1
|
Osek J, Wieczorek K. Isolation and molecular characterization of Shiga toxin-producing Escherichia coli (STEC) from bovine and porcine carcasses in Poland during 2019-2023 and comparison with strains from years 2014-2018. Int J Food Microbiol 2025; 428:110983. [PMID: 39566378 DOI: 10.1016/j.ijfoodmicro.2024.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
The presence of Shiga toxin-producing Escherichia coli (STEC) on bovine and porcine carcasses during 2019-2023 was investigated. A total of 368 bovine and 87 porcine carcasses were tested using the ISO/TS 13136 standard and the STEC isolates were further characterized with whole genomic sequencing (WGS). It was found that 119 (32.3 %) of bovine and 14 (16.1 %) of porcine carcasses were positive for the stx Shiga toxin gene. Further analysis of the stx-positive samples allowed to isolate 32 (26.9 %) bovine and two (14.3 %) porcine STEC, respectively. Bovine isolates were classified into 21 different serotypes with the most prevalent O168:H8 (3 isolates), whereas two porcine STEC belonged to two serotypes that were not identified in bovine strains. Isolates of bovine carcass origin were mainly positive for the stx2 Shiga toxin gene, either alone or in combination with stx1 type (26 of 32; 81.2 % isolates). Two STEC from porcine carcasses were positive for the stx2e variant only. All STEC, irrespective of the origin, were negative for the eae intimin gene. MLST and cgMLST analyses of all strains tested revealed that they were diverse. However, a close molecular relationship between some bovine isolates based on cgMLST schemes was observed. Comparison of the current bovine STEC with those isolated between 2014 and 2018 showed that some of them consisted of the same MLST sequence types. However, based on cgMLST analysis only two cases of three genomes of STEC isolates each (two from period 2019-2023 and one isolated between 2014 and 2018) revealed up to 50 allelic differences.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Food Safety, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Kinga Wieczorek
- Department of Food Safety, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
2
|
Tree M, Lam TJGM, McDougall S, Beggs DS, Robertson ID, Barnes AL, Chopra A, Ram R, Stockman CA, Kent TC, Aleri JW. Epidemiology of antimicrobial resistance in commensal Escherichia coli from healthy dairy cattle on a Mediterranean pasture-based system of Australia: A cross-sectional study. J Dairy Sci 2025; 108:803-820. [PMID: 39369890 DOI: 10.3168/jds.2024-25157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
This study aimed to determine the prevalence of antimicrobial resistance (AMR) in commensal Escherichia coli from healthy lactating cows and calves in the Mediterranean pasture-based feeding dairy system of Western Australia (WA). Fecal samples were collected from healthy adult lactating cows and healthy calves from dairy farms in WA. Presumptive commensal E. coli was isolated from these samples and confirmed using matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Broth microdilution was used to assess the prevalence and the phenotypic AMR profiles of the E. coli isolates to 8 antimicrobial agents of dairy industry and human importance. The minimum inhibitory concentration for each isolate was interpreted using the epidemiologic cutoff (ECOFF) and Clinical and Laboratory Standards Institute breakpoints. Genomic characterization provided multilocus sequence types and AMR genes for a selection of isolates categorized as nonwild type (NWT) by ECOFF values for the combination of ampicillin, trimethoprim-sulfamethoxazole, and tetracycline. From a total of 1,117 fecal samples (633 adult, 484 calf) collected across 26 randomly selected farms, 891 commensal E. coli isolates were recovered (541 adult, 350 calf). Commensal E. coli classified as NWT was highest for ampicillin for both adult (68.8%; 95% CI [64.7, 72.7]) and calf feces (67.1%; 95% CI [62.0, 72.0]). A large proportion of tetracycline NWT and trimethoprim-sulfamethoxazole NWT organisms were also identified from calf feces, being 44.0% (95% CI [38.7, 49.4]) and 24.6% (95% CI [20.2, 29.4]), respectively. Clinical resistance prevalence was low, being higher for calves than for adult feces for ampicillin (adult: 7.8%, 95% CI [5.7, 10.3]; calf: 30.0%, 95% CI [25.2, 35.1]), tetracycline (adult: 6.3%, 95% CI [4.4, 8.7]; calf: 40.3%, 95% CI [35.1, 45.6]), and trimethoprim-sulfamethoxazole (adult: 2.6%, 95% CI [1.4, 4.3]; calf: 22.0%, 95% CI [17.7, 26.7]). Commensal E. coli originating from calf feces was significantly higher in NWT prevalence compared with adult feces for ciprofloxacin, gentamicin, tetracycline, and trimethoprim-sulfamethoxazole. The overall number of antimicrobials an isolate was classified as NWT toward varied among farms and was significantly higher for isolates originating from calf rather than adult feces. The strain type and sampling source of the commensal E. coli investigated were both associated with the commonality of the resultant resistance genome. Clinical resistance and NWT classification were highest for ampicillin, tetracycline, and trimethoprim-sulfamethoxazole, all antimicrobials commonly used in the treatment of dairy cattle in Australia. Although highly variable across farms, commensal E. coli isolated from healthy dairy calf feces had significantly higher NWT and multidrug resistance (MDR) prevalence compared with feces from healthy adult lactating dairy cows. The resistant genome identified in MDR isolates, although not always consistent with the phenotype, included QnrS1 and genes encoding AmpC β-lactamase and aminoglycoside phosphotransferase.
Collapse
Affiliation(s)
- M Tree
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - T J G M Lam
- GD Animal Health, Deventer, and Faculty of Veterinary Medicine Utrecht University, 3584 CS Utrecht, the Netherlands
| | - S McDougall
- Cognosco, Anexa Veterinary Services, Morrinsville 3340, New Zealand
| | - D S Beggs
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, VIC 3030, Australia
| | - I D Robertson
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - A L Barnes
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia.
| | - A Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - R Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA 6150, Australia
| | - C A Stockman
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - T C Kent
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - J W Aleri
- School of Veterinary Medicine, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia; Centre for Animal Production and Health, Future Foods Institute, Murdoch University, Murdoch, WA 6150, Australia; Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Lee H, Chaudhary DK, Lee KE, Cha IT, Chi WJ, Park S, Seo T, Kim DU. Arvimicrobium flavum gen. nov., sp. nov., A Novel Genus in the Family Phyllobacteriaceae Isolated From Forest Soil. Curr Microbiol 2024; 82:61. [PMID: 39731612 DOI: 10.1007/s00284-024-04043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
During the study of microbial diversity of forest soil in the Republic of Korea, a yellow pigment-producing, Gram-stain-negative, rod-shaped, motile bacterium was isolated and designated as strain 1W2T. This strain grew at temperature of 10-37 °C, at pH of 5.0-9.0, and at NaCl concentration of 0-3.0% (w/v). The 16S rRNA gene sequencing and genome sequencing revealed that strain 1W2T is a member of the family Phyllobacteriaceae but exhibits low similarity with known genera, suggesting that this strain is a new genus within the family. This strain showed the closest similarity to the genera Mesorhizobium (96.6-96.9%), Aminobacter (96.4 -96.6%), Aquamicrobium (96.5-96.7%), and Pseudaminobacter (96.6-96.7%). The nearest relative of 1W2T was Mesorhizobium shangrilense CCBAU 65327 T with the 16S rRNA gene sequence similarity of 96.9%. The genome size was 5,545,526 bp with DNA G + C content of 64.7%. The values of overall genomic relatedness indices between strain 1W2T and the reference members were 20.4-21.3% for digital DNA-DNA hybridization, 74.0-76.6% for average nucleotide identity, and 68.1-61.2% for amino acids identity. Chemotaxonomic profiling revealed that Q-10 was the sole ubiquinone; summed feature 8 (C18:1ω7c and/or C18:1ω6c), iso-C13:0, and C19:0 cyclo ω8c were the predominant fatty acids; and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylcholine, and phosphatidylethanolamine were the major polar lipids. Based on these data, strain 1W2T represents a novel species of a new genus in the family Phyllobacteriaceae. Accordingly, we proposed the name Arvimicrobium flavum gen. nov., sp. nov., with the type strain 1W2T (= KCTC 92441 T = NBRC 116019 T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Microbiology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Ki-Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - In-Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Won-Jae Chi
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
4
|
Egyir B, Owusu-Nyantakyi C, Bortey A, Rabbi Amuasi G, Owusu FA, Boateng W, Ahmed H, Danso JK, Oclu AAG, Mohktar Q, Tetteh-Ocloo G, Amegbletor H, Fosu K, Tetteh FKM, Asante-Sefa S, Deberu ON, Osei KM, Twasam J, Kodom S, Gyinae E, Sampah J, Dzifa Dayie N, Obeng-Nkrumah N, Mills-Pappoe WA, Boateng G, Nilsson P, Bonful HA, Adu B, Hendriksen RS. Whole genome sequencing revealed high proportions of ST152 MRSA among clinical Staphylococcus aureus isolates from ten hospitals in Ghana. mSphere 2024; 9:e0044624. [PMID: 39565128 DOI: 10.1128/msphere.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024] Open
Abstract
Previous studies in Ghana indicated low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and predominance of ST152 methicillin-susceptible S. aureus (MSSA) among clinical isolates. ST152 MRSA clones are associated with severe infections and epidemics. Using whole genome sequencing (WGS), 159 S. aureus isolated from clinical sources (wound, blood, urine, ear, abscess, umbilical cord, eye, vaginal samples, and others) from 10 hospitals across Ghana were investigated. mecA (gene for methicillin resistance) was detected in 38% of the isolates. Panton-Valentine leucocidin toxin (PVL) gene occurred in 65% isolates, with 84% of the MRSA's harboring the PVL gene. ST152 was the major clone, with 74% harboring the mecA gene. Other MRSA clones detected were ST5, ST5204, ST852, and ST1. MSSA clones included ST3249, ST152, ST5, ST1, and ST8. Twenty-three genes encoding resistance to 12 antimicrobial classes were observed with blaZ (97%) being the most prevalent. Other predominant resistance genes included tetK (46%), cat (42%), and dfrG (36%) encoding resistance for tetracyclines, phenicols, and diaminopyrimidine, respectively. Virulence genes for enterotoxins, biofilms, toxic-shock-syndrome toxins, hemolysins, and leukotoxins were also detected. Phylogenetic analysis revealed a shift in the dominant clone from MSSA ST152 to MRSA ST152 over the past decade. The study provides valuable insights into the genomic content of S. aureus from clinical sources in Ghana. The finding of ST152 MRSA in high numbers suggests a shifting epidemiological landscape of these pathogens and continuous surveillance using robust tools like WGS is needed to monitor the rise and spread of these epidemic clones in the country.IMPORTANCESince its emergence in 1959, MRSA has been a significant public health concern, causing infections in both clinical and community settings. Patients with MRSA-related infections experience higher mortality rates due to its ability to evade antimicrobials and immune defenses. In Ghana, understanding the molecular epidemiology of MRSA has been hindered by the lack of appropriate laboratory infrastructure and the limited capacity for molecular data analysis. This study, the largest genomic study of S. aureus in Ghana, addresses this gap by utilizing whole genome sequencing to examine the diversity of circulating S. aureus strains from 10 hospitals. Our findings highlight the predominance of pandemic clones, particularly ST152, and the notable transition of ST152 MSSA to ST152 MRSA over the past decade. The findings from this study supports AMR surveillance efforts in Ghana and emphasize the importance of implementing genomic surveillance using WGS to comprehensively monitor the rise and spread of multi-drug-resitant organisms such as MRSA in the country.
