1
|
Liu Z, Xiao Y, Lyu J, Jing D, Liu L, Fu Y, Niu W, Jin L, Zhang C. The expanded application of CAR-T cell therapy for the treatment of multiple non-tumoral diseases. Protein Cell 2024; 15:633-641. [PMID: 38146589 PMCID: PMC11365555 DOI: 10.1093/procel/pwad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Affiliation(s)
- Zhuoqun Liu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Yuchen Xiao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Jianjun Lyu
- Hubei Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd., East Lake High-Tech Development Zone, Wuhan 430205, China
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liu Liu
- Shanghai Yuhui Pharmaceutical Technology (Group) Co., Ltd., and Shanghai Ruishen Technology Development Co., Ltd., Shanghai 201203, China
| | - Yanbin Fu
- Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wenxin Niu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Lingjing Jin
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China
| |
Collapse
|
2
|
Yang L, He J, Liu J, Xie T, Tang Q. Application of chimeric antigen receptor therapy beyond oncology: A bibliometric and visualized analysis. Curr Res Transl Med 2024; 72:103442. [PMID: 38452444 DOI: 10.1016/j.retram.2024.103442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Chimeric antigen receptor therapy beyond oncology has gained increasing attention. While a substantial number of publications have emerged in recent years, there has been a paucity of conducted bibliometric studies. Our objective is to systematically summarize and visually analyze the literature in the field of chimeric antigen receptors therapy beyond oncology and explore hotspots in this field. METHODS Web of Science Core Collection was selected as the data source, and the data was retrieved on December 23, 2022, according to the search strategy. CiteSpace 6.1.R6 and Vosviewer 1.6.18 were used to analyze publications and explore research hotspots and directions. RESULTS A total of 338 publications written by 1832 authors from 516 institutions in 42 countries/regions were selected for the analysis. The number of publications is steadily increasing annually. The United States emerged as the primary contributor, and University of Pennsylvania was the leading institution. Frontiers in Immunology boasted the highest number of published papers. Kitchen SG, Riley JL, and Scott DW were the most productive researchers in this field. The keyword cluster analysis identified HIV, autoimmune diseases, transplant related diseases and COVID-19 as the primary focus areas within the realm of chimeric antigen receptor therapy beyond oncology. CONCLUSION The advancement of chimeric antigen receptor therapy beyond oncology has witnessed rapid progress in recent years. We have explored the hotspots and research directions in this field. It is hoped that this study could provide references and directions for future clinical researches.
Collapse
Affiliation(s)
- Linxin Yang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Jinshen He
- Department of Orthopaedic Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Tianjian Xie
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China
| | - Qi Tang
- Department of Rheumatology and Immunology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
3
|
Zenere G, Wu C, Midkiff CC, Johnson NM, Grice CP, Wimley WC, Kaur A, Braun SE. Extracellular domain, hinge, and transmembrane determinants affecting surface CD4 expression of a novel anti-HIV chimeric antigen receptor (CAR) construct. PLoS One 2024; 19:e0293990. [PMID: 39133676 PMCID: PMC11318886 DOI: 10.1371/journal.pone.0293990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated clinical potential, but current receptors still need improvements to be successful against chronic HIV infection. In this study, we address some requirements of CAR motifs for strong surface expression of a novel anti-HIV CAR by evaluating important elements in the extracellular, hinge, and transmembrane (TM) domains. When combining a truncated CD4 extracellular domain and CD8α hinge/TM, the novel CAR did not express extracellularly but was detectable intracellularly. By shortening the CD8α hinge, CD4-CAR surface expression was partially recovered and addition of the LYC motif at the end of the CD8α TM fully recovered both intracellular and extracellular CAR expression. Mutation of LYC to TTA or TTC showed severe abrogation of CAR expression by flow cytometry and confocal microscopy. Additionally, we determined that CD4-CAR surface expression could be maximized by the removal of FQKAS motif at the junction of the extracellular domain and the hinge region. CD4-CAR surface expression also resulted in cytotoxic CAR T cell killing of HIV Env+ target cells. In this study, we identified elements that are crucial for optimal CAR surface expression, highlighting the need for structural analysis studies to establish fundamental guidelines of CAR designs.
Collapse
Affiliation(s)
- Giorgio Zenere
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
- BioMedical Sciences Program, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Chengxiang Wu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Cecily C. Midkiff
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
| | - Nathan M. Johnson
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
- BioMedical Sciences Program, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Christopher P. Grice
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
- BioMedical Sciences Program, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - William C. Wimley
- Department of BioChemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Stephen E. Braun
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, Louisiana, United States of America
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
4
|
Shu J, Xie W, Chen Z, Offringa R, Hu Y, Mei H. The enchanting canvas of CAR technology: Unveiling its wonders in non-neoplastic diseases. MED 2024; 5:495-529. [PMID: 38608709 DOI: 10.1016/j.medj.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Chimeric antigen receptor (CAR) T cells have made a groundbreaking advancement in personalized immunotherapy and achieved widespread success in hematological malignancies. As CAR technology continues to evolve, numerous studies have unveiled its potential far beyond the realm of oncology. This review focuses on the current applications of CAR-based cellular platforms in non-neoplastic indications, such as autoimmune, infectious, fibrotic, and cellular senescence-associated diseases. Furthermore, we delve into the utilization of CARs in non-T cell populations such as natural killer (NK) cells and macrophages, highlighting their therapeutic potential in non-neoplastic conditions and offering the potential for targeted, personalized therapies to improve patient outcomes and enhanced quality of life.
Collapse
Affiliation(s)
- Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Wei Xie
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Rienk Offringa
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany; Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
5
|
Mao Y, Liao Q, Zhu Y, Bi M, Zou J, Zheng N, Zhu L, Zhao C, Liu Q, Liu L, Chen J, Gu L, Liu Z, Pan X, Xue Y, Feng M, Ying T, Zhou P, Wu Z, Xiao J, Zhang R, Leng J, Sun Y, Zhang X, Xu J. Efficacy and safety of novel multifunctional M10 CAR-T cells in HIV-1-infected patients: a phase I, multicenter, single-arm, open-label study. Cell Discov 2024; 10:49. [PMID: 38740803 DOI: 10.1038/s41421-024-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 02/02/2024] [Indexed: 05/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells have been proposed for HIV-1 treatment but have not yet demonstrated desirable therapeutic efficacy. Here, we report newly developed anti-HIV-1 CAR-T cells armed with endogenic broadly neutralizing antibodies (bNAbs) and the follicle-homing receptor CXCR5, termed M10 cells. M10 cells were designed to exercise three-fold biological functions, including broad cytotoxic effects on HIV-infected cells, neutralization of cell-free viruses produced after latency reversal, and B-cell follicle homing. After demonstrating the three-fold biological activities, M10 cells were administered to treat 18 HIV-1 patients via a regimen of two allogenic M10 cell infusions with an interval of 30 days, with each M10 cell infusion followed by two chidamide stimulations for HIV-1 reservoir activation. Consequently, 74.3% of M10 cell infusions resulted in significant suppression of viral rebound, with viral loads declining by an average of 67.1%, and 10 patients showed persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) over the 150-day observation period. M10 cells were also found to impose selective pressure on the latent viral reservoir. No significant treatment-related adverse effects were observed. Overall, our study supported the potential of M10 CAR-T cells as a novel, safe, and effective therapeutic option for the functional cure of HIV-1/AIDS.
Collapse
Affiliation(s)
- Yunyu Mao
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qibin Liao
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Youwei Zhu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingyuan Bi
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jun Zou
- AIDS Clinical Treatment Center, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
| | - Nairong Zheng
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lingyan Zhu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chen Zhao
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qing Liu
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Li Liu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Chen
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ling Gu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhuoqun Liu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xinghao Pan
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Xue
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Meiqi Feng
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tianlei Ying
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pingyu Zhou
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Zhanshuai Wu
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Department of Medical Immunology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jian Xiao
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Department of Medical Immunology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Renfang Zhang
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Jing Leng
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Department of Medical Immunology, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Xiaoyan Zhang
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Jianqing Xu
- Clinical Center of Biotherapy at Zhongshan Hospital & Institutes of Biomedical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Carrillo MA, Zhen A, Mu W, Rezek V, Martin H, Peterson CW, Kiem HP, Kitchen SG. Stem cell-derived CAR T cells show greater persistence, trafficking, and viral control compared to ex vivo transduced CAR T cells. Mol Ther 2024; 32:1000-1015. [PMID: 38414243 PMCID: PMC11163220 DOI: 10.1016/j.ymthe.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Adoptive cell therapy (ACT) using T cells expressing chimeric antigen receptors (CARs) is an area of intense investigation in the treatment of malignancies and chronic viral infections. One of the limitations of ACT-based CAR therapy is the lack of in vivo persistence and maintenance of optimal cell function. Therefore, alternative strategies that increase the function and maintenance of CAR-expressing T cells are needed. In our studies using the humanized bone marrow/liver/thymus (BLT) mouse model and nonhuman primate (NHP) model of HIV infection, we evaluated two CAR-based gene therapy approaches. In the ACT approach, we used cytokine enhancement and preconditioning to generate greater persistence of anti-HIV CAR+ T cells. We observed limited persistence and expansion of anti-HIV CAR T cells, which led to minimal control of the virus. In our stem cell-based approach, we modified hematopoietic stem/progenitor cells (HSPCs) with anti-HIV CAR to generate anti-HIV CAR T cells in vivo. We observed CAR-expressing T cell expansion, which led to better plasma viral load suppression. HSPC-derived CAR cells in infected NHPs showed superior trafficking and persistence in multiple tissues. Our results suggest that a stem cell-based CAR T cell approach may be superior in generating long-term persistence and functional antiviral responses against HIV infection.
