1
|
LaSarre B, Morlen R, Neumann GC, Harwood CS, McKinlay JB. Nitrous oxide reduction by two partial denitrifying bacteria requires denitrification intermediates that cannot be respired. Appl Environ Microbiol 2024; 90:e0174123. [PMID: 38078768 PMCID: PMC10807417 DOI: 10.1128/aem.01741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 01/25/2024] Open
Abstract
Denitrification is a form of anaerobic respiration wherein nitrate (NO3-) is sequentially reduced via nitrite (NO2-), nitric oxide, and nitrous oxide (N2O) to dinitrogen gas (N2) by four reductase enzymes. Partial denitrifying bacteria possess only one or some of these four reductases and use them as independent respiratory modules. However, it is unclear if partial denitrifiers sense and respond to denitrification intermediates outside of their reductase repertoire. Here, we tested the denitrifying capabilities of two purple nonsulfur bacteria, Rhodopseudomonas palustris CGA0092 and Rhodobacter capsulatus SB1003. Each had denitrifying capabilities that matched their genome annotation; CGA0092 reduced NO2- to N2, and SB1003 reduced N2O to N2. For each bacterium, N2O reduction could be used both for electron balance during growth on electron-rich organic compounds in light and for energy transformation via respiration in darkness. However, N2O reduction required supplementation with a denitrification intermediate, including those for which there was no associated denitrification enzyme. For CGA0092, NO3- served as a stable, non-catalyzable molecule that was sufficient to activate N2O reduction. Using a β-galactosidase reporter, we found that NO3- acted, at least in part, by stimulating N2O reductase gene expression. In SB1003, NO2- but not NO3- activated N2O reduction, but NO2- was slowly removed, likely by a promiscuous enzyme activity. Our findings reveal that partial denitrifiers can still be subject to regulation by denitrification intermediates that they cannot use.IMPORTANCEDenitrification is a form of microbial respiration wherein nitrate is converted via several nitrogen oxide intermediates into harmless dinitrogen gas. Partial denitrifying bacteria, which individually have some but not all denitrifying enzymes, can achieve complete denitrification as a community by cross-feeding nitrogen oxide intermediates. However, the last intermediate, nitrous oxide (N2O), is a potent greenhouse gas that often escapes, motivating efforts to understand and improve the efficiency of denitrification. Here, we found that at least some partial denitrifying N2O reducers can sense and respond to nitrogen oxide intermediates that they cannot otherwise use. The regulatory effects of nitrogen oxides on partial denitrifiers are thus an important consideration in understanding and applying denitrifying bacterial communities to combat greenhouse gas emissions.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ryan Morlen
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Gina C. Neumann
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Caroline S. Harwood
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - James B. McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
Chen L, Guo Y, Zhang S. Evaluation of electroactive denitrifiers at different potentials, temperatures and buffers based on microcalorimetry. J Microbiol Methods 2022; 203:106624. [PMID: 36402236 DOI: 10.1016/j.mimet.2022.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Electroactive denitrifiers contribute to the nitrate removal in a bioelectrochemical system, but their metabolism and growth parameters remain vague. In this study, microcalorimetry as a suitable method was used to evaluate the metabolism and growth parameters of electroactive denitrifiers at different cathode potentials, temperatures and buffer solutions. The suitable cathode potential and temperature for electroactive denitrifiers were deemed as -100 mV and 30 °C, respectively. The suitable buffer was found to be phosphate buffer solution but can be replaced by bicarbonate buffer solution. When cultivated with bicarbonate buffer solution at -100 mV and 30 °C, electroactive denitrifiers achieved a specific nitrate removal rate of 2.20 ± 0.08 × 10-10 mg NO3--N·(min·cell)-1 and two growth rate constants (k1 = 0.0051 ± 0.0004 min-1, k2 = 0.0030 ± 0.0004 min-1), with gaseous nitrogen as the end product. The bioelectrochemical denitrification behaved as a two-step process, in which the nitrite reduction to gaseous nitrogen was the rate-limiting step.
Collapse
Affiliation(s)
- Long Chen
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanli Guo
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Shaohui Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Fuel Cell, Wuhan University of Technology, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Kyndt JA, Aviles FA, Imhoff JF, Künzel S, Neulinger SC, Meyer TE. Comparative Genome Analysis of the Photosynthetic Betaproteobacteria of the Genus Rhodocyclus: Heterogeneity within Strains Assigned to Rhodocyclus tenuis and Description of Rhodocyclus gracilis sp. nov. as a New Species. Microorganisms 2022; 10:microorganisms10030649. [PMID: 35336224 PMCID: PMC8954225 DOI: 10.3390/microorganisms10030649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023] Open
Abstract
The genome sequences for Rhodocyclus purpureus DSM 168T and four strains assigned to Rhodocyclus tenuis (DSM 110, DSM 111, DSM 112, and IM 230) have been determined. One of the strains studied (IM 230) has an average nucleotide identity (ANI) of 97% to the recently reported genome of the type strain DSM 109 of Rcy. tenuis and is regarded as virtually identical at the species level. The ANI of 80% for three other strains (DSM 110, DSM 111, DSM 112) to the type strain of Rcy. tenuis points to a differentiation of these at the species level. Rcy. purpureus is equidistant from Rcy. tenuis and the new species, based on both ANI (78–80%) and complete proteome comparisons (70% AAI). Strains DSM 110, DSM 111, and DSM 112 are very closely related to each other based on ANI, whole genome, and proteome comparisons but clearly distinct from the Rcy. tenuis type strain DSM 109. In addition to the whole genome differentiation, these three strains also contain unique genetic differences in cytochrome genes and contain genes for an anaerobic cobalamin synthesis pathway that is lacking from both Rcy. tenuis and Rcy. purpureus. Based on genomic and genetic differences, these three strains should be considered to represent a new species, which is distinctly different from both Rcy. purpureus and Rcy. tenuis, for which the new name Rhodocyclus gracilis sp. nov. is proposed.
Collapse
Affiliation(s)
- John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
- Correspondence:
| | - Fabiola A. Aviles
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
| | | | - Terrance E. Meyer
- Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
4
|
Störiko A, Pagel H, Mellage A, Cirpka OA. Does It Pay Off to Explicitly Link Functional Gene Expression to Denitrification Rates in Reaction Models? Front Microbiol 2021; 12:684146. [PMID: 34220770 PMCID: PMC8250433 DOI: 10.3389/fmicb.2021.684146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Environmental omics and molecular-biological data have been proposed to yield improved quantitative predictions of biogeochemical processes. The abundances of functional genes and transcripts relate to the number of cells and activity of microorganisms. However, whether molecular-biological data can be quantitatively linked to reaction rates remains an open question. We present an enzyme-based denitrification model that simulates concentrations of transcription factors, functional-gene transcripts, enzymes, and solutes. We calibrated the model using experimental data from a well-controlled batch experiment with the denitrifier Paracoccous denitrificans. The model accurately predicts denitrification rates and measured transcript dynamics. The relationship between simulated transcript concentrations and reaction rates exhibits strong non-linearity and hysteresis related to the faster dynamics of gene transcription and substrate consumption, relative to enzyme production and decay. Hence, assuming a unique relationship between transcript-to-gene ratios and reaction rates, as frequently suggested, may be an erroneous simplification. Comparing model results of our enzyme-based model to those of a classical Monod-type model reveals that both formulations perform equally well with respect to nitrogen species, indicating only a low benefit of integrating molecular-biological data for estimating denitrification rates. Nonetheless, the enzyme-based model is a valuable tool to improve our mechanistic understanding of the relationship between biomolecular quantities and reaction rates. Furthermore, our results highlight that both enzyme kinetics (i.e., substrate limitation and inhibition) and gene expression or enzyme dynamics are important controls on denitrification rates.
Collapse
Affiliation(s)
- Anna Störiko
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Holger Pagel
- Biogeophysics, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Adrian Mellage
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| | - Olaf A. Cirpka
- Center for Applied Geoscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Broman E, Zilius M, Samuiloviene A, Vybernaite-Lubiene I, Politi T, Klawonn I, Voss M, Nascimento FJA, Bonaglia S. Active DNRA and denitrification in oxic hypereutrophic waters. WATER RESEARCH 2021; 194:116954. [PMID: 33667950 DOI: 10.1016/j.watres.2021.116954] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Since the start of synthetic fertilizer production more than a hundred years ago, the coastal ocean has been exposed to increasing nutrient loading, which has led to eutrophication and extensive algal blooms. Such hypereutrophic waters might harbor anaerobic nitrogen (N) cycling processes due to low-oxygen microniches associated with abundant organic particles, but studies on nitrate reduction in coastal pelagic environments are scarce. Here, we report on 15N isotope-labeling experiments, metagenome, and RT-qPCR data from a large hypereutrophic lagoon indicating that dissimilatory nitrate reduction to ammonium (DNRA) and denitrification were active processes, even though the bulk water was fully oxygenated (> 224 µM O2). DNRA in the bottom water corresponded to 83% of whole-ecosystem DNRA (water + sediment), while denitrification was predominant in the sediment. Microbial taxa important for DNRA according to the metagenomic data were dominated by Bacteroidetes (genus Parabacteroides) and Proteobacteria (genus Wolinella), while denitrification was mainly associated with proteobacterial genera Pseudomonas, Achromobacter, and Brucella. The metagenomic and microscopy data suggest that these anaerobic processes were likely occurring in low-oxygen microniches related to extensive growth of filamentous cyanobacteria, including diazotrophic Dolichospermum and non-diazotrophic Planktothrix. By summing the total nitrate fluxes through DNRA and denitrification, it results that DNRA retains approximately one fifth (19%) of the fixed N that goes through the nitrate pool. This is noteworthy as DNRA represents thus a very important recycling mechanism for fixed N, which sustains algal proliferation and leads to further enhancement of eutrophication in these endangered ecosystems.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden.
