1
|
Gul I, Adil M, Lv F, Li T, Chen Y, Lu H, Ahamad MI, Lu S, Feng W. Microbial strategies for lead remediation in agricultural soils and wastewater: mechanisms, applications, and future directions. Front Microbiol 2024; 15:1434921. [PMID: 39364167 PMCID: PMC11448482 DOI: 10.3389/fmicb.2024.1434921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/25/2024] [Indexed: 10/05/2024] Open
Abstract
High lead (Pb) levels in agricultural soil and wastewater threaten ecosystems and organism health. Microbial remediation is a cost-effective, efficient, and eco-friendly alternative to traditional physical or chemical methods for Pb remediation. Previous research indicates that micro-organisms employ various strategies to combat Pb pollution, including biosorption, bioprecipitation, biomineralization, and bioaccumulation. This study delves into recent advancements in Pb-remediation techniques utilizing bacteria, fungi, and microalgae, elucidating their detoxification pathways and the factors that influence Pb removal through specific case studies. It investigates how bacteria immobilize Pb by generating nanoparticles that convert dissolved lead (Pb-II) into less harmful forms to mitigate its adverse impacts. Furthermore, the current review explores the molecular-level mechanisms and genetic engineering techniques through which microbes develop resistance to Pb. We outline the challenges and potential avenues for research in microbial remediation of Pb-polluted habitats, exploring the interplay between Pb and micro-organisms and their potential in Pb removal.
Collapse
Affiliation(s)
- Isma Gul
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Muhammad Adil
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Fenglin Lv
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Tingting Li
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Yi Chen
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, China
- Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou, China
- Xinyang Academy of Ecological Research, Xinyang, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, China
| | - Muhammad Irfan Ahamad
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization of Henan Province, Henan University, Kaifeng, China
| | - Siqi Lu
- Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, Storrs, CT, United States
| | - Wanfu Feng
- The Forest Science Research Institute of Xinyang, Xinyang, Henan, China
- Henan Jigongshan Forest Ecosystem National Observation and Research Station, Xinyang, Henan, China
| |
Collapse
|
2
|
Chen L, Ma J, Xiang S, Jiang L, Wang Y, Li Z, Liu X, Duan S, Luo Y, Xiao Y. Promotion of rice seedlings growth and enhancement of cadmium immobilization under cadmium stress with two types of organic fertilizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123619. [PMID: 38401632 DOI: 10.1016/j.envpol.2024.123619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Cadmium (Cd)-contaminated soil poses a severe threat to crop production and human health, while also resulting in a waste of land resources. In this study, two types of organic fertilizer (ZCK: Low-content available iron; Z2: High-content available iron) were applied to Cd-contaminated soil for rice cultivation, and the effects of the fertilizer on rice growth and Cd passivation were investigated in conjunction with soil microbial analysis. Results showed that Z2 could alter the composition, structure, and diversity of microbial communities, as well as enhance the complexity and stability of the microbial network. Both 2% and 5% Z2 significantly increased the fresh weight and dry weight of rice plants while suppressing Cd absorption. The 2% Z2 exhibited the best Cd passivation effect. Gene predictions suggested that Z2 may promote plant growth by regulating microbial production of organic acids that dissolve phosphorus and potassium. Furthermore, it is suggested that Z2 may facilitate the absorption and immobilization of soil cadmium through the regulation of microbial cadmium efflux and uptake systems, as well as via the secretion of extracellular polysaccharides. In summary, Z2 can promote rice growth, suppress Cd absorption by rice, and passivate soil Cd by regulating soil microbial communities.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Sha Xiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Lihong Jiang
- College of Resources, Hunan Agricultural University, China
| | - Ying Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Zhihuan Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Xianjing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Shuyang Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Yuan Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, China.
| |
Collapse
|
3
|
Aljohani MS, Alnoman RB, Alharbi HY, Al-Anazia M, Monier M. Designing of a cellulose-based ion-imprinted biosorbent for selective removal of lead (II) from aqueous solutions. Int J Biol Macromol 2024; 259:129145. [PMID: 38176491 DOI: 10.1016/j.ijbiomac.2023.129145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Developing an effective adsorbent for Pb2+ removal from wastewater has huge economic and environmental implications. Adsorbents made from cellulosic materials that have been modified with certain chelators could be used to get rid of metal cations from aqueous solutions. However, their selectivity for specific metals remains very low. Here, we describe the synthesis of 4-(2-pyridyl)thiosemicarbazide (PTC) hydrazidine-functionalized cellulose (Pb-PTC-CE), a polymer imprinted with Pb2+ ions that may be used to remove Pb2+ ions from wastewater. Owing to its potent -NH2 functionalization, PTC hydrazidine not only served as an efficient chelator to effectively supply coordinating sites and construct hierarchical porous structures on Pb-PTC-CE, but it also made it possible for cross-linking to occur through the glyoxal cross-linker. The abundant chelators, along with the hierarchical porous construction of the developed Pb-PTC-CE with PTC functionality, result in a greater sorption capacity of 336 mg/g and a short sorption period of 40 min for Pb2+. Additionally, Pb-PTC-CE exhibits highly selective Pb2+ uptake compared to competing ions. This study proposes a feasible methodology for the development of high-quality materials for Pb2+ remediation by combining the advantages of active ligand functionality with ion-imprinting techniques in a straightforward way.
Collapse
Affiliation(s)
- Majed S Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia.
| | - Rua B Alnoman
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Hussam Y Alharbi
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | - Menier Al-Anazia
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - M Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Gómez-Gallego T, Molina-Luzón MJ, Conéjéro G, Berthomieu P, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis uses the copper exporting ATPase RiCRD1 as a major strategy for copper detoxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122990. [PMID: 37992950 DOI: 10.1016/j.envpol.2023.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with most land plants. AM fungi regulate plant copper (Cu) acquisition both in Cu deficient and polluted soils. Here, we report characterization of RiCRD1, a Rhizophagus irregularis gene putatively encoding a Cu transporting ATPase. Based on its sequence analysis, RiCRD1 was identified as a plasma membrane Cu + efflux protein of the P1B1-ATPase subfamily. As revealed by heterologous complementation assays in yeast, RiCRD1 encodes a functional protein capable of conferring increased tolerance against Cu. In the extraradical mycelium, RiCRD1 expression was highly up-regulated in response to high concentrations of Cu in the medium. Comparison of the expression patterns of different players of metal tolerance in R. irregularis under high Cu levels suggests that this fungus could mainly use a metal efflux based-strategy to cope with Cu toxicity. RiCRD1 was also expressed in the intraradical fungal structures and, more specifically, in the arbuscules, which suggests a role for RiCRD1 in Cu release from the fungus to the symbiotic interface. Overall, our results show that RiCRD1 encodes a protein which could have a pivotal dual role in Cu homeostasis in R. irregularis, playing a role in Cu detoxification in the extraradical mycelium and in Cu transfer to the apoplast of the symbiotic interface in the arbuscules.
Collapse
Affiliation(s)
- Tamara Gómez-Gallego
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María Jesús Molina-Luzón
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Genevieve Conéjéro
- Institut des Sciences des Plantes de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Agro Montpellier, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Montpellier, France
| | - Pierre Berthomieu
- Institut des Sciences des Plantes de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut Agro Montpellier, Institut National de Recherche pour l'Agriculture l'Alimentation et l'Environnement, Montpellier, France
| | - Nuria Ferrol
- Soil and Plant Microbiology Department, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| |
Collapse
|
5
|
Joshi S, Gangola S, Bhandari G, Bhandari NS, Nainwal D, Rani A, Malik S, Slama P. Rhizospheric bacteria: the key to sustainable heavy metal detoxification strategies. Front Microbiol 2023; 14:1229828. [PMID: 37555069 PMCID: PMC10405491 DOI: 10.3389/fmicb.2023.1229828] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
The increasing rate of industrialization, anthropogenic, and geological activities have expedited the release of heavy metals (HMs) at higher concentration in environment. HM contamination resulting due to its persistent nature, injudicious use poses a potential threat by causing metal toxicities in humans and animals as well as severe damage to aquatic organisms. Bioremediation is an emerging and reliable solution for mitigation of these contaminants using rhizospheric microorganisms in an environmentally safe manner. The strategies are based on exploiting microbial metabolism and various approaches developed by plant growth promoting bacteria (PGPB) to minimize the toxicity concentration of HM at optimum levels for the environmental clean-up. Rhizospheric bacteria are employed for significant growth of plants in soil contaminated with HM. Exploitation of bacteria possessing plant-beneficial traits as well as metal detoxifying property is an economical and promising approach for bioremediation of HM. Microbial cells exhibit different mechanisms of HM resistance such as active transport, extra cellular barrier, extracellular and intracellular sequestration, and reduction of HM. Tolerance of HM in microorganisms may be chromosomal or plasmid originated. Proteins such as MerT and MerA of mer operon and czcCBA, ArsR, ArsA, ArsD, ArsB, and ArsC genes are responsible for metal detoxification in bacterial cell. This review gives insights about the potential of rhizospheric bacteria in HM removal from various polluted areas. In addition, it also gives deep insights about different mechanism of action expressed by microorganisms for HM detoxification. The dual-purpose use of biological agent as plant growth enhancement and remediation of HM contaminated site is the most significant future prospect of this article.