Collapse
Affiliation(s)
- Mayra A Carrillo
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wenli Mu
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Valerie Rezek
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Heather Martin
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, and UCLA AIDS Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Broad Stem Cell Research Center, Jonsson Comprehensive Cancer Center, and Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Eichholz K, Fukazawa Y, Peterson CW, Haeseleer F, Medina M, Hoffmeister S, Duell DM, Varco-Merth BD, Dross S, Park H, Labriola CS, Axthelm MK, Murnane RD, Smedley JV, Jin L, Gong J, Rust BJ, Fuller DH, Kiem HP, Picker LJ, Okoye AA, Corey L. Anti-PD-1 chimeric antigen receptor T cells efficiently target SIV-infected CD4+ T cells in germinal centers. J Clin Invest 2024; 134:e169309. [PMID: 38557496 PMCID: PMC10977982 DOI: 10.1172/jci169309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Programmed cell death protein 1 (PD-1) is an immune checkpoint marker commonly expressed on memory T cells and enriched in latently HIV-infected CD4+ T cells. We engineered an anti-PD-1 chimeric antigen receptor (CAR) to assess the impact of PD-1 depletion on viral reservoirs and rebound dynamics in SIVmac239-infected rhesus macaques (RMs). Adoptive transfer of anti-PD-1 CAR T cells was done in 2 SIV-naive and 4 SIV-infected RMs on antiretroviral therapy (ART). In 3 of 6 RMs, anti-PD-1 CAR T cells expanded and persisted for up to 100 days concomitant with the depletion of PD-1+ memory T cells in blood and tissues, including lymph node CD4+ follicular helper T (TFH) cells. Loss of TFH cells was associated with depletion of detectable SIV RNA from the germinal center (GC). However, following CAR T infusion and ART interruption, there was a marked increase in SIV replication in extrafollicular portions of lymph nodes, a 2-log higher plasma viremia relative to controls, and accelerated disease progression associated with the depletion of CD8+ memory T cells. These data indicate anti-PD-1 CAR T cells depleted PD-1+ T cells, including GC TFH cells, and eradicated SIV from this immunological sanctuary.
Collapse
Affiliation(s)
- Karsten Eichholz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christopher W. Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
| | - Francoise Haeseleer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Manuel Medina
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Shelby Hoffmeister
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Benjamin D. Varco-Merth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Sandra Dross
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Robert D. Murnane
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lei Jin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Jiaxin Gong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Blake J. Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Deborah H. Fuller
- Washington National Primate Research Center (WaNPRC), Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Hans-Peter Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, Oregon, USA
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine and
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
10
|
Zhou Y, Jadlowsky J, Baiduc C, Klattenhoff AW, Chen Z, Bennett AD, Pumphrey NJ, Jakobsen BK, Riley JL. Chimeric antigen receptors enable superior control of HIV replication by rapidly killing infected cells. PLoS Pathog 2023; 19:e1011853. [PMID: 38100526 PMCID: PMC10773964 DOI: 10.1371/journal.ppat.1011853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Engineered T cells hold great promise to become part of an effective HIV cure strategy, but it is currently unclear how best to redirect T cells to target HIV. To gain insight, we generated engineered T cells using lentiviral vectors encoding one of three distinct HIV-specific T cell receptors (TCRs) or a previously optimized HIV-targeting chimeric antigen receptor (CAR) and compared their functional capabilities. All engineered T cells had robust, antigen-specific polyfunctional cytokine profiles when mixed with artificial antigen-presenting cells. However, only the CAR T cells could potently control HIV replication. TCR affinity enhancement did not augment HIV control but did allow TCR T cells to recognize common HIV escape variants. Interestingly, either altering Nef activity or adding additional target epitopes into the HIV genome bolstered TCR T cell anti-HIV activity, but CAR T cells remained superior in their ability to control HIV replication. To better understand why CAR T cells control HIV replication better than TCR T cells, we performed a time course to determine when HIV-specific T cells were first able to activate Caspase 3 in HIV-infected targets. We demonstrated that CAR T cells recognized and killed HIV-infected targets more rapidly than TCR T cells, which correlates with their ability to control HIV replication. These studies suggest that the speed of target recognition and killing is a key determinant of whether engineered T cell therapies will be effective against infectious diseases.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Julie Jadlowsky
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Caitlin Baiduc
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alex W. Klattenhoff
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhilin Chen
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Bent K. Jakobsen
- Adaptimmune Ltd, Abingdon, United Kingdom
- Immunocore Ltd., Abingdon, United Kingdom
| | - James L. Riley
- Department of Microbiology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure. Chin Med J (Engl) 2023; 136:2658-2667. [PMID: 37927030 PMCID: PMC10684145 DOI: 10.1097/cm9.0000000000002904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 11/07/2023] Open
Abstract
ABSTRACT Although antiretroviral therapy (ART) can reduce the viral load in the plasma to undetectable levels in human immunodeficiency virus (HIV)-infected individuals, ART alone cannot completely eliminate HIV due to its integration into the host cell genome to form viral reservoirs. To achieve a functional cure for HIV infection, numerous preclinical and clinical studies are underway to develop innovative immunotherapies to eliminate HIV reservoirs in the absence of ART. Early studies have tested adoptive T-cell therapies in HIV-infected individuals, but their effectiveness was limited. In recent years, with the technological progress and great success of chimeric antigen receptor (CAR) therapy in the treatment of hematological malignancies, CAR therapy has gradually shown its advantages in the field of HIV infection. Many studies have identified a variety of HIV-specific CAR structures and types of cytolytic effector cells. Therefore, CAR therapy may be beneficial for enhancing HIV immunity, achieving HIV control, and eliminating HIV reservoirs, gradually becoming a promising strategy for achieving a functional HIV cure. In this review, we provide an overview of the design of anti-HIV CAR proteins, the cell types of anti-HIV CAR (including CAR T cells, CAR natural killer cells, and CAR-encoding hematopoietic stem/progenitor cells), the clinical application of CAR therapy in HIV infection, and the prospects and challenges in anti-HIV CAR therapy for maintaining viral suppression and eliminating HIV reservoirs.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Na Guo
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Olivier Lambotte
- Department of Internal Medicine, AP-HP, Bicêtre Hospital, UMR1184 INSERM CEA, Le Kremlin Bicêtre, University Paris Saclay, Paris 94270, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Zenere G, Wu C, Midkiff CC, Johnson NM, Grice CP, Wimley WC, Kaur A, Braun SE. Extracellular domain, hinge, and transmembrane determinants affecting surface CD4 expression of a novel anti-HIV chimeric antigen receptor (CAR) construct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563930. [PMID: 37961145 PMCID: PMC10634810 DOI: 10.1101/2023.10.25.563930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chimeric antigen receptor (CAR)-T cells have demonstrated clinical potential, but current receptors still need improvements to be successful against chronic HIV infection. In this study, we address some requirements of CAR motifs for strong surface expression of a novel anti-HIV CAR by evaluating important elements in the extracellular, hinge, and transmembrane (TM) domains. When combining a truncated CD4 extracellular domain and CD8α hinge/TM, the novel CAR did not express extracellularly but was detectable intracellularly. By shortening the CD8α hinge, CD4-CAR surface expression was partially recovered and addition of the LYC motif at the end of the CD8α TM fully recovered both intracellular and extracellular CAR expression. Mutation of LYC to TTA or TTC showed severe abrogation of CAR expression by flow cytometry and confocal microscopy. Additionally, we determined that CD4-CAR surface expression could be maximized by the removal of FQKAS motif at the junction of the extracellular domain and the hinge region. CD4-CAR surface expression also resulted in cytotoxic CAR T cell killing of HIV Env+ target cells. In this study, we identified elements that are crucial for optimal CAR surface expression, highlighting the need for structural analysis studies to establish fundamental guidelines of CAR designs.