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92294 Klaipeda, Lithuania
| | | | | | - Tobia Politi
- Marine Research Institute, Klaipeda University, 92294 Klaipeda, Lithuania
| | - Isabell Klawonn
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, 18119 Rostock, Germany
| | - Maren Voss
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Seestr. 15, 18119 Rostock, Germany
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Marine Research Institute, Klaipeda University, 92294 Klaipeda, Lithuania; Department of Biology, University of Southern Denmark, 5230 Odense, Denmark; Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden.
| |
Collapse
|
6
|
Khoiri AN, Cheevadhanarak S, Jirakkakul J, Dulsawat S, Prommeenate P, Tachaleat A, Kusonmano K, Wattanachaisaereekul S, Sutheeworapong S. Comparative Metagenomics Reveals Microbial Signatures of Sugarcane Phyllosphere in Organic Management. Front Microbiol 2021; 12:623799. [PMID: 33828538 PMCID: PMC8019924 DOI: 10.3389/fmicb.2021.623799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Converting conventional farms to organic systems to improve ecosystem health is an emerging trend in recent decades, yet little is explored to what extent and how this process drives the taxonomic diversity and functional capacity of above-ground microbes. This study was, therefore, conducted to investigate the effects of agricultural management, i.e., organic, transition, and conventional, on the structure and function of sugarcane phyllosphere microbial community using the shotgun metagenomics approach. Comparative metagenome analysis exhibited that farming practices strongly influenced taxonomic and functional diversities, as well as co-occurrence interactions of phyllosphere microbes. A complex microbial network with the highest connectivity was observed in organic farming, indicating strong resilient capabilities of its microbial community to cope with the dynamic environmental stressors. Organic farming also harbored genus Streptomyces as the potential keystone species and plant growth-promoting bacteria as microbial signatures, including Mesorhizobium loti, Bradyrhizobium sp. SG09, Lactobacillus plantarum, and Bacillus cellulosilyticus. Interestingly, numerous toxic compound-degrading species were specifically enriched in transition farming, which might suggest their essential roles in the transformation of conventional to organic farming. Moreover, conventional practice diminished the abundance of genes related to cell motility and energy metabolism of phyllosphere microbes, which could negatively contribute to lower microbial diversity in this habitat. Altogether, our results demonstrated the response of sugarcane-associated phyllosphere microbiota to specific agricultural managements that played vital roles in sustainable sugarcane production.
Collapse
Affiliation(s)
- Ahmad Nuruddin Khoiri
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Jiraporn Jirakkakul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Sudarat Dulsawat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Peerada Prommeenate
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tachaleat
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Kanthida Kusonmano
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Sawannee Sutheeworapong
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
7
|
Zilius M, Bonaglia S, Broman E, Chiozzini VG, Samuiloviene A, Nascimento FJA, Cardini U, Bartoli M. N 2 fixation dominates nitrogen cycling in a mangrove fiddler crab holobiont. Sci Rep 2020; 10:13966. [PMID: 32811860 PMCID: PMC7435186 DOI: 10.1038/s41598-020-70834-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fiddler crabs and their carapace-associated microbial biofilm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial biofilm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fixation was among the most commonly predicted process. Net N fluxes between the biofilm-covered crabs and the water and microbial N transformation rates in suspended biofilm slurries portray these holobionts as a net N2 sink, with N2 fixation exceeding N losses, and as a significant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fiddler crab carapace-associated biofilms were within the range expected for fixed N, further suggesting active microbial N2 fixation. These results extend our knowledge on the diversity of invertebrate-microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems.
Collapse
Affiliation(s)
- Mindaugas Zilius
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania. .,Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Stefano Bonaglia
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | | | | | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.,Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Ulisse Cardini
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Napoli, Italy
| | - Marco Bartoli
- Marine Research Institute, Klaipėda University, Klaipeda, Lithuania.,Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Wang X, Wang W, Zhang Y, Sun Z, Zhang J, Chen G, Li J. Simultaneous nitrification and denitrification by a novel isolated Pseudomonas sp. JQ-H3 using polycaprolactone as carbon source. BIORESOURCE TECHNOLOGY 2019; 288:121506. [PMID: 31128537 DOI: 10.1016/j.biortech.2019.121506] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/11/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The novel isolated strain JQ-H3 exhibited heterotrophic nitrification-aerobic denitrification (HN-AD) ability using poly (ε-caprolactone) (PCL) as a sole carbon source under aerobic conditions. This was the first time that a PCL-degrading bacterium was characterized to be with capability of nitrifying and denitrifying performances. Strain JQ-H3 removed approximately 95.40% of NH4+-N (102.40 mg/L), about 91.1% of NO3--N (99.01 mg/L), with the maximum specific removal rates of 0.308 mg NH4+-N/mg DCW/h and 0.220 mg NO3--N/mg DCW/h, respectively. The functional genes amoA, napA, nirS, cnorB, and nosZ were successfully expressed during the nitrogen removal process. An increasing PCL concentrations caused a decline in cell growth and nitrogen removal efficiency, which was attributed to the decrease in the rate of the PCL hydrolysis and the amount of dissolved organic carbon (DOC) release. These results demonstrated the strain as an ideal candidate for nitrogen removal from wastewater by using PCL as carbon source.
Collapse
Affiliation(s)
- Xiujie Wang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Weiqi Wang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yang Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhitao Sun
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jing Zhang
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guanghui Chen
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Urban Sewage Advanced Treatment and Resource Utilization Technology, The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
9
|
Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, Küsel K. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol 2018; 94:5056153. [DOI: 10.1093/femsec/fiy141] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Swatantar Kumar
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| | - Annika Blohm
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
| | - Ines Hilke
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Torsten Frosch
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, D-07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Albert-Einstein-Strasse 6, D-07745, Jena, Germany
| | - Susan E Trumbore
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Strasse 10, D-07745 Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
10
|
Louyakis AS, Gourlé H, Casaburi G, Bonjawo RME, Duscher AA, Foster JS. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ Microbiol 2017; 20:842-861. [DOI: 10.1111/1462-2920.14029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Artemis S. Louyakis
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Hadrien Gourlé
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
- Department of Animal Breeding and Genetics; Global Bioinformatics Centre, Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Giorgio Casaburi
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Rachelle M. E. Bonjawo
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Alexandrea A. Duscher
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Jamie S. Foster
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| |
Collapse
|
11
|
Riya S, Takeuchi Y, Zhou S, Terada A, Hosomi M. Nitrous oxide production and mRNA expression analysis of nitrifying and denitrifying bacterial genes under floodwater disappearance and fertilizer application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15852-15859. [PMID: 28537019 DOI: 10.1007/s11356-017-9231-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
A pulse of nitrous oxide (N2O) emission has been observed following the disappearance of floodwater by drainage. However, its mechanism is not well understood. We conducted a column study to clarify the mechanism for N2O production during floodwater disappearance by using a microsensor and determining the bacterial gene expression. An increase in N2O flux was observed following floodwater disappearance after the addition of NH4+, with a corresponding increase in the concentrations of NO3- and dissolved N2O in the oxic and anoxic soil layers, respectively. The transcription level of the bacterial amoA mRNA did not change, while that of nirK mRNA increased sharply after an hour of floodwater disappearance. An additional anoxic soil slurry experiment demonstrated that the addition of NO3- induced the expression of nirK gene and caused a concomitant increase in N2O production. These findings suggest that NO3- production in the oxic layers is important as it provides a substrate and induces the synthesis of denitrification enzymes in the anoxic layer during N2O production.
Collapse
Affiliation(s)
- Shohei Riya
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Yuki Takeuchi
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Sheng Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Akihiko Terada
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
12
|
Ebert M, Laaß S, Thürmer A, Roselius L, Eckweiler D, Daniel R, Härtig E, Jahn D. FnrL and Three Dnr Regulators Are Used for the Metabolic Adaptation to Low Oxygen Tension in Dinoroseobacter shibae. Front Microbiol 2017; 8:642. [PMID: 28473807 PMCID: PMC5398030 DOI: 10.3389/fmicb.2017.00642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/29/2017] [Indexed: 11/14/2022] Open
Abstract
The heterotrophic marine bacterium Dinoroseobacter shibae utilizes aerobic respiration and anaerobic denitrification supplemented with aerobic anoxygenic photosynthesis for energy generation. The aerobic to anaerobic transition is controlled by four Fnr/Crp family regulators in a unique cascade-type regulatory network. FnrL is utilizing an oxygen-sensitive Fe-S cluster for oxygen sensing. Active FnrL is inducing most operons encoding the denitrification machinery and the corresponding heme biosynthesis. Activation of gene expression of the high oxygen affinity cbb3-type and repression of the low affinity aa3-type cytochrome c oxidase is mediated by FnrL. Five regulator genes including dnrE and dnrF are directly controlled by FnrL. Multiple genes of the universal stress protein (USP) and cold shock response are further FnrL targets. DnrD, most likely sensing NO via a heme cofactor, co-induces genes of denitrification, heme biosynthesis, and the regulator genes dnrE and dnrF. DnrE is controlling genes for a putative Na+/H+ antiporter, indicating a potential role of a Na+ gradient under anaerobic conditions. The formation of the electron donating primary dehydrogenases is coordinated by FnrL and DnrE. Many plasmid encoded genes were DnrE regulated. DnrF is controlling directly two regulator genes including the Fe-S cluster biosynthesis regulator iscR, genes of the electron transport chain and the glutathione metabolism. The genes for nitrate reductase and CO dehydrogenase are repressed by DnrD and DnrF. Both regulators in concert with FnrL are inducing the photosynthesis genes. One of the major denitrification operon control regions, the intergenic region between nirS and nosR2, contains one Fnr/Dnr binding site. Using regulator gene mutant strains, lacZ-reporter gene fusions in combination with promoter mutagenesis, the function of the single Fnr/Dnr binding site for FnrL-, DnrD-, and partly DnrF-dependent nirS and nosR2 transcriptional activation was shown. Overall, the unique regulatory network of the marine bacterium D. shibae for the transition from aerobic to anaerobic growth composed of four Crp/Fnr family regulators was elucidated.