Collapse
Affiliation(s)
- Samiksha Joshi
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Geeta Bhandari
- Department of Biosciences, Himalayan School of Bio Sciences, Swami Rama Himalayan University, Dehradun, India
| | | | - Deepa Nainwal
- School of Agriculture, Graphic Era Hill University, Bhimtal, India
| | - Anju Rani
- Department of Life Sciences, Graphic Era (Deemed to be) University, Dehradun, Uttarakhand, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, India
- Guru Nanak College of Pharmaceutical Sciences, Dehradun, Uttarakhand, India
- Department of Applied Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
6
|
Alnawmasi JS. Construction of amino-thiol functionalized ion-imprinted chitosan for lead (II) ion removal. Carbohydr Polym 2023; 308:120596. [PMID: 36813349 DOI: 10.1016/j.carbpol.2023.120596] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
Ion-imprinting technique was used to create a lead ion-imprinted sorbent from an amino-thiol chitosan derivative (Pb-ATCS). First, 3-Nitro-4-sulfanylbenzoic acid (NSB) unit's amidized the chitosan, and then the -NO2-residues were selectively reduced to -NH2. Imprinting was accomplished by cross-linking with epichlorohydrin and removing the Pb (II) ions from the across-linked polymeric complex formed from the amino-thiol chitosan polymer ligand (ATCS) and Pb (II) ions. The synthetic steps have been investigated by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR), and the sorbent was tested for its ability to selectively bind Pb (II) ions. The produced Pb-ATCS sorbent had a maximum capacity of roughly 300 mg/g, and it showed a greater affinity for the Pb (II) ions than the control NI-ATCS sorbent particle. The pseudo-2nd-order equation was also consistent with the adsorption kinetics of the sorbent, which were quite rapid. This demonstrated that metal ions were chemo-adsorbed onto the Pb-ATCS and NI-ATCS solid surfaces via coordination with the introduced amino-thiol moieties.
Collapse
Affiliation(s)
- Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah, 51452, Qassim, Saudi Arabia.
| |
Collapse
|
7
|
Shan B, Hao R, Zhang J, Li J, Ye Y, Lu A. Microbial remediation mechanisms and applications for lead-contaminated environments. World J Microbiol Biotechnol 2022; 39:38. [PMID: 36510114 DOI: 10.1007/s11274-022-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
High concentrations of lead (Pb) in agricultural soil and wastewater represent a severe threat to the ecosystem and health of living organisms. Among available removal techniques, microbial remediation has attracted much attention due to its lower cost, higher efficiency, and less impact on the environment; hence, it is an effective alternative to conventional physical or chemical Pb-remediation technologies. In the present review, recent advances on the Pb-remediation mechanisms of bacteria, fungi and microalgae have been reported, as well as their detoxification pathways. Based on the previous researches, microorganisms have various remediation mechanisms to cope with Pb pollution, which are basically categorized into biosorption, bioprecipitation, biomineralization, and bioaccumulations. This paper summarizes microbial Pb-remediation mechanisms, factors affecting Pb removal, and examples of each case are described in detail. We emphatically discuss the mechanisms of microbial immobilization of Pb, which can resist toxicity by synthesizing nanoparticles to convert dissolved Pb(II) into less toxic forms. The tolerance mechanisms of microbes to Pb are discussed at the molecular level as well. Finally, we conclude the research challenges and development prospects regarding the microbial remediation of Pb-polluted environment. The current review provides insight of interaction between lead and microbes and their potential applications for Pb removal.
Collapse
Affiliation(s)
- Bing Shan
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Ruixia Hao
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China.
| | - Junman Zhang
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Jiani Li
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Yubo Ye
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| | - Anhuai Lu
- The Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Khan Z, Elahi A, Bukhari DA, Rehman A. Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Metagenomic insights into the microbial community structure and resistomes of a tropical agricultural soil persistently inundated with pesticide and animal manure use. Folia Microbiol (Praha) 2022; 67:707-719. [PMID: 35415828 DOI: 10.1007/s12223-022-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/05/2022] [Indexed: 11/04/2022]
Abstract
Persistent use of pesticides and animal manure in agricultural soils inadvertently introduced heavy metals and antibiotic/antibiotic resistance genes (ARGs) into the soil with deleterious consequences. The microbiome and heavy metal and antibiotic resistome of a pesticide and animal manure inundated agricultural soil (SL6) obtained from a vegetable farm at Otte, Eiyenkorin, Kwara State, Nigeria, was deciphered via shotgun metagenomics and functional annotation of putative ORFs (open reading frames). Structural metagenomics of SL6 microbiome revealed 29 phyla, 49 classes, 94 orders, 183 families, 366 genera, 424 species, and 260 strains with the preponderance of the phyla Proteobacteria (40%) and Actinobacteria (36%), classes Actinobacteria (36%), Alphaproteobacteria (18%), and Gammaproteobacteria (17%), and genera Kocuria (16%), Sphingobacterium (11%), and Brevundimonas (10%), respectively. Heavy metal resistance genes annotation conducted using Biocide and Metal Resistance Gene Database (BacMet) revealed the detection of genes responsible for the uptake, transport, detoxification, efflux, and regulation of copper, cadmium, zinc, nickel, chromium, cobalt, selenium, tungsten, mercury, and several others. ARG annotation using the Antibiotic Resistance Gene-annotation (ARG-ANNOT) revealed ARGs for 11 antibiotic classes with the preponderance of β-lactamases, mobilized colistin resistance determinant (mcr-1), macrolide-lincosamide-streptogramin (MLS), glycopeptide, and aminoglycoside resistance genes, among others. The persistent use of pesticide and animal manure is strongly believed to play a major role in the proliferation of heavy metal and antibiotic resistance genes in the soil. This study revealed that agricultural soils inundated with pesticide and animal manure use are potential hotspots for ARG spread and may accentuate the spread of multidrug resistant clinical pathogens.
Collapse
|
10
|
Kiel A, Kaltschmidt BP, Asghari E, Hütten A, Kaltschmidt B, Kaltschmidt C. Bacterial Biofilm Formation on Nano-Copper Added PLA Suited for 3D Printed Face Masks. Microorganisms 2022; 10:439. [PMID: 35208893 PMCID: PMC8875673 DOI: 10.3390/microorganisms10020439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 Pandemic leads to an increased worldwide demand for personal protection equipment in the medical field, such as face masks. New approaches to satisfy this demand have been developed, and one example is the use of 3D printing face masks. The reusable 3D printed mask may also have a positive effect on the environment due to decreased littering. However, the microbial load on the 3D printed objects is often disregarded. Here we analyze the biofilm formation of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli on suspected antimicrobial Plactive™ PLA 3D printing filaments and non-antimicrobial Giantarm™ PLA. To characterize the biofilm-forming potential scanning electron microscopy (SEM), Confocal scanning electron microscopy (CLSM) and colony-forming unit assays (CFU) were performed. Attached cells could be observed on all tested 3D printing materials. Gram-negative strains P. aeruginosa and E. coli reveal a strong uniform growth independent of the tested 3D filament (for P. aeruginosa even with stressed induced growth reaction by Plactive™). Only Gram-positive S. aureus shows strong growth reduction on Plactive™. These results suggest that the postulated antimicrobial Plactive™ PLA does not affect Gram-negative bacteria species. These results indicate that reusable masks, while better for our environment, may pose another health risk.