Collapse
Affiliation(s)
- Giorgio Zenere
- Tulane National Primate Research Center, Covington, LA 70433
- BioMedical Sciences Program, Tulane University School of Medicine, New Orleans, LA 70112
| | - Chengxiang Wu
- Tulane National Primate Research Center, Covington, LA 70433
| | | | - Nathan M. Johnson
- Tulane National Primate Research Center, Covington, LA 70433
- BioMedical Sciences Program, Tulane University School of Medicine, New Orleans, LA 70112
| | - Christopher P. Grice
- Tulane National Primate Research Center, Covington, LA 70433
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| | - William C. Wimley
- Department of BioChemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, LA 70433
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Stephen E. Braun
- Tulane National Primate Research Center, Covington, LA 70433
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
13
|
Mukerjee N, Maitra S, Ghosh A, Sharma R. Impact of CAR-T cell therapy on treating viral infections: unlocking the door to recovery. Hum Cell 2023; 36:1839-1842. [PMID: 37338785 DOI: 10.1007/s13577-023-00942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, 700126, West Bengal, India
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, 700126, West Bengal, India
| | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurusha Srimanta Sankaradeva Viswavidyalaya, Guwahati, Assam, 781032, India.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
14
|
Rothemejer FH, Lauritsen NP, Søgaard OS, Tolstrup M. Strategies for enhancing CAR T cell expansion and persistence in HIV infection. Front Immunol 2023; 14:1253395. [PMID: 37671164 PMCID: PMC10475529 DOI: 10.3389/fimmu.2023.1253395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Chimeric Antigen Receptor (CAR) T cell therapies are tremendously successful in hematological malignancies and show great promise as treatment and curative strategy for HIV. A major determinant for effective CAR T cell therapy is the persistence of CAR T cells. Particularly, antigen density and target cell abundance are crucial for the engagement, engraftment, and persistence of CAR T cells. The success of HIV-specific CAR T cells is challenged by limited antigen due to low cell surface expression of viral proteins and the scarcity of chronically infected cells during antiretroviral therapy. Several strategies have been explored to increase the efficacy of CAR T cells by enhancing expansion and persistence of the engineered cells. This review highlights the challenges of designing CAR T cells against HIV and other chronic viral infections. We also discuss potential strategies to enhance CAR T cell expansion and persistence in the setting of low antigen exposure.
Collapse
Affiliation(s)
- Frederik Holm Rothemejer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nanna Pi Lauritsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Velasco-de Andrés M, Muñoz-Sánchez G, Carrillo-Serradell L, Gutiérrez-Hernández MDM, Català C, Isamat M, Lozano F. Chimeric antigen receptor-based therapies beyond cancer. Eur J Immunol 2023; 53:e2250184. [PMID: 36649259 DOI: 10.1002/eji.202250184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Adoptive cell transfer (ACT) therapies have gained renewed interest in the field of immunotherapy following the advent of chimeric antigen receptor (CAR) technology. This immunological breakthrough requires immune cell engineering with an artificial surface protein receptor for antigen-specific recognition coupled to an intracellular protein domain for cell activating functions. CAR-based ACT has successfully solved some hematological malignancies, and it is expected that other tumors may soon benefit from this approach. However, the potential of CAR technology is such that other immune-mediated disorders are beginning to profit from it. This review will focus on CAR-based ACT therapeutic areas other than oncology such as infection, allergy, autoimmunity, transplantation, and fibrotic repair. Herein, we discuss the results and limitations of preclinical and clinical studies in that regard.
Collapse
Affiliation(s)
| | - Guillermo Muñoz-Sánchez
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | | | - Cristina Català
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcos Isamat
- Sepsia Therapeutics S.L., L'Hospitalet de Llobregat, Spain
| | - Francisco Lozano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Rothemejer FH, Lauritsen NP, Juhl AK, Schleimann MH, König S, Søgaard OS, Bak RO, Tolstrup M. Development of HIV-Resistant CAR T Cells by CRISPR/Cas-Mediated CAR Integration into the CCR5 Locus. Viruses 2023; 15:202. [PMID: 36680242 PMCID: PMC9862650 DOI: 10.3390/v15010202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has been highly successful in treating B cell malignancies and holds great potential as a curative strategy for HIV infection. Recent advances in the use of anti-HIV broadly neutralizing antibodies (bNAbs) have provided vital information for optimal antigen targeting of CAR T cells. However, CD4+ CAR T cells are susceptible to HIV infection, limiting their therapeutic potential. In the current study, we engineered HIV-resistant CAR T cells using CRISPR/Cas9-mediated integration of a CAR cassette into the CCR5 locus. We used a single chain variable fragment (scFv) of the clinically potent bNAb 10-1074 as the antigen-targeting domain in our anti-HIV CAR T cells. Our anti-HIV CAR T cells showed specific lysis of HIV-infected cells in vitro. In a PBMC humanized mouse model of HIV infection, the anti-HIV CAR T cells expanded and transiently limited HIV infection. In conclusion, this study provides proof-of-concept for developing HIV-resistant CAR T cells using CRISPR/Cas9 targeted integration.
Collapse
Affiliation(s)
- Frederik Holm Rothemejer
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Nanna Pi Lauritsen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anna Karina Juhl
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mariane Høgsbjerg Schleimann
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Saskia König
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole Schmeltz Søgaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, 8200 Aarhus, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, 8200 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| |
Collapse
|
17
|
Davey BC, Pampusch MS, Cartwright EK, Abdelaal HM, Rakasz EG, Rendahl A, Berger EA, Skinner PJ. Development of an anti-CAR antibody response in SIV-infected rhesus macaques treated with CD4-MBL CAR/CXCR5 T cells. Front Immunol 2022; 13:1032537. [PMID: 36582226 PMCID: PMC9793449 DOI: 10.3389/fimmu.2022.1032537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022] Open
Abstract
T cells expressing a simian immunodeficiency (SIV)-specific chimeric antigen receptor (CAR) and the follicular homing molecule, CXCR5, were infused into antiretroviral therapy (ART) suppressed, SIV-infected rhesus macaques to assess their ability to localize to the lymphoid follicle and control the virus upon ART interruption. While the cells showed evidence of functionality, they failed to persist in the animals beyond 28 days. Development of anti-CAR antibodies could be responsible for the lack of persistence. Potential antigenic sites on the anti-SIV CAR used in these studies included domains 1 and 2 of CD4, the carbohydrate recognition domain (CRD) of mannose-binding lectin (MBL), and an extracellular domain of the costimulatory molecule, CD28, along with short linker sequences. Using a flow cytometry based assay and target cells expressing the CAR/CXCR5 construct, we examined the serum of the CD4-MBL CAR/CXCR5-T cell treated animals to determine that the animals had developed an anti-CAR antibody response after infusion. Binding sites for the anti-CAR antibodies were identified by using alternative CARs transduced into target cells and by preincubation of the target cells with a CD4 blocking antibody. All of the treated animals developed antibodies in their serum that bound to CD4-MBL CAR/CXCR5 T cells and the majority were capable of inducing an ADCC response. The CD4 antibody-blocking assay suggests that the dominant immunogenic components of this CAR are the CD4 domains with a possible additional site of the CD28 domain with its linker. This study shows that an anti-drug antibody (ADA) response can occur even when using self-proteins, likely due to novel epitopes created by abridged self-proteins and/or the self-domain of the CAR connection to a small non-self linker. While in our study, there was no statistically significant correlation between the ADA response and the persistence of the CD4-MBL CAR/CXCR5-T cells in rhesus macaques, these findings suggest that the development of an ADA response could impact the long-term persistence of self-based CAR immunotherapies.
Collapse
Affiliation(s)
- Brianna C. Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Mary S. Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Emily K. Cartwright
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hadia M. Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Madison, WI, United States
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Edward A. Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States,*Correspondence: Pamela J. Skinner,
| |
Collapse
|
18
|
Anthony-Gonda K, Ray A, Su H, Wang Y, Xiong Y, Lee D, Block A, Chilunda V, Weiselberg J, Zemelko L, Wang YY, Kleinsorge-Block S, Reese JS, de Lima M, Ochsenbauer C, Kappes JC, Dimitrov DS, Orentas R, Deeks SG, Rutishauser RL, Berman JW, Goldstein H, Dropulić B. In vivo killing of primary HIV-infected cells by peripheral-injected early memory-enriched anti-HIV duoCAR T cells. JCI Insight 2022; 7:e161698. [PMID: 36345941 PMCID: PMC9675454 DOI: 10.1172/jci.insight.161698] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
HIV-specific chimeric antigen receptor-T cell (CAR T cell) therapies are candidates to functionally cure HIV infection in people with HIV (PWH) by eliminating reactivated HIV-infected cells derived from latently infected cells within the HIV reservoir. Paramount to translating such therapeutic candidates successfully into the clinic will require anti-HIV CAR T cells to localize to lymphoid tissues in the body and eliminate reactivated HIV-infected cells such as CD4+ T cells and monocytes/macrophages. Here we show that i.v. injected anti-HIV duoCAR T cells, generated using a clinical-grade anti-HIV duoCAR lentiviral vector, localized to the site of active HIV infection in the spleen of humanized mice and eliminated HIV-infected PBMCs. CyTOF analysis of preinfusion duoCAR T cells revealed an early memory phenotype composed predominantly of CCR7+ stem cell-like/central memory T cells (TSCM/TCM) with expression of some effector-like molecules. In addition, we show that anti-HIV duoCAR T cells effectively sense and kill HIV-infected CD4+ T cells and monocytes/macrophages. Furthermore, we demonstrate efficient genetic modification of T cells from PWH on suppressive ART into anti-HIV duoCAR T cells that subsequently kill autologous PBMCs superinfected with HIV. These studies support the safety and efficacy of anti-HIV duoCAR T cell therapy in our presently open phase I/IIa clinical trial (NCT04648046).