Collapse
Affiliation(s)
- Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christian Owusu-Nyantakyi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Alfred Bortey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Grebstad Rabbi Amuasi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Felicia Amoa Owusu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - William Boateng
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Hawawu Ahmed
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Justice Kwesi Danso
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Agnes Akosua Gyamaah Oclu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | | | | | | | - Solomon Asante-Sefa
- Sekondi Public Health Laboratory, Effia Nkwanta Regional Hospital, Takoradi, Ghana
| | | | | | | | | | | | | | - Nicholas Dzifa Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Korle-Bu, Ghana
| | - Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | | | | | - Pernille Nilsson
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Harriet Affran Bonful
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rene S Hendriksen
- Research Group for Global Capacity Building, National Food Institute, WHO Collaborating Centre (WHO CC) for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory (FAO RL) for Antimicrobial Resistance, European Union Reference Laboratory for Antimicrobial Resistance (EURL-AR), Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Rocha BMDO, Sabino YNV, de Almeida TC, Palacio FB, Rotta IS, Dias VC, da Silva VL, Diniz CG, Azevedo VADC, Brenig B, Soares SDC, Paiva AD, Medeiros JD, Machado ABF. Unlocking Probiotic Potential: Genomic Insights into Weissella paramesenteroides UFTM 2.6.1. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10409-x. [PMID: 39633035 DOI: 10.1007/s12602-024-10409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Weissella, a genus of lactic acid bacteria, has diverse beneficial attributes including probiotic activity and biotechnological applications. Therefore, the investigation of the Weissella genus has garnered growing interest. In this study, we sequenced the complete genome of Weissella paramesenteroides UFTM 2.6.1 isolated from unpasteurized cow's milk from the Triângulo Mineiro region and performed probiogenomic analyses. Taxonomic characterization confirmed the identity of W. paramesenteroides. The genome comprises 1926 protein-coding genes, mainly related to cell metabolism, information storage and processing, and cellular processes and signaling. Ninety-nine unique genes associated with probiotic functions were identified in the genome of W. paramesenteroides UFTM 2.6.1, including genes involved in stress response, bacterial persistence in the gastrointestinal tract, and biosynthesis of vitamins. In silico analysis of bacteriocin-related genes identified Pediocin, and subsequent in vitro testing confirmed that W. paramesenteroides UFTM 2.6.1 exhibits antimicrobial activity against Listeria spp. Genomic characterization revealed the presence of the replicon pLCK4 and four prophage regions, one of which was intact. Moreover, no CRISPR-Cas array or associated Cas proteins were found, along with an absence of resistance and virulence genes, suggesting a safety aspect of the evaluated strain. Pan-genome analysis unveiled 204 exclusive genes in the genome of W. paramesenteroides UFTM 2.6.1, which includes metabolism and stress-associated genes. In general, the results indicate probiotic potential of W. paramesenteroides UFTM 2.6.1. Further studies are required to ensure the safety and beneficial effects of this bacterium in vivo, aiming for future applications in the food industry and animal and human medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Aline Dias Paiva
- Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | | | | |
Collapse
|
6
|
Trovão LDO, Vieira MAM, Santos ACDM, Puño-Sarmiento JJ, Nunes PHS, Santos FF, Rocha VGP, Knöbl T, Navarro-Garcia F, Gomes TAT. Identification of a genomic cluster related to hypersecretion of intestinal mucus and mucinolytic activity of atypical enteropathogenic Escherichia coli (aEPEC). Front Cell Infect Microbiol 2024; 14:1393369. [PMID: 39703371 PMCID: PMC11656320 DOI: 10.3389/fcimb.2024.1393369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/18/2024] [Indexed: 12/21/2024] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) strains are subdivided into typical (tEPEC) and atypical (aEPEC) according to the presence or absence of a virulence-associated plasmid called pEAF. Our research group has previously demonstrated that two aEPEC strains, 0421-1 and 3991-1, induce an increase in mucus production in a rabbit ileal loop model in vivo. This phenomenon was not observed with a tEPEC prototype strain. Few studies on aEPEC strains evaluating their capacity to induce intestinal mucus hypersecretion were done. This study aimed to investigate aEPEC strains regarding their genotypic and phenotypic characteristics, their ability to alter mucus production in an in vivo intestinal infection model, and their potential mucinolytic activity. To investigate the relationship between strains 0421-1 and 3991-1 and 11 other aEPEC strains, their serotypes, sequence types (ST), and virulence factors (VF), several sequencing and genomic analyses were carried out. The study also involved researching the reproduction of mucus hypersecretion in rabbits in vivo. We found that the two mucus-inducing strains and two other strains (1582-4 and 2531-13) shared the same phylogroup (A), ST (378), serotype (O101/O162:H33), and intimin subtype (ι2), were phylogenetically related, and induced mucus hypersecretion in vivo. A wide diversity of VFs was found among the strains, confirming their genomic heterogeneity. However, among the genes studied, no unique virulence factor or gene set was identified exclusively in the mucus-inducing strains, suggesting the multifactorial nature of this phenomenon. The two strains (1582-4 and 2531-13) closely related to the two aEPEC strains that induced mucus production in vivo also induced the phenomenon. The investigation of the mucinolytic activity revealed that all aEPEC strains used mucins as their carbon sources. Ten of the 13 aEPEC strains could cross a mucin layer, and only four adhered better to agar containing mucin than to agar without mucin. The present study paves the way for subsequent investigations into the molecular mechanisms regarding cellular interactions and responses, as well as the correlation between virulence factors and the induction of mucus production/expression during aEPEC infections.
Collapse
Affiliation(s)
- Liana de Oliveira Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Mônica Aparecida Midolli Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Carolina de Mello Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan Josue Puño-Sarmiento
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Pedro Henrique Soares Nunes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Laboratório Alerta, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Terezinha Knöbl
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Navarro-Garcia
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Tânia Aparecida Tardelli Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Jonare L, Wattrang E, Östlund E, Wall H, Jacobson M, Jansson DS. Subcutaneous inoculation of Escherichia coli in broiler chickens causes cellulitis and elicits innate and specific immune responses. BMC Vet Res 2024; 20:545. [PMID: 39623373 PMCID: PMC11610265 DOI: 10.1186/s12917-024-04392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cellulitis caused by Escherichia coli is a common cause of condemnation of broiler chickens at slaughter worldwide and is associated with economic losses and a possible negative impact on animal welfare. The study objective was to monitor clinical signs and immune responses after subcutaneous E. coli inoculation (1.1-1.8 × 107 CFU), aiming to induce cellulitis. Three groups of broiler chickens (n = 15/group) were inoculated with well-characterized E. coli strains (group A: ECA18 O24:H4/ST117 and group B: ECB11 O153:H9/ST38) or with saline (control) at 22 days-of-age. Clinical signs of disease, body weight and immune parameters were monitored until euthanasia 12-14 days after inoculation followed by post-mortem examination. RESULTS The daily weight gain of the inoculated chickens was significantly lower one day after inoculation compared to the controls. Seven (23%) of the inoculated chickens displayed clinical signs: ruffled feathers, mild weakness, open-beak breathing and/or reluctance to stand, of which two birds were euthanized and one bird died. Five chickens in group B were observed with bacteraemia, which lasted up to three days after inoculation for two chickens. A transient increase in chicken mannose receptor MRC1L-B expression on circulating monocytes was observed one day after inoculation in both E. coli inoculated groups, with a more pronounced increase in group B. On day 7 after inoculation, the in vitro adherence of heterophils, monocytes and thrombocytes to the inoculated strain was increased in group B. Antibody titers to the inoculation strains were increased in some chickens in both groups on days 7 and 14 after inoculation, with the highest titers in group B. Seven (47%) and 13 (87%) of the chickens in group A and B, respectively, were diagnosed with cellulitis at post-mortem examination. In most birds, lesions consisted of plaque-like material embedded in the subcutaneous tissue of the abdominal wall. CONCLUSIONS Inoculation of E. coli caused cellulitis and prompted a rapid activation/redistribution of circulating monocytes followed by antibody production. The responses were most pronounced in chickens inoculated with E. coli strain ECB11, presumably because of a higher virulence.
Collapse
Affiliation(s)
- Liv Jonare
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden.
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Emma Östlund
- Department of Microbiology, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Helena Wall
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Box 7024, 750 07, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Désirée S Jansson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
8
|
Staudacher M, Hotz JF, Kriz R, Schefberger K, Schneider L, Spettel K, Starzengruber P, Hagemann JB, Leutzendorff A, Burgmann H, Lagler H. Differences in oxazolidinone resistance mechanisms and small colony variants emergence of Staphylococcus aureus induced in an in vitro resistance development model. Emerg Microbes Infect 2024; 13:2292077. [PMID: 38055244 PMCID: PMC10849000 DOI: 10.1080/22221751.2023.2292077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Invasive Staphylococcus aureus infections are associated with a high burden of disease, case fatality rate and healthcare costs. Oxazolidinones such as linezolid and tedizolid are considered potential treatment choices for conditions involving methicillin resistance or penicillin allergies. Additionally, they are being investigated as potential inhibitors of toxins in toxin-mediated diseases. In this study, linezolid and tedizolid were evaluated in an in vitro resistance development model for induction of resistance in S. aureus. Whole genome sequencing was conducted to elucidate resistance mechanisms through the identification of causal mutations. After inducing resistance to both linezolid and tedizolid, several partially novel single nucleotide variants (SNVs) were detected in the rplC gene, which encodes the 50S ribosome protein L3 in S. aureus. These SNVs were found to decrease the binding affinity, potentially serving as the underlying cause for oxazolidinone resistance. Furthermore, in opposite to linezolid we were able to induce phenotypically small colony variants of S. aureus after induction of resistance with tedizolid for the first time in literature. In summary, even if different antibiotic concentrations were required and SNVs were detected, the principal capacity of S. aureus to develop resistance to oxazolidinones seems to differ between linezolid and tedizolid in-vivo but not in vitro. Stepwise induction of resistance seems to be a time and cost-effective tool for assessing resistance evolution. Inducted-resistant strains should be examined and documented for epidemiological reasons, if MICs start to rise or oxazolidinone-resistant S. aureus outbreaks become more frequent.
Collapse
Affiliation(s)
- Moritz Staudacher
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- Department of Angiology, Medical University of Vienna, Vienna, Austria
| | - Julian Frederic Hotz
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Evangelic Hospital Vienna, Vienna, Austria
| | - Richard Kriz
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Schefberger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Lisa Schneider
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Kathrin Spettel
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Peter Starzengruber
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | | | - Amelie Leutzendorff
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Heinz Burgmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Heimo Lagler
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Young JJ, Nielsen S, Müller L, Benedetti G, Petersen CK, Nielsen EM, Joensen KG. Re: what is the role of epidemiological investigations in human Campylobacter outbreaks in the One Health and whole-genome sequencing era in Denmark? Clin Microbiol Infect 2024:S1198-743X(24)00553-6. [PMID: 39581547 DOI: 10.1016/j.cmi.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Affiliation(s)
- Johanna J Young
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen S, Denmark; European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, Stockholm, Sweden.
| | - Stine Nielsen
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen S, Denmark
| | - Luise Müller
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen S, Denmark
| | - Guido Benedetti
- Department of Infectious Disease Epidemiology, Statens Serum Institut, Copenhagen S, Denmark
| | | | - Eva Møller Nielsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
10
|
Ativi LAE, Adusei-Poku M, Boateng W, Owusu-Nyantantakyi C, Kwesi Danso J, Oclu A, Bortey A, Rabbi Amuasi G, Kofi Adu Tabi B, Paintsil E, Torpey K, Dzifa Dayie N, Egyir B. Antibiotic resistance and draft genome profiles of 10 Streptococcus pneumoniae and 3 Streptococcus pseudopneumoniae strains isolated from the nasopharynx of people living with human immunodeficiency virus in Ghana. Microbiol Resour Announc 2024; 13:e0050524. [PMID: 39365088 PMCID: PMC11556032 DOI: 10.1128/mra.00505-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/24/2024] [Indexed: 10/05/2024] Open
Abstract
Genomic data on clinically important bacteria species such as Streptococcus pneumoniae and Streptococcus pseudopneumoniae from low- and middle-income countries, including Ghana, are scarce. In this study, we provide data on antimicrobial resistance (AMR) and whole-genome profiles of a collection of streptococci species to support AMR surveillance efforts in the country.
Collapse
Affiliation(s)
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - William Boateng
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | | | - Justice Kwesi Danso
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Agnes Oclu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Alfred Bortey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Grebstad Rabbi Amuasi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Blessing Kofi Adu Tabi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | - Elijah Paintsil
- Department of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Nicholas Dzifa Dayie
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| |
Collapse
|
11
|
Obeng-Nkrumah N, Korang-Labi A, Kwao P, Egyir B, Nuertey BD, Hedidor G, Boateng G, Asah-Opoku K, Dankwah T, Okine E, Opintan JA. Extended-spectrum beta-lactamase-producing Enterobacterales in human health: Experience from the tricycle project, Ghana. PLoS One 2024; 19:e0310058. [PMID: 39527553 PMCID: PMC11554194 DOI: 10.1371/journal.pone.0310058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Vulnerable groups, such as pregnant women, are at increased risk of potentially life-threatening infections with extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) for both mother and newborn. However, data regarding ESBL-E carriage and associated risk factors in Ghanaian pregnant women remain scarce. OBJECTIVE This study aimed to determine the prevalence of ESBL-E carriage and its associated risk factors among pregnant women attending the antenatal clinic at the Korle Bu Teaching Hospital. METHODS A systematic sample of 700 pregnant women with gestational age ≥ 34 weeks attending the antenatal clinic at Korle Bu Teaching Hospital was included in the study. After administering a structured questionnaire to assess potential risk factors associated with ESBL-E carriage, patients were given a sterile stool container to submit at least 1 g of stool specimen. Recovered isolates from faecal specimens were identified using MALDI-TOF-MS technology. These isolates were then subjected to susceptibility testing and ESBL identification. A random subset of 24 ESBL-producing Escherichia coli isolates was whole-genome sequenced on the MiSeq Illumina platform. Risk factors associated with ESBL-E carriage were determined using multivariable logistic regression analysis. RESULTS Among the 700 pregnant women, 42% (294) carried ESBL-E. The predominant ESBL-producing Enterobacterales were Escherichia coli (95%). Fifty percent (50%) of ESBL-E were multidrug resistant isolates (MDRs). Whole-genome sequencing of 24 ESBL-producing E. coli isolates revealed that blaCTX-M-15 (96%) was the most prevalent ESBL gene type. Notably, most isolates belonged to commensal phylogenetic groups (A, B1, and C; 88%). Having a primary level of education (aOR 1.45, 95% CI 1.05-1.96) and consuming legumes as the main source of protein (aOR 0.17, 0.40-0.83) were significantly associated with intestinal carriage of ESBL-E. CONCLUSION This study identified a high prevalence of ESBL-E and MDR-ESBL-E carriage among pregnant women. Our findings underscore the urgent need for public health interventions to control the spread of AMR.
