1
|
Denz PJ, Papa JL, McFadden MI, Rao PR, Roettger J, Forero A, Yount JS. Accelerated Adaptation of SARS-CoV-2 Variants in Mice Lacking IFITM3 Preserves Distinct Tropism and Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635150. [PMID: 39975176 PMCID: PMC11838348 DOI: 10.1101/2025.01.27.635150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Here we investigated whether interferon induced transmembrane protein 3 (IFITM3), a key antiviral protein deficient in certain human populations, affects interspecies adaptation of SARS-CoV-2. We found that SARS-CoV-2 Beta and Omicron variants passaged through IFITM3-deficient versus wild type mice exhibit enhanced replication and pathogenesis in this new host species. Enhancements associated with amino acid substitutions in the viral genome, suggesting that IFITM3 limits accumulation of adaptive mutations. Mouse-adapted viruses enabled comparative studies of variants in mice. Beta caused lung dysfunction and altered cilia-associated gene programs, consistent with broad viral antigen distribution in lungs. Omicron, which shows low pathogenicity and upper respiratory tract preference in humans, replicated to high nasal titers while showing restrained spatial distribution in lungs and diminished lung inflammatory responses compared to Beta. Our findings demonstrate that IFITM3 deficiency accelerates coronavirus adaptation and reveal that intrinsic SARS-CoV-2 variant traits shape tropism, immunity, and pathogenesis across hosts. HIGHLIGHTS IFITM3 is a critical barrier to SARS-CoV-2 adaptation in new host speciesMouse-adapted SARS-CoV-2 strains enable comparative pathologyOmicron favors nose and large airways, leading to mild lung pathologyBeta exhibits broad lung replication, driving severe inflammation and dysfunction.
Collapse
|
2
|
Yan K, Dumenil T, Stewart R, Bishop CR, Tang B, Nguyen W, Suhrbier A, Rawle DJ. TMEM106B-mediated SARS-CoV-2 infection allows for robust ACE2-independent infection in vitro but not in vivo. Cell Rep 2024; 43:114921. [PMID: 39480813 DOI: 10.1016/j.celrep.2024.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the primary entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but ACE2-independent entry has been observed in vitro for strains with the spike-E484D substitution. Here, we conduct a whole-genome CRISPR-Cas9 knockout screen using SARS-CoV-2 mouse adapted 1 (SARS-CoV-2MA1), which carries spike-E484D, to identify the ACE2-independent entry mechanisms. SARS-CoV-2MA1 infection in HEK293T cells relies on heparan sulfate and endocytic pathways, with TMEM106B, a transmembrane lysosomal protein, the most significant contributor. While SARS-CoV-2MA1 productively infects human brain organoids and K18-hACE2 mouse brains, it does not infect C57BL/6J or Ifnar-/- mouse brains. This suggests that ACE2-independent entry via TMEM106B, which is predominantly expressed in the brain, does not overtly increase the risk of SARS-CoV-2 neuroinvasiveness in mice with endogenous Ace2 expression. Importantly, SARS-CoV-2MA1 does not replicate in the Ace2-/- mouse respiratory tract. Overall, this suggests that robust ACE2-independent infection by SARS-CoV-2MA1 is likely an in vitro phenomenon with no apparent implications for infection in vivo.
Collapse
Affiliation(s)
- Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Romal Stewart
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Wilson Nguyen
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| |
Collapse
|
3
|
Mohd Zawawi Z, Kalyanasundram J, Mohd Zain R, Mat Ripen A, Basri DF, Yap WB. Insights into the Replication Kinetics Profiles of Malaysian SARS-CoV-2 Variant Alpha, Beta, Delta, and Omicron in Vero E6 Cell Line. Int J Mol Sci 2024; 25:10541. [PMID: 39408868 PMCID: PMC11477365 DOI: 10.3390/ijms251910541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Comprehending the replication kinetics of SARS-CoV-2 variants helps explain why certain variants spread more easily, are more contagious, and pose a significant health menace to global populations. The replication kinetics of the Malaysian isolates of Alpha, Beta, Delta, and Omicron variants were studied in the Vero E6 cell line. Their replication kinetics were determined using the plaque assay, quantitative real-time PCR (qRT-PCR), and the viral growth curve. The Beta variant exhibited the highest replication rate at 24 h post-infection (h.p.i), as evidenced by the highest viral titers and lowest viral RNA multiplication threshold. The plaque phenotypes also varied among the variants, in which the Beta and Omicron variants formed the largest and smallest plaques, respectively. All studied variants showed strong cytopathic effects after 48 h.p.i. The whole-genome sequencing highlighted cell-culture adaptation, where the Beta, Delta, and Omicron variants acquired mutations at the multibasic cleavage site after three cycles of passaging. The findings suggest a strong link between the replication rates and their respective transmissibility and pathogenicity. This is essential in predicting the impacts of the upcoming variants on the local and global populations and is useful in designing preventive measures to curb virus outbreaks.