Collapse
Affiliation(s)
- Kim Anthony-Gonda
- Caring Cross, Gaithersburg, Maryland, USA
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Alex Ray
- Department of Microbiology & Immunology and
| | - Hang Su
- Department of Microbiology & Immunology and
| | - Yuge Wang
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Ying Xiong
- Caring Cross, Gaithersburg, Maryland, USA
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| | - Danica Lee
- Department of Microbiology & Immunology and
| | | | - Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jessica Weiselberg
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lily Zemelko
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Yen Y. Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Sarah Kleinsorge-Block
- Stem Cell Transplant Program and Center for Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jane S. Reese
- Stem Cell Transplant Program and Center for Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Marcos de Lima
- Stem Cell Transplant Program and Center for Regenerative Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, Alabama, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rimas Orentas
- Caring Cross, Gaithersburg, Maryland, USA
- Department of Pediatrics, University of Washington School of Medicine, and Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research lnstitute, Seattle, Washington, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Joan W. Berman
- Department of Microbiology & Immunology and
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Harris Goldstein
- Department of Microbiology & Immunology and
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Boro Dropulić
- Caring Cross, Gaithersburg, Maryland, USA
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, Maryland, USA
| |
Collapse
|
19
|
Yi L, Yang L. Stem-like T cells and niches: Implications in human health and disease. Front Immunol 2022; 13:907172. [PMID: 36059484 PMCID: PMC9428355 DOI: 10.3389/fimmu.2022.907172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, accumulating evidence has elucidated the important role of T cells with stem-like characteristics in long-term maintenance of T cell responses and better patient outcomes after immunotherapy. The fate of TSL cells has been correlated with many physiological and pathological human processes. In this review, we described present advances demonstrating that stem-like T (TSL) cells are central players in human health and disease. We interpreted the evolutionary characteristics, mechanism and functions of TSL cells. Moreover, we discuss the import role of distinct niches and how they affect the stemness of TSL cells. Furthermore, we also outlined currently available strategies to generate TSL cells and associated affecting factors. Moreover, we summarized implication of TSL cells in therapies in two areas: stemness enhancement for vaccines, ICB, and adoptive T cell therapies, and stemness disruption for autoimmune disorders.
Collapse
|
20
|
Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines 2022; 10:biomedicines10071493. [PMID: 35884798 PMCID: PMC9313317 DOI: 10.3390/biomedicines10071493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/08/2023] Open
Abstract
For nearly three decades, chimeric antigen receptors (CARs) have captivated the interest of researchers seeking to find novel immunotherapies to treat cancer. CARs were first designed to work with T cells, and the first CAR T cell therapy was approved to treat B cell lymphoma in 2017. Recent advancements in CAR technology have led to the development of modified CARs, including multi-specific CARs and logic gated CARs. Other immune cell types, including natural killer (NK) cells and macrophages, have also been engineered to express CARs to treat cancer. Additionally, CAR technology has been adapted in novel approaches to treating autoimmune disease and other conditions and diseases. In this article, we review these recent advancements in alternative CAR therapies and design, as well as their mechanisms of action, challenges in application, and potential future directions.
Collapse
|
21
|
Choudhary MC, Cyktor JC, Riddler SA. Advances in HIV-1-specific chimeric antigen receptor cells to target the HIV-1 reservoir. J Virus Erad 2022; 8:100073. [PMID: 35784676 PMCID: PMC9241028 DOI: 10.1016/j.jve.2022.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Antiretroviral therapy (ART) for HIV-1 has dramatically improved outcomes for people living with HIV-1 but requires life-long adherence and can be associated with short and long-term toxicity. Numerous pre-clinical and clinical investigations are underway to develop therapies for immune control of HIV-1 in the absence of ART. The success of chimeric antigen receptor (CAR) cell therapy for hematological malignancy has renewed efforts to develop and investigate CAR cells as strategies to enhance HIV-1 immunity, enable virus control or elimination, and allow ART-free HIV-1 remission. Here, we review the improvements in anti-HIV-1 CAR cell therapy in the two decades since their initial clinical trials were conducted, describe the additional engineering required to protect CAR cells from HIV-1 infection, and preview the current landscape of CAR cell therapies advancing to HIV-1 clinical trials.
Collapse
Affiliation(s)
- Madhu C. Choudhary
- Corresponding author. Division of Infectious Diseases, University of Pittsburgh, Suite 510, 3601 5Th Ave., Pittsburgh, PA, 15213, USA.
| | | | | |
Collapse
|
22
|
York J, Gowrishankar K, Micklethwaite K, Palmer S, Cunningham AL, Nasr N. Evolving Strategies to Eliminate the CD4 T Cells HIV Viral Reservoir via CAR T Cell Immunotherapy. Front Immunol 2022; 13:873701. [PMID: 35572509 PMCID: PMC9098815 DOI: 10.3389/fimmu.2022.873701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although the advent of ART has significantly reduced the morbidity and mortality associated with HIV infection, the stable pool of HIV in latently infected cells requires lifelong treatment adherence, with the cessation of ART resulting in rapid reactivation of the virus and productive HIV infection. Therefore, these few cells containing replication-competent HIV, known as the latent HIV reservoir, act as the main barrier to immune clearance and HIV cure. While several strategies involving HIV silencing or its reactivation in latently infected cells for elimination by immune responses have been explored, exciting cell based immune therapies involving genetically engineered T cells expressing synthetic chimeric receptors (CAR T cells) are highly appealing and promising. CAR T cells, in contrast to endogenous cytotoxic T cells, can function independently of MHC to target HIV-infected cells, are efficacious and have demonstrated acceptable safety profiles and long-term persistence in peripheral blood. In this review, we present a comprehensive picture of the current efforts to target the HIV latent reservoir, with a focus on CAR T cell therapies. We highlight the current challenges and advances in this field, while discussing the importance of novel CAR designs in the efforts to find a HIV cure.
Collapse
Affiliation(s)
- Jarrod York
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kavitha Gowrishankar
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Children’s Cancer Research Unit, Kids Research, The Children’s Hospital at Westmead, Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Kenneth Micklethwaite
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Blood Transplant and Cell Therapies Program, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
- NSW Health Pathology Blood Transplant and Cell Therapies Laboratory – Institute of Clinical Pathology and Medical Research (ICPMR) Westmead, Sydney, NSW, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Chikileva I, Shubina I, Burtseva AM, Kirgizov K, Stepanyan N, Varfolomeeva S, Kiselevskiy M. Antiviral Cell Products against COVID-19: Learning Lessons from Previous Research in Anti-Infective Cell-Based Agents. Biomedicines 2022; 10:biomedicines10040868. [PMID: 35453618 PMCID: PMC9027720 DOI: 10.3390/biomedicines10040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is a real challenge for the protective immunity. Some people do not respond to vaccination by acquiring an appropriate immunological memory. The risk groups for this particular infection such as the elderly and people with compromised immunity (cancer patients, pregnant women, etc.) have the most serious problems in developing an adequate immune response. Therefore, dendritic cell (DC) vaccines that are loaded ex vivo with SARS-CoV-2 antigens in the optimal conditions are promising for immunization. Lymphocyte effector cells with chimeric antigen receptor (CAR lymphocytes) are currently used mainly as anti-tumor treatment. Before 2020, few studies on the antiviral CAR lymphocytes were reported, but since the outbreak of SARS-CoV-2 the number of such studies has increased. The basis for CARs against SARS-CoV-2 were several virus-specific neutralizing monoclonal antibodies. We propose a similar, but basically novel and more universal approach. The extracellular domain of the immunoglobulin G receptors will be used as the CAR receptor domain. The specificity of the CAR will be determined by the antibodies, which it has bound. Therefore, such CAR lymphocytes are highly universal and have functional activity against any infectious agents that have protective antibodies binding to a foreign surface antigen on the infected cells.
