1
|
Dang Y, Wang Y, Wei J, Zhang H, Yang Q, Wang B, Li J, Ye C, Chen Y, Han P, Jin X, Wang J, Bao X, Liu H, Ma H, Zhang L, Cheng L, Dong Y, Bai Y, Li Y, Lei Y, Xu Z, Zhang F, Ye W. 25-Hydroxycholesterol inhibits Hantavirus infection by reprogramming cholesterol metabolism. Free Radic Biol Med 2024; 224:S0891-5849(24)00623-3. [PMID: 39209137 DOI: 10.1016/j.freeradbiomed.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Hantavirus causes two types of acute diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It is a major health concern due to its high mortality and lack of effective treatment. Type I interferon treatment has been suggested to be effective against hantavirus when treated in advance. Interferons induce multiple interferon-stimulated genes (ISGs), whose products are highly effective at resisting and controlling viruses. A product of ISGs, the enzyme cholesterol 25-hydroxylase (CH25H), catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). 25HC can inhibit multiple enveloped-virus infections, but the mechanism is largely unknown, and whether 25HC plays an important role in regulating hantavirus remains unexplored. In this study, we show that Hantaan virus (HTNV), the prototype hantavirus, induced CH25H gene in infected cells. Overexpression of CH25H and treatment with 25HC, inhibited HTNV infection, possibly by lowering 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase, HMGCR), which inhibits cholesterol biosynthesis. In addition, cholesterol-lowering drugs such as HMGCR-targeting statins have potent hantavirus inhibitory effects. Our results indicate that 25HC and some statins are potential antiviral agents effective against hantavirus infections. This study provides evidence that targeting cholesterol metabolism is promising in developing specific hantavirus antivirals and indicates the possibility of repurposing FDA-approved cholesterol-lowering drug, statins for treating hantavirus infection.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan Wang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Wei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Center for Disease Control and Prevention of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiqi Yang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bin Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Neurology, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yang Chen
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peijun Han
- Department of Aerospace Hygiene, School of Aerospace Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, China
| | - Xiaolei Jin
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an 710032, China
| | - Jia Wang
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an 710032, China
| | - Xiaohui Bao
- Cadet Brigade, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an 710032, China
| | - He Liu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongwei Ma
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liang Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Linfeng Cheng
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yangchao Dong
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yinlan Bai
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yinghui Li
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yingfeng Lei
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhikai Xu
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Wei Ye
- Department of Microbiology, School of Preclinical Medicine, Airforce Medical University: Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Liu Z, Xue X, Geng S, Jiang Z, Ge Z, Zhao C, Xu Y, Wang X, Zhang W, Lin L, Chen Z. The differences in cytokine signatures between severe fever with thrombocytopenia syndrome (SFTS) and hemorrhagic fever with renal syndrome (HFRS). J Virol 2024; 98:e0078624. [PMID: 38916398 PMCID: PMC11265425 DOI: 10.1128/jvi.00786-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) virus and hantavirus are categorized under the Bunyavirales order. The severe disease progression in both SFTS and hemorrhagic fever with renal syndrome (HFRS) is associated with cytokine storms. This study aimed to explore the differences in cytokine profiles and immune responses between the two diseases. A cross-sectional, single-center study involved 100 participants, comprising 46 SFTS patients, 48 HFRS patients, and 6 healthy controls. The study employed the Luminex cytokine detection platform to measure 48 cytokines. The differences in cytokine profiles and immune characteristics between the two diseases were further analyzed using multiple linear regression, principal component analysis, and random forest method. Among the 48 cytokines tested, 30 showed elevated levels in SFTS and/or HFRS compared to the healthy control group. Furthermore, there were 19 cytokines that exhibited significant differences between SFTS and HFRS. Random forest analysis suggested that TRAIL and CTACK were predictive of SFTS, while IL2Ralpha, MIG, IL-8, IFNalpha2, HGF, SCF, MCP-3, and PDGFBB were more common with HFRS. It was further verified by the receiver operating characteristic with area under the curve >0.8 and P-values <0.05, except for TRAIL. Significant differences were observed in the cytokine profiles of SFTS and HFRS, with TRAIL, IL2Ralpha, MIG, and IL-8 being the top 4 cytokines that most clearly distinguished the two diseases. IMPORTANCE SFTS and HFRS differ in terms of cytokine immune characteristics. TRAIL, IL-2Ralpha, MIG, and IL-8 were the top 4 that differed markedly between SFTS and HFRS.
Collapse
Affiliation(s)
- Zishuai Liu
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Xue
- Department of Infectious Disease, Beijing Ditan Hospital, Peking University, Beijing, China
| | - Shuying Geng
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Zhouling Jiang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ziruo Ge
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Chenxi Zhao
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanli Xu
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Xiaolei Wang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ling Lin
- Department of Infectious Diseases, Yantai Qishan Hospital, Yantai, China
| | - Zhihai Chen
- Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Infectious Disease, Beijing Ditan Hospital, Peking University, Beijing, China
| |
Collapse
|
3
|
Zhao Y, Che L, Pan M, Huang Y, Fang S, Wang M, Sui L, Wang ZD, Du F, Hou Z, Liu Q. Hantaan virus inhibits type I interferon response by targeting RLR signaling pathways through TRIM25. Virology 2024; 589:109942. [PMID: 38048647 DOI: 10.1016/j.virol.2023.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
Hantaan virus (HTNV) is responsible for hemorrhagic fever with renal syndrome (HFRS), primarily due to its ability to inhibit host innate immune responses, such as type I interferon (IFN-I). In this study, we conducted a transcriptome analysis to identify host factors regulated by HTNV nucleocapsid protein (NP) and glycoprotein. Our findings demonstrate that NP and Gc proteins inhibit host IFN-I production by manipulating the retinoic acid-induced gene I (RIG-I)-like receptor (RLR) pathways. Further analysis reveals that HTNV NP and Gc proteins target upstream molecules of MAVS, such as RIG-I and MDA-5, with Gc exhibiting stronger inhibition of IFN-I responses than NP. Mechanistically, NP and Gc proteins interact with tripartite motif protein 25 (TRIM25) to competitively inhibit its interaction with RIG-I/MDA5, suppressing RLR signaling pathways. Our study unveils a cross-talk between HTNV NP/Gc proteins and host immune response, providing valuable insights into the pathogenic mechanism of HTNV.
Collapse
Affiliation(s)
- Yinghua Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China; Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Lihe Che
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Mingming Pan
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Yuan Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Shu Fang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Mengmeng Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China
| | - Liyan Sui
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Ze-Dong Wang
- Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Fang Du
- Department of Neurology, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, Shaanxi Province, China
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China.
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150000, Heilongjiang Province, China; Department of Infectious Diseases and Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, Jilin Province, China; School of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, China.
| |
Collapse
|
4
|
Silva BJDA, Krogstad PA, Teles RMB, Andrade PR, Rajfer J, Ferrini MG, Yang OO, Bloom BR, Modlin RL. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front Immunol 2023; 14:1284148. [PMID: 38162653 PMCID: PMC10755032 DOI: 10.3389/fimmu.2023.1284148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy. Results Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Bruno J. de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Paul A. Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, United States
| | - Rosane M. B. Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Priscila R. Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Jacob Rajfer
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Monica G. Ferrini
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Health and Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Barry R. Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
5
|
Martínez-Espinoza I, Guerrero-Plata A. Current Landscape of IFN-λ: Induction, Inhibition, and Potential Clinical Applications to Treat Respiratory Viral Infections. Immunohorizons 2023; 7:265-272. [PMID: 37071039 PMCID: PMC10579847 DOI: 10.4049/immunohorizons.2200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
IFN-λ or type III IFN is an important mediator of antiviral response. Several respiratory viruses induce the production of IFN-λ during their course of infection. However, they have also developed intricate mechanisms to inhibit its expression and activity. Despite a considerable amount of research on the regulatory mechanisms of respiratory viruses on the IFN-λ response, little is still known about the effect of this cytokine on immune cells and the antiviral effects of all IFN-λ isoforms, and a better understanding of the detrimental effects of IFN-λ treatment is required. Here we highlight the relevance of IFN-λ as an antiviral cytokine in the respiratory tract. Data from studies in vitro, ex vivo, experimental animal models, and ongoing clinical trials emphasize the therapeutic opportunity that IFN-λ represents to treat and prevent different types of respiratory viral infections.