Collapse
Affiliation(s)
- Noah Obeng-Nkrumah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Appiah Korang-Labi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Paul Kwao
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Beverly Egyir
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Benjamin D. Nuertey
- Community Health Department, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Gifty Boateng
- National Public Health and Reference Laboratory, Korle Bu, Ghana
| | - Kwaku Asah-Opoku
- Department of Obstetrics and Gynaecology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thomas Dankwah
- Department of Microbiology, Korle Bu Teaching Hospital, Korle Bu, Ghana
| | - Esther Okine
- Department of Microbiology, Korle Bu Teaching Hospital, Korle Bu, Ghana
| | - Japheth A. Opintan
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Wu Y, Wu Z, Gao Y, Fan Y, Dong Y, Zhang Y, Gai Z, Gu S. Comprehensive genomic analysis and evaluation of in vivo and in vitro safety of Heyndrickxia coagulans BC99. Sci Rep 2024; 14:26602. [PMID: 39496841 PMCID: PMC11535476 DOI: 10.1038/s41598-024-78202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/29/2024] [Indexed: 11/06/2024] Open
Abstract
This study aimed to evaluate the safety profile and beneficial effects of Heyndrickxia coagulans strain BC99 (BC99) for potential use in functional foods and pharmaceuticals. We began with whole genome sequencing of BC99, followed by a comprehensive safety assessment comprising genome analysis, hemolysis, cytotoxicity, antibiotic susceptibility tests, and cell adhesion and tolerance studies, along with acute and subacute oral toxicity studies in animal models. BC99 was isolated from a well-characterized collection originating from the feces of a healthy infant. Our results indicated no hemolytic activity on Columbia blood agar plates and broad antibiotic sensitivity, including to gentamicin, ampicillin, chloramphenicol, ciprofloxacin, and others. Cytotoxicity testing confirmed no adverse effects on HT-29 cells and significant adhesive properties to intestinal epithelial cells. Tolerance tests demonstrated over 90% viability of BC99 under simulated gastrointestinal conditions. In vivo studies in mice and rats confirmed the absence of adverse effects following oral administration. Collectively, these findings support BC99's robust tolerance to gastrointestinal environments, strong adhesion capabilities, and a broad spectrum of antibiotic resistance, underlining its potential as a safe and effective agent for gut microbiota modulation and host health enhancement.
Collapse
Affiliation(s)
- Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, P.R. China
| | - Zhiyi Wu
- Department of Research and Development, Henan Animic Biotechnology Co., Ltd, Henan, China
| | - Yinyin Gao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, P.R. China
| | - Yixuan Fan
- Department of Research and Development, Henan Animic Biotechnology Co., Ltd, Henan, China
| | - Yao Dong
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinan Zhang
- Shanghai Institute of Quality Inspection and Technical Research, Shanghai, 200233, China
| | - Zhonghui Gai
- Department of Research and Development, Henan Animic Biotechnology Co., Ltd, Henan, China.
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, P.R. China.
| |
Collapse
|
13
|
Amer AM, Naqvi M, Charnock C. Genomics of Staphylococcus aureus and Enterococcus faecalis isolated from the ocular surface of dry eye disease sufferers. Exp Eye Res 2024; 248:110071. [PMID: 39241861 DOI: 10.1016/j.exer.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Ocular surface inflammatory disorders, such as dry eye, are becoming increasingly prevalent. Developing new treatment strategies targeting harmful bacteria could provide significant therapeutic benefits. The purpose of this study was to characterize the common ocular pathogen Staphylococcus aureus and the rarer endophthalmitis-associated species Enterococcus faecalis isolated from the ocular surface of dry eye disease patients in Norway. Together the 7 isolates (5 S. aureus and 2 E. faecalis) comprise the complete set of members of each species isolated in our previous study of the ocular microbiome of 61 dry eye sufferers. We aimed to investigate the pathogenic potential of these isolates in relation to ocular surface health. To this end, we used whole genome sequencing, multiplex PCR directed at virulence genes and antibiotic susceptibility tests encompassing clinically relevant agents. The E. faecalis isolates showed resistance to only gentamicin. S. aureus isolates displayed susceptibility to most of the tested antibiotics, except for two isolates which showed resistance to trimethoprim/sulfamethoxazole and three isolates which were resistant to ampicillin. Susceptibilities included sensitivity to several first-line antibiotics for treatment of ocular infections by these species. Thus, treatment options would be available if required. However, spontaneous resistance development to gentamicin and rifampicin occurred in some S. aureus which could be a cause for concern. Whole genome sequencing of the isolates showed genome sizes ranging from 2.74 to 2.83 Mbp for S. aureus and 2.86 Mbp for E. faecalis, which is typical for these species. Multilocus sequence typing and phylogenetic comparisons with previously published genomes, did not suggest the presence of eye-specific clusters for either species. Genomic analysis indicated a high probability of pathogenicity among all isolates included in the study. Resistome analysis revealed the presence of the beta-lactamase blaZ gene in all S. aureus isolates and the dfrG gene in two of them; while E. faecalis isolates carried the lsa(A) gene which confers intrinsic resistance to lincosamides and streptogramin A in this species. Screening for virulence factors revealed the presence of various pathogenicity associated genes in both S. aureus and E. faecalis isolates. These included genes coding for toxin production and factors associated with evading the host immune system. Some of the identified genes (tst, hylA & hylB) are suggested to be linked to the pathophysiology of dry eye disease. Lastly, the presence of specific S. aureus virulence genes was confirmed through multiplex PCR analysis.
Collapse
Affiliation(s)
- Ahmed M Amer
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway.
| | - Maria Naqvi
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| | - Colin Charnock
- Department of Life Sciences and Health, Oslo Metropolitan University (OsloMet), Oslo, Norway
| |
Collapse
|
14
|
Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E, Carbonnelle E, Bridier-Nahmias A. Genomic evidence of Escherichia coli gut population diversity translocation in leukemia patients. mSphere 2024; 9:e0053024. [PMID: 39365076 PMCID: PMC11520291 DOI: 10.1128/msphere.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen that can reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for adaptation. The level of genomic polymorphism and the size of the populations translocating from gut to extra-intestinal compartments is largely unknown. To gain insights into the pathophysiology of these translocations, we investigated the level of polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from various compartments in three immunosuppressed patients. Each patient had a unique strain, which was a mutator in one case. In all instances, we observed that translocation encompasses much of the genomic diversity present in the gut. The same signature of selection, whether purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the gut and bloodstream. Additionally, we found a limited number of non-specific mutations among compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral selection. These findings indicate that substantial proportions of populations are undergoing translocation and that they present a complex compartment-specific pattern of selection at the patient level.IMPORTANCEIt has been suggested that intra and extra-intestinal compartments differentially constrain the evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could affect the strain evolutionary trajectories remains understudied. We found that, in immunosuppressed patients, large fractions of E. coli gut populations are translocating with variable modifications of the signature of selection for commensal and pathogenic isolates according to the compartment and/or the patient. Such multiple site sampling should be performed in large cohorts of patients to gain a better understanding of E. coli extra-intestinal diseases.
Collapse
Affiliation(s)
- Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Violaine Walewski
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Thorsten Braun
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Samira Dziri
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Mélanie Magnan
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Erick Denamur
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| | - Etienne Carbonnelle
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
- APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Antoine Bridier-Nahmias
- Université Paris Cité, INSERM, IAME, and APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France
| |
Collapse
|
15
|
Koncz M, Stirling T, Hadj Mehdi H, Méhi O, Eszenyi B, Asbóth A, Apjok G, Tóth Á, Orosz L, Vásárhelyi BM, Ari E, Daruka L, Polgár TF, Schneider G, Zalokh SA, Számel M, Fekete G, Bohár B, Nagy Varga K, Visnyovszki Á, Székely E, Licker MS, Izmendi O, Costache C, Gajic I, Lukovic B, Molnár S, Szőcs-Gazdi UO, Bozai C, Indreas M, Kristóf K, Van der Henst C, Breine A, Pál C, Papp B, Kintses B. Genomic surveillance as a scalable framework for precision phage therapy against antibiotic-resistant pathogens. Cell 2024; 187:5901-5918.e28. [PMID: 39332413 DOI: 10.1016/j.cell.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/15/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy.
Collapse
Affiliation(s)
- Mihály Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary
| | - Tamás Stirling
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Hiba Hadj Mehdi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Doctoral School of Biology, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Bálint Eszenyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - András Asbóth
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary
| | - Gábor Apjok
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ákos Tóth
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - László Orosz
- Department of Medical Microbiology, University of Szeged, Szent-Györgyi Albert Medical School, Dom tér 10, 6720 Szeged, Hungary
| | - Bálint Márk Vásárhelyi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Eszter Ari
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, 1117 Budapest, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Tamás Ferenc Polgár
- Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Theoretical Medicine Doctoral School, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
| | - Sif Aldin Zalokh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Mónika Számel
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Gergely Fekete
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Bohár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, 10th Floor Commonwealth Building Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Karolina Nagy Varga
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Ádám Visnyovszki
- South-Pest Central Hospital National Institute of Hematology and Infectious Diseases, Nagyvárad tér 1, 1097 Budapest, Hungary; Doctoral School of Interdisciplinary Medical Sciences, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Edit Székely
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Str. Gheorghe Marinescu 38, 540142 Targu Mures, Romania; County Emergency Clinical Hospital of Targu Mures, Str. Dr. Gh. Marinescu 50, 540136 Targu Mures, Romania
| | - Monica-Sorina Licker
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Oana Izmendi
- Microbiology Department, Multidisciplinary Research Center on Antimicrobial Resistance, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania; Microbiology Laboratory, "Pius Branzeu" Emergency Clinical County Hospital, Str. Liviu Rebreanu 156, 300723 Timisoara, Romania; Doctoral School, "Victor Babes" University of Medicine and Pharmacy, Str. Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carmen Costache
- Department of Microbiology, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Str. Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Bojana Lukovic
- Academy of Applied Studies Belgrade, College of Health Sciences, Bulevar Zorana Djindjica 152a, Belgrade, Serbia
| | - Szabolcs Molnár
- Emergency County Hospital Miercurea-Ciuc, Str. Doctor Dénes László 2, 530173 Miercurea Ciuc, Romania
| | | | - Csilla Bozai
- County Emergency Hospital Satu Mare, Str. Ravensburg 1-3, 440192 Satu Mare, Romania
| | - Marina Indreas
- Bacau County Emergency Hospital, Str. Haret Spiru 2-4, 600114 Bacau, Romania
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Üllői út 78/b, 1083 Budapest, Hungary
| | - Charles Van der Henst
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Anke Breine
- Microbial Resistance and Drug Discovery, VIB-VUB Center for Structural Biology, VIB, Flanders Institute for Biotechnology, Pleinlaan 2, Building E-3, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Elsene, 1050 Brussels, Belgium
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Metabolic Systems Biology Group, Temesvári Krt. 62, 6726 Szeged, Hungary; National Laboratory for Health Security, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary.
| | - Bálint Kintses
- Synthetic and Systems Biology Unit, Institute of Biochemistry, National Laboratory of Biotechnology, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726 Szeged, Hungary; HCEMM-BRC Translational Microbiology Research Group, Budapesti út 9, 6728 Szeged, Hungary.
| |
Collapse
|
16
|
Allison KN, Mejlaoui R, DeZeeuw KG, Marek JE, Cassol E, Overhage J. Draft genome sequence of a methicillin-resistant Staphylococcus aureus strain isolated from a chronic wound. Microbiol Resour Announc 2024; 13:e0043124. [PMID: 39177368 PMCID: PMC11465856 DOI: 10.1128/mra.00431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
We report the draft genome sequence and antimicrobial resistance gene profile of a methicillin-resistant Staphylococcus aureus (MRSA) clinical isolate recovered from a chronic pressure injury wound infection of an adult female patient. The draft genome sequence included a 2.86-Mb chromosome, which was accompanied by a 27-kb plasmid containing blaZ.
Collapse
Affiliation(s)
- Kira N. Allison
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Rayhane Mejlaoui
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Katrina G. DeZeeuw
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, Ontario, Canada
| | - Jonah E. Marek
- Department of Complex Continuing Care, Saint Vincent Hospital, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Joerg Overhage
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Romão FT, Santos ACM, Puño-Sarmiento JJ, Sperandio V, Hernandes RT, Gomes TAT. Expression of the locus of enterocyte effacement genes during the invasion process of the atypical enteropathogenic Escherichia coli 1711-4 strain of serotype O51:H40. Microbiol Spectr 2024; 12:e0030424. [PMID: 39189752 PMCID: PMC11448038 DOI: 10.1128/spectrum.00304-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in low- and middle-income countries. Certain aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. It can also translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of a type III secretion system for the efficiency of the invasion process was demonstrated, the expression of the locus of enterocyte effacement (LEE) genes during the invasion and intracellular persistence remains unclear. To address this question, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 h post-infection during the persistence period. The number of actin accumulation foci formed on HeLa cells also increased during the 6-h analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that the LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.IMPORTANCEAtypical enteropathogenic Escherichia coli (aEPEC) is a major cause of diarrhea, especially in low- and middle-income countries, like Brazil. However, due to the genome heterogeneity of each clonal group, it is difficult to comprehend the pathogenicity of this strain fully. Among aEPEC strains, 1711-4 can invade eukaryotic cells in vitro, cross the gut barrier, and reach extraintestinal sites in animal models. By studying how different known aEPEC virulence factors are expressed during the invasion process, we can gain insight into the commonalities of this phenotype among other aEPEC strains. This will help in developing preventive measures to control infections caused by invasive strains. No known virulence-encoding genes linked to the invasion process were found. Nevertheless, additional studies are still necessary to evaluate the role of other factors in this phenotype.