Collapse
Affiliation(s)
- Matthias Ebert
- Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
| | - Sebastian Laaß
- Institute for Molecular Biosciences, Goethe-University FrankfurtFrankfurt, Germany
| | - Andrea Thürmer
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Louisa Roselius
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University GöttingenGöttingen, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität BraunschweigBraunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology, Technische Universität BraunschweigBraunschweig, Germany
| |
Collapse
|
13
|
Bardon C, Poly F, Piola F, Pancton M, Comte G, Meiffren G, Haichar FEZ. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration. FEMS Microbiol Ecol 2016; 92:fiw034. [PMID: 26906096 DOI: 10.1093/femsec/fiw034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, it has been shown that procyanidins from Fallopia spp. inhibit bacterial denitrification, a phenomenon called biological denitrification inhibition (BDI). However, the mechanisms involved in such a process remain unknown. Here, we investigate the mechanisms of BDI involving procyanidins, using the model strain Pseudomonas brassicacearum NFM 421. The aerobic and anaerobic (denitrification) respiration, cell permeability and cell viability of P. brassicacearum were determined as a function of procyanidin concentration. The effect of procyanidins on the bacterial membrane was observed using transmission electronic microscopy. Bacterial growth, denitrification, NO3- and NO2-reductase activity, and the expression of subunits of NO3- (encoded by the gene narG) and NO2-reductase (encoded by the gene nirS) under NO3 or NO2 were measured with and without procyanidins. Procyanidins inhibited the denitrification process without affecting aerobic respiration at low concentrations. Procyanidins also disturbed cell membranes without affecting cell viability. They specifically inhibited NO3- but not NO2-reductase.Pseudomonas brassicacearum responded to procyanidins by over-expression of the membrane-bound NO3-reductase subunit (encoded by the gene narG). Our results suggest that procyanidins can specifically inhibit membrane-bound NO3-reductase inducing enzymatic conformational changes through membrane disturbance and that P. brassicacearum responds by over-expressing membrane-bound NO3-reductase. Our results lead the way to a better understanding of BDI.
Collapse
Affiliation(s)
- Clément Bardon
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA USC 1364, F-69622 Villeurbanne Cedex, France Université de Lyon, UMR5023 LEHNA, Université Lyon 1, CNRS, ENTPE, F-69622 Villeurbanne Cedex, France
| | - Franck Poly
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA USC 1364, F-69622 Villeurbanne Cedex, France
| | - Florence Piola
- Université de Lyon, UMR5023 LEHNA, Université Lyon 1, CNRS, ENTPE, F-69622 Villeurbanne Cedex, France
| | - Muriel Pancton
- Université de Lyon, UMR5276 LGLTPE, Université Lyon 1, CNRS, ENTPE, F-69622 Villeurbanne Cedex, France
| | - Gilles Comte
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA USC 1364, F-69622 Villeurbanne Cedex, France
| | - Guillaume Meiffren
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA USC 1364, F-69622 Villeurbanne Cedex, France
| | - Feth el Zahar Haichar
- Université de Lyon, UMR 5557 LEM, Université Lyon 1, CNRS, INRA USC 1364, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
14
|
Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol 2016; 18:2951-63. [PMID: 26568281 DOI: 10.1111/1462-2920.13128] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/27/2022]
Abstract
Oxygen is known to repress denitrification at the transcriptional and metabolic levels. It has been a common notion that nitrous oxide reductase (N2 OR) is the most sensitive enzyme among the four N-oxide reductases involved in denitrification, potentially leading to increased N2 O production under suboxic or fluctuating oxygen conditions. We present detailed gas kinetics and transcription patterns from batch culture experiments with Paracoccus denitrificans, allowing in vivo estimation of e(-) -flow to O2 and N2 O under various O2 regimes. Transcription of nosZ took place concomitantly with that of narG under suboxic conditions, whereas transcription of nirS and norB was inhibited until O2 levels approached 0 μM in the liquid. Catalytically functional N2 OR was synthesized and active in aerobically raised cells transferred to vials with 7 vol% O2 in headspace, but N2 O reduction rates were 10 times higher when anaerobic pre-cultures were subjected to the same conditions. Upon oxygen exposure, there was an incomplete and transient inactivation of N2 OR that could be ascribed to its lower ability to compete for electrons compared with terminal oxidases. The demonstrated reduction of N2 O at high O2 partial pressure and low N2 O concentrations by a bacterium not known as a typical aerobic denitrifier may provide one clue to the understanding of why some soils appear to act as sinks rather than sources for atmospheric N2 O.
Collapse
Affiliation(s)
- Zhi Qu
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars R Bakken
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Lars Molstad
- Department of Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Linda L Bergaust
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
15
|
Dalsgaard T, Stewart FJ, Thamdrup B, De Brabandere L, Revsbech NP, Ulloa O, Canfield DE, DeLong EF. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 2014; 5:e01966. [PMID: 25352619 PMCID: PMC4217175 DOI: 10.1128/mbio.01966-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED A major percentage (20 to 40%) of global marine fixed-nitrogen loss occurs in oxygen minimum zones (OMZs). Concentrations of O2 and the sensitivity of the anaerobic N2-producing processes of anammox and denitrification determine where this loss occurs. We studied experimentally how O2 at nanomolar levels affects anammox and denitrification rates and the transcription of nitrogen cycle genes in the anoxic OMZ off Chile. Rates of anammox and denitrification were reversibly suppressed, most likely at the enzyme level. Fifty percent inhibition of N2 and N2O production by denitrification was achieved at 205 and 297 nM O2, respectively, whereas anammox was 50% inhibited at 886 nM O2. Coupled metatranscriptomic analysis revealed that transcripts encoding nitrous oxide reductase (nosZ), nitrite reductase (nirS), and nitric oxide reductase (norB) decreased in relative abundance above 200 nM O2. This O2 concentration did not suppress the transcription of other dissimilatory nitrogen cycle genes, including nitrate reductase (narG), hydrazine oxidoreductase (hzo), and nitrite reductase (nirK). However, taxonomic characterization of transcripts suggested inhibition of narG transcription in gammaproteobacteria, whereas the transcription of anammox narG, whose gene product is likely used to oxidatively replenish electrons for carbon fixation, was not inhibited. The taxonomic composition of transcripts differed among denitrification enzymes, suggesting that distinct groups of microorganisms mediate different steps of denitrification. Sulfide addition (1 µM) did not affect anammox or O2 inhibition kinetics but strongly stimulated N2O production by denitrification. These results identify new O2 thresholds for delimiting marine nitrogen loss and highlight the utility of integrating biogeochemical and metatranscriptomic analyses. IMPORTANCE The removal of fixed nitrogen via anammox and denitrification associated with low O2 concentrations in oceanic oxygen minimum zones (OMZ) is a major sink in oceanic N budgets, yet the sensitivity and dynamics of these processes with respect to O2 are poorly known. The present study elucidated how nanomolar O2 concentrations affected nitrogen removal rates and expression of key nitrogen cycle genes in water from the eastern South Pacific OMZ, applying state-of-the-art (15)N techniques and metatranscriptomics. Rates of both denitrification and anammox responded rapidly and reversibly to changes in O2, but denitrification was more O2 sensitive than anammox. The transcription of key nitrogen cycle genes did not respond as clearly to O2, although expression of some of these genes decreased. Quantifying O2 sensitivity of these processes is essential for predicting through which pathways and in which environments, from wastewater treatment to the open oceans, nitrogen removal may occur.