Collapse
Affiliation(s)
- Iván Martínez-Espinoza
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
6
|
Yang Y, Li M, Ma Y, Ye W, Si Y, Zheng X, Liu H, Cheng L, Zhang L, Zhang H, Zhang X, Lei Y, Shen L, Zhang F, Ma H. LncRNA NEAT1 Potentiates SREBP2 Activity to Promote Inflammatory Macrophage Activation and Limit Hantaan Virus Propagation. Front Microbiol 2022; 13:849020. [PMID: 35495674 PMCID: PMC9044491 DOI: 10.3389/fmicb.2022.849020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
As the global prototypical zoonotic hantavirus, Hantaan virus (HTNV) is prevalent in Asia and is the leading causative agent of severe hemorrhagic fever with renal syndrome (HFRS), which has profound morbidity and mortality. Macrophages are crucial components of the host innate immune system and serve as the first line of defense against HTNV infection. Previous studies indicated that the viral replication efficiency in macrophages determines hantavirus pathogenicity, but it remains unknown which factor manipulates the macrophage activation pattern and the virus-host interaction process. Here, we performed the transcriptomic analysis of HTNV-infected mouse bone marrow-derived macrophages and identified the long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1), especially the isoform NEAT1-2, as one of the lncRNAs that is differentially expressed at the early phase. Based on coculture experiments, we revealed that silencing NEAT1-2 hinders inflammatory macrophage activation and facilitates HTNV propagation, while enhancing NEAT1-2 transcription effectively restrains viral replication. Furthermore, sterol response element binding factor-2 (SREBP2), which controls the cholesterol metabolism process, was found to stimulate macrophages by promoting the production of multiple inflammatory cytokines upon HTNV infection. NEAT1-2 could potentiate SREBP2 activity by upregulating Srebf1 expression and interacting with SREBP2, thus stimulating inflammatory macrophages and limiting HTNV propagation. More importantly, we demonstrated that the NEAT1-2 expression level in patient monocytes was negatively correlated with viral load and HFRS disease progression. Our results identified a function and mechanism of action for the lncRNA NEAT1 in heightening SREBP2-mediated macrophage activation to restrain hantaviral propagation and revealed the association of NEAT1 with HFRS severity.
Collapse
Affiliation(s)
- Yongheng Yang
- College of Life Sciences, Northwest University, Xi'an, China.,Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Mengyun Li
- College of Life Sciences, Northwest University, Xi'an, China.,Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yongtao Ma
- Department of Emergency, Children's Hospital of Kaifeng City, Kaifeng, China
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yue Si
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xuyang Zheng
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Infectious Diseases, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xijing Zhang
- Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Lixin Shen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Anesthesiology and Critical Care Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Fukuda Y, Homma T, Inoue H, Goto Y, Sato Y, Ikeda H, Onitsuka C, Sato H, Akimoto K, Ebato T, Suganuma H, Kawahara T, Mikuni H, Uchida Y, Suzuki S, Tanaka A, Sagara H. Serum IL-28A/IFN-λ2 is linked to disease severity of COVID-19. Sci Rep 2022; 12:5458. [PMID: 35361913 PMCID: PMC8969403 DOI: 10.1038/s41598-022-09544-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Type III interferons (IFNs) play an important role in respiratory viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to determine whether the expression of serum type III IFNs predicted disease severity among patients with the coronavirus disease (COVID-19). A retrospective cohort study was conducted of patients admitted to a single hospital between March 21, 2020, and March 31, 2021. Patients were divided into mild to moderate I (MM) and moderate II to severe (MS) groups based on the COVID-19 severity classification developed by the Japanese Ministry of Health, Labor and Welfare. A total of 257 patients were included in the analysis. Human interleukin-28A (IL-28A/IFN-λ2) expression was significantly lower, and interleukin (IL)-6 expression was significantly higher in the MS group than in the MM group (both p < 0.001). In addition, IL-28A/IFN-λ2 was statistically significantly inversely correlated with the time from disease onset to negative SARS-CoV-2 PCR results (p = 0.049). Multivariable logistic regression analysis showed that IL-28A/IFN-λ2 was an independent predictor of disease severity (p = 0.021). The low expression of IL-28A/IFN-λ2 may serve as a serum biomarker that predicts the severity of COVID-19, possibly through the mechanism of delayed viral elimination.
Collapse
Affiliation(s)
- Yosuke Fukuda
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Tetsuya Homma
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan.
| | - Hideki Inoue
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Yuiko Goto
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Yoko Sato
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hitoshi Ikeda
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Chisato Onitsuka
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hiroki Sato
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Kaho Akimoto
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Takaya Ebato
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hiromitsu Suganuma
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Tomoko Kawahara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hatsuko Mikuni
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Yoshitaka Uchida
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Shintaro Suzuki
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Akihiko Tanaka
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, 142-8666, Japan
| |
Collapse
|
8
|
Kell AM. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J Mol Biol 2021; 434:167230. [PMID: 34487792 PMCID: PMC8894506 DOI: 10.1016/j.jmb.2021.167230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The genus Orthohantavirus (family Hantaviridae, order Bunyavirales) consists of numerous genetic and pathologically distinct viral species found within rodent and mammalian insectivore populations world-wide. Although reservoir hosts experience persistent asymptomatic infection, numerous rodent-borne orthohantaviruses cause severe disease when transmitted to humans, with case-fatality rates up to 40%. The first isolation of an orthohantavirus occurred in 1976 and, since then, the field has made significant progress in understanding the immune correlates of disease, viral interactions with the human innate immune response, and the immune kinetics of reservoir hosts. Much still remains elusive regarding the molecular mechanisms of orthohantavirus recognition by the innate immune response and viral antagonism within the reservoir host, however. This review provides a summary of the last 45 years of research into orthohantavirus interaction with the host innate immune response. This summary includes discussion of current knowledge involving human, non-reservoir rodent, and reservoir innate immune responses to viruses which cause hemorrhagic fever with renal syndrome and hantavirus cardio-pulmonary syndrome. Review of the literature concludes with a brief proposition for the development of novel tools needed to drive forward investigations into the molecular mechanisms of innate immune activation and consequences for disease outcomes in the various hosts for orthohantaviruses.
Collapse
Affiliation(s)
- Alison M Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States.
| |
Collapse
|
9
|
Dieterle ME, Solà-Riera C, Ye C, Goodfellow SM, Mittler E, Kasikci E, Bradfute SB, Klingström J, Jangra RK, Chandran K. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. eLife 2021; 10:e69708. [PMID: 34232859 PMCID: PMC8263056 DOI: 10.7554/elife.69708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hantaviruses are RNA viruses with known epidemic threat and potential for emergence. Several rodent-borne hantaviruses cause zoonoses accompanied by severe illness and death. However, assessments of zoonotic risk and the development of countermeasures are challenged by our limited knowledge of the molecular mechanisms of hantavirus infection, including the identities of cell entry receptors and their roles in influencing viral host range and virulence. Despite the long-standing presumption that β3/β1-containing integrins are the major hantavirus entry receptors, rigorous genetic loss-of-function evidence supporting their requirement, and that of decay-accelerating factor (DAF), is lacking. Here, we used CRISPR/Cas9 engineering to knockout candidate hantavirus receptors, singly and in combination, in a human endothelial cell line that recapitulates the properties of primary microvascular endothelial cells, the major targets of viral infection in humans. The loss of β3 integrin, β1 integrin, and/or DAF had little or no effect on entry by a large panel of hantaviruses. By contrast, loss of protocadherin-1, a recently identified entry receptor for some hantaviruses, substantially reduced hantavirus entry and infection. We conclude that major host molecules necessary for endothelial cell entry by PCDH1-independent hantaviruses remain to be discovered.
Collapse
Affiliation(s)
- Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Carles Solà-Riera
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Chunyan Ye
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Samuel M Goodfellow
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Ezgi Kasikci
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Steven B Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
10
|
Maleki KT, Tauriainen J, García M, Kerkman PF, Christ W, Dias J, Wigren Byström J, Leeansyah E, Forsell MN, Ljunggren HG, Ahlm C, Björkström NK, Sandberg JK, Klingström J. MAIT cell activation is associated with disease severity markers in acute hantavirus infection. CELL REPORTS MEDICINE 2021; 2:100220. [PMID: 33763658 PMCID: PMC7974553 DOI: 10.1016/j.xcrm.2021.100220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Hantaviruses are zoonotic RNA viruses that cause severe acute disease in humans. Infected individuals have strong inflammatory responses that likely cause immunopathology. Here, we studied the response of mucosal-associated invariant T (MAIT) cells in peripheral blood of individuals with hemorrhagic fever with renal syndrome (HFRS) caused by Puumala orthohantavirus, a hantavirus endemic in Europe. We show that MAIT cell levels decrease in the blood during HFRS and that residual MAIT cells are highly activated. This activation correlates with HFRS severity markers. In vitro activation of MAIT cells by hantavirus-exposed antigen-presenting cells is dependent on type I interferons (IFNs) and independent of interleukin-18 (IL-18). These findings highlight the role of type I IFNs in virus-driven MAIT cell activation and suggest a potential role of MAIT cells in the disease pathogenesis of viral infections. MAIT cells are activated in individuals with hemorrhagic fever with renal syndrome (HFRS) MAIT cell activation correlates with HFRS severity markers during hantavirus infection MAIT cell blood levels decline during acute HFRS Hantavirus-mediated MAIT cell activation is type I IFN dependent
Collapse
Affiliation(s)
- Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Priscilla F Kerkman
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Wigren Byström
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Mattias N Forsell
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Division of Infection & Immunology, Umeå University, Umeå, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Solà-Riera C, Gupta S, Maleki KT, González-Rodriguez P, Saidi D, Zimmer CL, Vangeti S, Rivino L, Leo YS, Lye DC, MacAry PA, Ahlm C, Smed-Sörensen A, Joseph B, Björkström NK, Ljunggren HG, Klingström J. Hantavirus Inhibits TRAIL-Mediated Killing of Infected Cells by Downregulating Death Receptor 5. Cell Rep 2020; 28:2124-2139.e6. [PMID: 31433987 DOI: 10.1016/j.celrep.2019.07.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/24/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Cytotoxic lymphocytes normally kill virus-infected cells by apoptosis induction. Cytotoxic granule-dependent apoptosis induction engages the intrinsic apoptosis pathway, whereas death receptor (DR)-dependent apoptosis triggers the extrinsic apoptosis pathway. Hantaviruses, single-stranded RNA viruses of the order Bunyavirales, induce strong cytotoxic lymphocyte responses in infected humans. Cytotoxic lymphocytes, however, are largely incapable of eradicating hantavirus-infected cells. Here, we show that the prototypic hantavirus, Hantaan virus (HTNV), induces TRAIL production but strongly inhibits TRAIL-mediated extrinsic apoptosis induction in infected cells by downregulating DR5 cell surface expression. Mechanistic analyses revealed that HTNV triggers both 26S proteasome-dependent degradation of DR5 through direct ubiquitination of DR5 and hampers DR5 transport to the cell surface. These results corroborate earlier findings, demonstrating that hantavirus also inhibits cytotoxic cell granule-dependent apoptosis induction. Together, these findings show that HTNV counteracts intrinsic and extrinsic apoptosis induction pathways, providing a defense mechanism utilized by hantaviruses to inhibit cytotoxic cell-mediated eradication of infected cells.