Collapse
Affiliation(s)
- Fabiano T. Romão
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ana C. M. Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juan J. Puño-Sarmiento
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vanessa Sperandio
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rodrigo T. Hernandes
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Tânia A. T. Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Ferreira R, Pinto G, Presa E, Oleastro M, Silva C, Vieira L, Sousa C, Pires DP, Figueiredo C, Melo LDR. Screening and in silico characterization of prophages in Helicobacter pylori clinical strains. Microbes Infect 2024:105429. [PMID: 39368610 DOI: 10.1016/j.micinf.2024.105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The increase of antibiotic resistance calls for alternatives to control Helicobacter pylori, a Gram-negative bacterium associated with various gastric diseases. Bacteriophages (phages) can be highly effective in the treatment of pathogenic bacteria. Here, we developed a method to identify prophages in H. pylori genomes aiming at their future use in therapy. A polymerase chain reaction (PCR)-based technique tested five primer pairs on 74 clinical H. pylori strains. After the PCR screening, 14 strains most likely to carry prophages were fully sequenced. After that, a more holistic approach was taken by studying the complete genome of the strains. This study allowed us to identify 12 intact prophage sequences, which were then characterized concerning their morphology, virulence, and antibiotic-resistance genes. To understand the variability of prophages, a phylogenetic analysis using the sequences of all H. pylori phages reported to date was performed. Overall, we increased the efficiency of identifying complete prophages to 54.1 %. Genes with homology to potential virulence factors were identified in some new prophages. Phylogenetic analysis revealed a close relationship among H. pylori-phages, although there are phages with different geographical origins. This study provides a deeper understanding of H. pylori-phages, providing valuable insights into their potential use in therapy.
Collapse
Affiliation(s)
- Rute Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Eva Presa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mónica Oleastro
- Department of Infectious Diseases, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Catarina Silva
- Unit of Technology and Innovation, Department of Human Genetics, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Faculdade de Ciências Médicas, University Nova de Lisboa, Lisbon, Portugal
| | - Luís Vieira
- Unit of Technology and Innovation, Department of Human Genetics, National Institute of Health Doctor Ricardo Jorge (INSA), Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Faculdade de Ciências Médicas, University Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Sousa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Diana P Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís D R Melo
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS -Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
19
|
da Silva TF, Glória RDA, Americo MF, Freitas ADS, de Jesus LCL, Barroso FAL, Laguna JG, Coelho-Rocha ND, Tavares LM, le Loir Y, Jan G, Guédon É, Azevedo VADC. Unlocking the Potential of Probiotics: A Comprehensive Review on Research, Production, and Regulation of Probiotics. Probiotics Antimicrob Proteins 2024; 16:1687-1723. [PMID: 38539008 DOI: 10.1007/s12602-024-10247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 10/02/2024]
Abstract
This review provides a comprehensive overview of the current state of probiotic research, covering a wide range of topics, including strain identification, functional characterization, preclinical and clinical evaluations, mechanisms of action, therapeutic applications, manufacturing considerations, and future directions. The screening process for potential probiotics involves phenotypic and genomic analysis to identify strains with health-promoting properties while excluding those with any factor that could be harmful to the host. In vitro assays for evaluating probiotic traits such as acid tolerance, bile metabolism, adhesion properties, and antimicrobial effects are described. The review highlights promising findings from in vivo studies on probiotic mitigation of inflammatory bowel diseases, chemotherapy-induced mucositis, dysbiosis, obesity, diabetes, and bone health, primarily through immunomodulation and modulation of the local microbiota in human and animal models. Clinical studies demonstrating beneficial modulation of metabolic diseases and human central nervous system function are also presented. Manufacturing processes significantly impact the growth, viability, and properties of probiotics, and the composition of the product matrix and supplementation with prebiotics or other strains can modify their effects. The lack of regulatory oversight raises concerns about the quality, safety, and labeling accuracy of commercial probiotics, particularly for vulnerable populations. Advancements in multi-omics approaches, especially probiogenomics, will provide a deeper understanding of the mechanisms behind probiotic functionality, allowing for personalized and targeted probiotic therapies. However, it is crucial to simultaneously focus on improving manufacturing practices, implementing quality control standards, and establishing regulatory oversight to ensure the safety and efficacy of probiotic products in the face of increasing therapeutic applications.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Rafael de Assis Glória
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Claudio Lima de Jesus
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Alvarenga Lima Barroso
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Guimarães Laguna
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Nina Dias Coelho-Rocha
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laisa Macedo Tavares
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yves le Loir
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Gwénaël Jan
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Éric Guédon
- UMR1253, INRAE, L'Institut Agro Rennes Angers, STLO, Rennes, France
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
20
|
Kandasamy S, Lee KH, Yoo J, Yun J, Kang HB, Kim JE, Oh MH, Ham JS. Whole genome sequencing of Lacticaseibacillus casei KACC92338 strain with strong antioxidant activity, reveals genes and gene clusters of probiotic and antimicrobial potential. Front Microbiol 2024; 15:1458221. [PMID: 39391606 PMCID: PMC11464305 DOI: 10.3389/fmicb.2024.1458221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Lacticaseibacillus casei KACC92338 was originally isolated from Korean raw milk. The antioxidant activities and protective effect in vitro of this strain were evaluated extensively. The results showed that KACC92338 can tolerate hydrogen peroxide up to 2 mM and cell-free supernatant (CFS) had higher scavenging rates for DPPH, hydroxyl radical, reducing power, and iron chelating activities with 95.61 ± 1.59%, 34.10 ± 1.93%, 2.220 ± 0.82 and 81.06 ± 1.06%, respectively. Meanwhile, the CFS showed a protective effect on yeast cells against 10 mM hydrogen peroxide with a survival rate of 76.05 ± 5.65%. To explore the probiotic potential of KACC92338, whole genome assembly and gene clusters with probiotic properties were further analyzed. The genome size was 3,050,901 bp with a 47.96% GC ratio, and 63 contigs. The genome contains 3,048 genes composed of 2,981 coding sequences and 67 RNAs (including 57 tRNAs +9 rRNAs +1 tmRNA). Average Nucleotide Identity and genome-based taxonomy showed that the KACC92338 genome had close similarity with L. casei strains with 96% ANI. Functional annotation by EggNOG and KEGG revealed the presence of numerous genes putatively involved in carbohydrate- and amino acid-transport and metabolism, genetic information processing, and signaling and cellular processes. Additionally, several genes conferring probiotic characteristics such as tolerance to stress, heat, cold, acid, bile salts, oxidative stress, immunomodulation, and adhesion to intestinal epithelium were identified. Notably absent were acquired antibiotic resistance genes, virulence, and pathogenic factors, that prove KACC92338 is a safe strain. Besides, the defense mechanisms of KACC92338 include six prophage regions and three clustered regularly interspaced short palindromic repeat (CRISPR) arrays as acquired immune systems against mobile elements. Further, the BAGEL4 database determined antimicrobial bacteriocin clusters of class IIb: sakacin-P, Enterolysin_A, sactipeptides, and Enterocin X, which suggests the strain could exhibit a wide range of antimicrobial functions. Together, these findings show that the L. casei KACC92338 strain can be a potential probiotic candidate in producing functional fermented foods-, health care- and skin care products- with antioxidant properties. However, a few more mechanistic studies are necessary on the safety assurance and potential application of the strain as a probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun-Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Republic of Korea
| |
Collapse
|
21
|
Gelalcha BD, Mohamed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology of extended-spectrum beta-lactamase-producing- Klebsiella species in East Tennessee dairy cattle farms. Front Microbiol 2024; 15:1439363. [PMID: 39380685 PMCID: PMC11458399 DOI: 10.3389/fmicb.2024.1439363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/30/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction The rising prevalence of Extended-Spectrum Beta-Lactamase (ESBL)-producing Klebsiella species (spp.) poses a significant threat to human and animal health and environmental safety. To address this pressing issue, a comprehensive study was undertaken to elucidate the burden and dissemination mechanisms of ESBL-Klebsiella spp. in dairy cattle farms. Methods Fifty-seven Klebsiella species were isolated on CHROMagar™ ESBL plates and confirmed with MADLI-TOF MS and whole genome sequenced from 14 dairy farms. Results and discussion Six families of beta-lactamase (bla) (bla CTX-M, bla SHV, bla TEM, bla OXY, bla OXA, and bla SED) were detected in ESBL-Klebsiella spp. genomes. Most (73%) of isolates had the first three types of beta-lactamase genes, with bla SHV being the most frequent, followed by bla CTX-M. Most (93%) isolates harbored two or more bla genes. The isolates were genotypically MDR, with 26 distinct types of antibiotic resistance genes (ARGs) and point mutations in gyrA, gyrB, and parC genes. The genomes also harbored 22 different plasmid replicon types, including three novel IncFII. The IncFII and Col440I plasmids were the most frequent and were associated with bla CTXM-27 and qnrB19 genes, respectively. Eighteen distinct sequence types (STs), including eight isolates with novel STs of K. pneumoniae, were detected. The most frequently occurring STs were ST353 (n = 8), ST469 (n = 6), and the novel ST7501 (n = 6). Clusters of ESBL-Klebsiella strains with identical STs, plasmids, and ARGs were detected in multiple farms, suggesting possible clonal expansion. The same ESBL variant was linked to identical plasmids in different Klebsiella STs in some farms, suggesting horizontal spread of the resistance gene. The high burden and dual spread mechanism of ESBL genes in Klebsiella species, combined with the emergence of novel sequence types, could swiftly increase the prevalence of ESBL-Klebsiella spp., posing significant risks to human, animal, and environmental health. Immediate action is needed to implement rigorous surveillance and control measures to mitigate this risk.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohamed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga Edema Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
22
|
Wolde D, Eguale T, Medhin G, Haile AF, Alemayehu H, Mihret A, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, Janko T, Steyer A, Starčič Erjavec M. Diarrheagenic Escherichia coli in Stool Specimens Collected from Patients Attending Primary Healthcare Facilities in Ethiopia: Whole-Genome Sequencing-Based Molecular Characterization. Int J Mol Sci 2024; 25:10251. [PMID: 39408580 PMCID: PMC11476756 DOI: 10.3390/ijms251910251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The diarrheagenic Escherichia coli (DEC) is the major cause of diarrheal diseases in Africa, including Ethiopia. However, the genetic diversity of E. coli pathotypes found in Ethiopia has not been studied well. This study aimed to characterize potential DEC belonging to enteropathogenic (EPEC), Shiga toxin-producing (STEC), enteroaggregative (EAEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) E. coli pathotypes from stool specimens of patients attending primary healthcare units (n = 260) in Addis Ababa and Hossana using whole-genome sequencing. Real-time PCR assays were used to identify DEC isolates belonging to EPEC, STEC, EAEC, ETEC, and EIEC pathotypes, which were then subjected to whole-genome sequencing on the Illumina platform. Twenty-four whole-genome nucleotide sequences of DEC strains with good enough quality were analyzed for virulence-associated genes (VAGs), antibiotic resistance genes (ARGs), phylogenetic groups, serogroups, and sequence types. The majority (62.5%) of DEC isolates belonged to the phylogenetic group B1. The identified DEC isolates belonged to 21 different serogroups and 17 different sequence types. All tested DEC isolates carried multiple VAGs and ARGs. The findings highlight the high diversity in the population structure of the studied DEC isolates, which is important for designing targeted interventions to reduce the diarrheal burden in Ethiopia.
Collapse
Affiliation(s)
- Deneke Wolde
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, Hossana P.O. Box 667, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
- Ohio State Global One Heath, Addis Ababa P.O. Box 1176, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (G.M.); (A.F.H.); (H.A.)
| | - Adane Mihret
- College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia;
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Tea Janko
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Van Nieuwenhuyse B, Balcaen M, Chatzis O, Haenecour A, Derycke E, Detaille T, Clément de Cléty S, Boulanger C, Belkhir L, Yombi JC, De Greef J, Cornu O, Docquier PL, Lentini A, Menten R, Rodriguez-Villalobos H, Verroken A, Djebara S, Merabishvili M, Griselain J, Pirnay JP, Houtekie L, Van der Linden D. Case report: Personalized triple phage-antibiotic combination therapy to rescue necrotizing fasciitis caused by Panton-Valentine leukocidin-producing MRSA in a 12-year-old boy. Front Cell Infect Microbiol 2024; 14:1354681. [PMID: 39355265 PMCID: PMC11442429 DOI: 10.3389/fcimb.2024.1354681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Maximal standard-of-care (SOC) management could not stop the life-threatening progression of a necrotizing fasciitis induced by Panton-Valentine Leukocidin-producing Methicillin-Resistant Staphylococcus aureus (MRSA) in a 12-year-old boy. Multi-route phage therapy was initiated along with antibiotics against Staphylococcus aureus, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, eventually leading to full recovery with no reported adverse events.