Collapse
Affiliation(s)
| | - Frank J Stewart
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Bo Thamdrup
- Department of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Odense, Denmark
| | - Loreto De Brabandere
- Department of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Odense, Denmark
| | | | - Osvaldo Ulloa
- Departamento de Oceanografía & Instituto Mileno de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Don E Canfield
- Department of Biology and Nordic Center for Earth Evolution (NordCEE), University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
16
|
Line L, Alhede M, Kolpen M, Kühl M, Ciofu O, Bjarnsholt T, Moser C, Toyofuku M, Nomura N, Høiby N, Jensen PØ. Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum. Front Microbiol 2014; 5:554. [PMID: 25386171 PMCID: PMC4208399 DOI: 10.3389/fmicb.2014.00554] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is the most severe complication in patients with cystic fibrosis (CF). The infection is characterized by the formation of biofilm surrounded by numerous polymorphonuclear leukocytes (PMNs) and strong O2 depletion in the endobronchial mucus. We have reported that O2 is mainly consumed by the activated PMNs, while O2 consumption by aerobic respiration is diminutive and nitrous oxide (N2O) is produced in infected CF sputum. This suggests that the reported growth rates of P. aeruginosa in lungs and sputum may result from anaerobic respiration using denitrification. The growth rate of P. aeruginosa achieved by denitrification at physiological levels (~400 μM) of nitrate (NO(-) 3) is however, not known. Therefore, we have measured growth rates of anoxic cultures of PAO1 and clinical isolates (n = 12) in LB media supplemented with NO(-) 3 and found a significant increase of growth when supplementing PAO1 and clinical isolates with ≥150 μM NO(-) 3 and 100 μM NO(-) 3, respectively. An essential contribution to growth by denitrification was demonstrated by the inability to establish a significantly increased growth rate by a denitrification deficient ΔnirS-N mutant at <1 mM of NO(-) 3. Activation of denitrification could be achieved by supplementation with as little as 62.5 μM of NO(-) 3 according to the significant production of N2O by the nitrous oxide reductase deficient ΔnosZ mutant. Studies of the promoter activity, gene transcripts, and enzyme activity of the four N-oxide reductases in PAO1 (Nar, Nir, Nor, Nos) further verified the engagement of denitrification, showing a transient increase in activation and expression and rapid consumption of NO(-) 3 followed by a transient increase of NO(-) 2. Growth rates obtained by denitrification in this study were comparable to our reported growth rates in the majority of P. aeruginosa cells in CF lungs and sputum. Thus, we have demonstrated that denitrification is required for P. aeruginosa growth in infected endobronchial CF mucus.
Collapse
Affiliation(s)
- Laura Line
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Morten Alhede
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen Copenhagen, Denmark ; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney Sydney, NSW, Australia ; Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore
| | - Oana Ciofu
- Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark
| | - Masanori Toyofuku
- Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Sciences, University of Tsukuba Tsukuba, Japan
| | - Niels Høiby
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark ; Department of International Health, Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen Copenhagen, Denmark
| | - Peter Ø Jensen
- Department of Clinical Microbiology Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Bowen JL, Babbin AR, Kearns PJ, Ward BB. Connecting the dots: linking nitrogen cycle gene expression to nitrogen fluxes in marine sediment mesocosms. Front Microbiol 2014; 5:429. [PMID: 25191309 PMCID: PMC4139956 DOI: 10.3389/fmicb.2014.00429] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
Connecting molecular information directly to microbial transformation rates remains a challenge, despite the availability of molecular methods to investigate microbial biogeochemistry. By combining information on gene abundance and expression for key genes with quantitative modeling of nitrogen fluxes, we can begin to understand the scales on which genetic signals vary and how they relate to key functions. We used quantitative PCR of DNA and cDNA, along with biogeochemical modeling to assess how the abundance and expression of microbes responsible for two steps in the nitrogen cycle changed over time in estuarine sediment mesocosms. Sediments and water were collected from coastal Massachusetts and maintained in replicated 20 L mesocosms for 45 days. Concentrations of all major inorganic nitrogen species were measured daily and used to derive rates of nitrification and denitrification from a Monte Carlo-based non-negative least-squares analysis of finite difference equations. The mesocosms followed a classic regeneration sequence in which ammonium released from the decomposition of organic matter was subsequently oxidized to nitrite and then further to nitrate, some portion of which was ultimately denitrified. Normalized abundances of ammonia oxidizing archaeal ammonia monoxoygenase (amoA) transcripts closely tracked rates of ammonia oxidation throughout the experiment. No such relationship, however, was evident between denitrification rates and the normalized abundance of nitrite reductase (nirS and nirK) transcripts. These findings underscore the complexity of directly linking the structure of the microbial community to rates of biogeochemical processes.
Collapse
Affiliation(s)
- Jennifer L Bowen
- Department of Biology, University of Massachusetts Boston Boston, MA, USA
| | - Andrew R Babbin
- Department of Geosciences, Princeton University Princeton, NJ, USA
| | - Patrick J Kearns
- Department of Biology, University of Massachusetts Boston Boston, MA, USA
| | - Bess B Ward
- Department of Geosciences, Princeton University Princeton, NJ, USA
| |
Collapse
|
18
|
Segawa T, Ishii S, Ohte N, Akiyoshi A, Yamada A, Maruyama F, Li Z, Hongoh Y, Takeuchi N. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environ Microbiol 2014; 16:3250-62. [DOI: 10.1111/1462-2920.12543] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Takahiro Segawa
- National Institute of Polar Research; Tokyo Japan
- Transdisciplinary Research Integration Center; Tokyo Japan
| | - Satoshi Ishii
- Division of Environmental Engineering; Hokkaido University; Sapporo Japan
| | - Nobuhito Ohte
- Laboratory of Forest Hydrology and Erosion Control Engineering; Department of Forest Science; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo Japan
| | - Ayumi Akiyoshi
- National Institute of Polar Research; Tokyo Japan
- Transdisciplinary Research Integration Center; Tokyo Japan
| | - Akinori Yamada
- Department of Biological Sciences; Tokyo Institute of Technology; Tokyo Japan
- Graduate School of Fisheries Science and Environmental Studies; Nagasaki University; Nagasaki Japan
| | - Fumito Maruyama
- Department of Microbiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Zhongqin Li
- Laboratory of Cryosphere and Environment/Tien Shan Glaciological Station; Cold and Arid Regions Environmental and Engineering Research Institute; Chinese Academy of Sciences; Lanzhou China
| | - Yuichi Hongoh
- Department of Biological Sciences; Tokyo Institute of Technology; Tokyo Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences; Graduate School of Science; Chiba University; Chiba Japan
| |
Collapse
|
19
|
Zheng M, He D, Ma T, Chen Q, Liu S, Ahmad M, Gui M, Ni J. Reducing NO and N₂O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. BIORESOURCE TECHNOLOGY 2014; 162:80-88. [PMID: 24747385 DOI: 10.1016/j.biortech.2014.03.125] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
As two obligatory intermediates of denitrification, both NO and N2O had harmful environmental and biological impacts. An aerobic denitrifying bacterial strain PCN-1 was newly isolated and identified as Pseudomonas stutzeri, which was capable of high efficient nitrogen removal under aerobic condition with maximal NO and N2O accumulation as low as 0.003% and 0.33% of removed NO3(-)-N, respectively. Further experiment taking nitrite as denitrifying substrate indicated similar low NO and N2O emission of 0.006% and 0.29% of reduced NO2(-)-N, respectively. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that the coordinate expression of denitrification gene nirS (for cytochrome cd1 nitrite reductase), cnorB (for NO reductase) and nosZ (for N2O reductase) was the fundamental reason of low NO and N2O accumulation. Activated sludge system bioaugmented by strain PCN-1 demonstrated a significant reduction of NO and N2O emission from wastewater during aerobic denitrification, implied great potential of PCN-1 in practical applications.
Collapse
Affiliation(s)
- Maosheng Zheng
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Da He
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Tao Ma
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Sitong Liu
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Muhammad Ahmad
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Mengyao Gui
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jinren Ni
- Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
20
|
Ishii S, Song Y, Rathnayake L, Tumendelger A, Satoh H, Toyoda S, Yoshida N, Okabe S. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ Microbiol 2014; 16:3168-80. [PMID: 24650173 DOI: 10.1111/1462-2920.12458] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/16/2014] [Indexed: 11/28/2022]
Abstract
The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations.
Collapse
Affiliation(s)
- Satoshi Ishii
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Parallel pathways for nitrite reduction during anaerobic growth in Thermus thermophilus. J Bacteriol 2014; 196:1350-8. [PMID: 24443532 DOI: 10.1128/jb.01042-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.
Collapse
|
22
|
Abstract
Biofilm dispersal is the last and least understood stage of the biofilm life cycle. Several recent studies have characterized dispersal events in response to various cues and signals. Here we describe a range of methods useful for the investigation of dispersal in the biofilm model organism and opportunistic pathogen Pseudomonas aeruginosa.
Collapse
|
23
|
Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K. Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 2012; 27:456-61. [PMID: 22972387 PMCID: PMC4103554 DOI: 10.1264/jsme2.me12076] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Denitrification occurs markedly in rice paddy fields; however, few microbes that are actively involved in denitrification in these environments have been identified. In this study, we used a laboratory soil microcosm system in which denitrification activity was enhanced. DNA and RNA were extracted from soil at six time points after enhancing denitrification activity, and quantitative PCR and clone library analyses were performed targeting the 16S rRNA gene and denitrification functional genes (nirS, nirK and nosZ) to clarify which microbes are actively involved in denitrification in rice paddy soil. Based on the quantitative PCR results, transcription levels of the functional genes agreed with the denitrification activity, although gene abundance did not change at the DNA level. Diverse denitrifiers were detected in clone library analysis, but comparative analysis suggested that only some of the putative denitrifiers, especially those belonging to the orders Neisseriales, Rhodocyclales and Burkholderiales, were actively involved in denitrification in rice paddy soil.