Collapse
Affiliation(s)
- Carles Solà-Riera
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Shawon Gupta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden; Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kimia T Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | | | - Dalel Saidi
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christine L Zimmer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Sindhu Vangeti
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Laura Rivino
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - David Chien Lye
- National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Paul A MacAry
- Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Clas Ahlm
- Department of Clinical Microbiology, Infection and Immunology Umeå University, 901 85 Umeå, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, 171 64 Stockholm, Sweden
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden.
| |
Collapse
|
12
|
Meeting report: Eleventh International Conference on Hantaviruses. Antiviral Res 2020; 176:104733. [PMID: 32068071 DOI: 10.1016/j.antiviral.2020.104733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022]
Abstract
The 2019 11th International Conference on Hantaviruses (ICH 2019) was organized by the International Society for Hantaviruses (ISH), and held on September 1-4, 2019, at the Irish College, in Leuven, Belgium. These ICHs have been held every three years since 1989. ICH 2019 was attended by 158 participants from 33 countries. The current report summarizes research presented on all aspects of hantavirology: ecology; pathogenesis and immune responses; virus phylogeny, replication and morphogenesis; epidemiology; vaccines, therapeutics and prevention; and clinical aspects and diagnosis.
Collapse
|
13
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
IFN-λs inhibit Hantaan virus infection through the JAK-STAT pathway and expression of Mx2 protein. Genes Immun 2018; 20:234-244. [PMID: PMID: 29765118 DOI: 10.1038/s41435-018-0028-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
Abstract
Hantaan virus (HTNV), member of the newly defined Hantaviridae family, within the order Bunyavirales, can cause a hemorrhagic fever with renal syndrome with high fatality rates in humans. However, no specific antiviral agents are currently available for HTNV infection approved by the US Food and Drug Administration. Although interferon lambdas (IFN-λs) have been shown to induce an antiviral state against HTNV, the molecular mechanisms remain to be determined. In this study, we found that IFN-λs exerted its anti-HTNV effect by activating Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway-mediated antiviral immunity in A549 cells. Simultaneously, IFN-λs downregulated suppressor of cytokine signaling proteins, which are the known negative feedback regulators of the JAK-STAT signaling pathway. Additionally, we demonstrated the role of IFN-λs-induced myxovirus resistance 2 (Mx2, also known as MxB) protein as a potential inhibitor for HTNV infection. These findings indicate that IFN-λs play an important role in cellular defenses against HTNV infection at an early stage and that human Mx2 may represent a potential therapeutic target for HTNV infection.
Collapse
|
15
|
Holly MK, Smith JG. Adenovirus Infection of Human Enteroids Reveals Interferon Sensitivity and Preferential Infection of Goblet Cells. J Virol 2018; 92:e00250-18. [PMID: 29467318 PMCID: PMC5899204 DOI: 10.1128/jvi.00250-18] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (HAdV) are significant human pathogens. Although only a subset of HAdV serotypes commonly cause gastroenteritis in humans, most HAdV species replicate in the gastrointestinal tract. Knowledge of the complex interaction between HAdVs and the human intestinal epithelium has been limited by the lack of a suitable cell culture system containing relevant cell types. Recently, this need has been met by the stable and prolonged cultivation of primary intestinal epithelial cells as enteroids. Human enteroids have been used to reveal novel and interesting aspects of rotavirus, norovirus, and enterovirus replication, prompting us to explore their suitability for HAdV culture. We found that both prototype strains and clinical isolates of enteric and nonenteric HAdVs productively replicate in human enteroids. HAdV-5p, a respiratory pathogen, and HAdV-41p, an enteric pathogen, are both sensitive to type I and III interferons in human enteroid monolayers but not A549 cells. Interestingly, HAdV-5p, but not HAdV-41p, preferentially infected goblet cells. And, HAdV-5p but not HAdV-41p was potently neutralized by the enteric human alpha-defensin HD5. These studies highlight new facets of HAdV biology that are uniquely revealed by primary intestinal epithelial cell culture.IMPORTANCE Enteric adenoviruses are a significant cause of childhood gastroenteritis worldwide, yet our understanding of their unique biology is limited. Here we report robust replication of both prototype and clinical isolates of enteric and respiratory human adenoviruses in enteroids, a primary intestinal cell culture system. Recent studies have shown that other fastidious enteric viruses replicate in human enteroids. Therefore, human enteroids may provide a unified platform for culturing enteric viruses, potentially enabling isolation of a greater diversity of viruses from patients. Moreover, both the ability of interferon to restrict respiratory and enteric adenoviruses and a surprising preference of a respiratory serotype for goblet cells demonstrate the power of this culture system to uncover aspects of adenovirus biology that were previously unattainable with standard cell lines.
Collapse
Affiliation(s)
- Mayumi K Holly
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jason G Smith
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
16
|
Scholz S, Baharom F, Rankin G, Maleki KT, Gupta S, Vangeti S, Pourazar J, Discacciati A, Höijer J, Bottai M, Björkström NK, Rasmuson J, Evander M, Blomberg A, Ljunggren HG, Klingström J, Ahlm C, Smed-Sörensen A. Human hantavirus infection elicits pronounced redistribution of mononuclear phagocytes in peripheral blood and airways. PLoS Pathog 2017. [PMID: 28640917 PMCID: PMC5498053 DOI: 10.1371/journal.ppat.1006462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hantaviruses infect humans via inhalation of virus-contaminated rodent excreta. Infection can cause severe disease with up to 40% mortality depending on the viral strain. The virus primarily targets the vascular endothelium without direct cytopathic effects. Instead, exaggerated immune responses may inadvertently contribute to disease development. Mononuclear phagocytes (MNPs), including monocytes and dendritic cells (DCs), orchestrate the adaptive immune responses. Since hantaviruses are transmitted via inhalation, studying immunological events in the airways is of importance to understand the processes leading to immunopathogenesis. Here, we studied 17 patients infected with Puumala virus that causes a mild form of hemorrhagic fever with renal syndrome (HFRS). Bronchial biopsies as well as longitudinal blood draws were obtained from the patients. During the acute stage of disease, a significant influx of MNPs expressing HLA-DR, CD11c or CD123 was detected in the patients’ bronchial tissue. In parallel, absolute numbers of MNPs were dramatically reduced in peripheral blood, coinciding with viremia. Expression of CCR7 on the remaining MNPs in blood suggested migration to peripheral and/or lymphoid tissues. Numbers of MNPs in blood subsequently normalized during the convalescent phase of the disease when viral RNA was no longer detectable in plasma. Finally, we exposed blood MNPs in vitro to Puumala virus, and demonstrated an induction of CCR7 expression on MNPs. In conclusion, the present study shows a marked redistribution of blood MNPs to the airways during acute hantavirus disease, a process that may underlie the local immune activation and contribute to immunopathogenesis in hantavirus-infected patients. Inhalation of hantavirus-infected rodent droppings can cause a wide range of disease ranging from mild symptoms to deaths in humans. Central to hantavirus disease is vascular leakage that can manifest in different organs, including the lungs. Although the virus can infect endothelial cells lining the blood vessels, it does not cause cell death. Instead, activation of the immune system in response to viral infection has been implicated in causing vascular leakage. In this study, we investigated how monocytes and dendritic cells (DCs) are involved in hantavirus disease, given their capacity to activate other immune cells. We obtained unique clinical material from 17 Puumala virus-infected patients including mucosal biopsies from the airways as well as multiple blood draws over the course of disease. In the airways of these patients, we observed an infiltration of monocytes and DCs. In parallel, there was a dramatic depletion in peripheral blood—more than ten-fold—of monocytes and DCs that was sustained throughout the first two weeks of disease. Taken together, this study provides novel insights into immune mediated processes underlying human hantavirus pathogenesis.