Collapse
Affiliation(s)
- Brieuc Van Nieuwenhuyse
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Mathilde Balcaen
- Pediatric Intensive Care Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Olga Chatzis
- Pediatric Infectious Diseases, General Pediatrics Department, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Astrid Haenecour
- Pediatric Intensive Care Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Emilien Derycke
- Pediatric Intensive Care Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Thierry Detaille
- Pediatric Intensive Care Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Stéphan Clément de Cléty
- Pediatric Intensive Care Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Cécile Boulanger
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Genetics of Autoimmune Diseases and Cancer laboratoire (GEDI), de Duve Institute, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Leïla Belkhir
- Division of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Louvain centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research (IREC/LTAP), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Jean-Cyr Yombi
- Division of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Julien De Greef
- Division of Internal Medicine and Infectious Disease, Cliniques Universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Louvain centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research (IREC/LTAP), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Olivier Cornu
- Department of Orthopedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Institute of Experimental and Clinical Research, Neuromusculoskeletal Lab (IREC/NMSK), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Pierre-Louis Docquier
- Department of Orthopedic and Trauma Surgery, Cliniques Universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Institute of Experimental and Clinical Research, Neuromusculoskeletal Lab (IREC/NMSK), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Audrey Lentini
- Departement of Plastic Surgery, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Renaud Menten
- Department of Radiology, Pediatric Radiology Unit, Cliniques universitaires Saint-Luc, Université Catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Hector Rodriguez-Villalobos
- Department of Microbiology, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Institute of Experimental and Clinical Research, Medical Microbiology Department (IREC/MBLG), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Alexia Verroken
- Department of Microbiology, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Institute of Experimental and Clinical Research, Medical Microbiology Department (IREC/MBLG), Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Sarah Djebara
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Johann Griselain
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Laurent Houtekie
- Pediatric Intensive Care Unit, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| | - Dimitri Van der Linden
- Institute of Experimental and Clinical Research, Pediatric Department (IREC/PEDI), Université catholique de Louvain - UCLouvain, Brussels, Belgium
- Pediatric Infectious Diseases, General Pediatrics Department, Cliniques universitaires Saint-Luc, Université catholique de Louvain - UCLouvain, Brussels, Belgium
| |
Collapse
|
24
|
Kujawska M, Neuhaus K, Huptas C, Jiménez E, Arboleya S, Schaubeck M, Hall LJ. Exploring the Potential Probiotic Properties of Bifidobacterium breve DSM 32583-A Novel Strain Isolated from Human Milk. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10346-9. [PMID: 39287748 DOI: 10.1007/s12602-024-10346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Human milk is the best nutrition for infants, providing optimal support for the developing immune system and gut microbiota. Hence, it has been used as source for probiotic strain isolation, including members of the genus Bifidobacterium, in an effort to provide beneficial effects to infants who cannot be exclusively breastfed. However, not all supplemented bifidobacteria can effectively colonise the infant gut, nor confer health benefits to the individual infant host; therefore, new isolates are needed to develop a range of dietary products for this specific age group. Here, we investigated the beneficial potential of Bifidobacterium breve DSM 32583 isolated from human milk. We show that in vitro B. breve DSM 32583 exhibited several characteristics considered fundamental for beneficial bacteria, including survival in conditions simulating those present in the digestive tract, adherence to human epithelial cell lines, and inhibition of growth of potentially pathogenic microorganisms. Its antibiotic resistance patterns were comparable to those of known beneficial bifidobacterial strains, and its genome did not contain plasmids nor virulence-associated genes. These results suggest that B. breve DSM 32583 is a potential probiotic candidate.
Collapse
Affiliation(s)
- Magdalena Kujawska
- Chair of intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Christopher Huptas
- Chair of Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | | | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Monika Schaubeck
- HiPP GmbH & Co. Vertrieb KG, Georg-Hipp-Str. 7, 85276, Pfaffenhofen (Ilm), Germany.
| | - Lindsay J Hall
- Chair of intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| |
Collapse
|
25
|
Eskola K, Aimo-Koivisto E, Heikinheimo A, Mykkänen A, Hautajärvi T, Grönthal T. Prevalence, risk factors, and characterisation of extended-spectrum β-lactamase -producing Enterobacterales (ESBL-E) in horses entering an equine hospital and description of longitudinal excretion. BMC Vet Res 2024; 20:412. [PMID: 39272173 PMCID: PMC11396584 DOI: 10.1186/s12917-024-04260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Extended-spectrum β-lactamase -producing Enterobacterales (ESBL-E) are important zoonotic pathogens that can cause serious clinical infections, also in horses. Preventing the spread of ESBL-E, especially in the equine hospital environment, is key to reducing the number of difficult-to-treat infections. Estimating the local prevalence of ESBL-E in horses is crucial to establish targeted infection control programs at equine hospitals. We conducted a prevalence and risk factor study in equine patients on admission to an equine teaching hospital in Finland through a rectal ESBL-E screening specimen of the horse and a questionnaire. RESULTS The prevalence of ESBL-E in admitted horses was 3% (5/161, 95% CI 1-7%); none of the tested factors remained statistically significant in multivariate analysis, although antimicrobial treatment within three months was borderline significant (p = 0.052). Extended-spectrum β-lactamase -producing Klebsiella pneumoniae ST6179:CTX-M-15 was detected in three horses using whole-genome sequencing, which in combination with patient records suggested nosocomial transmission. Escherichia coli isolates were ST1250:CTX-M-1 (n = 1), ST1079:CTX-M-1 (n = 1), and ST1245:CTX-M-14 (n = 1). Multiple virulence genes were detected in the ESBL-E isolates. In the ESBL-E positive horses enrolled in a one-year follow-up study, ESBL-E were unlikely to be isolated in rectal screening specimens after the initial positive specimen. CONCLUSIONS The prevalence of ESBL-E in horses visiting a veterinary teaching hospital in Finland is low, indicating an overall low prevalence estimate in the country's equine population. No statistically significant risk factors were identified, likely due to the low number of cases. The duration of ESBL-E carriage is likely to be very short in horses.
Collapse
Affiliation(s)
- Katarina Eskola
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | - Elina Aimo-Koivisto
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Annamari Heikinheimo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Food and Feed Microbiology Unit, Finnish Food Authority, Helsinki, Finland
| | - Anna Mykkänen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Thomas Grönthal
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
- Animal Health Diagnostics Unit, Finnish Food Authority, Helsinki, Finland.
| |
Collapse
|
26
|
Ljubović AD, Granov Ð, Zahirović E, Čamdžić A, Muhić A, Salimović Bešić I. Predominance of OXA-48 carbapenemase-producing Klebsiella pneumoniae strains in tertiary hospital in Sarajevo, Bosnia and Herzegovina. BIOMOLECULES & BIOMEDICINE 2024; 24:1178-1185. [PMID: 38696542 PMCID: PMC11379017 DOI: 10.17305/bb.2024.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
Klebsiella pneumoniae, a member of the Enterobacteriaceae family, demonstrates an increasing trend of resistance to carbapenems and is a common cause of both hospital- and community-acquired infections. The current study provides insights into the genetic characterization of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates circulating during 2022 in a Sarajevo tertiary hospital. Among the 87 CRKP strains analyzed, real-time polymerase chain reaction (rtPCR) results showed that 85 (97.7%) tested positive for the carbapenem resistance gene. The oxacillinase-48 (OXA-48) gene was detected in 83 (95.4%) isolates, while the Klebsiella pneumoniae carbapenemase (KPC) and the New Delhi metallo-beta-lactamase (NDM) genes were detected in one isolate each. No Verona integron-encoded-metallo-beta-lactamase (VIM) or imipenemase-metallo-beta-lactamase 1 (IMP-1) genes were found in any of the tested isolates. The multilocus sequence typing (MLST) analysis of sequence types (STs) revealed that ST101, an emerging high-risk clone exhibiting extensive drug resistance, was the most prevalent, whereas ST307 was detected in only one isolate. Phylogenetic analysis of the ten CRKP isolates indicated the presence of three clusters that could constitute an outbreak. A comparison of the results of the utilized phenotypic test (the combined-disk test [CDT]) and rtPCR showed high concordance, suggesting that the phenotypic assay may be useful for the early detection of resistance mechanisms as part of routine susceptibility testing. With the increased affordability of next-generation sequencing (NGS), its application in hospital settings has proven highly beneficial, aiding in the implementation of infection control and prevention measures. Given the significant resistance demonstrated by the CRKP isolates to most tested antibiotics, it is imperative to establish effective methods to restrict the spread of these isolates, as well as to carefully monitor the use of carbapenems in clinical practice.
Collapse
Affiliation(s)
- Amela Dedeić Ljubović
- Unit for Clinical Microbiology, Clinical Centre of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Faculty of Health Studies, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Ðana Granov
- Unit for Clinical Microbiology, Clinical Centre of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Sarajevo Medical School, Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Edina Zahirović
- Unit for Clinical Microbiology, Clinical Centre of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Faculty of Health Studies, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Azra Čamdžić
- Unit for Clinical Microbiology, Clinical Centre of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Adis Muhić
- Department of Clinical Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irma Salimović Bešić
- Unit for Clinical Microbiology, Clinical Centre of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
- Faculty of Health Studies, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
27
|
Wolde D, Eguale T, Medhin G, Haile AF, Alemayehu H, Mihret A, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, Janko T, Steyer A, Starčič Erjavec M. Genomic Characterization of Extended-Spectrum β-Lactamase-Producing and Third-Generation Cephalosporin-Resistant Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics (Basel) 2024; 13:851. [PMID: 39335024 PMCID: PMC11428868 DOI: 10.3390/antibiotics13090851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) in Escherichia coli is a major public health concern. The aim of this study was to investigate the genomic characteristics of extended-spectrum β-lactamase (ESBL)-producing and third-generation cephalosporin-resistant E. coli from a previously obtained collection of 260 E. coli isolates from fecal samples of patients attending primary healthcare facilities in Addis Ababa and Hossana, Ethiopia. A total of 29 E. coli isolates (19 phenotypically confirmed ESBL-producing and 10 third-generation cephalosporin-resistant isolates) were used. Whole-genome sequencing (NextSeq 2000 system, Illumina) and bioinformatic analysis (using online available tools) were performed to identify ARGs, virulence-associated genes (VAGs), mobile genetic elements (MGEs), serotypes, sequence types (STs), phylogeny and conjugative elements harbored by these isolates. A total of 7 phylogenetic groups, 22 STs, including ST131, and 23 serotypes with different VAGs were identified. A total of 31 different acquired ARGs and 10 chromosomal mutations in quinolone resistance-determining regions (QRDRs) were detected. The isolates harbored diverse types of MGEs, with IncF plasmids being the most prevalent (66.7%). Genetic determinants associated with conjugative transfer were identified in 75.9% of the E. coli isolates studied. In conclusion, the isolates exhibited considerable genetic diversity and showed a high potential for transferability of ARGs and VAGs. Bioinformatic analyses also revealed that the isolates exhibited substantial genetic diversity in phylogenetic groups, sequence types (ST) and serogroups and were harboring a variety of virulence-associated genes (VAGs). Thus, the studied isolates have a high potential for transferability of ARGs and VAGs.
Collapse
Affiliation(s)
- Deneke Wolde
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, Hossana P.O. Box 667, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Ohio State Global One Health, Addis Ababa, Ethiopia
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Adane Mihret
- College of Health Sciences, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa P.O. Box 1005, Ethiopia
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia
| | - Tea Janko
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
28
|
Menezes J, Frosini SM, Weese S, Perreten V, Schwarz S, Amaral AJ, Loeffler A, Pomba C. Transmission dynamics of ESBL/AmpC and carbapenemase-producing Enterobacterales between companion animals and humans. Front Microbiol 2024; 15:1432240. [PMID: 39290515 PMCID: PMC11405340 DOI: 10.3389/fmicb.2024.1432240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
Antimicrobial resistance mediated by extended-spectrum beta-lactamase (ESBL)- and plasmid-mediated cephalosporinase (AmpC)-producing Enterobacterales, as well as carbapenemase-producing Enterobacterales have globally increased among companion animals, posing a potential health risk to humans in contact with them. This prospective longitudinal study investigates the transfer of ESBL/AmpC- and carbapenemase-producing Enterobacterales between companion animals and their cohabitant humans in Portugal (PT) and the United Kingdom (UK) during animal infection. Fecal samples and nasal swabs collected from dogs and cats with urinary tract infection (UTI) or skin and soft tissue infection (SSTI), and their cohabitant humans were screened for resistant strains. Relatedness between animal and human strains was established by whole-genome sequencing (WGS). ESBL/AmpC-producing Enterobacterales were detected in companion animals (PT = 55.8%; UK = 36.4%) and humans (PT = 35.9%; UK = 12.5%). Carbapenemase-producing Enterobacterales carriage was observed in one dog from Portugal (2.6%) and another dog from the UK (4.5%). Transmission of index clinical ESBL-producing Escherichia coli and Klebsiella pneumoniae strains to cohabitant humans was observed in three Portuguese households (6.9%, n = 43), with repeated isolation of the index strains on fecal samples from the animals and their cohabiting humans. In addition, longitudinal sharing of E. coli strains carried by companion animals and their owners was observed in other two Portuguese households and two households from the UK. Furthermore, a multidrug-resistant ACT-24-producing Enterobacter hormaechei subsp. hoffmannii strains were also shared within another Portuguese household. These results highlight the importance of the household as an epidemiological unit in the efforts to mitigate the spread of antimicrobial resistance, further emphasizing the need for antimicrobial surveillance in this context, capable of producing data that can inform and evaluate public health actions.