Collapse
Affiliation(s)
- Irina Chikileva
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
- Correspondence:
| | - Irina Shubina
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| | - Anzhelika-Mariia Burtseva
- College of New Materials and Nanotechnologies, National University of Science and Technology “MISiS”, 119049 Moscow, Russia;
| | - Kirill Kirgizov
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Nara Stepanyan
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Svetlana Varfolomeeva
- Research Institute of Children Oncology and Hematology, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (K.K.); (N.S.); (S.V.)
| | - Mikhail Kiselevskiy
- Research Institute of Experimental Therapy and Diagnostics of Tumor, NN Blokhin National Medical Center of Oncology, 115478 Moscow, Russia; (I.S.); (M.K.)
| |
Collapse
|
24
|
Chen X, Jia L, Zhang X, Zhang T, Zhang Y. One arrow for two targets: potential co-treatment regimens for lymphoma and HIV. Blood Rev 2022; 55:100965. [DOI: 10.1016/j.blre.2022.100965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/27/2022]
|
25
|
Pampusch MS, Abdelaal HM, Cartwright EK, Molden JS, Davey BC, Sauve JD, Sevcik EN, Rendahl AK, Rakasz EG, Connick E, Berger EA, Skinner PJ. CAR/CXCR5-T cell immunotherapy is safe and potentially efficacious in promoting sustained remission of SIV infection. PLoS Pathog 2022; 18:e1009831. [PMID: 35130312 PMCID: PMC8853520 DOI: 10.1371/journal.ppat.1009831] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
During chronic human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection prior to AIDS progression, the vast majority of viral replication is concentrated within B cell follicles of secondary lymphoid tissues. We investigated whether infusion of T cells expressing an SIV-specific chimeric antigen receptor (CAR) and the follicular homing receptor, CXCR5, could successfully kill viral-RNA+ cells in targeted lymphoid follicles in SIV-infected rhesus macaques. In this study, CD4 and CD8 T cells from rhesus macaques were genetically modified to express antiviral CAR and CXCR5 moieties (generating CAR/CXCR5-T cells) and autologously infused into a chronically infected animal. At 2 days post-treatment, the CAR/CXCR5-T cells were located primarily in spleen and lymph nodes both inside and outside of lymphoid follicles. Few CAR/CXCR5-T cells were detected in the ileum, rectum, and lung, and no cells were detected in the bone marrow, liver, or brain. Within follicles, CAR/CXCR5-T cells were found in direct contact with SIV-viral RNA+ cells. We next infused CAR/CXCR5-T cells into ART-suppressed SIV-infected rhesus macaques, in which the animals were released from ART at the time of infusion. These CAR/CXCR5-T cells replicated in vivo within both the extrafollicular and follicular regions of lymph nodes and accumulated within lymphoid follicles. CAR/CXR5-T cell concentrations in follicles peaked during the first week post-infusion but declined to undetectable levels after 2 to 4 weeks. Overall, CAR/CXCR5-T cell-treated animals maintained lower viral loads and follicular viral RNA levels than untreated control animals, and no outstanding adverse reactions were noted. These findings indicate that CAR/CXCR5-T cell treatment is safe and holds promise as a future treatment for the durable remission of HIV.
Collapse
Affiliation(s)
- Mary S. Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Hadia M. Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emily K. Cartwright
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jhomary S. Molden
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Brianna C. Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jordan D. Sauve
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emily N. Sevcik
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Aaron K. Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Arizona, Tucson, Arizona, United States of America
| | - Edward A. Berger
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
26
|
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Rev Med Virol 2022; 32:e2325. [PMID: 35037732 DOI: 10.1002/rmv.2325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has made improvements due to the advances in chimaeric antigen receptor (CAR) T cell development, offering a promising treatment option for patients who have failed to respond to traditional treatments. In light of the successful use of adoptive CAR T cell therapy for cancer, researchers have been inspired to develop CARs for the treatment of other diseases beyond cancers such as viral infectious diseases. Nonetheless, various obstacles limit the efficacy of CAR T cell therapies and prevent their widespread usage. Severe toxicities, poor in vivo persistence, antigen escape, and heterogeneity, as well as off-target effect, are key challenges that must all be addressed to broaden the application of CAR T cells to a wider spectrum of diseases. The key advances in CAR T cell treatment for cancer and viral infections are reviewed in this article. We will also discuss revolutionary CAR T cell products developed to improve and enhance the therapeutic advantages of these treatments.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Mesenchymal Stem Cells, The Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
27
|
From Hematopoietic Stem Cell Transplantation to Chimeric Antigen Receptor Therapy: Advances, Limitations and Future Perspectives. Cells 2021; 10:cells10112845. [PMID: 34831068 PMCID: PMC8616322 DOI: 10.3390/cells10112845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy was envisioned as a mechanism to re-direct effector T-cells to eliminate tumor cells. CARs are composed of the variable region of an antibody that binds a native cancer antigen coupled to the signaling domain of a TCR and co-stimulatory molecules. Its success and approval by the U.S. Food and Drug Administration for the treatment of B-cell malignancies revolutionized the immunotherapy field, leading to extensive research on its possible application for other cancer types. In this review, we will focus on the evolution of CAR-T cell therapy outlining current technologies as well as major obstacles for its wide application. We will highlight achievements, the efforts to increase efficacy and to evolve into an off-the-shelf treatment, and as a possible future treatment for non-cancer related diseases.
Collapse
|
28
|
Perera Molligoda Arachchige AS. NK cell-based therapies for HIV infection: Investigating current advances and future possibilities. J Leukoc Biol 2021; 111:921-931. [PMID: 34668588 DOI: 10.1002/jlb.5ru0821-412rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NK cells are well-known for their antiviral functions. Also, their role in HIV has been well established, with rapid responses elicited during early HIV infection. Most immune cells including CD4+ T cells, monocytes, Mϕs, and dendritic cells are readily infected by HIV. Recent evidence from multiple studies has suggested that similar to these cells, in chronic conditions like HIV, NK cells also undergo functional exhaustion with impaired cytotoxicity, altered cytokine production, and impaired ADCC. NK-based immunotherapy aims to successfully restore, boost, and modify their activity as has been already demonstrated in the field of cancer immunotherapy. The utilization of NK cell-based strategies for the eradication of HIV from the body provides many advantages over classical ART. The literature search consisted of manually selecting the most relevant studies from databases including PubMed, Embase, Google Scholar, and ClinicalTrial.gov. Some of the treatments currently under consideration are CAR-NK cell therapy, facilitating ADCC, TLR agonists, bNAbs, and BiKEs/TriKEs, blocking inhibitory NK receptors during infection, IL-15 and IL-15 superagonists (eg: ALT-803), and so on. This review aims to discuss the NK cell-based therapies currently under experimentation against HIV infection and finally highlight the challenges associated with NK cell-based immunotherapies.
Collapse
|
29
|
Zhou Y, Maldini CR, Jadlowsky J, Riley JL. Challenges and Opportunities of Using Adoptive T-Cell Therapy as Part of an HIV Cure Strategy. J Infect Dis 2021; 223:38-45. [PMID: 33586770 DOI: 10.1093/infdis/jiaa223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
HIV-infected individuals successfully controlling viral replication via antiretroviral therapy often have a compromised HIV-specific T-cell immune response due to the lack of CD4 T-cell help, viral escape, T-cell exhaustion, and reduction in numbers due to the withdrawal of cognate antigen. A successful HIV cure strategy will likely involve a durable and potent police force that can effectively recognize and eliminate remaining virus that may emerge decades after an individual undergoes an HIV cure regimen. T cells are ideally suited to serve in this role, but given the state of the HIV-specific T-cell response, it is unclear how to best restore HIV-specific T-cell activity prior initiation of a HIV cure strategy. Here, we review several strategies of generating HIV-specific T cells ex vivo that are currently being tested in the clinic and discuss how infused T cells can be part of an HIV cure strategy.
Collapse
Affiliation(s)
- Yuqi Zhou
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colby R Maldini
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Julie Jadlowsky
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James L Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Liu B, Zhang W, Xia B, Jing S, Du Y, Zou F, Li R, Lu L, Chen S, Li Y, Hu Q, Lin Y, Zhang Y, He Z, Zhang X, Chen X, Peng T, Tang X, Cai W, Pan T, Li L, Zhang H. Broadly neutralizing antibody-derived CAR-T cells reduce viral reservoir in HIV-1-infected individuals. J Clin Invest 2021; 131:e150211. [PMID: 34375315 DOI: 10.1172/jci150211] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-modified T cells have emerged as a novel approach to treat malignant tumors. This strategy has also been proposed for the treatment of HIV-1 infection. We have developed a broadly neutralizing antibody (bNAb)-derived CAR-T cell therapy which can exerted specific cytotoxic activity against HIV-1-infected cells. METHODS We conducted an open-label trial of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of bNAb-derived CAR-T cell therapy in HIV-1-infected individuals who were undergoing analytical interruption of antiretroviral therapy (ART). RESULTS A total of 14 participants completed only a single administration of bNAb-derived CAR-T cells. CAR-T administration was safe and well tolerated. Six participants discontinued ART, and viremia rebound occurred in all of them, with a 5.3-week median time. Notably, the cell-associated viral RNA and intact proviruses decreased significantly after CAR-T treatment. Analyses of HIV-1 variants before or after CAR-T administration suggested that CAR-T cells exerted pressure on rebound viruses, resulting in a selection of viruses with less diversity and mutations against CAR-T-mediated cytotoxicity. CONCLUSIONS No safety concerns were identified with adoptive transfer of bNAb-derived CAR-T cells. They reduced viral reservoir. All the rebounds were due to preexisting or emergence of viral escape mutations. TRIAL REGISTRATION ClinicalTrials.gov number, NCT03240328. FUNDING Ministry of Science and Technology of China, National Natural Science Foundation of China, and Department of Science and Technology of Guangdong Province.