Collapse
Affiliation(s)
- Saskia Scholz
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Kimia T. Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Shawon Gupta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sindhu Vangeti
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jamshid Pourazar
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Andrea Discacciati
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Höijer
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rasmuson
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
17
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
18
|
Angulo J, Pino K, Echeverría-Chagas N, Marco C, Martínez-Valdebenito C, Galeno H, Villagra E, Vera L, Lagos N, Becerra N, Mora J, Bermúdez A, Cárcamo M, Díaz J, Miquel JF, Ferrés M, López-Lastra M. Association of Single-Nucleotide Polymorphisms in IL28B, but Not TNF-α, With Severity of Disease Caused by Andes Virus. Clin Infect Dis 2015; 61:e62-9. [PMID: 26394672 PMCID: PMC4657541 DOI: 10.1093/cid/civ830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Andes virus (ANDV) is the sole etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in Chile, with a fatality rate of about 35%. Individual host factors affecting ANDV infection outcome are poorly understood. In this case-control genetic association analysis, we explored the link between single-nucleotide polymorphisms (SNPs) rs12979860, rs8099917 and rs1800629 and the clinical outcome of ANDV-induced disease. The SNPs rs12979860 and rs8099917 are known to play a role in the differential expression of the interleukin 28B gene (IL28B), whereas SNP rs1800629 is implicated in the expression of tumor necrosis factor α gene (TNF-α). METHODS A total of 238 samples from confirmed ANDV-infected patients collected between 2006 and 2014, and categorized according to the severity of the disease, were genotyped for SNPs rs12979860, rs8099917, and rs1800629. RESULTS Analysis of IL28B SNPs rs12979860 and rs8099917 revealed a link between homozygosity of the minor alleles (TT and GG, respectively), displaying a mild disease progression, whereas heterozygosity or homozygosity for the major alleles (CT/CC and TG/TT, respectively) in both IL28B SNPs is associated with severe disease. No association with the clinical outcome of HCPS was observed for TNF-α SNP rs1800629 (TNF -308G>A). CONCLUSIONS The IL28B SNPs rs12979860 and rs8099917, but not TNF-α SNP rs1800629, are associated with the clinical outcome of ANDV-induced disease, suggesting a possible link between IL28B expression and ANDV pathogenesis.
Collapse
Affiliation(s)
- Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia
| | - Natalia Echeverría-Chagas
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Claudia Marco
- Laboratorio de Infectología, Centro de Investigaciones Médicas, Escuela de Medicina, División de Pediatría
| | | | - Héctor Galeno
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Eliecer Villagra
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Lilian Vera
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Natalia Lagos
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Natalia Becerra
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Judith Mora
- Subdepartamento de Virología Clínica, Departamento Laboratorio Biomédico Nacional y de Referencia
| | - Andrea Bermúdez
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago
| | - Marcela Cárcamo
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago
| | - Janepsy Díaz
- Departamento de Asuntos Científicos, Instituto de Salud Pública de Chile, Santiago
| | - Juan Francisco Miquel
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile
| | - Marcela Ferrés
- Laboratorio de Infectología, Centro de Investigaciones Médicas, Escuela de Medicina, División de Pediatría
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia
| |
Collapse
|
19
|
Andes virus nucleocapsid protein interrupts protein kinase R dimerization to counteract host interference in viral protein synthesis. J Virol 2014; 89:1628-39. [PMID: 25410857 DOI: 10.1128/jvi.02347-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Pathogenic hantaviruses delay the type I interferon response during early stages of viral infection. However, the robust interferon response and induction of interferon-stimulated genes observed during later stages of hantavirus infection fail to combat the virus replication in infected cells. Protein kinase R (PKR), a classical interferon-stimulated gene product, phosphorylates the eukaryotic translation initiation factor eIF2α and causes translational shutdown to create roadblocks for the synthesis of viral proteins. The PKR-induced translational shutdown helps host cells to establish an antiviral state to interrupt virus replication. However, hantavirus-infected cells do not undergo translational shutdown and fail to establish an antiviral state during the course of viral infection. In this study, we showed for the first time that Andes virus infection induced PKR overexpression. However, the overexpressed PKR was not active due to a significant inhibition of autophosphorylation. Further studies revealed that Andes virus nucleocapsid protein inhibited PKR dimerization, a critical step required for PKR autophosphorylation to attain activity. The studies reported here establish a hantavirus nucleocapsid protein as a new PKR inhibitor. These studies provide mechanistic insights into hantavirus resistance to the host interferon response and solve the puzzle of the lack of translational shutdown observed in hantavirus-infected cells. The sensitivity of hantavirus replication to PKR has likely imposed a selective evolutionary pressure on hantaviruses to evade the PKR antiviral response for survival. We envision that evasion of the PKR antiviral response by NP has likely helped hantaviruses to exist during evolution and to survive in infected hosts with a multifaceted antiviral defense. IMPORTANCE Protein kinase R (PKR), a versatile antiviral host factor, shuts down the translation machinery upon activation in virus-infected cells to create hurdles for the manufacture of viral proteins. The studies reported here reveal that the hantavirus nucleocapsid protein counteracts the PKR antiviral response by inhibiting PKR dimerization, which is required for its activation. We report the discovery of a new PKR inhibitor whose expression in hantavirus-infected cells prevents the PKR-induced host translational shutdown to ensure the continuous synthesis of viral proteins required for efficient virus replication.
Collapse
|
20
|
Korva M, Saksida A, Kejžar N, Schmaljohn C, Avšič-Županc T. Viral load and immune response dynamics in patients with haemorrhagic fever with renal syndrome. Clin Microbiol Infect 2013; 19:E358-66. [PMID: 23573903 DOI: 10.1111/1469-0691.12218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 11/30/2022]
Abstract
Haemorrhagic fever with renal syndrome (HFRS) in Slovenia can be caused by infection with either Dobrava (DOBV) or Puumala (PUUV) virus, but a clear difference in disease severity is observed. We hypothesized that the wide spectrum of disease observed among HFRS patients might be related to differing immune responses and viral load kinetics. To test this hypothesis we analysed sequential blood samples from 29 HFRS patients hospitalized in Slovenia. Measuring viral RNA in patient samples revealed that viraemia lasts for longer than previously believed, with DOBV or PUUV-infected patients having viraemias lasting on average 30 days or 16 days, respectively. DOBV-infected patients were found to have a higher viral load than the PUUV-infected patients (10(7) vs. 10(5) RNA copies/mL). Both DOBV and PUUV-infected patients had IgM at the time of hospital admission, but there was a difference in IgG antibody dynamics, with only a minority of DOBV-infected patients having IgG antibodies. In our study, elevated levels of IL-10, TNF-α and IFN-γ were detected in all of the samples regardless of the causative agent. In DOBV-infected patients the decrease in cytokine secretion level appeared around day 20 post-infection, while in PUUV-infected patients the change was earlier. In general, our findings point toward notable differences between PUUV and DOBV infections, in terms of viral load and antibody and cytokine response dynamics, all of which may be reflected in differing disease severities and clinical outcomes.
Collapse
Affiliation(s)
- M Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
21
|
Shaker OG, Sadik NAH. Polymorphisms in interleukin-10 and interleukin-28B genes in Egyptian patients with chronic hepatitis C virus genotype 4 and their effect on the response to pegylated interferon/ribavirin-therapy. J Gastroenterol Hepatol 2012; 27:1842-9. [PMID: 23020144 DOI: 10.1111/j.1440-1746.2012.07273.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Recently, it has been suggested that single nucleotide polymorphisms (SNPs) in some cytokine genes may influence the production of the associated cytokines that affect the host immune response to pegylated interferon-α (Peg-IFN-α) with ribavirin (RBV) in hepatitis C virus (HCV) patients. The aim of the present study was to investigate the possible role of the SNPs of IL-10 and Il-28B and their serum levels in predicting the response to treatment of HCV-4. METHODS Egyptian patients were treated with Peg-IFN-α/RBV. A total of 100 HCV genotype 4-infected patients and 80 healthy control subjects were included in the present study. SNPs in the IL-10 (-592 A/C and -819 T/C) and IL-28B (rs8099917 T/G and rs12979860 C/T) genes and their serum levels were assessed. The IL-10-592-CC, IL-28-rs8099917-TT and IL-28-rs12979860-CC genotypes were significantly higher in responders than in non-responders. RESULTS Interestingly, the serum levels of IL-10 were significantly increased; in contrast, the serum levels of Il-28B were significantly decreased in HCV patients compared with normal patients. Polymorphisms in IL-28B are more sensitive (P < 0.001) than those in IL-10-592 (P = 0.03). However, the serum level of IL-10 is higher than that of IL-28, and this difference can serve as a prognostic marker using a receiver operator characteristic (ROC) analysis. CONCLUSIONS It can be concluded that SNPs in IL-28B and the serum levels of Il-10 and IL-28 may be promising predictors for HCV therapy.