Collapse
Affiliation(s)
- Juliana Menezes
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Siân-Marie Frosini
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Scott Weese
- Ontario Veterinary College, Guelph, ON, Canada
| | - Vincent Perreten
- Division of Molecular Bacterial Epidemiology and Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre of Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andreia J Amaral
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Science and Technology School, University of Évora, Évora, Portugal
| | - Anette Loeffler
- Department of Clinical Science and Services, Royal Veterinary College, Hertfordshire, United Kingdom
| | - Constança Pomba
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
29
|
Hotz JF, Staudacher M, Schefberger K, Spettel K, Schmid K, Kriz R, Schneider L, Hagemann JB, Cyran N, Schmidt K, Starzengruber P, Lötsch F, Leutzendorff A, Daller S, Ramharter M, Burgmann H, Lagler H. Unraveling novel mutation patterns and morphological variations in two dalbavancin-resistant MRSA strains in Austria using whole genome sequencing and transmission electron microscopy. BMC Infect Dis 2024; 24:899. [PMID: 39223565 PMCID: PMC11367932 DOI: 10.1186/s12879-024-09797-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) strains resistant to non-beta-lactam antimicrobials poses a significant challenge in treating severe MRSA bloodstream infections. This study explores resistance development and mechanisms in MRSA isolates, especially after the first dalbavancin-resistant MRSA strain in our hospital in 2016. METHODS This study investigated 55 MRSA bloodstream isolates (02/2015-02/2021) from the University Hospital of the Medical University of Vienna, Austria. The MICs of dalbavancin, linezolid, and daptomycin were assessed. Two isolates (16-33 and 19-362) resistant to dalbavancin were analyzed via whole-genome sequencing, with morphology evaluated using transmission electron microscopy (TEM). RESULTS S.aureus BSI strain 19-362 had two novel missense mutations (p.I515M and p.A606D) in the pbp2 gene. Isolate 16-33 had a 534 bp deletion in the DHH domain of GdpP and a SNV in pbp2 (p.G146R). Both strains had mutations in the rpoB gene, but at different positions. TEM revealed significantly thicker cell walls in 16-33 (p < 0.05) compared to 19-362 and dalbavancin-susceptible strains. None of the MRSA isolates showed resistance to linezolid or daptomycin. CONCLUSION In light of increasing vancomycin resistance reports, continuous surveillance is essential to comprehend the molecular mechanisms of resistance in alternative MRSA treatment options. In this work, two novel missense mutations (p.I515M and p.A606D) in the pbp2 gene were newly identified as possible causes of dalbavancin resistance.
Collapse
Affiliation(s)
- Julian Frederic Hotz
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Department of Internal Medicine III, Division of Infectious Diseases, University Hospital of Ulm, Ulm, 89081, Germany
- Department of Neurology, Hospital St. John's of God, Vienna, 1020, Austria
| | - Moritz Staudacher
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Department of Angiology, Medical University of Vienna, Vienna, 1090, Austria
| | - Katharina Schefberger
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Kathrin Spettel
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, 1090, Austria
| | - Katharina Schmid
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Richard Kriz
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Lisa Schneider
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Norbert Cyran
- Faculty of Life Sciences, Research Support Facilities UBB, University of Vienna, Vienna, 1030, Austria
| | - Katy Schmidt
- Faculty of Life Sciences, Research Support Facilities UBB, University of Vienna, Vienna, 1030, Austria
| | - Peter Starzengruber
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, 1090, Austria
| | - Felix Lötsch
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, 1090, Austria
| | - Amelie Leutzendorff
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, 1090, Austria
| | - Simon Daller
- Department of Respiratory and Lung Diseases, Klinik Penzing, Vienna, 1140, Austria
| | - Michael Ramharter
- Center for Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20359, Germany
| | - Heinz Burgmann
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria
| | - Heimo Lagler
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, 1090, Austria.
| |
Collapse
|
30
|
Gędas A, Schmidt H, Weiss A. Identification and evaluation of Escherichia coli strain ATCC 8739 as a surrogate for thermal inactivation of enterohemorrhagic Escherichia coli in fruit nectars: Impact of applied techniques on the decimal reduction time. Food Microbiol 2024; 122:104544. [PMID: 38839230 DOI: 10.1016/j.fm.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.
Collapse
Affiliation(s)
- Astrid Gędas
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Agnes Weiss
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
31
|
Asgharzadeh Kangachar S, Logel DY, Trofimova E, Zhu HX, Zaugg J, Schembri MA, Weynberg KD, Jaschke PR. Discovery and characterisation of new phage targeting uropathogenic Escherichia coli. Virology 2024; 597:110148. [PMID: 38941748 DOI: 10.1016/j.virol.2024.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Antimicrobial resistance is an escalating threat with few new therapeutic options in the pipeline. Urinary tract infections (UTIs) are one of the most prevalent bacterial infections globally and are prone to becoming recurrent and antibiotic resistant. We discovered and characterized six novel Autographiviridae and Guernseyvirinae bacterial viruses (phage) against uropathogenic Escherichia coli (UPEC), a leading cause of UTIs. The phage genomes were between 39,471 bp - 45,233 bp, with 45.0%-51.0% GC%, and 57-84 predicted coding sequences per genome. We show that tail fiber domain structure, predicted host capsule type, and host antiphage repertoire correlate with phage host range. In vitro characterisation of phage cocktails showed synergistic improvement against a mixed UPEC strain population and when sequentially dosed. Together, these phage are a new set extending available treatments for UTI from UPEC, and phage vM_EcoM_SHAK9454 represents a promising candidate for further improvement through engineering.
Collapse
Affiliation(s)
- Shahla Asgharzadeh Kangachar
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Dominic Y Logel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Ellina Trofimova
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Hannah X Zhu
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Julian Zaugg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Karen D Weynberg
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia; ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
32
|
Yang P, Li J, Lv M, He P, Song G, Shan B, Yang X. Molecular Epidemiology and Horizontal Transfer Mechanism of optrA-Carrying Linezolid-Resistant Enterococcus faecalis. Pol J Microbiol 2024; 73:349-362. [PMID: 39268957 PMCID: PMC11395433 DOI: 10.33073/pjm-2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of this work was to provide a theoretical and scientific basis for the treatment, prevention, and control of clinical drug-resistant bacterial infections by studying the molecular epidemiology and horizontal transfer mechanism of optrA-carrying linezolid-resistant Enterococcus faecalis strains (LREfs) that were clinically isolated in a tertiary hospital in Kunming, China. Non-repetitive LREfs retained in a tertiary A hospital in Kunming, China. The strains were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The transferability and horizontal transfer mechanism of optrA gene were analyzed using polymerase chain reaction (PCR), whole-genome sequencing (WGS), and conjugation experiments. A total of 39 LREfs strains were collected, and all of them were multi-drug resistant. There were 30 LREfs strains (76.9%) carrying the optrA gene, The cfr, poxtA genes and mutations in the 23S rRNA gene were not detected. The conjugation experiments showed that only three of 10 randomly selected optrA-carrying LREfs were successfully conjugated with JH2-2. Further analysis of one successfully conjugated strain revealed that the optrA gene, located in the donor bacterium, formed the IS1216E-erm(A)-optrA-fexA-IS1216E transferable fragment under the mediation of the mobile genetic element (MGE) IS1216E, which was then transferred to the recipient bacterium via horizontal plasmid transfer. Carrying the optrA gene is the primary resistance mechanism of LREfs strains. The optrA gene could carry the erm(A) and fexA genes to co-transfer among E. faecalis. MGEs such as insertion sequence IS1216E play an important role in the horizontal transfer of the optrA gene.
Collapse
Affiliation(s)
- Peini Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiang Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guibo Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
33
|
Omar OS, Sengeruan LP, Kanje LE, van Zwetselaar M, Kuchaka DJ, Shayo MJ, Kumburu H, Sonda T, Mshana J, Chugulu S. Whole genome-based antimicrobial resistance and virulence profiling of Staphylococcus aureus isolates from chronic leg ulcer patients in Kilimanjaro, Tanzania. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105631. [PMID: 38945421 DOI: 10.1016/j.meegid.2024.105631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Chronic leg ulcers are hard to treat and can be a burden, particularly in resource-limited settings where diagnosis is a challenge. Staphylococcus aureus is among the common bacteria isolated from chronic wounds with a great impact on wound healing, particularly in patients with co-morbidities. Antimicrobial resistance genes and virulence factors in Staphylococcus aureus isolates were assessed to support healthcare professionals to make better therapeutic choices, and importantly to curb the development and spread of antibiotic resistance. METHODS A cross-sectional study involved both inpatients and outpatients with chronic leg ulcers was conducted from August 2022 to April 2023 in 2 health facilities in Kilimanjaro region in Tanzania. Antimicrobial susceptibility testing was done using the disk diffusion method. Further, whole genome sequencing was performed to study the genotypic characteristics of the isolates. RESULTS A total of 92 participants were recruited in which 9 participants were only positive for 10 Staphylococcus aureus isolates upon culture. Five STs among 9 isolates were identified. Most of them belonged to ST8 (44%), with 1 isolate does not belong to any ST. Additionally, 50% of the isolates were methicillin-resistant Staphylococcus aureus (MRSA). All S. aureus isolates had almost similar virulence factors such as hemolysin, proteases and evasions that promote toxin production, protease production and host immune evasion respectively. Moreover, all mecA positive S. aureus isolates were phenotypically susceptible to cefoxitin. CONCLUSION Presence of mecA positive S. aureus isolates which are also phenotypically susceptible to cefoxitin implies the possibility of classifying MRSA as MSSA. This may result in the possible emergence of highly cefoxitin - resistant strains in health care and community settings when subsequently exposed to beta-lactam agents. Therefore, combination of whole genome sequencing and conventional methods is important in assessing bacterial resistance and virulence to improve management of patients.
Collapse
Affiliation(s)
- Omar Said Omar
- General Surgery Department, Kilimanjaro Christian Medical Centre, P.O Box 3010, Moshi, Tanzania.
| | - Lameck Pashet Sengeruan
- Kishapu District Council, P.O. Box 1288, Shinyanga, Tanzania; Bioinformatics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania.
| | - Livin E Kanje
- Genomics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania
| | - Marco van Zwetselaar
- Bioinformatics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania
| | - Davis John Kuchaka
- Bioinformatics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania; Department of Global Health and Biomedical Sciences, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| | - Mariana J Shayo
- Genomics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania; Department of Biological and Pre-clinical Studies, Muhimbili University of Health and Allied Sciences, P.O Box 65001, Dar es Salaam, Tanzania
| | - Happiness Kumburu
- Genomics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania
| | - Tolbert Sonda
- Bioinformatics Unit, Kilimanjaro Clinical Research Institute, P.O. Box 2236, Moshi, Tanzania
| | - Jere Mshana
- General Surgery Department, Kilimanjaro Christian Medical Centre, P.O Box 3010, Moshi, Tanzania
| | - Samwel Chugulu
- General Surgery Department, Kilimanjaro Christian Medical Centre, P.O Box 3010, Moshi, Tanzania
| |
Collapse
|
34
|
Casimiro-Soriguer CS, Pérez-Florido J, Robles EA, Lara M, Aguado A, Rodríguez Iglesias MA, Lepe JA, García F, Pérez-Alegre M, Andújar E, Jiménez VE, Camino LP, Loruso N, Ameyugo U, Vazquez IM, Lozano CM, Chaves JA, Dopazo J. The integrated genomic surveillance system of Andalusia (SIEGA) provides a One Health regional resource connected with the clinic. Sci Rep 2024; 14:19200. [PMID: 39160186 PMCID: PMC11333592 DOI: 10.1038/s41598-024-70107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
The One Health approach, recognizing the interconnectedness of human, animal, and environmental health, has gained significance amid emerging zoonotic diseases and antibiotic resistance concerns. This paper aims to demonstrate the utility of a collaborative tool, the SIEGA, for monitoring infectious diseases across domains, fostering a comprehensive understanding of disease dynamics and risk factors, highlighting the pivotal role of One Health surveillance systems. Raw whole-genome sequencing is processed through different species-specific open software that additionally reports the presence of genes associated to anti-microbial resistances and virulence. The SIEGA application is a Laboratory Information Management System, that allows customizing reports, detect transmission chains, and promptly alert on alarming genetic similarities. The SIEGA initiative has successfully accumulated a comprehensive collection of more than 1900 bacterial genomes, including Salmonella enterica, Listeria monocytogenes, Campylobacter jejuni, Escherichia coli, Yersinia enterocolitica and Legionella pneumophila, showcasing its potential in monitoring pathogen transmission, resistance patterns, and virulence factors. SIEGA enables customizable reports and prompt detection of transmission chains, highlighting its contribution to enhancing vigilance and response capabilities. Here we show the potential of genomics in One Health surveillance when supported by an appropriate bioinformatic tool. By facilitating precise disease control strategies and antimicrobial resistance management, SIEGA enhances global health security and reduces the burden of infectious diseases. The integration of health data from humans, animals, and the environment, coupled with advanced genomics, underscores the importance of a holistic One Health approach in mitigating health threats.
Collapse
Affiliation(s)
- Carlos S Casimiro-Soriguer
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Javier Pérez-Florido
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
| | - Enrique A Robles
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - María Lara
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | - Andrea Aguado
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
| | | | - José A Lepe
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain
- Servicio de Microbiología, Unidad Clínica Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Federico García
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
- Servicio de Microbiología. Hospital Universitario San Cecilio, 18016, Granada, Spain
- Instituto de Investigación Biosanitaria, Ibs.GRANADA, 18012, Granada, Spain
| | - Mónica Pérez-Alegre
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Eloísa Andújar
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Victoria E Jiménez
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Lola P Camino
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC University of Seville University Pablo de Olavide, Seville, Spain
| | - Nicola Loruso
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Ulises Ameyugo
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Isabel María Vazquez
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Carlota M Lozano
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - J Alberto Chaves
- Dirección General de Salud Pública y Ordenación Farmacéutica, Consejería de Salud y Consumo- Junta de Andalucía, Seville, Spain
| | - Joaquin Dopazo
- Andalusian Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain.