Collapse
Affiliation(s)
- Zarina Mohd Zawawi
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia; (J.K.); (R.M.Z.)
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jeevanathan Kalyanasundram
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia; (J.K.); (R.M.Z.)
| | - Rozainanee Mohd Zain
- Virology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia; (J.K.); (R.M.Z.)
| | - Adiratna Mat Ripen
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam 40170, Malaysia;
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Wei Boon Yap
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- One Health UKM, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
4
|
Redelings BD, Holmes I, Lunter G, Pupko T, Anisimova M. Insertions and Deletions: Computational Methods, Evolutionary Dynamics, and Biological Applications. Mol Biol Evol 2024; 41:msae177. [PMID: 39172750 PMCID: PMC11385596 DOI: 10.1093/molbev/msae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Insertions and deletions constitute the second most important source of natural genomic variation. Insertions and deletions make up to 25% of genomic variants in humans and are involved in complex evolutionary processes including genomic rearrangements, adaptation, and speciation. Recent advances in long-read sequencing technologies allow detailed inference of insertions and deletion variation in species and populations. Yet, despite their importance, evolutionary studies have traditionally ignored or mishandled insertions and deletions due to a lack of comprehensive methodologies and statistical models of insertions and deletion dynamics. Here, we discuss methods for describing insertions and deletion variation and modeling insertions and deletions over evolutionary time. We provide practical advice for tackling insertions and deletions in genomic sequences and illustrate our discussion with examples of insertions and deletion-induced effects in human and other natural populations and their contribution to evolutionary processes. We outline promising directions for future developments in statistical methodologies that would allow researchers to analyze insertions and deletion variation and their effects in large genomic data sets and to incorporate insertions and deletions in evolutionary inference.
Collapse
Affiliation(s)
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Calico Life Sciences LLC, South San Francisco, CA 94080, USA
| | - Gerton Lunter
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen 9713 GZ, The Netherlands
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
5
|
Focosi D, Spezia PG, Maggi F. Subsequent Waves of Convergent Evolution in SARS-CoV-2 Genes and Proteins. Vaccines (Basel) 2024; 12:887. [PMID: 39204013 PMCID: PMC11358953 DOI: 10.3390/vaccines12080887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Beginning in 2022, following widespread infection and vaccination among the global population, the SARS-CoV-2 virus mainly evolved to evade immunity derived from vaccines and past infections. This review covers the convergent evolution of structural, nonstructural, and accessory proteins in SARS-CoV-2, with a specific look at common mutations found in long-lasting infections that hint at the virus potentially reverting to an enteric sarbecovirus type.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology and Laboratory of Biosecurity, National Institute of Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| |
Collapse
|
6
|
Dufloo J, Sanjuán R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024; 15:e0336023. [PMID: 38411986 PMCID: PMC11005339 DOI: 10.1128/mbio.03360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
7
|
Matveev EV, Ponomarev GV, Kazanov MD. Genome-wide bioinformatics analysis of human protease capacity for proteolytic cleavage of the SARS-CoV-2 spike glycoprotein. Microbiol Spectr 2024; 12:e0353023. [PMID: 38189333 PMCID: PMC10846095 DOI: 10.1128/spectrum.03530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily enters the cell by binding the virus's spike (S) glycoprotein to the angiotensin-converting enzyme 2 receptor on the cell surface, followed by proteolytic cleavage by host proteases. Studies have identified furin and transmembrane protease serine 2 proteases in priming and triggering cleavages of the S glycoprotein, converting it into a fusion-competent form and initiating membrane fusion, respectively. Alternatively, SARS-CoV-2 can enter the cell through the endocytic pathway, where activation is triggered by lysosomal cathepsin L. However, other proteases are also suspected to be involved in both entry routes. In this study, we conducted a genome-wide bioinformatics analysis to explore the capacity of human proteases in hydrolyzing peptide bonds of the S glycoprotein. Predictive models of sequence specificity for 169 human