Collapse
Affiliation(s)
- Annika Kiel
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| | - Bernhard Peter Kaltschmidt
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany; (B.P.K.); (A.H.)
| | - Ehsan Asghari
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| | - Andreas Hütten
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany; (B.P.K.); (A.H.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| |
Collapse
|
11
|
Pal A, Bhattacharjee S, Saha J, Sarkar M, Mandal P. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 2021; 48:327-355. [PMID: 34473592 DOI: 10.1080/1040841x.2021.1970512] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heavy metals bring long-term hazardous consequences and pose a serious threat to all life forms. Being non-biodegradable, they can remain in the food webs for a long period of time. Metal ions are essential for life and indispensable for almost all aspects of metabolism but can be toxic beyond threshold level to all living beings including microbes. Heavy metals are generally present in the environment, but many geogenic and anthropogenic activities has led to excess metal ion accumulation in the environment. To survive in harsh metal contaminated environments, bacteria have certain resistance mechanisms to metabolize and transform heavy metals into less hazardous forms. This also gives rise to different species of heavy metal resistant bacteria. Herein, we have tried to incorporate the different aspects of heavy metal toxicity in bacteria and provide an up-to-date and across-the-board review. The various aspects of heavy metal biology of bacteria encompassed in this review includes the biological notion of heavy metals, toxic effect of heavy metals on bacteria, the factors regulating bacterial heavy metal resistance, the diverse mechanisms governing bacterial heavy metal resistance, bacterial responses to heavy metal stress, and a brief overview of gene regulation under heavy metal stress.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Sukanya Bhattacharjee
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Sarkar
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
12
|
Kuzyk SB, Hughes E, Yurkov V. Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs. Microorganisms 2021; 9:microorganisms9050959. [PMID: 33946921 PMCID: PMC8146977 DOI: 10.3390/microorganisms9050959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+, V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments.
Collapse
|
13
|
Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14271-14284. [PMID: 33528774 DOI: 10.1007/s11356-021-12583-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Among heavy metals, lead (Pb) is a non-essential metal having a higher toxicity and without any crucial known biological functions. Being widespread, non-biodegradable and persistent in every sphere of soil, air and water, Pb is responsible for severe health and environmental issues, which need appropriate remediation measures. However, microbes inhabiting Pb-contaminated area are found to have evolved distinctive mechanisms to successfully thrive in the Pb-contaminated environment without exhibiting any negative effects on their growth and metabolism. The defensive strategies used by bacteria to ameliorate the toxic effects of lead comprise biosorption, efflux, production of metal chelators like siderophores and metallothioneins and synthesis of exopolysaccharides, extracellular sequestration and intracellular bioaccumulation. Lead remediation technologies by employing microbes may appear as potential advantageous alternatives to the conventional physical and chemical means due to specificity, suitability for applying in situ condition and feasibility to upgrade by genetic engineering. Developing strategies by designing transgenic bacterial strain having specific metal binding properties and metal chelating proteins or higher metal adsorption ability and using bacterial activity such as incorporating plant growth-promoting rhizobacteria for improved Pb resistance, exopolysaccharide and siderophores and metallothionein-mediated immobilization may prove highly effective for formulating bioremediation vis-a-vis phytoremediation strategies.
Collapse
Affiliation(s)
- Anindita Mitra
- Bankura Christian College, Bankura, West Bengal, 722101, India
| | - Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Sampriti Kataki
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Rajesh P Rastogi
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
| |
Collapse
|
14
|
Goh YK, Ting ASY. Microbial Biocontrol Agents for Agricultural Soil Remediation: Prospects and Application. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Boyle S, Kakouli-Duarte T. Differential gene expression in the insect pathogen Steinernema feltiae in response to chromium VI exposure in contaminated host cadavers. Comput Biol Chem 2020; 88:107331. [PMID: 32781309 DOI: 10.1016/j.compbiolchem.2020.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Stephen Boyle
- enviroCORE, Molecular Ecology and Nematode Research Group, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland.
| | - Thomais Kakouli-Duarte
- enviroCORE, Molecular Ecology and Nematode Research Group, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland
| |
Collapse
|
16
|
Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00314-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe effects of cadmium (Cd) contamination on the microbial community structure, soil physicochemistry and heavy metal resistome of a tropical agricultural soil were evaluated in field-moist soil microcosms. A Cd-contaminated agricultural soil (SL5) and an untreated control (SL4) were compared over a period of 5 weeks. Analysis of the physicochemical properties and heavy metals content of the two microcosms revealed a statistically significant decrease in value of the soil physicochemical parameters (P < 0.05) and concentration of heavy metals (Cd, Pb, Cr, Zn, Fe, Cu, Se) content of the agricultural soil in SL5 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the predominance of the phyla, classes, genera and species of Proteobacteria (37.38%), Actinobacteria (35.02%), Prevotella (6.93%), and Conexibacter woesei (8.93%) in SL4, and Proteobacteria (50.50%), Alphaproteobacteria (22.28%), Methylobacterium (9.14%), and Methylobacterium radiotolerans (12,80%) in SL5, respectively. Statistically significant (P < 0.05) difference between the metagenomes was observed at genus and species delineations. Functional annotation of the two metagenomes revealed diverse heavy metal resistome for the uptake, transport, efflux and detoxification of various heavy metals. It also revealed the exclusive detection in SL5 metagenome of members of RND (resistance nodulation division) protein czcCBA efflux system (czcA, czrA, czrB), CDF (cation diffusion facilitator) transporters (czcD), and genes for enzymes that protect the microbial cells against cadmium stress (sodA, sodB, ahpC). The results obtained in this study showed that Cd contamination significantly affects the soil microbial community structure and function, modifies the heavy metal resistome, alters the soil physicochemistry and results in massive loss of some autochthonous members of the community not adapted to the Cd stress.
Collapse
|
17
|
Khare D, Kumar R, Acharya C. Genomic and functional insights into the adaptation and survival of Chryseobacterium sp. strain PMSZPI in uranium enriched environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110217. [PMID: 32001422 DOI: 10.1016/j.ecoenv.2020.110217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Metal enriched areas represent important and dynamic microbiological ecosystems. In this study, the draft genome of a uranium (U) tolerant bacterium, Chryseobacterium sp. strain PMSZPI, isolated from the subsurface soil of Domiasiat uranium ore deposit in Northeast India, was analyzed. The strain revealed a genome size of 3.8 Mb comprising of 3346 predicted protein-coding genes. The analysis indicated high abundance of genes associated with metal resistance and efflux, transporters, phosphatases, antibiotic resistance, polysaccharide synthesis, motility, protein secretion systems, oxidoreductases and DNA repair. Comparative genomics with other closely related Chryseobacterium strains led to the identification of unique inventory of genes which were of adaptive significance in PMSZPI. Consistent with the genome analysis, PMSZPI showed superior tolerance to uranium and other heavy metals. The metal exposed cells exhibited transcriptional induction of metal translocating PIB ATPases suggestive of their involvement in metal resistance. Efficient U binding (~90% of 100 μM U) and U bioprecipitation (~93-94% of 1 mM U at pH 5, 7 and 9) could be attributed as uranium tolerance strategies in PMSZPI. The strain demonstrated resistance to a large number of antibiotics which was in agreement with in silico prediction. Reduced gliding motility in the presence of cadmium and uranium, enhanced biofilm formation on uranium exposure and tolerance to 1.5 kGy of 60Co gamma radiation were perceived as adaptive responses in PMSZPI. Overall, the positive correlation observed between uranium/metal tolerance abilities predicted using genome analysis and the functional characterization reinforced the multifaceted adaptation strategies employed by PMSZPI for its survival in the soil of uranium ore deposit comprising of high concentrations of uranium and other heavy metals.
Collapse
Affiliation(s)
- Devanshi Khare
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
18
|
Arenas J, Bossers-de Vries R, Harders-Westerveen J, Buys H, Ruuls-van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A. In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 2020; 10:334-351. [PMID: 30957693 PMCID: PMC6527017 DOI: 10.1080/21505594.2019.1599669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterium and a zoonotic pathogen residing in the nasopharynx or the gastrointestinal tract of pigs with a potential of causing life-threatening invasive disease. It is endemic in the porcine production industry worldwide, and it is also an emerging human pathogen. After invasion, the pathogen adapts to cause bacteremia and disseminates to different organs including the brain. To gain insights in this process, we infected piglets with a highly virulent strain of S. suis, and bacterial transcriptomes were obtained from blood and different organs (brain, joints, and heart) when animals had severe clinical symptoms of infection. Microarrays were used to determine the genome-wide transcriptional profile at different infection sites and during growth in standard growth medium in vitro. We observed differential expression of around 30% of the Open Reading Frames (ORFs) and infection-site specific patterns of gene expression. Genes with major changes in expression were involved in transcriptional regulation, metabolism, nutrient acquisition, stress defenses, and virulence, amongst others, and results were confirmed for a subset of selected genes using RT-qPCR. Mutants were generated in two selected genes, and the encoded proteins, i.e., NADH oxidase and MetQ, were shown to be important virulence factors in coinfection experiments and in vitro assays. The knowledge derived from this study regarding S. suis gene expression in vivo and identification of virulence factors is important for the development of novel diagnostic and therapeutic strategies to control S. suis disease.