Collapse
Affiliation(s)
- Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Cairo, Egypt
| | | |
Collapse
|
22
|
Sugiyama M, Kimura T, Naito S, Mukaide M, Shinauchi T, Ueno M, Ito K, Murata K, Mizokami M. Development of specific and quantitative real-time detection PCR and immunoassays for λ3-interferon. Hepatol Res 2012; 42:1089-99. [PMID: 22672583 DOI: 10.1111/j.1872-034x.2012.01032.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Single nucleotide polymorphisms (SNP) around interferon (IFN)-λ3 have been associated with the response to pegylated IFN-α treatment for chronic hepatitis C. Specific quantification methods for IFN-λ3 are required to facilitate clinical and basic study. METHODS Gene-specific primers and probes for IFN-λ1, 2 and 3 were designed for real-time detection PCR (RTD-PCR). Dynamic range and specificity were examined using specific cDNA clones. Total RNA from hematopoietic and hepatocellular carcinoma cell lines was prepared for RTD-PCR. Monoclonal antibodies were developed for the IFN-λ3-specific immunoassays. The immunoassays were assessed by measuring IFN-λ3 in serum and plasma. RESULTS The RTD-PCR had a broad detection range (10-10(7) copies/assay) with high specificity (∼10(7) -fold specificity). Distinct expression profiles were observed in several cell lines. Hematopoietic cell lines expressed high levels of IFN-λ compared with hepatocellular carcinoma cells, and Sendai virus infection induced strong expression of IFN-λ. The developed chemiluminescence enzyme immunoassays (CLEIA) detected 0.1 pg/mL of IFN-λ3 and showed a wide detection range of 0.1-10 000 pg/mL with little or no cross-reactivity to IFN-λ1 or IFN-λ2. IFN-λ3 could be detected in all the serum and plasma samples by CLEIA, with median concentrations of 0.92 and 0.86 pg/mL, respectively. CONCLUSION Our newly developed RTD-PCR and CLEIA assays will be valuable tools for investigating the distribution and functions of IFN-λ3, which is predicted to be a marker for predicting outcome of therapy for hepatitis C or other virus diseases.
Collapse
Affiliation(s)
- Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa Institute of Immunology SRL, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Galimova E, Akhmetova V, Latipov B, Kingo K, Rätsep R, Traks T, Kõks S, Khusnutdinova E. Analysis of genetic variants of class II cytokine and their receptor genes in psoriasis patients of two ethnic groups from the Volga-Ural region of Russia. J Dermatol Sci 2012; 68:9-18. [PMID: 22840887 DOI: 10.1016/j.jdermsci.2012.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/20/2012] [Accepted: 07/06/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The molecular basis of pathogenesis of psoriasis remains unclear, but one unifying hypothesis of disease aetiology is the cytokine network model. The class II cytokines (CF2) and their receptors (CRF2) are all involved in the inflammatory processes and single nucleotide polymorphisms (SNPs) in respective genes have been associated with psoriasis in a previous study of the Estonian population. OBJECTIVE We performed a replication study of 47 SNPs in CF2 and CRF2 genes in independent cohorts of psoriasis patients of two ethnic groups (Russians and Bashkirs) from the Volga-Ural region of Russia. METHODS DNA was obtained from 395 psoriasis patients of two ethnic groups from the Volga-Ural region of Russia and 476 ethnically matched controls. 47 SNPs in the loci of the genes encoding Class II cytokines and their receptors were selected by SNPbrowser version 3.5. Genotyping was performed using the SNPlex™ (Applied Biosystems) platform. RESULTS The genetic variant rs30461 previously associated in original case-control study in Estonians, was also associated in Russians (corrected P-value (Pc=0.008, OR=0.44), but did not reach statistical significance in the Bashkir population. Additionally, the haplotype analysis provided that CC haplotype formed by the SNPs rs30461 and rs955155 had a protective effect in Russians (Pc=0.0024, OR=0.44), supporting the involvement of this locus in the protection against psoriasis. Combined meta-analysis of three populations, including 943 psoriasis patients and 812 healthy controls, showed that the IL29 rs30461 C-allele was not associated with decreased risk of psoriasis (P=0.165, OR=0.68). Moreover, stratification of studies by ethnicity revealed a significant association in the European cohort (P=9.506E-006, OR=0.53). CONCLUSION Therefore, there is no overall evidence of association between psoriasis and SNP rs30461 of the IL29 gene, but there is some evidence to suggest that an association exists in Europeans. However, this current concept should be considered as preliminary and the results need to be confirmed in future independent studies.
Collapse
Affiliation(s)
- Elvira Galimova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Papa A. Dobrava-Belgrade virus: Phylogeny, epidemiology, disease. Antiviral Res 2012; 95:104-17. [DOI: 10.1016/j.antiviral.2012.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
|
25
|
Hussein ITM, Cheng E, Ganaie SS, Werle MJ, Sheema S, Haque A, Mir MA. Autophagic clearance of Sin Nombre hantavirus glycoprotein Gn promotes virus replication in cells. J Virol 2012; 86:7520-9. [PMID: 22553339 PMCID: PMC3416297 DOI: 10.1128/jvi.07204-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/24/2012] [Indexed: 11/20/2022] Open
Abstract
Hantavirus glycoprotein precursor (GPC) is posttranslationally cleaved into two glycoproteins, Gn and Gc. Cells transfected with plasmids expressing either GPC or both Gn and Gc revealed that Gn is posttranslationally degraded. Treatment of cells with the autophagy inhibitors 3-methyladenine, LY-294002, or Wortmanin rescued Gn degradation, suggesting that Gn is degraded by the host autophagy machinery. Confocal microscopic imaging showed that Gn is targeted to autophagosomes for degradation by an unknown mechanism. Examination of autophagy markers LC3-I and LC3-II demonstrated that both Gn expression and Sin Nombre hantavirus (SNV) infection induce autophagy in cells. To delineate whether induction of autophagy and clearance of Gn play a role in the virus replication cycle, we downregulated autophagy genes BCLN-1 and ATG7 using small interfering RNA (siRNA) and monitored virus replication over time. These studies revealed that inhibition of host autophagy machinery inhibits Sin Nombre virus replication in cells, suggesting that autophagic clearance of Gn is required for efficient virus replication. Our studies provide mechanistic insights into viral pathogenesis and reveal that SNV exploits the host autophagy machinery to decrease the intrinsic steady-state levels of an important viral component for efficient replication in host cells.
Collapse
Affiliation(s)
- Islam T M Hussein
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Stoltz M, Sundström KB, Hidmark Å, Tolf C, Vene S, Ahlm C, Lindberg AM, Lundkvist Å, Klingström J. A model system for in vitro studies of bank vole borne viruses. PLoS One 2011; 6:e28992. [PMID: 22194969 PMCID: PMC3241689 DOI: 10.1371/journal.pone.0028992] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022] Open
Abstract
The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-β and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-β or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-β but not Mx2, while TBEV induced both IFN-β and Mx2. In conclusion, VEFs together with protocols developed for detection of bank vole innate immune activation provide valuable tools for future studies of how PUUV and other zoonotic viruses affect cells derived from bank voles compared to human cells. Notably, wild-type PUUV which has been difficult to cultivate in vitro readily infected VEFs, suggesting that embryonic fibroblasts from natural hosts might be valuable for isolation of wild-type hantaviruses.
Collapse
Affiliation(s)
- Malin Stoltz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Safronetz D, Zivcec M, LaCasse R, Feldmann F, Rosenke R, Long D, Haddock E, Brining D, Gardner D, Feldmann H, Ebihara H. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus. PLoS Pathog 2011; 7:e1002426. [PMID: 22194683 PMCID: PMC3240607 DOI: 10.1371/journal.ppat.1002426] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/22/2011] [Indexed: 12/31/2022] Open
Abstract
Hantavirus pulmonary syndrome (HPS), also referred to as hantavirus cardiopulmonary syndrome (HCPS), is a rare but frequently fatal disease caused by New World hantaviruses. In humans HPS is associated with severe pulmonary edema and cardiogenic shock; however, the pathogenesis of this disease remains unclear largely due to a lack of suitable animal models for the study of disease progression. In this study we monitored clinical, virological, pathophysiological parameters and host immunological responses to decipher pathological factors and events in the lethal Syrian hamster model of HPS following intranasal inoculation of Andes virus. Transcriptional profiling of the host gene responses demonstrated a suppression of innate immune responses in most organs analyzed during the early stage of infection, except for in the lung which had low level activation of several pro-inflammatory genes. During this phase Andes virus established a systemic infection in hamsters, with viral antigen readily detectable in the endothelium of the majority of tissues analyzed by 7-8 days post-inoculation. Despite wide-spread infection, histological analysis confirmed pathological abnormalities were almost exclusively found in the lungs. Immediately preceding clinical signs of disease, intense activation of pro-inflammatory and Th1/Th2 responses were observed in the lungs as well as the heart, but not in peripheral organs, suggesting that localized immune-modulations by infection is paramount to pathogenesis. Throughout the course of infection a strong suppression of regulatory T-cell responses was noted and is hypothesized to be the basis of the aberrant immune activations. The unique and comprehensive monitoring of host immune responses to hantavirus infection increases our understanding of the immuno-pathogenesis of HPS and will facilitate the development of treatment strategies targeting deleterious host immunological responses.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Marko Zivcec
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Office of Operations and Management, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dan Long
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Douglas Brining
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Donald Gardner
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (HF); (HE)
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (HE)
| |
Collapse
|
28
|
Vesicular stomatitis virus-based vaccine protects hamsters against lethal challenge with Andes virus. J Virol 2011; 85:12781-91. [PMID: 21917979 DOI: 10.1128/jvi.00794-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Andes virus (ANDV) is a highly pathogenic South American hantavirus that causes hantavirus pulmonary syndrome (HPS). A high case fatality rate, the potential for human-to-human transmission, the capacity to infect via aerosolization, and the absence of effective therapies make it imperative that a safe, fast-acting, and effective ANDV vaccine be developed. We generated and characterized a recombinant vesicular stomatitis virus (VSV) vector expressing the ANDV surface glycoprotein precursor (VSVΔG/ANDVGPC) as a possible vaccine candidate and tested its efficacy in the only lethal-disease animal model of HPS. Syrian hamsters immunized with a single injection of VSVΔG/ANDVGPC were fully protected against disease when challenged at 28, 14, 7, or 3 days postimmunization with a lethal dose of ANDV; however, the mechanism of protection seems to differ depending on when the immunization occurs. At 28 days postimmunization, a lack of detectable ANDV RNA in lung, liver, and blood tissue samples, as well as a lack of seroconversion to the ANDV nucleocapsidprotein in nearly all animals, suggested largely sterile immunity. The vaccine was able to generate high levels of neutralizing anti-ANDV G(N)/G(C) antibodies, which seem to play a role as a mechanism of vaccine protection. Administration of the vaccine at 7 or 3 days before challenge also resulted in full protection but with no specific neutralizing humoral immune response, suggesting a possible role of innate responses in protection against challenge virus replication. Administration of the vaccine 24 h postchallenge was successful in protecting 90% of hamsters and again suggested the induction of a potent antiviral state by the recombinant vector as a potential mechanism. Overall, our data suggest the potential for the use of the VSV platform as a fast-acting and effective prophylaxis/postexposure treatment against lethal hantavirus infections.