- Institute of Biomedicine of Seville, IBiS, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013, Seville, Spain.
| |
Collapse
|
35
|
Maung AT, Abdelaziz MNS, Noor Mohammadi T, Lwin SZC, El-Telbany M, Zhao J, Wang C, Lin Y, Shen C, Zayda M, Masuda Y, Honjoh KI, Miyamoto T. Single and combined application of bacteriophage and cinnamon oils against pathogenic Listeria monocytogenes in milk and smoked salmon. Int J Food Microbiol 2024; 421:110797. [PMID: 38878706 DOI: 10.1016/j.ijfoodmicro.2024.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Nowadays, the discovery of alternative natural antimicrobial substances such as bacteriophages, essential oils, and other physical and chemical agents is developing in the food industry. In this study, nine bacteriophages were isolated from various parts of raw chickens and exhibited lytic activities against L. monocytogenes and various Listeria spp. The characterization of phage vB_LmoS-PLM9 was stable at 4 to 50 °C and pH range from 4 to 10. Phage vB_LmoS-PLM9 had a circular, double-stranded genomic DNA with 38,345 bp having endolysin but no antibiotic resistance or virulence genes. Among the eight essential oils tested at 10 %, cinnamon bark, and cassia oils showed the strongest antilisterial activities. The combined use of phage vB_LmoS-PLM9 and cinnamon oils indicated higher efficiency than single treatments. The combination of phage (MOI of 10) and both cinnamon oils (0.03 %) reduced the viable counts of L. monocytogenes and inhibited the regrowth of resistant cell populations in broth at 30 °C. Furthermore, treatment with the combination of phage (MOI of 100) and cinnamon oil (0.125 %) was effective in milk, especially at 4 °C by reducing the viable count to less than lower limit of detection. These results suggest combining phage and cinnamon oil is a potential approach for controlling L. monocytogenes in milk.
Collapse
Affiliation(s)
- Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Animal Science, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | | | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Cunkuan Shen
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Mahmoud Zayda
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Monofiya Governorate, Egypt
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
36
|
Erb IK, Suarez C, Frank EM, Bengtsson-Palme J, Lindberg E, Paul CJ. Escherichia coli in urban marine sediments: interpreting virulence, biofilm formation, halotolerance, and antibiotic resistance to infer contamination or naturalization. FEMS MICROBES 2024; 5:xtae024. [PMID: 39246828 PMCID: PMC11378635 DOI: 10.1093/femsmc/xtae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Marine sediments have been suggested as a reservoir for pathogenic bacteria, including Escherichia coli. The origins, and properties promoting survival of E. coli in marine sediments (including osmotolerance, biofilm formation capacity, and antibiotic resistance), have not been well-characterized. Phenotypes and genotypes of 37 E. coli isolates from coastal marine sediments were characterized. The isolates were diverse: 30 sequence types were identified that have been previously documented in humans, livestock, and other animals. Virulence genes were found in all isolates, with more virulence genes found in isolates sampled from sediment closer to the effluent discharge point of a wastewater treatment plant. Antibiotic resistance was demonstrated phenotypically for one isolate, which also carried tetracycline resistance genes on a plasmid. Biofilm formation capacity varied for the different isolates, with most biofilm formed by phylogroup B1 isolates. All isolates were halotolerant, growing at 3.5% NaCl. This suggests that the properties of some isolates may facilitate survival in marine environments and can explain in part how marine sediments can be a reservoir for pathogenic E. coli. As disturbance of sediment could resuspend bacteria, this should be considered as a potential contributor to compromised bathing water quality at nearby beaches.
Collapse
Affiliation(s)
- Isabel K Erb
- Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
| | - Carolina Suarez
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Ellinor M Frank
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | - Johan Bengtsson-Palme
- Division for Systems and Synthetic Biology, Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance research (CARe), SE-413 45 Gothenburg, Sweden
| | - Elisabet Lindberg
- City of Helsingborg, Department of City Planning, Järnvägsgatan 22, SE-252 25 Helsingborg, Sweden
| | - Catherine J Paul
- Applied Microbiology, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
- Water Resources Engineering, Department of Building and Environmental Technology, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
37
|
Díaz-Formoso L, Contente D, Feito J, Hernández PE, Borrero J, Muñoz-Atienza E, Cintas LM. Genomic Sequence of Streptococcus salivarius MDI13 and Latilactobacillus sakei MEI5: Two Promising Probiotic Strains Isolated from European Hakes ( Merluccius merluccius, L.). Vet Sci 2024; 11:365. [PMID: 39195819 PMCID: PMC11359882 DOI: 10.3390/vetsci11080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Frequently, diseases in aquaculture have been fought indiscriminately with the use of antibiotics, which has led to the development and dissemination of (multiple) antibiotic resistances in bacteria. Consequently, it is necessary to look for alternative and complementary approaches to chemotheraphy that are safe for humans, animals, and the environment, such as the use of probiotics in fish farming. The objective of this work was the Whole-Genome Sequencing (WGS) and bioinformatic and functional analyses of S. salivarius MDI13 and L. sakei MEI5, two LAB strains isolated from the gut of commercial European hakes (M. merluccius, L.) caught in the Northeast Atlantic Ocean. The WGS and bioinformatic and functional analyses confirmed the lack of transferable antibiotic resistance genes, the lack of virulence and pathogenicity issues, and their potentially probiotic characteristics. Specifically, genes involved in adhesion and aggregation, vitamin biosynthesis, and amino acid metabolism were detected in both strains. In addition, genes related to lactic acid production, active metabolism, and/or adaptation to stress and adverse conditions in the host gastrointestinal tract were detected in L. sakei MEI5. Moreover, a gene cluster encoding three bacteriocins (SlvV, BlpK, and BlpE) was identified in the genome of S. salivarius MDI13. The in vitro-synthesized bacteriocin BlpK showed antimicrobial activity against the ichthyopathogens Lc. garvieae and S. parauberis. Altogether, our results suggest that S. salivarius MDI13 and L. sakei MEI5 have a strong potential as probiotics to prevent fish diseases in aquaculture as an appropriate alternative/complementary strategy to the use of antibiotics.
Collapse
Affiliation(s)
| | | | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | | | | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | |
Collapse
|
38
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
39
|
Olanrewaju OS, Molale-Tom LG, Bezuidenhout CC. Genomic diversity, antibiotic resistance, and virulence in South African Enterococcus faecalis and Enterococcus lactis isolates. World J Microbiol Biotechnol 2024; 40:289. [PMID: 39102038 PMCID: PMC11300488 DOI: 10.1007/s11274-024-04098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
This study presents the empirical findings of an in-depth genomic analysis of Enterococcus faecalis and Enterococcus lactis isolates from South Africa. It offers valuable insights into their genetic characteristics and their significant implications for public health. The study uncovers nuanced variations in the gene content of these isolates, despite their similar GC contents, providing a comprehensive view of the evolutionary diversity within the species. Genomic islands are identified, particularly in E. faecalis, emphasizing its propensity for horizontal gene transfer and genetic diversity, especially in terms of antibiotic resistance genes. Pangenome analysis reveals the existence of a core genome, accounting for a modest proportion of the total genes, with 2157 core genes, 1164 shell genes, and 4638 cloud genes out of 7959 genes in 52 South African E. faecalis genomes (2 from this study, 49 south Africa genomes downloaded from NCBI, and E. faecalis reference genome). Detecting large-scale genomic rearrangements, including chromosomal inversions, underscores the dynamic nature of bacterial genomes and their role in generating genetic diversity. The study uncovers an array of antibiotic resistance genes, with trimethoprim, tetracycline, glycopeptide, and multidrug resistance genes prevalent, raising concerns about the effectiveness of antibiotic treatment. Virulence gene profiling unveils a diverse repertoire of factors contributing to pathogenicity, encompassing adhesion, biofilm formation, stress resistance, and tissue damage. These empirical findings provide indispensable insights into these bacteria's genomic dynamics, antibiotic resistance mechanisms, and virulence potential, underlining the pressing need to address antibiotic resistance and implement robust control measures.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Cornelius C Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
40
|
Furlan JPR, Lopes R, Ramos MS, Rosa RDS, Dos Santos LDR, Stehling EG. The detection of KPC-2, NDM-1, and VIM-2 carbapenemases in international clones isolated from fresh vegetables highlights an emerging food safety issue. Int J Food Microbiol 2024; 420:110765. [PMID: 38838541 DOI: 10.1016/j.ijfoodmicro.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ralf Lopes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Micaela Santana Ramos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael da Silva Rosa
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas David Rodrigues Dos Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
41
|
Johno D, Zhang Y, Mohammadi TN, Zhao J, Lin Y, Wang C, Lu Y, Abdelaziz MNS, Maung AT, Lin CY, El-Telbany M, Lwin SZC, Damaso CH, Masuda Y, Honjoh KI, Miyamoto T. Characterization of selected phages for biocontrol of food-spoilage pseudomonads. Int Microbiol 2024; 27:1333-1344. [PMID: 38206524 DOI: 10.1007/s10123-023-00479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Pseudomonas spp., such as P. fluorescens group, P. fragi, and P. putida, are the major psychrophilic spoilage bacteria in the food industry. Bacteriophages (phages) are a promising tool for controlling food-spoilage and food-poisoning bacteria; however, there are few reports on phages effective on food-spoilage bacteria such as Pseudomonas spp. In this study, 12 Pseudomonas phages were isolated from chicken and soil samples. Based on the host range and lytic activity at 30 °C and 4 °C and various combinations of phages, phages vB_PflP-PCS4 and vB_PflP-PCW2 were selected to prepare phage cocktails to control Pseudomonas spp. The phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 showed the strongest lytic activity and retarded regrowth of P. fluorescens and P. putida at 30 °C, 8 °C, and 4 °C at a multiplicity of infection of 100. Nucleotide sequence analysis of the genomic DNA indicated that vB_PflP-PCS4 and vB_PflP-PCW2 phages were lytic phages of the Podoviridae family and lacked tRNA, toxin, or virulence genes. A novel endolysin gene was found in the genomic DNA of phage vB_PflP-PCS4. The results of this study suggest that the phage cocktail consisting of vB_PflP-PCS4 and vB_PflP-PCW2 is a promising tool for the biocontrol of psychrophilic food-spoilage pseudomonads during cold storage and distribution.
Collapse
Affiliation(s)
- Daisuke Johno
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tahir Noor Mohammadi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yuan Lu
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Marwa Nabil Sayed Abdelaziz
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Aye Thida Maung
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Chen-Yu Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Catherine Hofilena Damaso
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
42
|
de Melo Tavares R, Sereno MJ, Nunes da Cruz Encide Sampaio A, Pereira JG, Bersot LDS, Yamatogi RS, Call DR, Nero LA. Characterization of diarrheagenic Escherichia coli from different cattle production systems in Brazil. Food Microbiol 2024; 121:104508. [PMID: 38637072 DOI: 10.1016/j.fm.2024.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/20/2024]
Abstract
Diarrheagenic E. coli (DEC) can cause severe diarrhea and is a public health concern worldwide. Cattle are an important reservoir for this group of pathogens, and once introduced into the abattoir environment, these microorganisms can contaminate consumer products. This study aimed to characterize the distribution of DEC [Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC)] from extensive and intensive cattle production systems in Brazil. Samples (n = 919) were collected from animal feces (n = 200), carcasses (n = 600), meat cuts (n = 90), employee feces (n = 9), and slaughterhouse water (n = 20). Virulence genes were detected by PCR in 10% of animal samples (94/919), with STEC (n = 81) as the higher prevalence, followed by EIEC (n = 8), and lastly EPEC (n = 5). Animals raised in an extensive system had a higher prevalence of STEC (average 48%, sd = 2.04) when compared to animals raised in an intensive system (23%, sd = 1.95) (Chi-square test, P < 0.001). From these animals, most STEC isolates only harbored stx2 (58%), and 7% were STEC LEE-positive isolates that were further identified as O157:H7. This study provides further evidence that cattle are potential sources of DEC, especially STEC, and that potentially pathogenic E. coli isolates are widely distributed in feces and carcasses during the slaughter process.
Collapse
Affiliation(s)
- Rafaela de Melo Tavares
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Mallu Jagnow Sereno
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Aryele Nunes da Cruz Encide Sampaio
- Universidade Estadual de São Paulo (UNESP), Botucatu Campus, Faculdade de Medicina Veterinária e Zootecnia, Distrito de Rubião Jr, SN, 18618-970, Botucatu, SP, Brazil
| | - Juliano Gonçalves Pereira
- Universidade Estadual de São Paulo (UNESP), Botucatu Campus, Faculdade de Medicina Veterinária e Zootecnia, Distrito de Rubião Jr, SN, 18618-970, Botucatu, SP, Brazil
| | - Luciano Dos Santos Bersot
- Universidade Federal do Paraná, Palotina Campus, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Ricardo Seiti Yamatogi
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Douglas Ruben Call
- Paul G. Allen School for Global Health, Washington State University, 240 SE Ott Road, PO Box 647090, 99164-7090, Pullman, WA, USA
| | - Luís Augusto Nero
- Universidade Federal de Viçosa, Departamento de Veterinária, Laboratório de Inspeção de Produtos de Origem Animal (InsPOA), Av. PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
43
|
Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Boueroy P, Akeda Y, Okada K, Iida T, Hamada S, Kerdsin A. Genomic analysis of carbapenem- and colistin-resistant Klebsiella pneumoniae complex harbouring mcr-8 and mcr-9 from individuals in Thailand. Sci Rep 2024; 14:16836. [PMID: 39039157 PMCID: PMC11263567 DOI: 10.1038/s41598-024-67838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Kazuhisa Okada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Centre On Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
44
|
Usein CR, Oprea M, Dinu S, Popa LI, Cristea D, Militaru CM, Ghiță A, Costin M, Popa IL, Croitoru A, Bologa C, Rusu LC. Shiga Toxin-Producing Escherichia coli Strains from Romania: A Whole Genome-Based Description. Microorganisms 2024; 12:1469. [PMID: 39065242 PMCID: PMC11278934 DOI: 10.3390/microorganisms12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs.