Collapse
Affiliation(s)
- Jesús Arenas
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Ruth Bossers-de Vries
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - José Harders-Westerveen
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Herma Buys
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | | | | | - Edoardo Zaccaria
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Jan Tommassen
- c Department of Molecular Microbiology and Institute of Biomembranes , Utrecht University , Utrecht , The Netherlands
| | - Jerry M Wells
- b Host Microbe Interactions , Wageningen UR , Wageningen , The Netherlands
| | - Hilde E Smith
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| | - Astrid de Greeff
- a Department of Infection Biology , Wageningen BioVeterinary Research (WBVR) , Lelystad , The Netherlands
| |
Collapse
|
19
|
Nong Q, Yuan K, Li Z, Chen P, Huang Y, Hu L, Jiang J, Luan T, Chen B. Bacterial resistance to lead: Chemical basis and environmental relevance. J Environ Sci (China) 2019; 85:46-55. [PMID: 31471030 DOI: 10.1016/j.jes.2019.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/10/2023]
Abstract
Natural bacterial isolates from heavily contaminated sites may evolve diverse tolerance strategies, including biosorption, efflux mechanism, and intracellular precipitation under the continually increased stress of toxic lead (Pb) from anthropogenic activities. These strategies utilize a large variety of functional groups in biological macromolecules (e.g., exopolysaccharides (EPSs) and metalloproteins) and inorganic ligands, including carboxyl, phosphate and amide groups, for capturing Pb. The amount and type of binding sites carried by biologically originated materials essentially determines their performance and potential for Pb removal and remediation. Many factors, e.g., metal ion radius, electronegativity, the shape of the cell surface sheath, temperature and pH, are thought to exert significant influences on the abovementioned interactions with Pb. Conclusively, understanding the chemical basis of Pb-binding in these bacteria can allow for the development of effective microbial Pb remediation technologies and further elucidation of Pb cycling in the environment.
Collapse
Affiliation(s)
- Qiying Nong
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ke Yuan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhuang Li
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Ping Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yongshun Huang
- Guangdong Provincial Hospital for Occupational Diseases Prevention and Treatment, Guangzhou 510300, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jie Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Tiangang Luan
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
20
|
Abstract
Metals and metalloids have been used alongside antibiotics in livestock production for a long time. The potential and acute negative impact on the environment and human health of these livestock feed supplements has prompted lawmakers to ban or discourage the use of some or all of these supplements. This article provides an overview of current use in the European Union and the United States, detected metal resistance determinants, and the proteins and mechanisms responsible for conferring copper and zinc resistance in bacteria. A detailed description of the most common copper and zinc metal resistance determinants is given to illustrate not only the potential danger of coselecting antibiotic resistance genes but also the potential to generate bacterial strains with an increased potential to be pathogenic to humans. For example, the presence of a 20-gene copper pathogenicity island is highlighted since bacteria containing this gene cluster could be readily isolated from copper-fed pigs, and many pathogenic strains, including Escherichia coli O104:H4, contain this potential virulence factor, suggesting a potential link between copper supplements in livestock and the evolution of pathogens.
Collapse
|
21
|
Darbani B, Kell DB, Borodina I. Energetic evolution of cellular Transportomes. BMC Genomics 2018; 19:418. [PMID: 29848286 PMCID: PMC5977736 DOI: 10.1186/s12864-018-4816-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transporter proteins mediate the translocation of substances across the membranes of living cells. Many transport processes are energetically expensive and the cells use 20 to 60% of their energy to power the transportomes. We hypothesized that there may be an evolutionary selection pressure for lower energy transporters. RESULTS We performed a genome-wide analysis of the compositional reshaping of the transportomes across the kingdoms of bacteria, archaea, and eukarya. We found that the share of ABC transporters is much higher in bacteria and archaea (ca. 27% of the transportome) than in primitive eukaryotes (13%), algae and plants (10%) and in fungi and animals (5-6%). This decrease is compensated by an increased occurrence of secondary transporters and ion channels. The share of ion channels is particularly high in animals (ca. 30% of the transportome) and algae and plants with (ca. 13%), when compared to bacteria and archaea with only 6-7%. Therefore, our results show a move to a preference for the low-energy-demanding transporters (ion channels and carriers) over the more energy-costly transporter classes (ATP-dependent families, and ABCs in particular) as part of the transition from prokaryotes to eukaryotes. The transportome analysis also indicated seven bacterial species, including Neorickettsia risticii and Neorickettsia sennetsu, as likely origins of the mitochondrion in eukaryotes, based on the phylogenetically restricted presence therein of clear homologues of modern mitochondrial solute carriers. CONCLUSIONS The results indicate that the transportomes of eukaryotes evolved strongly towards a higher energetic efficiency, as ATP-dependent transporters diminished and secondary transporters and ion channels proliferated. These changes have likely been important in the development of tissues performing energetically costly cellular functions.
Collapse
Affiliation(s)
- Behrooz Darbani
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
- School of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| |
Collapse
|
22
|
Fan W, Sun Q, Li Y, Tay FR, Fan B. Synergistic mechanism of Ag +-Zn 2+ in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J Nanobiotechnology 2018; 16:10. [PMID: 29386060 PMCID: PMC5793365 DOI: 10.1186/s12951-018-0336-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/19/2018] [Indexed: 01/21/2023] Open
Abstract
Background Ag+ and Zn2+ have already been used in combinations to obtain both enhanced antibacterial effect and low cytotoxicity. Despite this, it is still unclear how the Zn2+ co-works with Ag+ in the synergistic antibacterial activity. The main purposes of this study were to investigate the co-work pattern and optimum ratio between Ag+ and Zn2+ in their synergistic antibacterial activity against E. faecalis, the possible mechanisms behind this synergy and the primary application of optimum Ag+–Zn2+ co-work pattern against the E. faecalis biofilm on dentin. A serial of Ag+–Zn2+ atomic combination ratios were tested on both planktonic and biofilm-resident E. faecalis on dentin, their antibacterial efficiency was calculated and optimum ratio determined. And the cytotoxicity of various Ag+–Zn2+ atomic ratios was tested on MC3T3-E1 Cells. The role of Zn2+ in Ag+–Zn2+co-work was evaluated using a Zn2+ pretreatment study and membrane potential—permeability measurement. Results The results showed that the synergistically promoted antibacterial effect of Ag+–Zn2+ combinations was Zn2+ amount-dependent with the 1:9 and 1:12 Ag+–Zn2+ atomic ratios showing the most powerful ability against both planktonic and biofilm-resident E. faecalis. This co-work could likely be attributed to the depolarization of E. faecalis cell membrane by the addition of Zn2+. The cytotoxicity of the Ag+–Zn2+ atomic ratios of 1:9 and 1:12 was much lower than 2% chlorhexidine. Conclusions The Ag+–Zn2+ atomic ratios of 1:9 and 1:12 demonstrated similar strong ability against E. faecalis biofilm on dentin but much lower cytotoxicity than 2% chlorhexidine. New medications containing optimum Ag+–Zn2+ atomic ratios higher than 1:6, such as 1:9 or 1:12, could be developed against E. faecalis infection in root canals of teeth or any other parts of human body.