Collapse
Affiliation(s)
- Bingfeng Liu
- Institute of Human Virology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wanying Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baijin Xia
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuliang Jing
- Institute of Human Virology, Institute of Human Virology of Zhongshan School of Medicine Zhongshan Schoo, Guangzhou, China
| | - Yingying Du
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Fan Zou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rong Li
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Lu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaozhen Chen
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Yonghong Li
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Qifei Hu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingtong Lin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhangping He
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xu Zhang
- Institute of Human Virology, Sun Yat-sen University, Guangzhou, China
| | - Xiejie Chen
- Infectious Diseases Center, Guangzhou Eighth People's Hospital, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaoping Tang
- department of infectious disease, Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangz, guangzhou, China
| | - Weiping Cai
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ting Pan
- Institute of Human Virology, Zhongshan medicine shcool, Sun Yat-sen University, Guangzhou, China
| | - Linghua Li
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology of Zhongshan School of Medicine, Guangzhou, China
| |
Collapse
|
31
|
Zhen A, Carrillo MA, Mu W, Rezek V, Martin H, Hamid P, Chen ISY, Yang OO, Zack JA, Kitchen SG. Robust CAR-T memory formation and function via hematopoietic stem cell delivery. PLoS Pathog 2021; 17:e1009404. [PMID: 33793675 PMCID: PMC8016106 DOI: 10.1371/journal.ppat.1009404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Due to the durability and persistence of reservoirs of HIV-1-infected cells, combination antiretroviral therapy (ART) is insufficient in eradicating infection. Achieving HIV-1 cure or sustained remission without ART treatment will require the enhanced and persistent effective antiviral immune responses. Chimeric Antigen Receptor (CAR) T-cells have emerged as a powerful immunotherapy and show promise in treating HIV-1 infection. Persistence, trafficking, and maintenance of function remain to be a challenge in many of these approaches, which are based on peripheral T cell modification. To overcome many of these issues, we have previously demonstrated successful long-term engraftment and production of anti-HIV CAR T cells in modified hematopoietic stem cells (HSCs) in vivo. Here we report the development and in vivo testing of second generation CD4-based CARs (CD4CAR) against HIV-1 infection using a HSCs-based approach. We found that a modified, truncated CD4-based CAR (D1D2CAR) allows better CAR-T cell differentiation from gene modified HSCs, and maintains similar CTL activity as compared to the full length CD4-based CAR. In addition, D1D2CAR does not mediate HIV infection or stimulation mediated by IL-16, suggesting lower risk of off-target effects. Interestingly, stimulatory domains of 4-1BB but not CD28 allowed successful hematopoietic differentiation and improved anti-viral function of CAR T cells from CAR modified HSCs. Addition of 4-1BB to CD4 based CARs led to faster suppression of viremia during early untreated HIV-1 infection. D1D2CAR 4-1BB mice had faster viral suppression in combination with ART and better persistence of CAR T cells during ART. In summary, our data indicate that the D1D2CAR-41BB is a superior CAR, showing better HSC differentiation, viral suppression and persistence, and less deleterious functions compared to the original CD4CAR, and should continue to be pursued as a candidate for clinical study. Engineering T cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to control HIV infection through a genetic vaccination strategy. Here we report a novel CAR-based approach targeting HIV infection using the genetic modification of blood forming hematopoietic stem cells (HSCs). This novel CAR approach uses a modified HIV receptor molecule (the primary HIV receptor CD4) as well as anti-HIV agents to modify HSCs to allow them to develop into cells that are protected from HIV infection and target HIV infected cells for the life of the individual. We found this latest generation of CARs successfully modified and allowed in vivo engraftment that resulted in the development of effective anti-HIV CAR T cells with robust memory formation and viral control. Our study highlights the identification of a next-generation CAR molecule that protected cells from infection, targeted and reduced HIV burdens, and serves as an ideal developmental candidate for further clinical studies.
Collapse
Affiliation(s)
- Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Infectious Disease, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Jerome A. Zack
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Iwamoto N, Patel B, Song K, Mason R, Bolivar-Wagers S, Bergamaschi C, Pavlakis GN, Berger E, Roederer M. Evaluation of chimeric antigen receptor T cell therapy in non-human primates infected with SHIV or SIV. PLoS One 2021; 16:e0248973. [PMID: 33752225 PMCID: PMC7984852 DOI: 10.1371/journal.pone.0248973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/08/2021] [Indexed: 01/06/2023] Open
Abstract
Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.
Collapse
Affiliation(s)
- Nami Iwamoto
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bhavik Patel
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Kaimei Song
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rosemarie Mason
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sara Bolivar-Wagers
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Cristina Bergamaschi
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Edward Berger
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Alfageme-Abello O, Porret R, Perreau M, Perez L, Muller YD. Chimeric antigen receptor T-cell therapy for HIV cure. Curr Opin HIV AIDS 2021; 16:88-97. [PMID: 33560017 DOI: 10.1097/coh.0000000000000665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cell-based immunotherapies have made enormous progress over the last decade with the approval of several anti-CD19-chimeric antigen receptor (CAR)-T cell therapies for haemato-oncological diseases. CARs are synthetic receptors comprising an antigen-specific extracellular domain fused to a hinge, transmembrane and intracellular signalling domains. The success obtained with CD19 CAR-T cells rekindled interest in using CAR-T cells to treat HIV seropositive patients. The purpose of this review is to discuss historical and recent developments of anti-HIV CARs. RECENT FINDINGS Since the first description of CD4+-based CARs in the early 90s, new generations of anti-HIV CARs were developed. They target the hetero-trimeric glycoprotein gp120/gp41 and consist of either a CD4+ extracellular domain or a VH/VL segment derived from broadly neutralizing antibodies. Recent efforts were employed in multiplexing CAR specificities, intracellular signalling domains and T cells resistance to HIV. SUMMARY Several new-anti HIV CAR-T cells were successfully tested in preclinical mice models and are now waiting to be evaluated in clinical trials. One of the key parameters to successfully using CAR-T cells in HIV treatment will depend on their capacity to control the HIV reservoir without causing off-targeting activities.
Collapse
Affiliation(s)
- Oscar Alfageme-Abello
- Lausanne University Hospital (CHUV), Department of Medicine, Division of Immunology and Allergy, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T Cell Therapy beyond Oncology: Autoimmune Diseases and Viral Infections. Biomedicines 2021; 9:biomedicines9010059. [PMID: 33435454 PMCID: PMC7827151 DOI: 10.3390/biomedicines9010059] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Adoptive cell transfer (ACT) has long been at the forefront of the battle with cancer that began last century with the therapeutic application of tumor-infiltrating lymphocytes (TILs) against melanoma. The development of novel ACT approaches led researchers and clinicians to highly efficient technologies based on genetically engineered T lymphocytes, with chimeric antigen receptor (CAR)-T cells as the most prominent example. CARs consist of an extracellular domain that represents the single-chain variable fragment (scFv) of a monoclonal antibody (mAb) responsible for target recognition and the intracellular domain, which was built from up to several signaling motifs that mediated T cell activation. The number of potential targets amenable for CAR-T cell therapy is expanding rapidly, which means that the tremendous success of this approach in oncology could be further translated to treating other diseases. In this review, we outlined modern trends and recent developments in CAR-T cell therapy from an unusual point of view by focusing on diseases beyond cancer, such as autoimmune disorders and viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Ekaterina Zmievskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Irina Ganeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Alexey Petukhov
- Almazov National Medical Research Center, Institute of Hematology, 197341 Saint Petersburg, Russia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.Z.); (A.V.); (I.G.); (A.R.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| |
Collapse
|
35
|
Patasic L, Seifried J, Bezler V, Kaljanac M, Schneider IC, Schmitz H, Tondera C, Hartmann J, Hombach A, Buchholz CJ, Abken H, König R, Cichutek K. Designed Ankyrin Repeat Protein (DARPin) to target chimeric antigen receptor (CAR)-redirected T cells towards CD4 + T cells to reduce the latent HIV + cell reservoir. Med Microbiol Immunol 2020; 209:681-691. [PMID: 32918599 PMCID: PMC7568711 DOI: 10.1007/s00430-020-00692-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/19/2020] [Indexed: 10/25/2022]
Abstract
Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4+ target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.
Collapse
Affiliation(s)
- Lea Patasic
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | - Janna Seifried
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
- Department for Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany.
| | - Valerie Bezler
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Marcell Kaljanac
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Irene C Schneider
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Heike Schmitz
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Jessica Hartmann
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Andreas Hombach
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, Cologne, Germany
- Regensburg Center for Interventional Immunology (RCI), Department of Genetic Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany
- German Center for Infection Research (DZIF), Langen, Germany
- Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Klaus Cichutek
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, Langen, Germany.