Collapse
Affiliation(s)
- Megumi Yoshida
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan.
| | | | | | | | | |
Collapse
|
24
|
Gao F, Zhang H, Yang F, Qiang H, Zhang G. The contrast study of anammox-denitrifying system in two non-woven fixed-bed bioreactors (NFBR) treating different low C/N ratio sewage. BIORESOURCE TECHNOLOGY 2012; 114:54-61. [PMID: 22446054 DOI: 10.1016/j.biortech.2012.02.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 05/31/2023]
Abstract
Two non-woven fixed-bed bioreactors (NFBR) based on different substrates (nitrite and nitrate) were constructed to study the environmental adaptability for temperature and organic matter of anammox-denitrifying system and nitrogen removal performance. The two reactors were successfully operated for 200 days. The average removal rates of nitrogen and COD of R2 were 81% and 93%, respectively. Besides, the nitrogen removal rate of R1 was 95% under not more than 105 mg/l of COD. The experimental results indicated that the R2 based on nitrate had a good nitrogen removal performance at room temperature (25 °C). Additionally, the analysis results of fluorescence in situ hybridization (FISH) showed that the percentage compositions of anammox in R1 and R2 were 84% and 65% on day 189. Finally, the possible nitrogen removal model of anammox-denitrifying system was constructed. According to nitrogen balance and C/N ratios of denitrification, the nitrogen removal approaches of R1 and R2 were obtained.
Collapse
Affiliation(s)
- Fan Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | | | | | | | | |
Collapse
|
25
|
Shannon KEM, Saleh-Lakha S, Burton DL, Zebarth BJ, Goyer C, Trevors JT. Effect of nitrate and glucose addition on denitrification and nitric oxide reductase (cnorB) gene abundance and mRNA levels in Pseudomonas mandelii inoculated into anoxic soil. Antonie van Leeuwenhoek 2011; 100:183-95. [DOI: 10.1007/s10482-011-9577-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/12/2011] [Indexed: 11/24/2022]
|
26
|
Dufour YS, Kiley PJ, Donohue TJ. Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet 2010; 6:e1001027. [PMID: 20661434 PMCID: PMC2908626 DOI: 10.1371/journal.pgen.1001027] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022] Open
Abstract
The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks. An important property of living systems is the use of regulatory networks to appropriately program gene expression. Central to the function of regulatory networks are transcription factors that regulate gene expression by binding to specific DNA sequences. Despite the central role of these regulatory networks, the processes driving their organization and evolution across organisms are poorly understood. This paper describes the use of comparative genomics and high-throughput approaches to predict the organization and evolution of transcriptional regulatory networks across a large group of species. We focused on regulatory networks controlling cellular responses to changes in O2 levels because this signal has major consequences on many biological systems. Our analysis predicts that related regulatory networks share a core set of target genes across diverse species while other target genes vary according to the organism's specific lifestyle. Our approach of defining transcriptional regulatory networks across a wide range of organisms should be of general utility to studying similar questions in other systems.
Collapse
Affiliation(s)
- Yann S. Dufour
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- BACTER Institute, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
27
|
Wojnowska-Baryła I, Cydzik-Kwiatkowska A, Zielińska M. The application of molecular techniques to the study of wastewater treatment systems. Methods Mol Biol 2010; 599:157-183. [PMID: 19882286 DOI: 10.1007/978-1-60761-439-5_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wastewater treatment systems tend to be engineered to select for a few functional microbial groups that may be organized in various spatial structures such as activated sludge flocs, biofilm or granules and represented by single coherent phylogenic groups such as ammonia-oxidizing bacteria (AOB) and polyphosphate-accumulating organisms (PAO). In order to monitor and control engineered microbial structure in wastewater treatment systems, it is necessary to understand the relationships between the microbial community structure and the process performance. This review focuses on bacterial communities in wastewater treatment processes, the quantity of microorganisms and structure of microbial consortia in wastewater treatment bioreactors. The review shows that the application of molecular techniques in studies of engineered environmental systems has increased our insight into the vast diversity and interaction of microorganisms present in wastewater treatment systems.
Collapse
Affiliation(s)
- Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Sloneczna, Poland
| | | | | |
Collapse
|
28
|
Effect of nitrate and acetylene on nirS, cnorB, and nosZ expression and denitrification activity in Pseudomonas mandelii. Appl Environ Microbiol 2009; 75:5082-7. [PMID: 19525277 DOI: 10.1128/aem.00777-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate acts as an electron acceptor in the denitrification process. The effect of nitrate in the range of 0 to 1,000 mg/liter on Pseudomonas mandelii nirS, cnorB, and nosZ gene expression was studied, using quantitative reverse transcription-quantitative PCR. Denitrification activity was measured by using the acetylene blockage method and gas chromatography. The effect of acetylene on gene expression was assessed by comparing denitrification gene expression in P. mandelii culture grown in the presence or absence of acetylene. The higher the amount of NO(3)(-) present, the greater the induction and the longer the denitrification genes remained expressed. nirS gene expression reached a maximum at 2, 4, 4, and 6 h in cultures grown in the presence of 0, 10, 100, and 1,000 mg of KNO(3)/liter, respectively, while induction of nirS gene ranged from 12- to 225-fold compared to time zero. cnorB gene expression also followed a similar trend. nosZ gene expression did not respond to NO(3)(-) treatment under the conditions tested. Acetylene decreased nosZ gene expression but did not affect nirS or cnorB gene expression. These results showed that nirS and cnorB responded to nitrate concentrations; however, significant denitrification activity was only observed in culture with 1,000 mg of KNO(3)/liter, indicating that there was no relationship between gene expression and denitrification activity under the conditions tested.
Collapse
|
29
|
Abstract
A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N(2)O-to-N(2) production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species showed the highest rates of nitrous oxide emission and predators the lowest, probably reflecting the different amounts of denitrifying bacteria in the diet. We estimate that nitrous oxide emission by aquatic animals is quantitatively important in nitrate-rich aquatic environments like freshwater, coastal marine, and deep-sea ecosystems. The contribution of this source to overall nitrous oxide emission from aquatic environments might further increase because of the projected increase of nitrate availability in tropical regions and the numeric dominance of filter- and deposit-feeders in eutrophic ecosystems.
Collapse
|
30
|
Bulow SE, Francis CA, Jackson GA, Ward BB. Sediment denitrifier community composition andnirSgene expression investigated with functional gene microarrays. Environ Microbiol 2008; 10:3057-69. [DOI: 10.1111/j.1462-2920.2008.01765.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Nitric oxide reductase gene expression and nitrous oxide production in nitrate-grown Pseudomonas mandelii. Appl Environ Microbiol 2008; 74:6876-9. [PMID: 18820058 DOI: 10.1128/aem.01533-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pure cultures of Pseudomonas mandelii were incubated with or without nitrate, which acts as a substrate and an electron acceptor for denitrification. Nitric oxide reductase (cnorB) gene expression was measured using a quantitative reverse transcription-PCR, and nitrous oxide emissions were measured by gas chromatography. P. mandelii cells in either the presence or absence of nitrate demonstrated an increase in cnorB gene expression during the first 3 h of growth. The level of expression of cnorB in nitrate-amended cells remained high (average, 2.06 x 10(8) transcripts/microg of RNA), while in untreated cells it decreased to an average of 3.63 x 10(6) transcripts/microg of RNA from 4 to 6 h. Nitrous oxide accumulation in the headspace was detected at 2 h, and cumulative emissions continued to increase over a 24-h period to 101 mumol in nitrate-amended cells. P. mandelii cnorB gene expression was not detected under aerobic conditions. These results demonstrate that P. mandelii cnorB gene expression was induced 203-fold at 4 h when nitrate was present in the medium. Accumulations of N(2)O indicated that the cNorB enzyme was synthesized and active.
Collapse
|
32
|
Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 2006; 70:510-47. [PMID: 16760312 PMCID: PMC1489536 DOI: 10.1128/mmbr.00047-05] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.
Collapse
Affiliation(s)
- Jorge Lalucat
- Department de Biologia, Microbiologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
33
|
Philippot L, Hallin S. Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr Opin Microbiol 2005; 8:234-9. [PMID: 15939345 DOI: 10.1016/j.mib.2005.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/12/2005] [Indexed: 11/16/2022]
Abstract
The recent development and application of numerous methods mainly based on 16S rDNA analyses have brought insights into the questions of which and how many bacterial populations can be found in a given ecosystem. A new and challenging question for microbial ecologists has emerged from the exploration of this diversity: what is its significance for ecosystem functioning? We propose the denitrifying bacteria as a model microbial community for understanding the relationship between community structure and activity, and have summarized the recent progress in studies of this functional community.