Collapse
Affiliation(s)
- Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanyun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
23
|
Kushwaha A, Hans N, Kumar S, Rani R. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:1035-1045. [PMID: 29976006 DOI: 10.1016/j.ecoenv.2017.09.049] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 05/18/2023]
Abstract
Lead accumulation in soils is of serious concern in agricultural production due to the harmful effects on soil microflora, crop growth and food safety. In soil, speciation of lead greatly affects its bioavailability and thus its toxicity on plants and microbes. Many plants and bacteria have evolved to develop detoxification mechanisms to counter the toxic effect of lead. Factors influencing the lead speciation include soil pH, organic matter, presence of various amendments, clay minerals and presence of organic colloids and iron oxides. Unlike, other metals little is known about the speciation and mobility of lead in soil. This review focuses on the speciation of lead in soil, its mobility, toxicity, uptake and detoxification mechanisms in plants and bacteria and bioremediation strategies for remediation of lead contaminated repositories.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Nidhi Hans
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Sanjay Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Teliyarganj, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
24
|
Nies DH. The biological chemistry of the transition metal "transportome" of Cupriavidus metallidurans. Metallomics 2017; 8:481-507. [PMID: 27065183 DOI: 10.1039/c5mt00320b] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review tries to illuminate how the bacterium Cupriavidus metallidurans CH34 is able to allocate essential transition metal cations to their target proteins although these metals have similar charge-to-surface ratios and chemical features, exert toxic effects, compete with each other, and occur in the bacterial environment over a huge range of concentrations and speciations. Central to this ability is the "transportome", the totality of all interacting metal import and export systems, which, as an emergent feature, transforms the environmental metal content and speciation into the cellular metal mélange. In a kinetic flow equilibrium resulting from controlled uptake and efflux reactions, the periplasmic and cytoplasmic metal content is adjusted in a way that minimizes toxic effects. A central core function of the transportome is to shape the metal ion composition using high-rate and low-specificity reactions to avoid time and/or energy-requiring metal discrimination reactions. This core is augmented by metal-specific channels that may even deliver metals all the way from outside of the cell to the cytoplasm. This review begins with a description of the basic chemical features of transition metal cations and the biochemical consequences of these attributes, and which transition metals are available to C. metallidurans. It then illustrates how the environment influences the metal content and speciation, and how the transportome adjusts this metal content. It concludes with an outlook on the fate of metals in the cytoplasm. By generalization, insights coming from C. metallidurans shed light on multiple transition metal homoeostatic mechanisms in all kinds of bacteria including pathogenic species, where the "battle" for metals is an important part of the host-pathogen interaction.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Germany.
| |
Collapse
|
25
|
Wang X, Ji D, Chen X, Ma Y, Yang J, Ma J, Li X. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:210-217. [PMID: 28688297 DOI: 10.1016/j.envpol.2017.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/19/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Current risk assessment models for metals such as the biotic ligand model (BLM) are usually applied to individual metals, yet toxic metals are rarely found singly in the environment. In the present research, the toxicity of Cu and Zn alone and together were studied in wheat (Triticum aestivum L.) using different Ca2+ and Mg2+ concentrations, pH levels and Zn:Cu concentration ratios. The aim of the study was to better understand the toxicity effects of these two metals using BLMs and toxic units (TUs) from single and combined metal toxicity data. The results of single-metal toxicity tests showed that toxicity of Cu and Zn tended to decrease with increasing Ca2+ or Mg2+ concentrations, and that the effects of pH on Cu and Zn toxicity were related not only to free Cu2+ and Zn2+ activity, respectively, but also to other inorganic metal complex species. For the metal mixture, Cu-Zn interactions based on free ion activities were primarily additive for the different Ca2+ and Mg2+ concentrations and levels of pH. The toxicity data of individual metals derived by the BLM, which incorporated Ca2+ and Mg2+ competition and toxicity of inorganic metal complexes in a single-metal toxicity assessment, could predict the combined toxicity as a function of TU. There was good performance between the predicted and observed effects (root mean square error [RMSE] = 7.15, R2 = 0.97) compared to that using a TU method with a model based on free ion activity (RMSE = 14.29, R2 = 0.86). The overall findings indicated that bioavailability models that include those biochemistry processes may accurately predict the toxicity of metal mixtures.
Collapse
Affiliation(s)
- Xuedong Wang
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, 105 North Road of Xisanhuan, Beijing 100048, China
| | - Dongxue Ji
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, 105 North Road of Xisanhuan, Beijing 100048, China
| | - Xiaolin Chen
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, 105 North Road of Xisanhuan, Beijing 100048, China
| | - Yibing Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Southern Street of Zhongguancun, Beijing 100081, China; School of Resources and Environment, University of Jinan, Jinan, Shandong 250022, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Xiaoxiu Li
- The Key Lab of Resource Environment and GIS, College of Resource Environment and Tourism, Capital Normal University, 105 North Road of Xisanhuan, Beijing 100048, China
| |
Collapse
|
26
|
Zhang X, Yang H, Cui Z. Mucor circinelloides: efficiency of bioremediation response to heavy metal pollution. Toxicol Res (Camb) 2017; 6:442-447. [PMID: 30090512 DOI: 10.1039/c7tx00110j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
Mucor circinelloides, selected from mine tailings for heavy metal bioremediation, was characterized at the genetic level by internal transcribed spacer (ITS) analysis. M. circinelloides was first applied for the absorption of heavy metals {Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii)}. The minimal inhibitory concentration test showed that M. circinelloides could tolerate relatively high concentrations of heavy metals. M. circinelloides could uptake 79.5%, 44.1%, 62.5%, 56.5%, and 85.5% of Fe(iii), Mn(ii), Cu(ii), Zn(ii), and Pb(ii), respectively, from the initial concentration of 20 mg L-1 under optimum conditions (pH 8; 30 °C). Monitoring the change in ATPase activity at certain intervals indicated that the mechanism of bioremediation was directly related to the energy consumption. M. circinelloides will be widely used for in-situ remediation in special environment because of strong vitality and excellent bioremediation efficiency.
Collapse
Affiliation(s)
- Xu Zhang
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| | - Huanhuan Yang
- School of Life Science , Shandong University , Ji'nan 250100 , China
| | - Zhaojie Cui
- School of Environmental Science and Engineering , Shandong University , Ji'nan 250100 , China .
| |
Collapse
|
27
|
Cangelosi V, Ruckthong L, Pecoraro VL. Lead(II) Binding in Natural and Artificial Proteins. Met Ions Life Sci 2017; 17:/books/9783110434330/9783110434330-010/9783110434330-010.xml. [PMID: 28731303 PMCID: PMC5771651 DOI: 10.1515/9783110434330-010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This article describes recent attempts to understand the biological chemistry of lead using a synthetic biology approach. Lead binds to a variety of different biomolecules ranging from enzymes to regulatory and signaling proteins to bone matrix. We have focused on the interactions of this element in thiolate-rich sites that are found in metalloregulatory proteins such as Pbr, Znt, and CadC and in enzymes such as δ-aminolevulinic acid dehydratase (ALAD). In these proteins, Pb(II) is often found as a homoleptic and hemidirectic Pb(II)(SR)3- complex. Using first principles of biophysics, we have developed relatively short peptides that can associate into three-stranded coiled coils (3SCCs), in which a cysteine group is incorporated into the hydrophobic core to generate a (cysteine)3 binding site. We describe how lead may be sequestered into these sites, the characteristic spectral features may be observed for such systems and we provide crystallographic insight on metal binding. The Pb(II)(SR)3- that is revealed within these α-helical assemblies forms a trigonal pyramidal structure (having an endo orientation) with distinct conformations than are also found in natural proteins (having an exo conformation). This structural insight, combined with 207Pb NMR spectroscopy, suggests that while Pb(II) prefers hemidirected Pb(II)(SR)3- scaffolds regardless of the protein fold, the way this is achieved within α-helical systems is different than in β-sheet or loop regions of proteins. These interactions between metal coordination preference and protein structural preference undoubtedly are exploited in natural systems to allow for protein conformation changes that define function. Thus, using a design approach that separates the numerous factors that lead to stable natural proteins allows us to extract fundamental concepts on how metals behave in biological systems.
