interrogans serovar Lai genome using bioinformatics approaches. BMC Genomics 2008; 9:181. [PMID: 18423054 PMCID: PMC2387172 DOI: 10.1186/1471-2164-9-181] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 04/21/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In bacterial pathogens, both cell surface-exposed outer membrane proteins and proteins secreted into the extracellular environment play crucial roles in host-pathogen interaction and pathogenesis. Considerable efforts have been made to identify outer membrane (OM) and extracellular (EX) proteins produced by Leptospira interrogans, which may be used as novel targets for the development of infection markers and leptospirosis vaccines. RESULT In this study we used a novel computational framework based on combined prediction methods with deduction concept to identify putative OM and EX proteins encoded by the Leptospira interrogans genome. The framework consists of the following steps: (1) identifying proteins homologous to known proteins in subcellular localization databases derived from the "consensus vote" of computational predictions, (2) incorporating homology based search and structural information to enhance gene annotation and functional identification to infer the specific structural characters and localizations, and (3) developing a specific classifier for cytoplasmic proteins (CP) and cytoplasmic membrane proteins (CM) using Linear discriminant analysis (LDA). We have identified 114 putative EX and 63 putative OM proteins, of which 41% are conserved or hypothetical proteins containing sequence and/or protein folding structures similar to those of known EX and OM proteins. CONCLUSION Overall results derived from the combined computational analysis correlate with the available experimental evidence. This is the most extensive in silico protein subcellular localization identification to date for Leptospira interrogans serovar Lai genome that may be useful in protein annotation, discovery of novel genes and understanding the biology of Leptospira.
Collapse
Affiliation(s)
- Wasna Viratyosin
- BIOTEC Central Research Unit, National Center for Genetic Engineering and Biotechnology, Pathumthani, 12120, Thailand.
| | | | | | | |
Collapse
|
44
|
Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124. Appl Microbiol Biotechnol 2008; 78:465-71. [PMID: 18183385 DOI: 10.1007/s00253-007-1319-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
Lacto-N-biose phosphorylase (LNBP) from bifidobacteria is involved in the metabolism of lacto-N-biose I (Galbeta1-->3GlcNAc, LNB) and galacto-N-biose (Galbeta1-->3GalNAc, GNB). A homologous gene of LNBP (CPF0553 protein) was identified in the genome of Clostridium perfringens ATCC13124, which is a gram-positive anaerobic intestinal bacterium. In the present study, we cloned the gene and compared the substrate specificity of the CPF0553 protein with LNBP from Bifidobacterium longum JCM1217 (LNBPBl). In the presence of alpha-galactose 1-phosphate (Gal 1-P) as a donor, the CPF0553 protein acted only on GlcNAc and GalNAc, and GalNAc was a more effective acceptor than GlcNAc. The reaction product from GlcNAc/GalNAc and Gal 1-P was identified as LNB or GNB. The CPF0553 protein also phosphorolyzed GNB much faster than LNB, which suggests that the protein should be named galacto-N-biose phosphorylase (GNBP). GNBP showed a kcat/Km value for GNB that was approximately 50 times higher than that for LNB, whereas LNBPBl showed similar kcat/Km values for both GNB and LNB. Because C. perfringens possesses a gene coding endo-alpha-N-acetylgalactosaminidase, GNBP may play a role in the intestinal residence by metabolizing GNB that is available as a mucin core sugar.
Collapse
|
45
|
Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression. Appl Microbiol Biotechnol 2008; 77:1063-71. [DOI: 10.1007/s00253-007-1245-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 12/14/2022]
|
46
|
Aggarwal S, Brennen WN, Kole TP, Schneider E, Topaloglu O, Yates M, Cotter RJ, Denmeade SR. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 2007; 47:1076-86. [PMID: 18095711 DOI: 10.1021/bi701921b] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly consistent trait of tumor stromal fibroblasts is the induction of the membrane-bound serine protease fibroblast activation protein-alpha (FAP), which is overexpressed on the surface of reactive stromal fibroblasts present within the stroma of the majority of human epithelial tumors. In contrast, FAP is not expressed by tumor epithelial cells or by fibroblasts or other cell types in normal tissues. The proteolytic activity of FAP, therefore, represents a potential pan-tumor target that can be exploited for the release of potent cytotoxins from inactive prodrugs consisting of an FAP peptide substrate coupled to a cytotoxin. To identify FAP peptide substrates, we used liquid chromatography tandem mass spectroscopy based sequencing to generate a complete map of the FAP cleavage sites within human collagen I derived gelatin. Positional analysis of the frequency of each amino acid at each position within the cleavage sites revealed FAP consensus sequences PPGP and (D/E)-(R/K)-G-(E/D)-(T/S)-G-P. These studies further demonstrated that ranking cleavage sites based on the magnitude of the LC/MS/MS extracted ion current predicted FAP substrates that were cleaved with highest efficiency. Fluorescence-quenched peptides were synthesized on the basis of the cleavage sites with the highest ion current rankings, and kinetic parameters for FAP hydrolysis were determined. The substrate DRGETGP, which corresponded to the consensus sequence, had the lowest Km of 21 microM. Overall the Km values were relatively similar for both high and low ranked substrates, whereas the kcat values differed by up to 100-fold. On the basis of these results, the FAP consensus sequences are currently being evaluated as FAP-selective peptide carriers for incorporation into FAP-activated prodrugs.