Collapse
Affiliation(s)
- Laurent Philippot
- UMR Microbiologie et Géochimie des Sols, INRA-Université de Bourgogne, CMSE, 17, rue Sully, BV 86510, 21065 Dijon Cedex, France.
| | | |
Collapse
|
34
|
Yoshie S, Noda N, Tsuneda S, Hirata A, Inamori Y. Salinity decreases nitrite reductase gene diversity in denitrifying bacteria of wastewater treatment systems. Appl Environ Microbiol 2004; 70:3152-7. [PMID: 15128582 PMCID: PMC404418 DOI: 10.1128/aem.70.5.3152-3157.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Investigation of the diversity of nirK and nirS in denitrifying bacteria revealed that salinity decreased the diversity in a nitrate-containing saline wastewater treatment system. The predominant nirS clone was related to nirS derived from marine bacteria, and the predominant nirK clone was related to nirK of the genus ALCALIGENES:
Collapse
Affiliation(s)
- Sachiko Yoshie
- Department of Chemical Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | |
Collapse
|
35
|
Mazoch J, Kuňák M, Kučera I, van Spanning RJM. Fine-tuned regulation by oxygen and nitric oxide of the activity of a semi-synthetic FNR-dependent promoter and expression of denitrification enzymes in Paracoccus denitrificans. MICROBIOLOGY-SGM 2004; 149:3405-3412. [PMID: 14663074 DOI: 10.1099/mic.0.26546-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Paracoccus denitrificans at least three fumarate and nitrate reductase regulator (FNR)-like proteins [FnrP, nitrite and nitric oxide reductases regulator (NNR) and NarR] control the expression of several genes necessary for denitrifying growth. To gain more insight into this regulation, beta-galactosidase activity from a plasmid carrying the lacZ gene fused to the Escherichia coli melR promoter with the consensus FNR-binding (FF) site was examined. Strains defective in the fnrP gene produced only very low levels of beta-galactosidase, indicating that FnrP is the principal activator of the FF promoter. Anoxic beta-galactosidase levels were much higher relative to those under oxic growth and were strongly dependent on the nitrogen electron acceptor used, maximal activity being promoted by N(2)O. Additions of nitrate or nitroprusside lowered beta-galactosidase expression resulting from an oxic to micro-oxic switch. These results suggest that the activity of FnrP is influenced not only by oxygen, but also by other factors, most notably by NO concentration. Observations of nitric oxide reductase (NOR) activity in a nitrite-reductase-deficient strain and in cells treated with haemoglobin provided evidence for dual regulation of the synthesis of this enzyme, partly independent of NO. Both regulatory modes were operative in the FnrP-deficient strain, but not in the NNR-deficient strain, suggesting involvement of the NNR protein. This conclusion was further substantiated by comparing the respective NOR promoter activities.
Collapse
Affiliation(s)
- Jiří Mazoch
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Michal Kuňák
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
| | - Rob J M van Spanning
- Department of Molecular Cell Physiology, Faculty of Biology, BioCentrum Amsterdam, Vrije Universiteit, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
36
|
Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 2004; 69:5974-82. [PMID: 14532052 PMCID: PMC201216 DOI: 10.1128/aem.69.10.5974-5982.2003] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated communities of denitrifying bacteria from adjacent meadow and forest soils. Our objectives were to explore spatial gradients in denitrifier communities from meadow to forest, examine whether community composition was related to ecological properties (such as vegetation type and process rates), and determine phylogenetic relationships among denitrifiers. nosZ, a key gene in the denitrification pathway for nitrous oxide reductase, served as a marker for denitrifying bacteria. Denitrifying enzyme activity (DEA) was measured as a proxy for function. Other variables, such as nitrification potential and soil C/N ratio, were also measured. Soil samples were taken along transects that spanned meadow-forest boundaries at two sites in the H. J. Andrews Experimental Forest in the Western Cascade Mountains of Oregon. Results indicated strong functional and structural community differences between the meadow and forest soils. Levels of DEA were an order of magnitude higher in the meadow soils. Denitrifying community composition was related to process rates and vegetation type as determined on the basis of multivariate analyses of nosZ terminal restriction fragment length polymorphism profiles. Denitrifier communities formed distinct groups according to vegetation type and site. Screening 225 nosZ clones yielded 47 unique denitrifying genotypes; the most dominant genotype occurred 31 times, and half the genotypes occurred once. Several dominant and less-dominant denitrifying genotypes were more characteristic of either meadow or forest soils. The majority of nosZ fragments sequenced from meadow or forest soils were most similar to nosZ from the Rhizobiaceae group in alpha-Proteobacteria species. Denitrifying community composition, as well as environmental factors, may contribute to the variability of denitrification rates in these systems.
Collapse
Affiliation(s)
- J J Rich
- Departments of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
37
|
Körner H, Sofia HJ, Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 2003; 27:559-92. [PMID: 14638413 DOI: 10.1016/s0168-6445(03)00066-4] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Crp-Fnr regulators, named after the first two identified members, are DNA-binding proteins which predominantly function as positive transcription factors, though roles of repressors are also important. Among over 1200 proteins with an N-terminally located nucleotide-binding domain similar to the cyclic adenosine monophosphate (cAMP) receptor protein, the distinctive additional trait of the Crp-Fnr superfamily is a C-terminally located helix-turn-helix motif for DNA binding. From a curated database of 369 family members exhibiting both features, we provide a protein tree of Crp-Fnr proteins according to their phylogenetic relationships. This results in the assembly of the regulators ArcR, CooA, CprK, Crp, Dnr, FixK, Flp, Fnr, FnrN, MalR, NnrR, NtcA, PrfA, and YeiL and their homologs in distinct clusters. Lead members and representatives of these groups are described, placing emphasis on the less well-known regulators and target processes. Several more groups consist of sequence-derived proteins of unknown physiological roles; some of them are tight clusters of highly similar members. The Crp-Fnr regulators stand out in responding to a broad spectrum of intracellular and exogenous signals such as cAMP, anoxia, the redox state, oxidative and nitrosative stress, nitric oxide, carbon monoxide, 2-oxoglutarate, or temperature. To accomplish their roles, Crp-Fnr members have intrinsic sensory modules allowing the binding of allosteric effector molecules, or have prosthetic groups for the interaction with the signal. The regulatory adaptability and structural flexibility represented in the Crp-Fnr scaffold has led to the evolution of an important group of physiologically versatile transcription factors.
Collapse
Affiliation(s)
- Heinz Körner
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, PF 6980, D-76128 Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Metz S, Beisker W, Hartmann A, Schloter M. Detection methods for the expression of the dissimilatory copper-containing nitrite reductase gene (DnirK) in environmental samples. J Microbiol Methods 2003; 55:41-50. [PMID: 14499994 DOI: 10.1016/s0167-7012(03)00089-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In situ assays, based on monoclonal antibodies (mAbs), were developed to study the microbial expression of the bacterial dissimilatory copper-containing nitrite reductase gene (DnirK), one of the key enzymes involved in denitrification, in different ecosystems. With a combination of an anti-DnirK mAb and phylogenetic oligonucleotide probes, it is possible to bring structural and functional aspects of microbial communities together. To perform a double labelling, yielding a high signal strength for both the oligonucleotide and the antibody, cells have to be labelled with the oligonucleotide first followed by immunostaining. When the labelling sequence was changed, the accessibility for the oligonucleotide was reduced if high amounts of DnirK were expressed. Using flow cytometry, it was possible to sort bacterial cells, which were stained by the antibody, from nonlabelled cells. This technique provides means for a detailed analysis of populations, which express DnirK genes in the environment, including structural aspects of a community and detailed promoter studies. Using the immunostaining approach, it was possible to identify bacteria, which have the DnirK system expressed, in samples from a wastewater sewage treatment plant as well as in samples from the rhizosphere of wheat roots. Furthermore, expression studies using an Ochrobactrum anthropi strain were carried out to investigate the correlation between N(2)O production rates and DnirK expression in batch cultures, which had been shifted from aerobic to anaerobic conditions. As expected, expression of DnirK was the highest during periods with the greatest synthesis rates for N(2)O. However, the amount of expressed enzyme was not reduced in the cells, although the N(2)O production rates dropped in the cultures 12 h after the shift from aerobic to anaerobic conditions.
Collapse
Affiliation(s)
- Sigrun Metz
- Institute of Soil Ecology, GSF-National Research Center for Environment and Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
39
|
Honisch U, Zumft WG. Operon structure and regulation of the nos gene region of Pseudomonas stutzeri, encoding an ABC-Type ATPase for maturation of nitrous oxide reductase. J Bacteriol 2003; 185:1895-902. [PMID: 12618453 PMCID: PMC150149 DOI: 10.1128/jb.185.6.1895-1902.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synthesis of a functional nitrous oxide reductase requires an assembly apparatus for the insertion of the prosthetic copper. Part of the system is encoded by maturation genes located in Pseudomonas stutzeri immediately downstream of the structural gene for the enzyme. We have studied the transcriptional organization and regulation of this region and found a nosDFYL tatE operon structure. In addition to a putative ABC transporter, consisting of NosD, NosF, and NosY, the operon encodes a Cu chaperone, NosL, and a component of the Tat translocon, TatE. The nosD operon was activated in response to anaerobiosis and nitrate denitrification. The membrane-bound regulator NosR was required for operon expression; in addition, DnrD, a regulator of the Crp-Fnr family, enhanced expression under anaerobic conditions. This establishes a likely signal transduction sequence of NO --> DnrD --> nosR/NosR --> nosD operon. DnrD-dependent expression was also observed for the nnrS operon (located immediately downstream of the nosD operon), which encodes a putative heme-Cu protein (NnrS) and a member of the short-chain dehydrogenase family (ORF247). The NosF protein, encoded within the nosD operon, exhibits sequence similarity to ABC-type ATPases. It was fused to the Escherichia coli maltose-binding protein and overexpressed in soluble form. The fusion protein was purified and shown to have ATPase activity. NosF is the first maturation factor for which a catalytic function has been demonstrated in vitro.