Collapse
|
28
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
29
|
Pishchik VN, Vorob’ev NI, Provorov NA, Khomyakov YV. Mechanisms of plant and microbial adaptation to heavy metals in plant–microbial systems. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Fang X, Wang L, Deng X, Wang P, Ma Q, Nian H, Wang Y, Yang C. Genome-wide characterization of soybean P 1B -ATPases gene family provides functional implications in cadmium responses. BMC Genomics 2016; 17:376. [PMID: 27207280 PMCID: PMC4874001 DOI: 10.1186/s12864-016-2730-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/12/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The P1B-ATPase subfamily is an important group involved in transporting heavy metals and has been extensively studied in model plants, such as Arabidopsis thaliana and Oryza sativa. Emerging evidence indicates that one homolog in Glycine max is also involved in cadmium (Cd) stress, but the gene family has not been fully investigated in soybean. RESULTS Here, we identified 20 heavy metal ATPase (HMA) family members in the soybean genome, presented as 10 paralogous pairs, which is significantly greater than the number in Arabidopsis or rice, and was likely caused by the latest whole genome duplication event in soybean. A phylogenetic analysis divided the 20 members into six groups, each having conserved or divergent gene structures and protein motif patterns. The integration of RNA-sequencing and qRT-PCR data from multiple tissues provided an overall expression pattern for the HMA family in soybean. Further comparisons of expression patterns and the single nucleotide polymorphism distribution between paralogous pairs suggested functional conservation and the divergence of HMA genes during soybean evolution. Finally, analyses of the HMAs expressed in response to Cd stress provided evidence on how plants manage Cd tolerance, at least in the two contrasting soybean genotypes examined. CONCLUSIONS The genome-wide identification, chromosomal distribution, gene structures, and evolutionary and expression analyses of the 20 HMA genes in soybean provide an overall insight into their potential involvement in Cd responses. These results will facilitate further research on the HMA gene family, and their conserved and divergent biological functions in soybean.
Collapse
Affiliation(s)
- Xiaolong Fang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lei Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, Henan, China
| | - Xiaojuan Deng
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Peng Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qibin Ma
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Hai Nian
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Cunyi Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Sub-center of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
31
|
Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore. Biosci Rep 2016; 36:BSR20160046. [PMID: 26934982 PMCID: PMC4847171 DOI: 10.1042/bsr20160046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
The bacterial ferrous iron acquisition protein FeoB assembles as a homotrimer that is predicted to form a central pore lined by conserved cysteine residues. Structure-function analysis of FeoB indicates a putative mechanism more akin to a GTP-gated channel than a transporter. Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.
Collapse
|
32
|
Cornall A, Rose A, Streten C, McGuinness K, Parry D, Gibb K. Molecular screening of microbial communities for candidate indicators of multiple metal impacts in marine sediments from northern Australia. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:468-484. [PMID: 26274631 DOI: 10.1002/etc.3205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/29/2015] [Accepted: 08/11/2015] [Indexed: 06/04/2023]
Abstract
Coastal sediments accumulate metals from anthropogenic sources and as a consequence industry is required to monitor sediment health. The total concentration of a metal does not necessarily reflect its potential toxicity or biological impact, so biological assessment tools are useful for monitoring. Rapid biological assessment tools sensitive enough to detect relatively small increases in metal concentrations would provide early warning of future ecosystem impact. The authors investigated in situ populations of Archaea and Bacteria as potential tools for rapid biological assessment in sediment at 4 northern Australian coastal locations over 2 yr, in both wet and dry seasons. The 1 M HCl-extractable concentrations of metals in sediment were measured, and Archaeal and Bacterial community profiles were obtained by next-generation sequencing of sediment deoxyribonucleic acid (DNA). Species response curves were used to identify several taxonomic groups with potential as biological indicators of metal impact. Spatial variation, sediment grain size, water depth, and dissolved oxygen also correlated with microbial population shifts. Seasonal variation was less important than geographic location. Metal-challenge culture trials supported the identification of metal-resistant and -sensitive taxa. In situ Archaea and Bacteria are potentially sensitive indicators for changes in bioavailable concentrations of metals; however, the complexity of the system suggests it is important to identify metal-specific functional genes that may be informed by these sequencing surveys, and thus provide a useful addition to identity-based assays.
Collapse
Affiliation(s)
- Alyssa Cornall
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Alea Rose
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - Claire Streten
- Charles Darwin University, Darwin, Northern Territory, Australia
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Keith McGuinness
- Charles Darwin University, Darwin, Northern Territory, Australia
| | - David Parry
- Charles Darwin University, Darwin, Northern Territory, Australia
- Australian Institute of Marine Science, Darwin, Northern Territory, Australia
| | - Karen Gibb
- Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
33
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
34
|
Xiang S, Feng S, Zhang Y, Tan J, Liang S, Chai T. The N-terminal degenerated metal-binding domain is involved in the heavy metal transport activity of TaHMA2. PLANT CELL REPORTS 2015; 34:1615-1628. [PMID: 26037615 DOI: 10.1007/s00299-015-1813-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/23/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
We identified key residues of TaHMA2, and the N- and C-terminal regions of the protein have different roles in its transport function when heterologously expressed in yeast. TaHMA2, a P1B-type ATPase from wheat (Triticum aestivum L.), plays an important role in heavy metal homeostasis in plants. A previous study showed that overexpressing TaHMA2 in rice (Oryza sativa L.), Arabidopsis thaliana, or tobacco (Nicotiana tabacum L.) resulted in various responses to heavy metals. Here, we report the heterologous expression of TaHMA2 in the yeast Saccharomyces cerevisiae. TaHMA2 expression increased the yeast's sensitivity to Cd, but not to Zn, Pb or Co, and increased Cd accumulation was concurrently observed. The eGFP-TaHMA2 fusion protein was localized to the plasma membrane and showed a discontinuous pattern. Mutagenesis of the cysteine and glutamate residues in the N-terminal metal-binding domain (N-MBD) impaired the function of TaHMA2. Deletion of most of the C terminus (TaHMA2ΔC, 712-1003) partially abolished the protein's function, whereas deletion of the N terminus (TaHMA2ΔN, 2-699) completely abolished Cd sensitivity. These data suggest that cysteine and glutamate residues are important for the metal-binding/translocation function of TaHMA2. Additional studies are needed to further understand the selectivity of TaHMA2 in planta.
Collapse
Affiliation(s)
- Shuqin Xiang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
35
|
Hudek L, Bräu L, Michalczyk AA, Neilan BA, Meeks JC, Ackland ML. The ZntA-like NpunR4017 plays a key role in maintaining homeostatic levels of zinc in Nostoc punctiforme. Appl Microbiol Biotechnol 2015; 99:10559-74. [PMID: 26290176 DOI: 10.1007/s00253-015-6922-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022]
Abstract
Analysis of cellular response to zinc exposure provides insights into how organisms maintain homeostatic levels of zinc that are essential, while avoiding potentially toxic cytosolic levels. Using the cyanobacterium Nostoc punctiforme as a model, qRT-PCR analyses established a profile of the changes in relative mRNA levels of the ZntA-like zinc efflux transporter NpunR4017 in response to extracellular zinc. In cells treated with 18 μM of zinc for 1 h, NpunR4017 mRNA levels increased by up to 1300 % above basal levels. The accumulation and retention of radiolabelled (65)Zn by NpunR4107-deficient and overexpressing strains were compared to wild-type levels. Disruption of NpunR4017 resulted in a significant increase in zinc accumulation up to 24 % greater than the wild type, while cells overexpressing NpunR4107 accumulated 22 % less than the wild type. Accumulation of (65)Zn in ZntA(-) Escherichia coli overexpressing NpunR4017 was reduced by up to 21 %, indicating the capacity for NpunR4017 to compensate for the loss of ZntA. These findings establish the newly identified NpunR4017 as a zinc efflux transporter and a key transporter for maintaining zinc homeostasis in N. punctiforme.
Collapse
Affiliation(s)
- L Hudek
- Centre for Regional and Rural Futures, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia. .,Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.
| | - L Bräu
- Centre for Regional and Rural Futures, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - A A Michalczyk
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - B A Neilan
- Australian Centre for Astrobiology and School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - J C Meeks
- Department of Microbiology, University of California, Davis, CA, 95616, USA
| | - M L Ackland
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,School of Life and Environmental Sciences, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| |
Collapse
|
36
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Obinna Obiakor M, Damian Ezeonyejiaku C. Copper-zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 117:149-154. [PMID: 25863353 DOI: 10.1016/j.ecoenv.2015.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
A significant number of studies have centred on the single actions of heavy metals against test animals in predicting aquatic toxicity. However, practical existence of environmental toxicants is in multiple mixtures and variable undefined ratio combinatorial concentrations. Pollution abatement approaches in setting representative safe boundaries for metal contaminants is crucial with factual data on predictively modelled exposures of organisms to multiple mixtures. In continuance of our approach to toxicity of individual heavy metals, we determined the toxicity of binary mixtures of copper and zinc at predetermined ratios against tilapia species and also evaluated the coergisms based on synergistic ratio model for effective formulations of safe limits. Orecohromis niloticus species were exposed to copper and zinc (Cu:Zn) at ratios of 1:1 and 1:2 on 96hLC₅₀ index and mortality response analysed following the probit-log-dose regression with metal-metal interactions effectively modelled. The 96hLC₅₀ values for Cu:Zn were calculated to be 68.898 and 51.197 mg/l for ratios 1:1 and 1:2, respectively. The joint action toxicity of the metal mixtures was observed to differ from the metals acting singly against the same animal species. Synergistic coergisms were realized in most of the ratio mixtures except the antagonistic effect displayed by the combination of Cu:Zn in the ratio 1:1 when compared to the single action of copper. Biological toxicity of heavy metals however still appears uncertain, and consideration of multiple mixtures and interactions of toxicants in natural milieu is very crucial in environmental management of the existing and emerging contaminating metals.