proteases were constructed and applied to the S glycoprotein together with the method for predicting structural susceptibility to proteolysis of protein regions. After validating our approach on extensively studied S2' and S1/S2 cleavage sites, we applied our method to each peptide bond of the S glycoprotein across all 169 proteases. Our results indicate that various members of the proprotein convertase subtilisin/kexin type, type II transmembrane family serine protease, and kallikrein families, as well as specific coagulation factors, are capable of cleaving S2' or S1/S2 sites. We have also identified a potential cleavage site of cathepsin L at the K790 position within the S2' loop. Structural analysis suggests that cleavage of this site induces conformational changes similar to the cleavage at the R815 (S2') position, leading to the exposure of the fusion peptide and subsequent fusion with the membrane. Other potential cleavage sites and the influence of mutations in common SARS-CoV-2 variants on proteolytic efficiency are discussed.IMPORTANCEThe entry of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) into the cell, activated by host proteases, is considerably more complex in coronaviruses than in most other viruses and is not fully understood. There is evidence that other proteases beyond the known furin and transmembrane protease serine 2 can activate the spike protein. Another example of uncertainty is the cleavage site for the alternative endocytic route of SARS-CoV-2 entrance, which is still unknown. Bioinformatics methods, modeling protease specificity and estimating the structural susceptibility of protein regions to proteolysis, can aid in studying this topic by predicting the involved proteases and their cleavage sites, thereby substantially reducing the amount of experimental work. Elucidating the mechanisms of spike protein activation is crucial for preventing possible future coronavirus pandemics and developing antiviral drugs.
Collapse
Affiliation(s)
- Evgenii V. Matveev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Research and Training Center on Bioinformatics, A.A.Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Gennady V. Ponomarev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Research and Training Center on Bioinformatics, A.A.Kharkevich Institute for Information Transmission Problems, Moscow, Russia
| | - Marat D. Kazanov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
- Research and Training Center on Bioinformatics, A.A.Kharkevich Institute for Information Transmission Problems, Moscow, Russia
- Laboratory of Cytogenetics and Molecular Genetics, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| |
Collapse
|
8
|
Strizki JM, Gaspar JM, Howe JA, Hutchins B, Mohri H, Nair MS, Kinek KC, McKenna P, Goh SL, Murgolo N. Molnupiravir maintains antiviral activity against SARS-CoV-2 variants and exhibits a high barrier to the development of resistance. Antimicrob Agents Chemother 2024; 68:e0095323. [PMID: 38047645 PMCID: PMC10777856 DOI: 10.1128/aac.00953-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023] Open
Abstract
Molnupiravir, an oral prodrug of N-hydroxycytidine (NHC), previously demonstrated broad in vitro antiviral activity against multiple RNA viruses and has shown a high barrier to the development of resistance. Here, we present the antiviral activity of NHC against recent SARS-CoV-2 variants and the results of resistance selection studies to better understand the potential for viral resistance to NHC. NHC activity against SARS-CoV-2 variants omicron (BA.1, BA.1.1, BA.2, BA.4, BA.4.6, BA.5, BQ.1.1, XBB.1, and XBB.1.5), alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), lambda (C.37), and mu (B.1.621) was evaluated in Vero E6 cells using cytopathic effect assays. Resistance selection studies were performed by passaging SARS-CoV-2 (WA1) in the presence of NHC or a 3C-like protease inhibitor (MRK-A) in Vero E6 cells. Supernatants from cultures exhibiting a cytopathic effect score of ≥2 were re-passaged, and IC50 values were estimated. Whole-genome deep sequencing was performed on viral RNA isolated at each passage. NHC demonstrated similar potency against all SARS-CoV-2 variants evaluated. No evidence of SARS-CoV-2 phenotypic or genotypic resistance to NHC was observed following 30 passages. A random pattern of nucleotide changes was observed in NHC cultures, consistent with the drug's mechanism of action. In contrast, resistance was readily selected in all three MRK-A control cultures with the selection of a T21I substitution in the 3C-like protease. In conclusion, molnupiravir maintains antiviral activity across all major SARS-CoV-2 variants. Furthermore, no evidence of viral resistance to NHC was observed, supporting previous reports that NHC has a high barrier to developing resistance.