Collapse
|
29
|
Lee MH, Lalwani P, Raftery MJ, Matthaei M, Lütteke N, Kirsanovs S, Binder M, Ulrich RG, Giese T, Wolff T, Krüger DH, Schönrich G. RNA helicase retinoic acid-inducible gene I as a sensor of Hantaan virus replication. J Gen Virol 2011; 92:2191-2200. [PMID: 21632559 DOI: 10.1099/vir.0.032367-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hantaan virus (HTNV) causes severe human disease. The HTNV genome consists of three ssRNA segments of negative polarity that are complexed with viral nucleocapsid (N) protein. How the human innate immune system detects HTNV is unclear. RNA helicase retinoic acid-inducible gene I (RIG-I) does not sense genomic HTNV RNA. So far it has not been analysed whether pathogen-associated molecular patterns generated during the HTNV replication trigger RIG-I-mediated innate responses. Indeed, we found that knock-down of RIG-I in A549 cells, an alveolar epithelial cell line, increases HTNV replication and prevents induction of 2',5'-oligoadenylate synthetase, an interferon-stimulated gene. Moreover, overexpression of wild-type or constitutive active RIG-I in Huh7.5 cells lacking a functional RIG-I diminished HTNV virion production. Intriguingly, reporter assays revealed that in vitro-transcribed HTNV N RNA and expression of the HTNV N ORF triggers RIG-I signalling. This effect was completely blocked by the RNA-binding domain of vaccinia virus E3 protein, suggesting that dsRNA-like secondary structures of HTNV N RNA stimulate RIG-I. Finally, transfection of HTNV N RNA into A549 cells resulted in a 2 log-reduction of viral titres upon challenge with virus. Our study is the first demonstration that RIG-I mediates antiviral innate responses induced by HTNV N RNA during HTNV replication and interferes with HTNV growth.
Collapse
Affiliation(s)
- Min-Hi Lee
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Pritesh Lalwani
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Martin J Raftery
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | | | - Nina Lütteke
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Sina Kirsanovs
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Marco Binder
- Department of Molecular Virology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich Loeffler Institute, Institute for Novel and Emerging Infectious Diseases, D-17493 Greifswald-Insel Riems, Germany
| | - Thomas Giese
- Institute of Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Detlev H Krüger
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| | - Günther Schönrich
- Institute of Medical Virology, Charité - Universitätsmedizin Berlin, D-10098 Berlin, Germany
| |
Collapse
|
30
|
Langhans B, Kupfer B, Braunschweiger I, Arndt S, Schulte W, Nischalke HD, Nattermann J, Oldenburg J, Sauerbruch T, Spengler U. Interferon-lambda serum levels in hepatitis C. J Hepatol 2011; 54:859-65. [PMID: 21145813 DOI: 10.1016/j.jhep.2010.08.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Dendritic cells (DCs) trigger adaptive immune responses and are an important source of antiviral cytokines. In hepatitis C virus (HCV) infection DC function is markedly impaired. Thus far, studies have focused on types I and II interferon (IFN). We studied IFN-lambda1 (IL-29) and IFN-lambda2/3 (IL-28A/B) serum levels in patients with different outcomes of HCV infection. METHODS IFN-lambdas were measured by ELISAs detecting IL-29 or IL-28A and IL-28B, respectively. Results were stratified with respect to the recently discovered rs12979860 T/C polymorphism upstream of the IL-28B gene. RESULTS In general IL-29 serum levels exceeded IL-28A/B at least twofold, with IL-29 and IL-28A/B levels being significantly higher in carriers of the rs12979860 C allele than in TT homozygous individuals (p<0.02). IL-29 levels were substantially lower in patients with chronic hepatitis C than in healthy controls (p=0.005) and patients with spontaneously resolved hepatitis (p=0.001). Patients with acute hepatitis C showed IL-29 levels intermediate between chronic hepatitis C and normal controls; and IL-29 serum levels were higher in patients who spontaneously resolved hepatitis C than in those who became chronic. In vitro HCV proteins NS3 and E2 directly inhibited IL-29 production in poly I:C-stimulated purified DCs. CONCLUSIONS Our data suggest that HCV proteins modify IFN-lambda production in DCs. Carriers of the rs12979860 C allele associated with resolution of HCV infection exhibited increased IFN-lambda levels. Moreover, high IFN-lambda levels predisposed to spontaneous resolution of HCV infection. Thus, IFN-lambdas seem to play an important role in the control of hepatitis C.
Collapse
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In 1978, hantaviruses were first described as the etiological agent of hemorrhagic fever with renal syndrome (HFRS) in Korea. Since then, numerous related, enveloped, negative-stranded RNA viruses have been identified, forming the genus Hantavirus within the family Bunyaviridae. These pathogens are distributed worldwide and thus can be classified, on the basis of phylogenetic origins, into Old World viruses or New World viruses (ie North, Central, and South America). Similarly, these viruses cause two major types of syndromes, corresponding respectively to their phylogenies: the original HFRS or the more recently described hantavirus pulmonary syndrome (HPS). As the hantavirus pulmonary syndrome is the primary hantaviral disease in North America, it will thus be the focus of this review.
Collapse
|
32
|
Klingström J, Ahlm C. Hantavirus protein interactions regulate cellular functions and signaling responses. Expert Rev Anti Infect Ther 2011; 9:33-47. [PMID: 21171876 DOI: 10.1586/eri.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rodent-borne pathogenic hantaviruses cause two severe and often lethal zoonotic diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Currently, no US FDA-approved therapeutics or vaccines are available for HFRS/HCPS. Infections with hantaviruses are not lytic, and it is currently not known exactly why infections in humans cause disease. A better understanding of how hantaviruses interfere with normal cell functions and activation of innate and adaptive immune responses might provide clues to future development of specific treatment and/or vaccines against hantavirus infection. In this article, the current knowledge regarding immune responses observed in patients, hantavirus interference with cellular proteins and signaling pathways, and possible approaches in the development of therapeutics are discussed.