Collapse
Affiliation(s)
- Maximilian Obinna Obiakor
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| | | |
Collapse
|
38
|
Hao X, Lüthje FL, Qin Y, McDevitt SF, Lutay N, Hobman JL, Asiani K, Soncini FC, German N, Zhang S, Zhu YG, Rensing C. Survival in amoeba--a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island". Appl Microbiol Biotechnol 2015; 99:5817-24. [PMID: 26088177 DOI: 10.1007/s00253-015-6749-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/22/2015] [Accepted: 05/27/2015] [Indexed: 11/24/2022]
Abstract
The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.
Collapse
Affiliation(s)
- Xiuli Hao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gorriti MF, Dias GM, Chimetto LA, Trindade-Silva AE, Silva BS, Mesquita MMA, Gregoracci GB, Farias ME, Thompson CC, Thompson FL. Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics 2014; 15:473. [PMID: 24927949 PMCID: PMC4094778 DOI: 10.1186/1471-2164-15-473] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/06/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Salinivibrios are moderately halophilic bacteria found in salted meats, brines and hypersaline environments. We obtained three novel conspecific Salinivibrio strains closely related to S. costicola, from Socompa Lake, a high altitude hypersaline Andean lake (approx. 3,570 meters above the sea level). RESULTS The three novel Salinivibrio spp. were extremely resistant to arsenic (up to 200 mM HAsO42-), NaCl (up to 15%), and UV-B radiation (19 KJ/m2, corresponding to 240 minutes of exposure) by means of phenotypic tests. Our subsequent draft genome ionsequencing and RAST-based genome annotation revealed the presence of genes related to arsenic, NaCl, and UV radiation resistance. The three novel Salinivibrio genomes also had the xanthorhodopsin gene cluster phylogenetically related to Marinobacter and Spiribacter. The genomic taxonomy analysis, including multilocus sequence analysis, average amino acid identity, and genome-to-genome distance revealed that the three novel strains belong to a new Salinivibrio species. CONCLUSIONS Arsenic resistance genes, genes involved in DNA repair, resistance to extreme environmental conditions and the possible light-based energy production, may represent important attributes of the novel salinivibrios, allowing these microbes to thrive in the Socompa Lake.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fabiano L Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.
| |
Collapse
|
40
|
Tang Y, Cao Y, Qiu J, Gao Z, Ou Z, Wang Y, Zheng Y. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses. PLoS One 2014; 9:e98830. [PMID: 24901737 PMCID: PMC4047006 DOI: 10.1371/journal.pone.0098830] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
The plant-specific BURP family proteins play diverse roles in plant development and stress responses, but the function mechanism of these proteins is still poorly understood. Proteins in this family are characterized by a highly conserved BURP domain with four conserved Cys-His repeats and two other Cys, indicating that these proteins potentially interacts with metal ions. In this paper, an immobilized metal affinity chromatography (IMAC) assay showed that the soybean BURP protein SALI3-2 could bind soft transition metal ions (Cd(2+), Co(2+), Ni(2+), Zn(2+) and Cu(2+)) but not hard metal ions (Ca(2+) and Mg(2+)) in vitro. A subcellular localization analysis by confocal laser scanning microscopy revealed that the SALI3-2-GFP fusion protein was localized to the vacuoles. Physiological indexes assay showed that Sali3-2-transgenic Arabidopsis thaliana seedlings were more tolerant to Cu(2+) or Cd(2+) stresses than the wild type. An inductively coupled plasma optical emission spectrometry (ICP-OES) analysis illustrated that, compared to the wild type seedlings the Sali3-2-transgenic seedlings accumulated more cadmium or copper in the roots but less in the upper ground tissues when the seedlings were exposed to excessive CuCl2 or CdCl2 stress. Therefore, our findings suggest that the SALI3-2 protein may confer cadmium (Cd(2+)) and copper (Cu(2+)) tolerance to plants by helping plants to sequester Cd(2+) or Cu(2+) in the root and reduce the amount of heavy metals transported to the shoots.
Collapse
Affiliation(s)
- Yulin Tang
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yan Cao
- The Key Laboratory for Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jianbin Qiu
- The Key Laboratory for Marine Bioresource and Eco-environmental Science, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhan Gao
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhonghua Ou
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yajing Wang
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Yizhi Zheng
- Shenzhen Key Laboratory of Microbial and Gene Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
41
|
Jarosławiecka A, Piotrowska-Seget Z. Lead resistance in micro-organisms. Microbiology (Reading) 2014; 160:12-25. [DOI: 10.1099/mic.0.070284-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lead (Pb) is an element present in the environment that negatively affects all living organisms. To diminish its high toxicity, micro-organisms have developed several mechanisms that allow them to survive exposure to Pb(II). The main mechanisms of lead resistance involve adsorption by extracellular polysaccharides, cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell exterior. This review describes the various lead resistance mechanisms, and the regulation of their expression by lead binding regulatory proteins. Special attention is given to the Pbr system from Cupriavidus metallidurans CH34, which involves a unique mechanism combining efflux and lead precipitation.
Collapse
Affiliation(s)
- Anna Jarosławiecka
- Department of Microbiology, University of Silesia, Jagiellońska Street 28, Katowice 40-032, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellońska Street 28, Katowice 40-032, Poland
| |
Collapse
|
42
|
Naik MM, Dubey SK. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:1-7. [PMID: 24144999 DOI: 10.1016/j.ecoenv.2013.09.039] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/22/2013] [Accepted: 09/25/2013] [Indexed: 05/25/2023]
Abstract
Lead (Pb) is non-bioessential, persistent and hazardous heavy metal pollutant of environmental concern. Bioremediation has become a potential alternative to the existing technologies for the removal and/or recovery of toxic lead from waste waters before releasing it into natural water bodies for environmental safety. To our best knowledge, this is a first review presenting different mechanisms employed by lead resistant bacteria to resist high levels of lead and their applications in cost effective and eco-friendly ways of lead bioremediation and biomonitoring. Various lead resistant mechanisms employed by lead resistant bacteria includes efflux mechanism, extracellular sequestration, biosorption, precipitation, alteration in cell morphology, enhanced siderophore production and intracellular lead bioaccumulation.
Collapse
Affiliation(s)
- Milind Mohan Naik
- Department of Microbiology, Goa University, Laboratory of Bacterial Genetics and Environmental Biotechnology, Taleigao Plateau, Goa 403206, India.
| | | |
Collapse
|
43
|
Olaniran AO, Balgobind A, Pillay B. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci 2013; 14:10197-228. [PMID: 23676353 PMCID: PMC3676836 DOI: 10.3390/ijms140510197] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/10/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals.