Collapse
Affiliation(s)
- Codruța-Romanița Usein
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mihaela Oprea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Sorin Dinu
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Laura-Ioana Popa
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Daniela Cristea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Cornelia-Mădălina Militaru
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Andreea Ghiță
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mariana Costin
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Ionela-Loredana Popa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Anca Croitoru
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Cristina Bologa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
| | - Lavinia-Cipriana Rusu
- National Centre for Communicable Diseases Prevention and Control, National Public Health Institute, 050463 Bucharest, Romania;
| |
Collapse
|
45
|
Arauz-Cabrera J, Marquez-Salazar D, Delgadillo-Valles R, Caporal-Hernandez L, Hernandez-Acevedo GN, Barrios-Villa E. Genomic Profile of a Multidrug-Resistant Klebsiella pneumoniae Strain Isolated from a Urine Specimen. Curr Microbiol 2024; 81:276. [PMID: 39023551 DOI: 10.1007/s00284-024-03802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen mostly found in health care-associated infections but can also be associated with community-acquired infections and is in critical need of new antimicrobial agents for strains resistant to carbapenems. The prevalence of carbapenemase-encoding genes varies among studies. Multidrug-resistant K. pneumoniae strains can harbor several antimicrobial-resistant determinants and mobile genetic elements (MGEs), along with virulence genetic determinants in community settings. We aim to determine the genetic profile of a multidrug-resistant K. pneumoniae strain isolated from a patient with community-acquired UTI. We isolated a K. pneumoniae strain UABC-Str0120, from a urine sample of community-acquired urinary tract infection. Antimicrobial susceptibility tests and Whole-genome sequencing (WGS) were performed. The phylogenetic relationship was inferred by SNPs calling and filtering. UABC-Str0120 showed resistance toward β-lactams, combinations with β-lactamase inhibitors, and carbapenems. WGS revealed the presence of genes conferring resistance to aminoglycosides, β-lactams, carbapenems, quinolones, sulfonamides, phosphonates, phenicols, and quaternary ammonium compounds, 77 subsystems of virulence genes were identified, and an uncommon sequence type ST5889 was also determined. The sequenced strain harbors several MGEs. The UABC-Str0120 recovered from a urine sample harbors several virulence and antimicrobial resistance determinants, which assembles an endangering combination for an immunocompromised or a seemly healthy host, given its presence in a community setting.
Collapse
Affiliation(s)
- Jonathan Arauz-Cabrera
- Facultad de Medicina Mexicali, Departamento de Farmacología, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Dolores Marquez-Salazar
- Facultad de Medicina Mexicali, Departamento de Farmacología, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Ricardo Delgadillo-Valles
- Facultad de Medicina Mexicali, Departamento de Microbiología y Parasitología Clínica, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Liliana Caporal-Hernandez
- Laboratorio de Biología Molecular y Genómica, Departamento de Ciencias, Químico Biológicas y Agropecuarias, Universidad de Sonora, Universidad e Irigoyen S/N, Campus Caborca. Av., H. Caborca, Sonora, México, CP. 83621
| | - Gerson N Hernandez-Acevedo
- Facultad de Medicina Mexicali, Departamento de Microbiología y Parasitología Clínica, Universidad Autónoma de Baja California, Humberto Torres Sanginés SN, Centro Cívico, Mexicali, Baja California, México, CP. 21000
| | - Edwin Barrios-Villa
- Laboratorio de Biología Molecular y Genómica, Departamento de Ciencias, Químico Biológicas y Agropecuarias, Universidad de Sonora, Universidad e Irigoyen S/N, Campus Caborca. Av., H. Caborca, Sonora, México, CP. 83621.
| |
Collapse
|
46
|
Chintakovid N, Singkhamanan K, Yaikhan T, Nokchan N, Wonglapsuwan M, Jitpakdee J, Kantachote D, Surachat K. Probiogenomic analysis of Lactiplantibacillus plantarum SPS109: A potential GABA-producing and cholesterol-lowering probiotic strain. Heliyon 2024; 10:e33823. [PMID: 39044985 PMCID: PMC11263657 DOI: 10.1016/j.heliyon.2024.e33823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
Lactiplantibacillus plantarum SPS109, an isolated strain of lactic acid bacteria (LAB) from fermented foods, showed remarkable potential as a probiotic with dual capabilities in γ-aminobutyric acid (GABA) production and cholesterol reduction. This study employs genomic and comparative analyses to search into the strain's genetic profile, safety features, and probiotic attributes. The safety assessment reveals the absence of virulence factors and antimicrobial resistance genes, while the genome uncovers bacteriocin-related elements, including sactipeptides and a cluster for putative plantaricins, strengthening its ability to combat diverse pathogens. Pangenome analysis revealed unique bacteriocin-related genes, specifically lcnD and bcrA, distinguishing SPS109 from four other L. plantarum strains producing GABA. In addition, genomic study emphasizes SPS109 strain distinctive features, two GABA-related genes responsible for GABA production and a bile tolerance gene (cbh) crucial for cholesterol reduction. Additionally, the analysis highlights several genes of potential probiotic properties, including stress tolerance, vitamin production, and antioxidant activity. In summary, L. plantarum SPS109 emerges as a promising probiotic candidate with versatile applications in the food and beverage industries, supported by its unique genomic features and safety profile.
Collapse
Affiliation(s)
- Nutwadee Chintakovid
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Natakorn Nokchan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirayu Jitpakdee
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Duangporn Kantachote
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
47
|
Lyytinen OL, Dapuliga C, Wallinger D, Patpatia S, Audu BJ, Kiljunen SJ. Three novel Enterobacter cloacae bacteriophages for therapeutic use from Ghanaian natural waters. Arch Virol 2024; 169:156. [PMID: 38967872 PMCID: PMC11226500 DOI: 10.1007/s00705-024-06081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are a growing global concern. Enterobacter cloacae complex (ECC) species are particularly adept at developing antibiotic resistance. Phage therapy is proposed as an alternative treatment for pathogens that no longer respond to antibiotics. Unfortunately, ECC phages are understudied when compared to phages of many other bacterial species. In this Ghanaian-Finnish study, we isolated two ECC strains from ready-to-eat food samples and three novel phages from natural waters against these strains. We sequenced the genomic DNA of the novel Enterobacter phages, fGh-Ecl01, fGh-Ecl02, and fGh-Ecl04, and assessed their therapeutic potential. All of the phages were found to be lytic, easy to propagate, and lacking any toxic, integrase, or antibiotic resistance genes and were thus considered suitable for therapy purposes. They all were found to be related to T4-type viruses: fGh-Ecl01 and fGh-Ecl04 to karamviruses and fGh-Ecl02 to agtreviruses. Testing of Finnish clinical ECC strains showed promising susceptibility to these novel phages. As many as 61.1% of the strains were susceptible to fGh-Ecl01 and fGh-Ecl04, and 7.4% were susceptible to fGh-Ecl02. Finally, we investigated the susceptibility of the newly isolated ECC strains to three antibiotics - meropenem, ciprofloxacin, and cefepime - in combination with the novel phages. The use of phages and antibiotics together had synergistic effects. When using an antibiotic-phage combination, even low concentrations of antibiotics fully inhibited the growth of bacteria.
Collapse
Affiliation(s)
- O L Lyytinen
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - C Dapuliga
- Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - D Wallinger
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Patpatia
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - B J Audu
- National Veterinary Research Institute, Vom, Nigeria
| | - S J Kiljunen
- Human Microbiome Research Program (HUMI), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Clinical Microbiology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
48
|
Ranta K, Skurnik M, Kiljunen S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol 2024; 24:234. [PMID: 38951769 PMCID: PMC11218385 DOI: 10.1186/s12866-024-03387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Klebsiella aerogenes is an opportunistic pathogen that causes a wide variety of infections. Due to the rising problem of antibiotic resistance, novel antibiotics and strategies to combat bacterial infections are needed. Host-specific bacteriophages are natural enemies of bacteria and can be used in phage therapy as an alternative form of treatment against bacterial infections. Jumbo phages are defined as phages with genomes larger than 200 kb. Relatively few studies have been done on jumbo phages compared to smaller phages. RESULTS A novel phage, fENko-Kae01, was isolated from a commercial phage cocktail. Genomic analysis revealed that fENko-Kae01 is a lytic jumbo phage with a 360 kb genome encoding 578 predicted genes. No highly similar phage genomes were identified and fENko-Kae01 may be a completely new genus representative. No known genes associated with lysogenic life cycle, bacterial virulence, or antibiotic resistance were identified. The phage had myovirus morphology and a narrow host range. Phage resistant bacterial mutants emerged under phage selection. Whole genome sequencing revealed that the biogenesis of the flagellum was affected in four mutants and the lack of functional flagellum was confirmed in motility assays. Furthermore, phage fENKo-Kae01 failed to adsorb on the non-motile mutants indicating that the bacterial flagellum is the phage-binding receptor. CONCLUSIONS fENko-Kae01 is a novel jumbo bacteriophage that is considered safe for phage therapy. fENko-Kae01 uses the flagellum as the phage-binding receptor and may represent a completely novel genus.
Collapse
Affiliation(s)
- Kira Ranta
- HUS Diagnostic Center, Clinical Microbiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Skurnik
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saija Kiljunen
- Human Microbiome Research Program, Research Program Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
49
|
Núñez D, Jiménez P, Cortez-San Martín M, Cortés C, Cárdenas M, Michelson S, Garay T, Vecchiola M, Céspedes A, Maldonado JE, Vásquez-Martínez Y. Molecular and Phylogenomic Analysis of a Vancomycin Intermediate Resistance USA300LV Strain in Chile. Microorganisms 2024; 12:1284. [PMID: 39065053 PMCID: PMC11278659 DOI: 10.3390/microorganisms12071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance is a major global health problem, and, among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) represents a serious threat. MRSA causes a wide range of infections, including bacteremia, which, due to the limited use of β-lactams, is difficult to treat. This study aimed to analyze 51 MRSA isolates collected in 2018 from samples of patients with bacteremia from two hospitals of the Metropolitan Health Service of Santiago, Chile, both in their resistance profile and in the identification of virulence factors. In addition, genomic characterization was carried out by the WGS of an isolate that was shown to be the one of greatest concern (N°. 42) due to its intermediate resistance to vancomycin, multiple virulence factors and being classified as ST8 PVL-positive. In our study, most of the isolates turned out to be multidrug-resistant, but there are still therapeutic options, such as tetracycline, rifampicin, chloramphenicol and vancomycin, which are currently used for MRSA infections; however, 18% were PVL positive, which suggests greater virulence of these isolates. It was determined that isolate N°42 is grouped within the USA300-LV strains (ST8, PVL+, COMER+); however, it has been suggested that, in Chile, a complete displacement of the PVL-negative ST5 clone has not occurred.
Collapse
Affiliation(s)
- Daniela Núñez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Pablo Jiménez
- Laboratorio de Multiómica Vegetal y Bioinformática, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile;
| | - Marcelo Cortez-San Martín
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Carolina Cortés
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Matías Cárdenas
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Sofia Michelson
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Tamara Garay
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| | - Maggie Vecchiola
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| | - Alejandra Céspedes
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| | - Jonathan E. Maldonado
- Laboratorio de Multiómica Vegetal y Bioinformática, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile;
- Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile
| | - Yesseny Vásquez-Martínez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| |
Collapse
|
50
|
Sokal A, Royer G, Esposito-Farese M, Clermont O, Condamine B, Laouénan C, Lefort A, Denamur E, de Lastours V. Clinical and Bacteriological Specificities of Escherichia coli Bloodstream Infections From Biliary Portal of Entries. J Infect Dis 2024; 229:1679-1687. [PMID: 38214565 DOI: 10.1093/infdis/jiad586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Escherichia coli is frequently responsible for bloodstream infections (BSIs). Among digestive BSIs, biliary infections appear to be less severe. Respective roles of host factors, bacterial determinants (phylogroups, virulence, and antibiotic resistance), and portal of entry on outcome are unknown. METHODS Clinical characteristics and prognosis of 770 episodes of E coli BSI were analyzed and isolates sequenced (Illumina technology) comparing phylogroups, multilocus sequence type, virulence, and resistance gene content. BSI isolates were compared with 362 commensal E coli from healthy subjects. RESULTS Among 770 episodes, 135 were biliary, 156 nonbiliary digestive, and 479 urinary. Compared to urinary infections, BSIs of digestive origin occurred significantly more in men, comorbid, and immunocompromised patients. Digestive portal of entry was significantly associated with septic shock and death. Among digestive infections, patients with biliary infections were less likely to die (P = .032), despite comparable initial severity. Biliary E coli resembled commensals (phylogroup distribution, sequence type, and few virulence-associated genes) whereas nonbiliary digestive and urinary strains carried many virulence-associated genes. CONCLUSIONS Escherichia coli strains responsible for biliary infections exhibit commensal characteristics and are associated with lower mortality rates, despite similar initial severity, than other digestive BSIs. Biliary drainage in addition to antibiotics in the management of biliary infections may explain improved outcome.
Collapse
Affiliation(s)
- Aurélien Sokal
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
| | - Guilhem Royer
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, Unité mixte de recherche Centre National de la recherche Scientifique 6047, Université Paris Cité, Paris
| | | | - Olivier Clermont
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Bénédicte Condamine
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Cedric Laouénan
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Département d'épidémiologie, biostatistiques et recherche clinique
| | - Agnès Lefort
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| | - Erick Denamur
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Victoire de Lastours
- Service de Médecine Interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP) Clichy
- Université Paris Cité, IAME (Infections, Antimicrobials, Modelling and Evolution), UMR 1137, INSERM, 75018 Paris, France
| |
Collapse
|