Collapse
Affiliation(s)
- Jonas Klingström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
33
|
Björkström NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaëlsson J, Malmberg KJ, Klingström J, Ahlm C, Ljunggren HG. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. ACTA ACUST UNITED AC 2010; 208:13-21. [PMID: 21173105 PMCID: PMC3023129 DOI: 10.1084/jem.20100762] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute hantavirus infection in humans triggers a rapid expansion and long-term persistence of NK cells. Natural killer (NK) cells are known to mount a rapid response to several virus infections. In experimental models of acute viral infection, this response has been characterized by prompt NK cell activation and expansion followed by rapid contraction. In contrast to experimental model systems, much less is known about NK cell responses to acute viral infections in humans. We demonstrate that NK cells can rapidly expand and persist at highly elevated levels for >60 d after human hantavirus infection. A large part of the expanding NK cells expressed the activating receptor NKG2C and were functional in terms of expressing a licensing inhibitory killer cell immunoglobulin-like receptor (KIR) and ability to respond to target cell stimulation. These results demonstrate that NK cells can expand and remain elevated in numbers for a prolonged period of time in humans after a virus infection. In time, this response extends far beyond what is considered normal for an innate immune response.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stoltz M, Klingström J. Alpha/beta interferon (IFN-alpha/beta)-independent induction of IFN-lambda1 (interleukin-29) in response to Hantaan virus infection. J Virol 2010; 84:9140-8. [PMID: 20592090 PMCID: PMC2937636 DOI: 10.1128/jvi.00717-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 06/24/2010] [Indexed: 12/24/2022] Open
Abstract
Type III interferons ([IFNs] IFN-lambda and interleukin-28 and -29 [IL-28/29]) are recently recognized cytokines with innate antiviral effects similar to those of type I IFNs (IFN-alpha/beta). Like IFN-alpha/beta, IFN-lambda-expression can be induced by viruses, and it is believed that type I and III IFNs are regulated in the same manner. Hantaviruses are weak IFN-alpha/beta inducers and have surprisingly been shown to activate IFN-alpha/beta-independent IFN-stimulated gene (ISG) expression. Here, we show that in Hantaan virus (HTNV)-infected human epithelial A549 cells, induction of IFN-lambda1 preceded induction of MxA and IFN-beta by 12 and 24 h, respectively, and IFN-alpha was not induced at all. Furthermore, induction of IFN-lambda1 and MxA was observed in HTNV-infected African green monkey epithelial Vero E6 cells, a cell line that cannot produce type I IFNs, clearly showing that HTNV can induce IFN-lambda1 and ISGs in the complete absence of IFN-alpha/beta. In HTNV-infected human fibroblast MRC-5 cells, which lack the IFN-lambda receptor, induction of MxA coincided in time with IFN-beta-induction. UV-inactivated HTNV did not induce any IFNs or MxA in any cell line, showing that activation of IFN-lambda1 is dependent on replicating virus. Induction of both IFN-beta and IFN-lambda1 in A549 cells after poly(I:C)-stimulation was strongly inhibited in HTNV-infected cells, suggesting that HTNV can inhibit signaling pathways used to simultaneously activate types I and III IFNs. In conclusion, we show that HTNV can cause type I IFN-independent IFN-lambda1 induction and IFN-lambda1-specific ISG induction. Importantly, the results suggest the existence of specific signaling pathways that induce IFN-lambda1 without simultaneous type I IFN induction during virus infection.
Collapse
Affiliation(s)
- Malin Stoltz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| | - Jonas Klingström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, SE-171 82 Solna, Sweden
| |
Collapse
|
35
|
Pagliaccetti NE, Robek MD. Interferon-λ in HCV Infection and Therapy. Viruses 2010; 2:1589-1602. [PMID: 21994696 PMCID: PMC3185739 DOI: 10.3390/v2081589] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 07/28/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with hepatitis C virus (HCV) is associated with significant liver disease and is therefore an important public health problem. The current standard-of-care therapy for chronic HCV infection consists of a combination of pegylated (PEG) interferon (IFN)-α and ribavirin. Although this therapy effectively generates a sustained viral response in approximately half of treated individuals, it is associated with significant hematological and neurological side effects. A new family of IFN-related proteins (IFN-λ1, 2, and 3; or alternately, IL-29, 28A, 28B, respectively) possesses properties that may make these cytokines superior to PEG-IFN-α for HCV therapy. Genetic studies have also implicated these proteins in both the natural and therapy-induced resolution of HCV infection. This review summarizes the basic aspects of IFN-λ biology, the potential role of these cytokines in HCV infection, and the outlook for their therapeutic application.
Collapse
Affiliation(s)
| | - Michael D. Robek
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-203-785-6174; Fax: +1-203-785-6127
| |
Collapse
|
36
|
Witte K, Witte E, Sabat R, Wolk K. IL-28A, IL-28B, and IL-29: promising cytokines with type I interferon-like properties. Cytokine Growth Factor Rev 2010; 21:237-51. [PMID: 20655797 DOI: 10.1016/j.cytogfr.2010.04.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
IL-28A, IL-28B and IL-29 (also designated type III interferons) constitute a new subfamily within the IL-10-interferon family. They are produced by virtually any nucleated cell type, particularly dendritic cells, following viral infection or activation with bacterial components, and mediate their effects via the IL-28R1/IL-10R2 receptor complex. Although IL-28/IL-29 are closer to the IL-10-related cytokines in terms of gene structure, protein structure, and receptor usage, they display type I interferon-like anti-viral and cytostatic activities. Unlike type I interferons, the target cell populations of IL-28/IL-29 are restricted and mainly include epithelial cells and hepatocytes. These properties suggest that IL-28/IL-29 are potential therapeutic alternatives to type I interferons in terms of viral infections and tumors. This review describes the current knowledge about these cytokines.
Collapse
Affiliation(s)
- Katrin Witte
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Prescott J, Hall P, Acuna-Retamar M, Ye C, Wathelet MG, Ebihara H, Feldmann H, Hjelle B. New World hantaviruses activate IFNlambda production in type I IFN-deficient vero E6 cells. PLoS One 2010; 5:e11159. [PMID: 20567522 PMCID: PMC2887373 DOI: 10.1371/journal.pone.0011159] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/23/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hantaviruses indigenous to the New World are the etiologic agents of hantavirus cardiopulmonary syndrome (HCPS). These viruses induce a strong interferon-stimulated gene (ISG) response in human endothelial cells. African green monkey-derived Vero E6 cells are used to propagate hantaviruses as well as many other viruses. The utility of the Vero E6 cell line for virus production is thought to owe to their lack of genes encoding type I interferons (IFN), rendering them unable to mount an efficient innate immune response to virus infection. Interferon lambda, a more recently characterized type III IFN, is transcriptionally controlled much like the type I IFNs, and activates the innate immune system in a similar manner. METHODOLOGY/PRINCIPAL FINDINGS We show that Vero E6 cells respond to hantavirus infection by secreting abundant IFNlambda. Three New World hantaviruses were similarly able to induce IFNlambda expression in this cell line. The IFNlambda contained within virus preparations generated with Vero E6 cells independently activates ISGs when used to infect several non-endothelial cell lines, whereas innate immune responses by endothelial cells are specifically due to viral infection. We show further that Sin Nombre virus replicates to high titer in human hepatoma cells (Huh7) without inducing ISGs. CONCLUSIONS/SIGNIFICANCE Herein we report that Vero E6 cells respond to viral infection with a highly active antiviral response, including secretion of abundant IFNlambda. This cytokine is biologically active, and when contained within viral preparations and presented to human epithelioid cell lines, results in the robust activation of innate immune responses. We also show that both Huh7 and A549 cell lines do not respond to hantavirus infection, confirming that the cytoplasmic RNA helicase pathways possessed by these cells are not involved in hantavirus recognition. We demonstrate that Vero E6 actively respond to virus infection and inhibiting IFNlambda production in these cells might increase their utility for virus propagation.
Collapse
Affiliation(s)
- Joseph Prescott
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Pamela Hall
- Research Service (151), New Mexico Veterans Affairs Health Care System, Albuquerque, New Mexico, United States of America
| | - Mariana Acuna-Retamar
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Chunyan Ye
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Marc G. Wathelet
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail:
| | - Brian Hjelle
- Department of Pathology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Biology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases and Immunity, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
38
|
Tanaka Y, Nishida N, Sugiyama M, Tokunaga K, Mizokami M. lambda-Interferons and the single nucleotide polymorphisms: A milestone to tailor-made therapy for chronic hepatitis C. Hepatol Res 2010; 40:449-60. [PMID: 20546329 DOI: 10.1111/j.1872-034x.2010.00671.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Type III interferons (IFN) (IFN-lambda1, -lambda2, -lambda3/interleukin [IL]-29, -28A, -28B) are cytokines with type I IFN-like antiviral activities. Most cells have expressed both type I and III IFN following Toll-like receptor (TLR) stimulation or viral infection, whereas the ability of cells to respond to IFN-lambda was restricted to a specific subset of cells. It was reported that signal transduction pathway of IFN-lambda was similar to that of IFN-alpha/beta although a receptor adapted by IFN-lambda were distinct from that of IFN-alpha/beta. However, the clinical significance and the role of each IFN-lambda were unclear. Recent genome-wide association studies (GWAS) of the human whole genome revealed several single nucleotide polymorphism sites (SNP) strongly associated with the response to pegylated IFN-alpha (PEG-IFN) plus ribavirin (RBV) treatment in chronic hepatitis C patients. The SNP, which are located near the IL-28B gene of chromosome 19, were discovered simultaneously by three independent studies opening a new prospective in hepatitis C research. The present review highlights significant insights that can be derived from the GWAS approach, and summarizes current knowledge of in vitro and in vivo study on the role of IFN-lambda in antiviral effect.
Collapse
Affiliation(s)
- Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya
| | | | | | | | | |
Collapse
|
39
|
Bunyaviruses and the type I interferon system. Viruses 2009; 1:1003-21. [PMID: 21994579 PMCID: PMC3185543 DOI: 10.3390/v1031003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/11/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022] Open
Abstract
The family Bunyaviridae contains more than 350 viruses that are distributed throughout the world. Most members of the family are transmitted by arthopods, and several cause disease in man, domesticated animals and crop plants. Despite being recognized as an emerging threat, details of the virulence mechanisms employed by bunyaviruses are scant. In this article we summarise the information currently available on how these viruses are able to establish infection when confronted with a powerful antiviral interferon system.