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany.
- German Center for Infection Research (DZIF), Langen, Germany.
| |
Collapse
|
36
|
Mao Y, Zhao C, Zheng P, Zhang X, Xu J. Current status and future development of anti-HIV chimeric antigen receptor T-cell therapy. Immunotherapy 2020; 13:177-184. [PMID: 33225803 DOI: 10.2217/imt-2020-0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite the success of antiretroviral therapy in suppressing HIV to an undetectable level in the blood and improving patients' quality of life, HIV persists in antiretroviral therapy-treated patients and threatens their lives. Anti-HIV chimeric antigen receptor (CAR) T cells could offer a cure by recognizing and killing virus-producing cells in an Env-specific manner. In this review, the authors summarize several important aspects of the development of anti-HIV CAR T cells, with a special focus on the evolution of CAR design for enhanced potency and targeting specificity, and also outline the challenges that still need to be addressed to take anti-HIV CAR T cells from a hopeful approach to a real HIV cure.
Collapse
Affiliation(s)
- Yunyu Mao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Chen Zhao
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Peiyong Zheng
- LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xiaoyan Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| |
Collapse
|
37
|
Rust BJ, Kean LS, Colonna L, Brandenstein KE, Poole NH, Obenza W, Enstrom MR, Maldini CR, Ellis GI, Fennessey CM, Huang ML, Keele BF, Jerome KR, Riley JL, Kiem HP, Peterson CW. Robust expansion of HIV CAR T cells following antigen boosting in ART-suppressed nonhuman primates. Blood 2020; 136:1722-1734. [PMID: 32614969 PMCID: PMC7544543 DOI: 10.1182/blood.2020006372] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies have rapidly emerged as a promising, novel therapy. In contrast, results from the few CAR T-cell studies for infectious diseases such as HIV-1 have been less convincing. These challenges are likely due to the low level of antigen present in antiretroviral therapy (ART)-suppressed patients in contrast to those with hematologic malignancies. Using our well-established nonhuman primate model of ART-suppressed HIV-1 infection, we tested strategies to overcome these limitations and challenges. We first optimized CAR T-cell production to maintain central memory subsets, consistent with current clinical paradigms. We hypothesized that additional exogenous antigen might be required in an ART-suppressed setting to aid expansion and persistence of CAR T cells. Thus, we studied 4 simian/HIV-infected, ART-suppressed rhesus macaques infused with virus-specific CD4CAR T cells, followed by supplemental infusion of cell-associated HIV-1 envelope (Env). Env boosting led to significant and unprecedented expansion of virus-specific CAR+ T cells in vivo; after ART treatment interruption, viral rebound was significantly delayed compared with controls (P = .014). In 2 animals with declining CAR T cells, rhesusized anti-programmed cell death protein 1 (PD-1) antibody was administered to reverse PD-1-dependent immune exhaustion. Immune checkpoint blockade triggered expansion of exhausted CAR T cells and concordantly lowered viral loads to undetectable levels. These results show that supplemental cell-associated antigen enables robust expansion of CAR T cells in an antigen-sparse environment. To our knowledge, this is the first study to show expansion of virus-specific CAR T cells in infected, suppressed hosts, and delay/control of viral recrudescence.
Collapse
Affiliation(s)
- Blake J Rust
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Leslie S Kean
- Boston Children's Hospital/Dana-Farber Cancer Institute-Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Lucrezia Colonna
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Nikhita H Poole
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Willimark Obenza
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mark R Enstrom
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Colby R Maldini
- Department of Microbiology and Center for Cellular Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gavin I Ellis
- Department of Microbiology and Center for Cellular Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - James L Riley
- Department of Microbiology and Center for Cellular Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
38
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
39
|
Lim RM, Rong L, Zhen A, Xie J. A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299-2310. [PMID: 32667183 DOI: 10.1021/acschembio.0c00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering T cells and natural killer (NK) cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to eradicate HIV-infected cells. However, current anti-HIV CARs are limited by targeting a single epitope of the HIV envelope glycoprotein gp160, which cannot counter the enormous diversity and mutability of viruses. Here, we report the development of a universal CAR-NK cell, which recognizes 2,4-dinitrophenyl (DNP) and can subsequently be redirected to target various epitopes of gp160 using DNP-conjugated antibodies as adaptor molecules. We show that this CAR-NK cell can recognize and kill mimic HIV-infected cell lines expressing subtypes B and C gp160. We additionally find that anti-gp160 antibodies targeting membrane-distal epitopes (including V1/V2, V3, and CD4bs) are more likely to activate universal CAR-NK cells against gp160+ target cells, compared with those targeting membrane-proximal epitopes located in the gp41 MPER. Finally, we confirm that HIV-infected primary human CD4+ T cells can be effectively killed using the same approach. Given that numerous anti-gp160 antibodies with different antigen specificities are readily available, this modular universal CAR-NK cell platform can potentially overcome HIV diversity, thus providing a promising strategy to eradicate HIV-infected cells.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Liang Rong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095, United States
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
40
|
Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulić B. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med 2020; 11:11/504/eaav5685. [PMID: 31391322 DOI: 10.1126/scitranslmed.aav5685] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Adoptive immunotherapy using chimeric antigen receptor-modified T cells (CAR-T) has made substantial contributions to the treatment of certain B cell malignancies. Such treatment modalities could potentially obviate the need for long-term antiretroviral drug therapy in HIV/AIDS. Here, we report the development of HIV-1-based lentiviral vectors that encode CARs targeting multiple highly conserved sites on the HIV-1 envelope glycoprotein using a two-molecule CAR architecture, termed duoCAR. We show that transduction with lentiviral vectors encoding multispecific anti-HIV duoCARs confer primary T cells with the capacity to potently reduce cellular HIV infection by up to 99% in vitro and >97% in vivo. T cells are the targets of HIV infection, but the transduced T cells are protected from genetically diverse HIV-1 strains. The CAR-T cells also potently eliminated PBMCs infected with broadly neutralizing antibody-resistant HIV strains, including VRC01/3BNC117-resistant HIV-1. Furthermore, multispecific anti-HIV duoCAR-T cells demonstrated long-term control of HIV infection in vivo and prevented the loss of CD4+ T cells during HIV infection using a humanized NSG mouse model of intrasplenic HIV infection. These data suggest that multispecific anti-HIV duoCAR-T cells could be an effective approach for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
| | - Ariola Bardhi
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Ray
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nina Flerin
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mengyan Li
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35294, USA
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Andrew Worden
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Harris Goldstein
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
41
|
Zhang PF, Xie D, Li Q. Chimeric antigen receptor T-cell therapy beyond cancer: current practice and future prospects. Immunotherapy 2020; 12:1021-1034. [PMID: 32727249 DOI: 10.2217/imt-2020-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor T (CAR-T) cells has achieved remarkable efficacy in the treatment of hematological malignancies, which has inspired researchers to expand the application of CAR-T-cell therapy to other medical conditions. Here, we review the current understanding and development of CAR-T-cell therapy for infectious diseases, autoimmune diseases and allotransplantation. The limitations and challenges of CAR-T-cell therapy in the treatment of these diseases and potential solutions to overcome these shortcomings are also discussed. With the development of novel designs of CARs and preclinical/clinical investigations, CAR-T-cell therapy is expected to be a potential cure option in a wide array of disease settings in the future.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 610041
| | - Dan Xie
- Prenatal Diagnosis Center, Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China, 610041.,Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, Chengdu, China, 610041
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China, 610041
| |
Collapse
|
42
|
Namdari H, Rezaei F, Teymoori-Rad M, Mortezagholi S, Sadeghi A, Akbari A. CAR T cells: Living HIV drugs. Rev Med Virol 2020; 30:1-14. [PMID: 32713110 DOI: 10.1002/rmv.2139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1), the virus that causes AIDS (acquired immunodeficiency syndrome), is a major global public health issue. Although the advent of combined antiretroviral therapy (ART) has made significant progress in inhibiting HIV replication in patients, HIV-infected cells remain the principal cellular reservoir of HIV, this allows HIV to rebound immediately upon stopping ART, which is considered the major obstacle to curing HIV infection. Chimeric antigen receptor (CAR) cell therapy has provided new opportunities for HIV treatment. Engineering T cells or hematopoietic stem cells (HSCs) to generate CAR T cells is a rapidly growing approach to develop an efficient immune cell to fight HIV. Herein, we review preclinical and clinical data available for the development of CAR T cells. Further, the advantages and disadvantages of clinical application of anti-HIV CAR T cells will be discussed.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mortezagholi
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Hajduczki A, Danielson DT, Elias DS, Bundoc V, Scanlan AW, Berger EA. A Trispecific Anti-HIV Chimeric Antigen Receptor Containing the CCR5 N-Terminal Region. Front Cell Infect Microbiol 2020; 10:242. [PMID: 32523897 PMCID: PMC7261873 DOI: 10.3389/fcimb.2020.00242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023] Open
Abstract
Anti-HIV chimeric antigen receptors (CARs) promote direct killing of infected cells, thus offering a therapeutic approach aimed at durable suppression of infection emerging from viral reservoirs. CD4-based CARs represent a favored option, since they target the essential conserved primary receptor binding site on the HIV envelope glycoprotein (Env). We have previously shown that adding a second Env-binding moiety, such as the carbohydrate recognition domain of human mannose-binding lectin (MBL) that recognizes the highly conserved oligomannose patch on gp120, increases CAR potency in an in vitro HIV suppression assay; moreover it reduces the undesired capacity for the CD4 of the CAR molecule to act as an entry receptor, thereby rendering CAR-expressing CD8+ T cells susceptible to infection. Here, we further improve the bispecific CD4-MBL CAR by adding a third targeting moiety against a distinct conserved Env determinant, i.e. a polypeptide sequence derived from the N-terminus of the HIV coreceptor CCR5. The trispecific CD4-MBL-R5Nt CAR displays enhanced in vitro anti-HIV potency compared to the CD4-MBL CAR, as well as undetectable HIV entry receptor activity. The high anti-HIV potency of the CD4-MBL-R5Nt CAR, coupled with its all-human composition and absence of immunogenic variable regions associated with antibody-based CARs, offer promise for the trispecific construct in therapeutic approaches seeking durable drug-free HIV remission.