Collapse
Affiliation(s)
- Saurabh Aggarwal
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Petrova DH, Shishkov SA, Vlahov SS. Novel thermostable serine collagenase fromThermoactinomyces sp. 21E: purification and some properties. J Basic Microbiol 2006; 46:275-85. [PMID: 16847831 DOI: 10.1002/jobm.200510063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A thermophilic actinomycete strain Thermoactinomyces sp. 21E producing a highly thermostable serine collagenase was isolated from Bulgarian soil. The collagenase, produced extracellular by Thermoactinomyces sp. 21E, was purified to homogeneity by heat treatment, ultrafiltration, saturation with ammonium sulfate and gel filtration chromatography with a 101-fold increase in specific activity and 58% recovery. The collagenase has a relative molecular mass of 50000 by SDS-PAGE. The optimum temperature for the enzyme activity was 60-65 degrees C in the absence of Ca(2+) and 70-75 degrees C in the presence of Ca(2+). About 40% of the original activity remaining after incubation at 85 degrees C for 30 min in the presence of Ca(2+). The optimum pH for the enzyme activity was 9.0-9.5 and the enzyme was stable for 1h at 70 degrees C in the pH range from 7.5 to 12.5. The collagenase was strongly inhibited by active-site inhibitors of serine protease PMSF and DFP, which indicated that the enzyme is serine protease. The enzyme activity was completely inhibited by Hg(2+), Cu(2+) and Fe(2+). However, Ca(2+ )strongly activated the collagenase activity. The collagenase from Thermoactinomyces sp. 21E showed high activity toward type I collagen, acid-soluble collagen, gelatin and Pz-PLGPR. However, elastin for collagenase was inert as substrate. The properties of the collagenase from strain 21E suggest that this enzyme is a new collagenolytic protease that differs from the collagenases and serine proteases reported so far.
Collapse
Affiliation(s)
- Detelina Hristova Petrova
- Laboratory of Virology, University of Sofia St. Kliment Ohridski, Faculty of Biology, Boulevard Dragan Tzankov 8, 1164 Sofia, Bulgaria.
| | | | | |
Collapse
|
48
|
Purification and properties of a collagenolytic protease produced by marine bacteriumVibrio vulnificus CYK279H. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Kooi C, Corbett CR, Sokol PA. Functional analysis of the Burkholderia cenocepacia ZmpA metalloprotease. J Bacteriol 2005; 187:4421-9. [PMID: 15968051 PMCID: PMC1151788 DOI: 10.1128/jb.187.13.4421-4429.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia ZmpA is expressed as a preproenzyme typical of thermolysin-like proteases such as Pseudomonas aeruginosa LasB and Bacillus thermoproteolyticus thermolysin. The zmpA gene was expressed using the pPRO-EXHTa His(6) tag expression system, which incorporates a six-His tag at the N-terminal end of the protein, and recombinant ZmpA was purified using Ni-nitrilotriacetic acid affinity chromatography. Upon refolding of the recombinant His(6)-pre-pro-ZmpA (62 kDa), the fusion protein was autoproteolytically cleaved into 36-kDa (mature ZmpA) and 27-kDa peptides. Site-directed mutagenesis was employed to infer the identity of the active site residues of ZmpA and to confirm that the enzyme undergoes autoproteolytic cleavage. Oligonucleotide mutagenesis was used to replace H(465) with G(465) or A(465), E(377) with A(377) or D(377), or H(380) with P(380) or A(380). Mutagenesis of H(465), E(377), or H(380) resulted in the loss of both autocatalytic activity and proteolytic activity. ZmpA with either substitution in H(380) was not detectable in B. cenocepacia cell extracts. The activity of the recombinant ZmpA was inhibited by EDTA and 1,10 phenanthroline, indicating that it is a zinc metalloprotease. ZmpA, however, was not inhibited by phosphoramidon, a classical inhibitor of the thermolysin-like proteases. The refolded mature ZmpA enzyme was proteolytically active against various substrates including hide powder azure, type IV collagen, fibronectin, neutrophil alpha-1 proteinase inhibitor, alpha(2)-macroglobulin, and gamma interferon, suggesting that B. cenocepacia ZmpA may cause direct tissue damage to the host or damage to host tissues through a modulation of the host's immune system.
Collapse
Affiliation(s)
- C Kooi
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
50
|
Smedley JG, Fisher DJ, Sayeed S, Chakrabarti G, McClane BA. The enteric toxins of Clostridium perfringens. Rev Physiol Biochem Pharmacol 2004; 152:183-204. [PMID: 15517462 DOI: 10.1007/s10254-004-0036-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Gram-positive pathogen Clostridium perfringens is a major cause of human and veterinary enteric disease largely because this bacterium can produce several toxins when present inside the gastrointestinal tract. The enteric toxins of C. perfringens share two common features: (1) they are all single polypeptides of modest (approximately 25-35 kDa) size, although lacking in sequence homology, and (2) they generally act by forming pores or channels in plasma membranes of host cells. These enteric toxins include C. perfringens enterotoxin (CPE), which is responsible for the symptoms of a common human food poisoning and acts by forming pores after interacting with intestinal tight junction proteins. Two other C. perfringens enteric toxins, epsilon-toxin (a bioterrorism select agent) and beta-toxin, cause veterinary enterotoxemias when absorbed from the intestines; beta- and epsilon-toxins then apparently act by forming oligomeric pores in intestinal or extra-intestinal target tissues. The action of a newly discovered C. perfringens enteric toxin, beta2 toxin, has not yet been defined but precedent suggests it might also be a pore-former. Experience with other clostridial toxins certainly warrants continued research on these C. perfringens enteric toxins to develop their potential as therapeutic agents and tools for cellular biology.
Collapse
Affiliation(s)
- J G Smedley
- University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|