Collapse
Affiliation(s)
- Ulrike Honisch
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
40
|
Nogales B, Timmis KN, Nedwell DB, Osborn AM. Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA. Appl Environ Microbiol 2002; 68:5017-25. [PMID: 12324352 PMCID: PMC126436 DOI: 10.1128/aem.68.10.5017-5025.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 07/07/2002] [Indexed: 11/20/2022] Open
Abstract
The expression of five denitrification genes coding for two nitrate reductases (narG and napA), two nitrite reductases (nirS and nirK), and nitrous oxide reductase (nosZ) was analyzed by reverse transcription (RT)-PCR of mRNA extracted from two sediment samples obtained in the River Colne estuary (United Kingdom), which receives high nitrogen inputs and for which high denitrification rates have been observed. The presence of all five genes in both sediment samples was confirmed by PCR amplification from extracted DNA prior to analysis of gene expression. Only nirS and nosZ mRNAs were detected; nirS was detected directly as an RT-PCR amplification product, and nosZ was detected following Southern blot hybridization. This indicated that active expression of at least the nirS and nosZ genes was occurring in the sediments at the time of sampling. Amplified nirS RT-PCR products were cloned and analyzed by sequencing, and they were compared with amplified nirS gene sequences from isolates obtained from the same sediments. A high diversity of nirS sequences was observed. Most of the cloned nirS sequences retrieved were specific to one site or the other, which underlines differences in the compositions of the bacterial communities involved in denitrifrification in the two sediments analyzed.
Collapse
Affiliation(s)
- Balbina Nogales
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom.
| | | | | | | |
Collapse
|
41
|
Abstract
Denitrification, the reduction of nitrate or nitrite to nitrous oxide or dinitrogen, is the major mechanism by which fixed nitrogen returns to the atmosphere from soil and water. Although the denitrifying ability has been found in microorganisms belonging to numerous groups of bacteria and Archaea, the genes encoding the denitrifying reductases have been studied in only few species. Recent investigations have led to the identification of new classes of denitrifying reductases, indicating a more complex genetic basis of this process than previously recognized. The increasing number of genome sequencing projects has opened a new way to study the genetics of the denitrifying process in bacteria and Archaea. In this review, we summarized the current knowledge on denitrifying genes and compared their genetic organizations by using new sequences resulting from the analysis of finished and unfinished microbial genomes with a special attention paid to the clustering of genes encoding different classes of reductases. In addition, some evolutionary relationships between the structural genes are presented.
Collapse
Affiliation(s)
- Laurent Philippot
- Institut National de la Recherche Agronomique-UMR 111 Géosols-Microbiologie des Sols-17, rue Sully-B.V. 86510, 21065 Dijon Cedex, France.
| |
Collapse
|
42
|
Gon S, Giudici-Orticoni MT, Méjean V, Iobbi-Nivol C. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J Biol Chem 2001; 276:11545-51. [PMID: 11056172 DOI: 10.1074/jbc.m008875200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reduction of trimethylamine N-oxide (E'(0(TMAO/TMA)) = +130 mV) in Escherichia coli is carried out by the Tor system, an electron transfer chain encoded by the torCAD operon and made up of the periplasmic terminal reductase TorA and the membrane-anchored pentahemic c-type cytochrome TorC. Although the role of TorA in the reduction of trimethylamine N-oxide (TMAO) has been clearly established, no direct evidence for TorC involvement has been presented. TorC belongs to the NirT/NapC c-type cytochrome family based on homologies of its N-terminal tetrahemic domain (TorC(N)) to the cytochromes of this family, but TorC contains a C-terminal extension (TorC(C)) with an additional heme-binding site. In this study, we show that both domains are required for the anaerobic bacterial growth with TMAO. The intact TorC protein and its two domains, TorC(N) and TorC(C), were produced independently and purified for a biochemical characterization. The reduced form of TorC exhibited visible absorption maxima at 552, 523, and 417 nm. Mediated redox potentiometry of the heme centers of the purified components identified two negative midpoint potentials (-177 and -98 mV) localized in the tetrahemic TorC(N) and one positive midpoint potential (+120 mV) in the monohemic TorC(C). In agreement with these values, the in vitro reconstitution of electron transfer between TorC, TorC(N), or TorC(C) and TorA showed that only TorC and TorC(C) were capable of electron transfer to TorA. Surprisingly, interaction studies revealed that only TorC and TorC(N) strongly bind TorA. Therefore, TorC(C) directly transfers electrons to TorA, whereas TorC(N), which probably receives electrons from the menaquinone pool, is involved in both the electron transfer to TorC(C) and the binding to TorA.
Collapse
Affiliation(s)
- S Gon
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, BP 71, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
43
|
Vollack KU, Zumft WG. Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. J Bacteriol 2001; 183:2516-26. [PMID: 11274111 PMCID: PMC95168 DOI: 10.1128/jb.183.8.2516-2526.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of denitrification by a facultatively anaerobic bacterium requires as exogenous signals a low oxygen tension concomitant with an N oxide. We have studied the role of nitric oxide (NO), nitrous oxide (N2O), and nitrite as signal molecules for the expression of the denitrification apparatus of Pseudomonas stutzeri. Transcriptional kinetics of structural genes were monitored by Northern blot analysis in a 60-min time frame after cells were exposed to an N oxide signal. To differentiate the inducer role of NO from that of nitrite, mRNA kinetics were monitored under anoxic conditions in a nirF strain, where NO generation from nitrite is prevented because of a defect in heme D(1) biosynthesis. NO-triggered responses were monitored from the nirSTB operon (encoding cytochrome cd(1) nitrite reductase), the norCB operon (encoding NO reductase), nosZ (encoding nitrous oxide reductase), and nosR (encoding a putative regulator). Transcription of nirSTB and norCB was activated by 5 to 50 nM NO, whereas the nosZ promoter required about 250 nM. Nitrite at 5 to 50 nM elicited no response. At a threshold concentration of 650 nM N2O, we observed in the anoxic cell the transient appearance of nosZ and nosR transcripts. Constant levels of transcripts of both genes were observed in an anoxic cell sparged with N2O. NO at 250 nM stimulated in this cell type the expression of nos genes severalfold. The transcription factor DnrD, a member of the FNR-CRP family, was found to be part of the NO-triggered signal transduction pathway. However, overexpression of dnrD in an engineered strain did not result in NirS synthesis, indicating a need for activation of DnrD. NO modified the transcriptional pattern of the dnrD operon by inducing the transcription of dnrN and dnrO, located upstream of dnrD. Insertional mutagenesis of dnrN altered the kinetic response of the nirSTB operon towards nitrite. Our data establish NO and DnrD as key elements in the regulatory network of denitrification in P. stutzeri. The NO response adds to the previously identified nitrate-nitrite response mediated by the NarXL two-component system for the expression of respiratory nitrate reductase encoded by the narGHJI operon.
Collapse
Affiliation(s)
- K U Vollack
- Lehrstuhl für Mikrobiologie der Universität Karlsruhe, D-76128 Karlsruhe, Germany
| | | |
Collapse
|
44
|
Firth JR, Edwards C. Denitrification by indigenous microbial populations of river water measured using membrane inlet mass spectrometry. J Appl Microbiol 2000; 89:123-9. [PMID: 10945788 DOI: 10.1046/j.1365-2672.2000.01088.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The major process that reduces nitrate levels in soils and water is denitrification, which converts nitrate and nitrite into gaseous forms of nitrogen, which are then released into the atmosphere. This study used membrane inlet mass spectrometry (MIMS) to investigate denitrification in river water bacterial isolates supplied with nitrate and succinate as an energy source as well as in the total population by provision of different carbon compounds to untreated river water samples. Substantial variation was observed in the gases detected with nitrogen, nitrous oxide and nitric oxide all being produced by one or more of the isolates. The indigenous river population as a whole was found to respond very differently to the addition of different carbon sources. Peak nitrogen levels differed by nearly 1 mmol 1(-1) and nitrous oxide by approximately 0.5 mmol 1(-1) depending on which carbon source was supplied. Nitric oxide was only detected when glycerol was supplied as the carbon source. These results demonstrate the complex interactions involved in nitrogen cycling and suggest that with careful management it may be possible to stimulate particular consortia of micro-organisms to reduce more nitrate to harmless nitrogen rather than nitrous oxide, a known greenhouse gas.
Collapse
Affiliation(s)
- J R Firth
- School of Biological Sciences, University of Liverpool, UK.
| | | |
Collapse
|
45
|
Firth JR, Edwards C. Analysis of denitrification by Pseudomonas stutzeri under nutrient-limited conditions using membrane inlet mass spectrometry. J Appl Microbiol 2000; 88:853-9. [PMID: 10792546 DOI: 10.1046/j.1365-2672.2000.01025.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Membrane inlet mass spectrometry (MIMS) was used to investigate denitrification by Pseudomonas stutzeri in a static lake water column. Continuous real-time measurement of gases enabled the dynamics of the process to be investigated. Concentrations of 17 mmol l-1 nitrate and 10 mmol l-1 nitrite were identified as optimal for denitrification under nutrient-limited conditions (i.e., produced the highest concentrations of N2). Available carbon was the major rate-limiting factor in lake water when nitrate or nitrite was present. No stratification of the process with depth was observed, and aerobic denitrification was apparent under all the conditions employed. The rate of denitrification was dependent on cell concentration, and possible limitations of the usefulness of MIMS under environmentally modelled conditions were identified for environments containing low numbers of bacteria.