Collapse
|
40
|
Li M, Liu X, Zhou Y, Su SB. Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. J Leukoc Biol 2009; 86:23-32. [PMID: 19304895 DOI: 10.1189/jlb.1208761] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IFN-lambdas, including IFN-lambda1, IFN-lambda2, and IFN-lambda3, also known as IL-29, IL-28A, or IL-28B, are a newly described group of cytokines distantly related to the type I IFNs and IL-10 family members. The IFN-lambdaR complex consists of a unique ligand-binding chain, IFN-lambdaR1 (also designated IL-28Ralpha), and an accessory chain, IL-10R2, which is shared with receptors for IL-10-related cytokines. IFN-lambdas signal through the IFN-lambdaR and activate pathways of JAK-STATs and MAPKs to induce antiviral, antiproliferative, antitumor, and immune responses. In this review, we summarize recent findings about the biology of IFN-lambdas and their pathophysiological roles in viral infection, cancer, and immune responses of the innate and adaptive arms.
Collapse
Affiliation(s)
- Mingcai Li
- Institute of Inflammation and Immune Diseases, Shantou University Medical College, Shantou, China
| | | | | | | |
Collapse
|
41
|
Chaturvedi UC, Nagar R. Nitric oxide in dengue and dengue haemorrhagic fever: necessity or nuisance? FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2009; 56:9-24. [PMID: 19239490 PMCID: PMC7110348 DOI: 10.1111/j.1574-695x.2009.00544.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/23/2008] [Accepted: 01/22/2009] [Indexed: 01/03/2023]
Abstract
Advances in free radical research show that reactive oxygen and nitrogen oxide species, for example superoxide, nitric oxide (NO) and peroxynitrite, play an important role in the pathogenesis of different viral infections, including dengue virus. The pathogenic mechanism of dengue haemorrhagic fever (DHF) is complicated and is not clearly understood. The hallmarks of the dengue disease, the antibody-dependent enhancement, the shift from T-helper type 1 (Th1) to Th2 cytokine response and the cytokine tsunami resulting in vascular leakage can now be explained much better with the knowledge gained about NO and peroxynitrite. This paper makes an effort to present a synthesis of the current opinions to explain the pathogenesis of DHF/shock syndrome with NO on centre stage.
Collapse
|
42
|
Chapgier A, Kong XF, Boisson-Dupuis S, Jouanguy E, Averbuch D, Feinberg J, Zhang SY, Bustamante J, Vogt G, Lejeune J, Mayola E, de Beaucoudrey L, Abel L, Engelhard D, Casanova JL. A partial form of recessive STAT1 deficiency in humans. J Clin Invest 2009; 119:1502-14. [PMID: 19436109 DOI: 10.1172/jci37083] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 03/18/2009] [Indexed: 12/25/2022] Open
Abstract
Complete STAT1 deficiency is an autosomal recessive primary immunodeficiency caused by null mutations that abolish STAT1-dependent cellular responses to both IFN-alpha/beta and IFN-gamma. Affected children suffer from lethal intracellular bacterial and viral diseases. Here we report a recessive form of partial STAT1 deficiency, characterized by impaired but not abolished IFN-alpha/beta and IFN-gamma signaling. Two affected siblings suffered from severe but curable intracellular bacterial and viral diseases. Both were homozygous for a missense STAT1 mutation: g.C2086T (P696S). This STAT1 allele impaired the splicing of STAT1 mRNA, probably by disrupting an exonic splice enhancer. The misspliced forms were not translated into a mature protein. The allele was hypofunctional, because residual full-length mRNA production resulted in low but detectable levels of normally functional STAT1 proteins. The P696S amino acid substitution was not detrimental. The patients' cells, therefore, displayed impaired but not abolished responses to both IFN-alpha and IFN-gamma. We also show that recessive STAT1 deficiencies impaired the IL-27 and IFN-lambda1 signaling pathways, possibly contributing to the predisposition to bacterial and viral infections, respectively. Partial recessive STAT1 deficiency is what we believe to be a novel primary immunodeficiency, resulting in impairment of the response to at least 4 cytokines (IFN-alpha/beta, IFN-gamma, IFN-lambda1, and IL-27). It should be considered in patients with unexplained, severe, but curable intracellular bacterial and viral infections.
Collapse
Affiliation(s)
- Ariane Chapgier
- Laboratory of Human Genetics of Infectious Diseases, Necker Faculty, INSERM U550, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Pagliaccetti NE, Eduardo R, Kleinstein SH, Mu XJ, Bandi P, Robek MD. Interleukin-29 functions cooperatively with interferon to induce antiviral gene expression and inhibit hepatitis C virus replication. J Biol Chem 2008; 283:30079-89. [PMID: 18757365 PMCID: PMC2662072 DOI: 10.1074/jbc.m804296200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/28/2008] [Indexed: 11/06/2022] Open
Abstract
The interferon (IFN)-related cytokine interleukin (IL)-29 (also known as IFN-lambda1) inhibits virus replication by inducing a cellular antiviral response similar to that activated by IFN-alpha/beta. However, because it binds to a unique receptor, this cytokine may function cooperatively with IFN-alpha/beta or IFN-gamma during natural infections to inhibit virus replication, and might also be useful therapeutically in combination with other cytokines to treat chronic viral infections such as hepatitis C (HCV). We therefore investigated the ability of IL-29 and IFN-alpha or IFN-gamma to cooperatively inhibit virus replication and induce antiviral gene expression. Compared with the individual cytokines alone, the combination of IL-29 with IFN-alpha or IFN-gamma was more effective at blocking vesicular stomatitis virus and HCV replication, and this cooperative antiviral activity correlated with the magnitude of induced antiviral gene expression. Although the combined effects of IL-29 and IFN-alpha were primarily additive, the IL-29/IFN-gamma combination synergistically induced multiple genes and had the greatest antiviral activity. Two different mechanisms contributed to the enhanced gene expression induced by the cytokine combinations: increased activation of ISRE promoter elements and simultaneous activation of both ISRE and GAS elements within the same promoter. These findings provide new insight into the coregulation of a critical innate immune response by functionally distinct cytokine families.
Collapse
Affiliation(s)
- Nicole E Pagliaccetti
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
44
|
Andersson I, Karlberg H, Mousavi-Jazi M, Martínez-Sobrido L, Weber F, Mirazimi A. Crimean-Congo hemorrhagic fever virus delays activation of the innate immune response. J Med Virol 2008; 80:1397-404. [PMID: 18551619 DOI: 10.1002/jmv.21222] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a first line of defence against virus infection, mammalian cells elicit an innate immune response, characterized by secretion of type I interferons and the up-regulation of interferon stimulated genes. Many viruses down-regulate the innate immune responses in order to enhance their virulence. Crimean-Congo hemorrhagic fever virus (CCHFV), a Nairovirus of the family Bunyaviridae is the causative agent of severe hemorrhagic fever in humans with high mortality. Knowledge regarding the innate immune response against CCHFV is most limited. Interestingly, in this study it is shown that replicating CCHFV delays substantially the IFN response, possibly by interfering with the activation pathway of IRF-3. In addition, it is demonstrated that CCHFV replication is almost insensitive to subsequent treatment with interferon-alpha. Once the virus is replicating, virus replication is more or less insensitive to the antiviral effects induced by the interferon. By using an interferon bioassay, it is shown that infected cells secrete interferon relatively late after infection, that is, 48 hr post-infection. In summary, the results suggest the presence of a virulence factor encoded by CCHFV that delays the host defence in order to allow rapid viral spread in the host.
Collapse
Affiliation(s)
- Ida Andersson
- KCB/Swedish Institute for Infectious Disease control, Solna, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Habjan M, Andersson I, Klingström J, Schümann M, Martin A, Zimmermann P, Wagner V, Pichlmair A, Schneider U, Mühlberger E, Mirazimi A, Weber F. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One 2008; 3:e2032. [PMID: 18446221 PMCID: PMC2323571 DOI: 10.1371/journal.pone.0002032] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 03/16/2008] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5' triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emerging and re-emerging diseases. We investigated the ability of genomic RNAs from substantial representatives of this virus group to induce interferon via RIG-I or MDA5. RNAs isolated from particles of Ebola virus, Nipah virus, Lassa virus, and Rift Valley fever virus strongly activated the interferon-beta promoter. Knockdown experiments demonstrated that interferon induction depended on RIG-I, but not MDA5, and phosphatase treatment revealed a requirement for the RNA 5' triphosphate group. In contrast, genomic RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus did not trigger interferon induction. Sensitivity of these RNAs to a 5' monophosphate-specific exonuclease indicates that the RIG-I-activating 5' triphosphate group was removed post-transcriptionally by a viral function. Consequently, RIG-I is unable to bind the RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus. These results establish RIG-I as a major intracellular recognition receptor for the genome of most negative-strand RNA viruses and define the cleavage of triphosphates at the RNA 5' end as a strategy of viruses to evade the innate immune response.
Collapse
Affiliation(s)
- Matthias Habjan
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Ida Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Jonas Klingström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | | | - Arnold Martin
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Petra Zimmermann
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Valentina Wagner
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Immunobiology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Urs Schneider
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Elke Mühlberger
- Department of Virology, University of Marburg, Marburg, Germany
| | - Ali Mirazimi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Friedemann Weber
- Department of Virology, University of Freiburg, Freiburg, Germany
| |
Collapse
|