Collapse
Affiliation(s)
- Julie M. Strizki
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - John M. Gaspar
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - John A. Howe
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Beth Hutchins
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Hiroshi Mohri
- Aaron Diamond AIDS Research Center, Columbia University Medical Center, New York, New York, USA
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University Medical Center, New York, New York, USA
| | - Keith C. Kinek
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Philip McKenna
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Shih Lin Goh
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| | - Nicholas Murgolo
- Merck Research Laboratories (MRL), Merck & Co., Inc., Rahway, New Jersey, USA
| |
Collapse
|
9
|
Guo H, Li A, Dong TY, Si HR, Hu B, Li B, Zhu Y, Shi ZL, Letko M. Isolation of ACE2-dependent and -independent sarbecoviruses from Chinese horseshoe bats. J Virol 2023; 97:e0039523. [PMID: 37655938 PMCID: PMC10537568 DOI: 10.1128/jvi.00395-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 09/02/2023] Open
Abstract
While the spike proteins from severe acute respiratory syndrome coronaviruses-1 and 2 (SARS-CoV and SARS-CoV-2) bind to host angiotensin-converting enzyme 2 (ACE2) to infect cells, the majority of bat sarbecoviruses cannot use ACE2 from any species. Despite their discovery almost 20 years ago, ACE2-independent sarbecoviruses have never been isolated from field samples, leading to the assumption these viruses pose little risk to humans. We have previously shown how spike proteins from a small group of ACE2-independent bat sarbecoviruses may possess the ability to infect human cells in the presence of exogenous trypsin. Here, we adapted our earlier findings into a virus isolation protocol and recovered two new ACE2-dependent viruses, RsYN2012 and RsYN2016A, as well as an ACE2-independent virus, RsHuB2019A. Although our stocks of RsHuB2019A rapidly acquired a tissue-culture adaption that rendered the spike protein resistant to trypsin, trypsin was still required for viral entry, suggesting limitations on the exogenous entry factors that support bat sarbecoviruses. Electron microscopy revealed that ACE2-independent sarbecoviruses have a prominent spike corona and share similar morphology to other coronaviruses. Our findings demonstrate a broader zoonotic threat posed by sarbecoviruses and shed light on the intricacies of coronavirus isolation and propagation in vitro. IMPORTANCE Several coronaviruses have been transmitted from animals to people, and 20 years of virus discovery studies have uncovered thousands of new coronavirus sequences in nature. Most of the animal-derived sarbecoviruses have never been isolated in culture due to cell incompatibilities and a poor understanding of the in vitro requirements for their propagation. Here, we built on our growing body of work characterizing viral entry mechanisms of bat sarbecoviruses in human cells and have developed a virus isolation protocol that allows for the exploration of these understudied viruses. Our protocol is robust and practical, leading to successful isolation of more sarbecoviruses than previous approaches and from field samples that had been collected over a 10-year longitudinal study.
Collapse
Affiliation(s)
- Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Yi Dong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Rui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
10
|
Adler JM, Martin Vidal R, Voß A, Kunder S, Nascimento M, Abdelgawad A, Langner C, Vladimirova D, Osterrieder N, Gruber AD, Kunec D, Trimpert J. A non-transmissible live attenuated SARS-CoV-2 vaccine. Mol Ther 2023; 31:2391-2407. [PMID: 37263272 PMCID: PMC10214529 DOI: 10.1016/j.ymthe.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/23/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Live attenuated vaccines (LAVs) administered via the mucosal route may offer better control of the COVID-19 pandemic than non-replicating vaccines injected intramuscularly. Conceptionally, LAVs have several advantages, including presentation of the entire antigenic repertoire of the virus, and the induction of strong mucosal immunity. Thus, immunity induced by LAV could offer superior protection against future surges of COVID-19 cases caused by emerging SARS-CoV-2 variants. However, LAVs carry the risk of unintentional transmission. To address this issue, we investigated whether transmission of a SARS-CoV-2 LAV candidate can be blocked by removing the furin cleavage site (FCS) from the spike protein. The level of protection and immunity induced by the attenuated virus with the intact FCS was virtually identical to the one induced by the attenuated virus lacking the FCS. Most importantly, removal of the FCS completely abolished horizontal transmission of vaccine virus between cohoused hamsters. Furthermore, the vaccine was safe in immunosuppressed animals and showed no tendency to recombine in vitro or in vivo with a SARS-CoV-2 field strain. These results indicate that removal of the FCS from SARS-CoV-2 LAV is a promising strategy to increase vaccine safety and prevent vaccine transmission without compromising vaccine efficacy.