Collapse
Affiliation(s)
- J R Firth
- School of Biological Sciences, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|
46
|
Saunders NFW, Ferguson SJ, Baker SC. Transcriptional analysis of the nirS gene, encoding cytochrome cd1 nitrite reductase, of Paracoccus pantotrophus LMD 92.63. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 2):509-516. [PMID: 10708389 DOI: 10.1099/00221287-146-2-509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene for cytochrome cd1 nitrite reductase of Paracoccus pantotrophus, a protein of known crystal structure, is nirS. This gene is shown to be flanked by genes previously recognized in other organisms to encode proteins involved in the control of its transcription (nirI) and the biosynthesis of the d1 cofactor (nirE). Northern blot analysis has established under anaerobic conditions that a monocistronic transcript is produced from nirS, in contrast to observations with other denitrifying bacteria in which arrangement of flanking genes is different and the messages produced are polycistronic. The lack of a transcript under aerobic conditions argues against a role for cytochrome cd1 in the previously proposed aerobic denitrification pathway in Pa. pantotrophus. A putative rho-independent transcription termination sequence immediately following nirS, and preceding nirE, can be identified. The independent transcription of nirS and nirE indicates that it should be possible to produce site-directed mutants of nirS borne on a plasmid in a nirS deletion mutant. The transcript start point for nirS has been determined by two complementary techniques, 5'-RACE (Rapid amplification of cDNA 5' ends) and primer extension. It is 29 bp upstream of the AUG of nirS. An anaerobox, which presumably binds Nnr, is centred a further 41.5 bp upstream of the transcript start. No standard sigma70 DNA sequence motifs can be identified, but a conserved sequence (T-T-GIC-C-G/C-G/C) can be found in approximately the same position (-16) upstream of the transcript starts of nirS and nirI, whose products are both involved in the conversion of nitrite to nitric oxide.
Collapse
Affiliation(s)
- Neil F W Saunders
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK1
| | - Stuart J Ferguson
- Oxford Centre for Molecular Sciences, University of Oxford, South Parks Road, Oxford OX1 3QT, UK2
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK1
| | - Simon C Baker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK1
| |
Collapse
|
47
|
Sabaty M, Schwintner C, Cahors S, Richaud P, Verméglio A. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J Bacteriol 1999; 181:6028-32. [PMID: 10498715 PMCID: PMC103630 DOI: 10.1128/jb.181.19.6028-6032.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase.
Collapse
Affiliation(s)
- M Sabaty
- Commissariat à l'Energie Atomique/Cadarache DSV, DEVM, Laboratoire de Bioénergétique Cellulaire, 13108 St. Paul lez Durance Cedex, France.
| | | | | | | | | |
Collapse
|
48
|
Lee AI, Delgado A, Gunsalus RP. Signal-dependent phosphorylation of the membrane-bound NarX two-component sensor-transmitter protein of Escherichia coli: nitrate elicits a superior anion ligand response compared to nitrite. J Bacteriol 1999; 181:5309-16. [PMID: 10464202 PMCID: PMC94037 DOI: 10.1128/jb.181.17.5309-5316.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Nar two-component regulatory system, consisting of the dual sensor-transmitters NarX and NarQ and the dual response regulators NarL and NarP, controls the expression of various anaerobic respiratory pathway genes and fermentation pathway genes. Although both NarX and NarQ are known to detect the two environmental signals nitrate and nitrite, little is known regarding the sensitivity and selectivity of ligand for detection or activation of the sensor-transmitters. In this study, we have developed a sensitive anion-specific in vitro assay for NarX autophosphorylation by using Escherichia coli membranes highly enriched in the full-length NarX protein. In this ATP- and magnesium-dependent reaction, nitrate elicited a greater signal output (i.e., NarX autophosphorylation) than did nitrite. Nitrate stimulation occurred at concentrations as low as 5 microM, and the half-maximal level of NarX autophosphorylation occurred at approximately 35 microM nitrate. In contrast, nitrite-dependent stimulation was detected only at 500 microM, while 3.5 mM nitrite was needed to achieve half-maximal NarX autophosphorylation. Maximal nitrate- and nitrite-stimulated levels of NarX phosphorylation were five and two times, respectively, over the basal level of NarX autophosphorylation. The presence of Triton X-100 eliminated the nitrate-stimulated kinase activity and lowered the basal level of activity, suggesting that the membrane environment plays a crucial role in nitrate detection and/or regulation of kinase activity. These results provide in vitro evidence for the differential detection of dual signaling ligands by the NarX sensor-transmitter protein, which modulates the cytoplasmic NarX autokinase activity and phosphotransfer to NarL, the cognate response regulator.
Collapse
Affiliation(s)
- A I Lee
- Department of Microbiology and Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, California 90095-1489, USA
| | | | | |
Collapse
|
49
|
Härtig E, Schiek U, Vollack KU, Zumft WG. Nitrate and nitrite control of respiratory nitrate reduction in denitrifying Pseudomonas stutzeri by a two-component regulatory system homologous to NarXL of Escherichia coli. J Bacteriol 1999; 181:3658-65. [PMID: 10368138 PMCID: PMC93841 DOI: 10.1128/jb.181.12.3658-3665.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial denitrification is expressed in response to the concurrent exogenous signals of low-oxygen tension and nitrate or one of its reduction products. The mechanism by which nitrate-dependent gene activation is effected was investigated in the denitrifying bacterium Pseudomonas stutzeri ATCC 14405. We have identified and isolated from this organism the chromosomal region encoding the two-component sensor-regulator pair NarXL and found that it is linked with the narG operon for respiratory nitrate reductase. The same region encodes two putative nitrate or nitrite translocases, NarK and NarC (the latter shows the highest similarity to yeast [Pichia] and plant [Nicotiana] nitrate transporters), and the nitrate-regulated transcription factor, DnrE, of the FNR family. The roles of NarX and NarL in nitrate respiration were studied with deletion mutants. NarL activated the transcription of narG, narK, and dnrE but did not affect the denitrification regulons for the respiratory substrates nitrite, nitric oxide, and nitrous oxide. The promoters of narG, narK, and dnrE carry sequence motifs, TACYYMT, which correspond to the NarL recognition sequence established for Escherichia coli. The cellular response toward nitrate and nitrite was mediated by the sensor protein NarX, which discriminated weakly between these oxyanions. Our data show that the NarXL two-component regulatory system has been incorporated into the bacterial denitrification process of P. stutzeri for selective regulation of nitrate respiration.
Collapse
Affiliation(s)
- E Härtig
- Lehrstuhl für Mikrobiologie der Universität zu Karlsruhe, Karlsruhe, Germany
| | | | | | | |
Collapse
|
50
|
Vollack KU, Härtig E, Körner H, Zumft WG. Multiple transcription factors of the FNR family in denitrifying Pseudomonas stutzeri: characterization of four fnr-like genes, regulatory responses and cognate metabolic processes. Mol Microbiol 1999; 31:1681-94. [PMID: 10209742 DOI: 10.1046/j.1365-2958.1999.01302.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas stutzeri is a facultative anaerobic bacterium with the capability of denitrification. In searching for regulators that control the expression of this trait in response to oxygen withdrawal, we have found an unprecedented multiplicity of four genes encoding transcription factors of the FNR family. The fnrA gene encodes a genuine FNR-type regulator, which is expressed constitutively and controls the cytochrome cbb3-type terminal oxidase (the cco operon), cytochrome c peroxidase (the ccp gene) and the oxygen-independent coproporphyrinogen III oxidase (the hemN gene), in addition to its previously demonstrated role in arginine catabolism (the arc operon). The fnr homologues dnrD, dnrE and dnrS encode regulators of a new subgroup within the FNR family. Their main distinctive feature is the lack of cysteine residues for complexing the [4Fe-4S] centre of redox-active FNR-type regulators. However, they form a phylogenetic lineage separate from the FixK branch of FNR proteins, which also lack this cysteine signature. We have studied the expression of the dnr genes under aerobic, oxygen-limited and denitrifying conditions. DnrD is a key regulator of denitrification by selective activation of the genes for cytochrome cd1 nitrite reductase and NO reductase. The dnrD gene is part of the 30 kb region carrying denitrification genes of P. stutzeri. Transcription of dnrD was activated in O2-limited cells and particularly strongly in denitrifying cells, but was not under the control of FnrA. In response to denitrifying growth conditions, dnrD was transcribed as part of an operon together with genes downstream and upstream of dnrD. dnrS was found about 9 kb upstream of dnrD, next to the nrdD gene for anaerobic ribonucleotide reductase. The transcription of dnrS required FnrA in O2-limited cells. Mutation of dnrS affected nrdD and the expression of ferredoxin I as an element of the oxidative stress response. The dnrE gene is part of the nar region encoding functions for respiratory nitrate reduction. We found the highest amount of dnrE transcripts in aerobically nitrate-challenged cells. The gene was transcribed from two promoters, P1 and P2, of which promoter P1 was under the control of the nitrate response regulator NarL. The multiplicity of FNR factors in P. stutzeri underlines the versatility of the FNR scaffold to serve for transcriptional regulation directed at anaerobic or nitrate-activated metabolic processes.
Collapse
Affiliation(s)
- K U Vollack
- Lehrstuhl für Mikrobiologie, Universität Karlsruhe, Germany
| | | | | | | |
Collapse
|