Collapse
Affiliation(s)
- Ademola O. Olaniran
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa; E-Mails: (A.B.); (B.P.)
| | - Adhika Balgobind
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa; E-Mails: (A.B.); (B.P.)
| | - Balakrishna Pillay
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa; E-Mails: (A.B.); (B.P.)
| |
Collapse
|
44
|
Tan J, Wang J, Chai T, Zhang Y, Feng S, Li Y, Zhao H, Liu H, Chai X. Functional analyses of TaHMA2, a P(1B)-type ATPase in wheat. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:420-31. [PMID: 23294838 DOI: 10.1111/pbi.12027] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 05/18/2023]
Abstract
Currently, there are few studies concerning the function of heavy metal ATPase 2 (HMA2), particularly in monocotyledons, and the potential application of this protein in biofortification and phytoremediation. Thus, we isolated and characterized the TaHMA2 gene from wheat (Triticum aestivum L.). Our results indicate that TaHMA2 is localized to the plasma membrane and stably expressed, except in the nodes, which showed relatively high expression. Zinc/cadmium (Zn/Cd) resistance was observed in TaHMA2-transformed yeast. The over-expression of TaHMA2 increased the elongation and decreased the seed-setting rate in rice (Oryza sativa L.), but not Arabidopsis thaliana, tobacco (Nicotiana tabacum L.) or wheat. TaHMA2 over-expression also improved root-shoot Zn/Cd translocation, especially in rice. The seeds of transgenic rice and wheat, not tobacco, showed decreased Zn concentrations. The Zn concentration was decreased in all parts of the transgenic rice seeds, but was decreased only in the ventral endosperm of wheat, which showed an increased Zn concentration in the embryo and aleurone. The over-expression of TaHMA2 improved plant tolerance under moderate Zn stress and Zn deficiency, but Zn and Cd resistance decreased under high levels of Zn and Cd stress, respectively. The Cd concentration in transgenic rice seedlings was dramatically increased under Zn deficiency. Thus, over-expression of TaHMA2 showed a more obvious phenotype in monocotyledons than in dicotyledons. These findings provide important information for TaHMA2, and more efforts should be made in the future to characterize the reduced Zn concentration in TaHMA2 transgenic grains and the diversity of TaHMA2 substrate specificity.
Collapse
Affiliation(s)
- Jinjuan Tan
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Le TTY, Vijver MG, Kinraide TB, Peijnenburg WJGM, Hendriks AJ. Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu²⁺-Zn²⁺ and Cu²⁺-Ag⁺). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 176:185-92. [PMID: 23429096 DOI: 10.1016/j.envpol.2013.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/22/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Metal toxicity to lettuce Lactuca sativa was determined following mixture exposure based on the concepts of concentration addition (CA) and response addition (RA). On the basis of conventional models assuming no interaction between mixture components, Ag(+) was the most toxic, followed by Cu(2+) and Zn(2+). Furthermore, ion-ion interactions were included in quantitatively estimating toxicity of interactive mixtures of Cu(2+)-Zn(2+) and Cu(2+)-Ag(+) by linearly expanding the CA and RA models. About 80-92% of the variability in the root growth could be explained by this approach. Estimates by the extended models indicate significant alleviative effects of Zn(2+) on Cu(2+) toxicity whereas Cu(2+) did not significantly affect Zn(2+) toxicity. According to the extended CA model, Cu(2+) significantly reduced Ag(+) toxicity while Ag(+) enhanced Cu(2+) toxicity. Similar effects were not found by the extended RA model. These interactions might result from their individual uptake mechanisms and toxic actions as published in literature.
Collapse
Affiliation(s)
- T T Yen Le
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Environmental Sciences, 6500 GL Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Dhuldhaj UP, Yadav IC, Singh S, Sharma NK. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 224:1-38. [PMID: 23232917 DOI: 10.1007/978-1-4614-5882-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Arsenic (As) is a nonessential element that is often present in plants and in other organisms. However, it is one of the most hazardous of toxic elements globally. In many parts of the world, arsenic contamination in groundwater is a serious and continuing threat to human health. Microbes play an important role in regulating the environmental fate of arsenic. Different microbial processes influence the biogeochemical cycling of arsenic in ways that affect the accumulation of different arsenic species in various ecosystem compartments. For example, in soil, there are bacteria that methylate arsenite to trimethylarsine gas, thereby releasing arsenic to the atmosphere.In marine ecosystems, microbes exist that can convert inorganic arsenicals to organic arsenicals (e.g., di- and tri-methylated arsenic derivatives, arsenocholine,arsenobetaine, arsenosugars, arsenolipids). The organo arsenicals are further metabolized to complete the arsenic cycle.Microbes have developed various strategies that enable them to tolerate arsenic and to survive in arsenic-rich environments. Such strategies include As exclusion from cells by establishing permeability barrier, intra- and extracellular sequestration,active efflux pumps, enzymatic reduction, and reduction in the sensitivity of cellular targets. These strategies are used either singly or in combination. In bacteria,the genes for arsenic resistance/detoxification are encoded by the arsenic resistance operons (ars operon).In this review, we have addressed and emphasized the impact of different microbial processes (e.g., arsenite oxidation, cytoplasmic arsenate reduction, respiratory arsenate reduction, arsenite methylation) on the arsenic cycle. Microbes are the only life forms reported to exist in heavy arsenic-contaminated environments. Therefore,an understanding of the strategies adopted by microbes to cope with arsenic stress is important in managing such arsenic-contaminated sites. Further future insights into the different microbial genes/proteins that are involved in arsenic resistance may also be useful for developing arsenic resistant crop plants.
Collapse
|
47
|
Fechner LC, Dufour M, Gourlay-Francé C. Pollution-induced community tolerance of freshwater biofilms: measuring heterotrophic tolerance to Pb using an enzymatic toxicity test. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:2123-2131. [PMID: 22729786 DOI: 10.1007/s10646-012-0964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2012] [Indexed: 06/01/2023]
Abstract
This study aims at investigating the impacts of Pb on freshwater biofilms with a pollution-induced community tolerance (PICT) approach using a recently developed short-term toxicity test based on β-glucosidase activity to measure biofilms' tolerance to Pb. We first investigated more closely the influence of the total suspended solids (TSS) concentrations of biofilm suspensions used for short-term toxicity tests performed to assess Pb tolerance. The Pb EC(50) values of four dilutions of the same biofilm suspension increased with their TSS concentrations. TSS-normalization allowed to obtain a unique measure of Pb tolerance, thus confirming that TSS-normalization of EC(50) values is a good means to estimate biofilm tolerance to Pb. The experiment was repeated with three different biofilm samples collected at different sites and dates. Second, biofilms were exposed to Pb (0, 1, 10 and 100 μg/L) for 3 weeks in microcosms to assess the impacts of Pb exposure on the communities. An increase in Pb tolerance was observed for the biofilm exposed to 100 μg/L. Automated Ribosomal Intergenic Spacer Analysis revealed modifications of bacterial and eukaryotic community structure with Pb exposure. Moreover, exposure to 100 μg/L Pb also led to an increase in Zn tolerance but not Cu tolerance. This study shows that tolerance acquisition to Pb can be detected after exposure to environmental concentrations of Pb using a PICT methodology and normalized EC(50) values as measures of Pb tolerance.
Collapse
Affiliation(s)
- Lise C Fechner
- Irstea, UR HBAN, 1 rue Pierre-Gilles de Gennes - CS 10030, 92761, Antony, France.
| | | | | |
Collapse
|
48
|
Occurrence of horizontal gene transfer of P(IB)-type ATPase genes among bacteria isolated from the uranium rich deposit of Domiasiat in North East India. PLoS One 2012; 7:e48199. [PMID: 23133569 PMCID: PMC3485009 DOI: 10.1371/journal.pone.0048199] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/21/2012] [Indexed: 12/31/2022] Open
Abstract
Uranium (U) tolerant aerobic heterotrophs were isolated from the subsurface soils of one of the pre-mined U-rich deposits at Domiasiat located in the north-eastern part of India. On screening of genomic DNA from 62 isolates exhibiting superior U and heavy metal tolerance, 32 isolates were found to be positive for P(IB)-type ATPase genes. Phylogenetic incongruence and anomalous DNA base compositions revealed the acquisition of P(IB)-type ATPase genes by six isolates through horizontal gene transfer (HGT). Three of these instances of HGT appeared to have occurred at inter-phylum level and the other three instances indicated to have taken place at intra-phylum level. This study provides an insight into one of the possible survival strategies that bacteria might employ to adapt to environments rich in uranium and heavy metals.
Collapse
|
49
|
Sauge-Merle S, Lecomte-Pradines C, Carrier P, Cuiné S, Dubow M. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. CHEMOSPHERE 2012; 88:918-924. [PMID: 22560974 DOI: 10.1016/j.chemosphere.2012.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/23/2012] [Accepted: 04/04/2012] [Indexed: 05/31/2023]
Abstract
Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation.
Collapse
Affiliation(s)
- Sandrine Sauge-Merle
- CEA, DSV, IBEB, Lab Interact Protein Metal, Saint-Paul-lez-Durance F-13108, France.
| | | | | | | | | |
Collapse
|
50
|
Abstract
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.
Collapse
|