Collapse
Affiliation(s)
- Agnes Hajduczki
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David T Danielson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - David S Elias
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Virgilio Bundoc
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Aaron W Scanlan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Edward A Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
44
|
HIV-1-Specific Chimeric Antigen Receptor T Cells Fail To Recognize and Eliminate the Follicular Dendritic Cell HIV Reservoir In Vitro. J Virol 2020; 94:JVI.00190-20. [PMID: 32161179 DOI: 10.1128/jvi.00190-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought.IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.
Collapse
|
45
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
46
|
Qi J, Ding C, Jiang X, Gao Y. Advances in Developing CAR T-Cell Therapy for HIV Cure. Front Immunol 2020; 11:361. [PMID: 32210965 PMCID: PMC7076163 DOI: 10.3389/fimmu.2020.00361] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/14/2020] [Indexed: 02/05/2023] Open
Abstract
Acquired immune deficiency syndrome (AIDS), which is caused by HIV infection, is an epidemic disease that has killed millions of people in the last several decades. Although combination antiretroviral therapy (cART) has enabled tremendous progress in suppressing HIV replication, it fails to eliminate HIV latently infected cells, and infected individuals remain HIV positive for life. Lifelong antiretroviral therapy is required to maintain control of virus replication, which may result in significant problems, including long-term toxicity, high cost, and stigma. Therefore, novel therapeutic strategies are urgently needed to eliminate the viral reservoir in the host for HIV cure. In this review, we compare several potential strategies regarding HIV cure and focus on how we might utilize chimeric antigen receptor-modified T cells (CAR T) as a therapy to cure HIV infection.
Collapse
Affiliation(s)
- Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Chengchao Ding
- The First Affiliated Hospital, Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Gao
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- The First Affiliated Hospital, Department of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
47
|
Seif M, Einsele H, Löffler J. CAR T Cells Beyond Cancer: Hope for Immunomodulatory Therapy of Infectious Diseases. Front Immunol 2019; 10:2711. [PMID: 31824500 PMCID: PMC6881243 DOI: 10.3389/fimmu.2019.02711] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022] Open
Abstract
Infectious diseases are still a significant cause of morbidity and mortality worldwide. Despite the progress in drug development, the occurrence of microbial resistance is still a significant concern. Alternative therapeutic strategies are required for non-responding or relapsing patients. Chimeric antigen receptor (CAR) T cells has revolutionized cancer immunotherapy, providing a potential therapeutic option for patients who are unresponsive to standard treatments. Recently two CAR T cell therapies, Yescarta® (Kite Pharma/Gilead) and Kymriah® (Novartis) were approved by the FDA for the treatments of certain types of non-Hodgkin lymphoma and B-cell precursor acute lymphoblastic leukemia, respectively. The success of adoptive CAR T cell therapy for cancer has inspired researchers to develop CARs for the treatment of infectious diseases. Here, we review the main achievements in CAR T cell therapy targeting viral infections, including Human Immunodeficiency Virus, Hepatitis C Virus, Hepatitis B Virus, Human Cytomegalovirus, and opportunistic fungal infections such as invasive aspergillosis.
Collapse
Affiliation(s)
| | | | - Jürgen Löffler
- Department of Internal Medicine II, University Hospital Wuerzburg, Würzburg, Germany
| |
Collapse
|
48
|
Rapid Elimination of Broadly Neutralizing Antibodies Correlates with Treatment Failure in the Acute Phase of Simian-Human Immunodeficiency Virus Infection. J Virol 2019; 93:JVI.01077-19. [PMID: 31375583 DOI: 10.1128/jvi.01077-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 01/09/2023] Open
Abstract
Early human immunodeficiency virus type 1 (HIV-1) treatment during the acute period of infection can significantly limit the seeding of viral reservoirs and modify the course of disease. However, while a number of HIV-1 broadly neutralizing antibodies (bnAbs) have demonstrated remarkable efficacy as prophylaxis in macaques chronically infected with simian-human immunodeficiency virus (SHIV), intriguingly, their inhibitory effects were largely attenuated in the acute period of SHIV infection. To investigate the mechanism for the disparate performance of bnAbs in different periods of SHIV infection, we used LSEVh-LS-F, a bispecific bnAb targeting the CD4 binding site and CD4-induced epitopes, as a representative bnAb and assessed its potential therapeutic benefit in controlling virus replication in acutely or chronically SHIV-infected macaques. We found that a single infusion of LSEVh-LS-F resulted in rapid decline of plasma viral loads to undetectable levels without emergence of viral resistance in the chronically infected macaques. In contrast, the inhibitory effect was robust but transient in the acutely infected macaques, despite the fact that all macaques had comparable plasma viral loads initially. Infusing multiple doses of LSEVh-LS-F did not extend its inhibitory duration. Furthermore, the pharmacokinetics of the infused LSEVh-LS-F in the acutely SHIV-infected macaques significantly differed from that in the uninfected or chronically infected macaques. Host SHIV-specific immune responses may play a role in the viremia-dependent pharmacokinetics. Our results highlight the correlation between the fast clearance of infused bnAbs and the treatment failure in the acute period of SHIV infection and may have important implications for the therapeutic use of bnAbs to treat acute HIV infections.IMPORTANCE Currently, there is no bnAb-based monotherapy that has been reported to clear the virus in the acute SHIV infection period. Since early HIV treatment is considered critical to restricting the establishment of viral reservoirs, investigation into the mechanism for treatment failure in acutely infected macaques would be important for the therapeutic use of bnAbs and eventually towards the functional cure of HIV/AIDS. Here we report the comparative study of the therapeutic efficacy of a bnAb in acutely and chronically SHIV-infected macaques. This study revealed the correlation between the fast clearance of infused bnAbs and treatment failure during the acute period of infection.
Collapse
|
49
|
Kim GB, Hege K, Riley JL. CAR Talk: How Cancer-Specific CAR T Cells Can Instruct How to Build CAR T Cells to Cure HIV. Front Immunol 2019; 10:2310. [PMID: 31611880 PMCID: PMC6776630 DOI: 10.3389/fimmu.2019.02310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023] Open
Abstract
Re-directing T cells via chimeric antigen receptors (CARs) was first tested in HIV-infected individuals with limited success, but these pioneering studies laid the groundwork for the clinically successful CD19 CARs that were recently FDA approved. Now there is great interest in revisiting the concept of using CAR-expressing T cells as part of a strategy to cure HIV. Many lessons have been learned on how to best engineer T cells to cure cancer, but not all of these lessons apply when developing CARs to treat and cure HIV. This mini review will focus on how early CAR T cell studies in HIV paved the way for cancer CAR T cell therapy and how progress in cancer CAR therapy has and will continue to be instructive for the development of HIV CAR T cell therapy. Additionally, the unique challenges that must be overcome to develop a successful HIV CAR T cell therapy will be highlighted.
Collapse
Affiliation(s)
- Gloria B. Kim
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristen Hege
- Celgene Corporation, San Francisco, CA, United States
| | - James L. Riley
- Department of Microbiology, Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Abstract
Chimeric antigen receptors (CARs) have shown remarkable ability to re-direct T cells to target CD19-expressing tumours, resulting in remission rates of up to 90% in individuals with paediatric acute lymphoblastic lymphoma. Lessons learned from these clinical trials of adoptive T cell therapy for cancer, as well as investments made in manufacturing T cells at commercial scale, have inspired researchers to develop CARs for additional applications. Here, we explore the challenges and opportunities of using this technology to target infectious diseases such as with HIV and undesired immune responses such as autoimmunity and transplant rejection. Despite substantial obstacles, the potential of CAR T cells to enable cures for a wide array of disease settings could be transformational for the medical field.
Collapse
|