Collapse
Affiliation(s)
- Julia M Adler
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Anne Voß
- Institut für Tierpathologie, Freie Universität Berlin, 14163 Berlin, Germany
| | - Sandra Kunder
- Institut für Tierpathologie, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Azza Abdelgawad
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | - Christine Langner
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | - Daria Vladimirova
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | | | - Achim D Gruber
- Institut für Tierpathologie, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dusan Kunec
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany
| | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, 14163 Berlin, Germany.
| |
Collapse
|
11
|
Aguilar Rangel M, Dolan PT, Taguwa S, Xiao Y, Andino R, Frydman J. High-resolution mapping reveals the mechanism and contribution of genome insertions and deletions to RNA virus evolution. Proc Natl Acad Sci U S A 2023; 120:e2304667120. [PMID: 37487061 PMCID: PMC10400975 DOI: 10.1073/pnas.2304667120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/26/2023] Open
Abstract
RNA viruses rapidly adapt to selective conditions due to the high intrinsic mutation rates of their RNA-dependent RNA polymerases (RdRps). Insertions and deletions (indels) in viral genomes are major contributors to both deleterious mutational load and evolutionary novelty, but remain understudied. To characterize the mechanistic details of their formation and evolutionary dynamics during infection, we developed a hybrid experimental-bioinformatic approach. This approach, called MultiMatch, extracts insertions and deletions from ultradeep sequencing experiments, including those occurring at extremely low frequencies, allowing us to map their genomic distribution and quantify the rates at which they occur. Mapping indel mutations in adapting poliovirus and dengue virus populations, we determine the rates of indel generation and identify mechanistic and functional constraints shaping indel diversity. Using poliovirus RdRp variants of distinct fidelity and genome recombination rates, we demonstrate tradeoffs between fidelity and Indel generation. Additionally, we show that maintaining translation frame and viral RNA structures constrain the Indel landscape and that, due to these significant fitness effects, Indels exert a significant deleterious load on adapting viral populations. Conversely, we uncover positively selected Indels that modulate RNA structure, generate protein variants, and produce defective interfering genomes in viral populations. Together, our analyses establish the kinetic and mechanistic tradeoffs between misincorporation, recombination, and Indel rates and reveal functional principles defining the central role of Indels in virus evolution, emergence, and the regulation of viral infection.
Collapse
Affiliation(s)
| | - Patrick T. Dolan
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Shuhei Taguwa
- Department of Biology, Stanford University, Stanford, CA94305
- Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA94143
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
12
|
Chen DY, Turcinovic J, Feng S, Kenney DJ, Chin CV, Choudhary MC, Conway HL, Semaan M, Close BJ, Tavares AH, Seitz S, Khan N, Kapell S, Crossland NA, Li JZ, Douam F, Baker SC, Connor JH, Saeed M. Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus. iScience 2023; 26:106634. [PMID: 37095858 PMCID: PMC10083141 DOI: 10.1016/j.isci.2023.106634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Shuchen Feng
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Devin J. Kenney
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Chue Vin Chin
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Manish C. Choudhary
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Hasahn L. Conway
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Marc Semaan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Brianna J. Close
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexander H. Tavares
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Scott Seitz
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - John H. Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| |
Collapse
|
13
|
Furusawa Y, Kiso M, Iida S, Uraki R, Hirata Y, Imai M, Suzuki T, Yamayoshi S, Kawaoka Y. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 2023; 91:104561. [PMID: 37043872 PMCID: PMC10083686 DOI: 10.1016/j.ebiom.2023.104561] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING A full list of funding bodies that contributed to this study can be found under Acknowledgments.
Collapse
Affiliation(s)
- Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Pandemic Preparedness, Infection, and Advanced Research Center, The University of Tokyo, Tokyo, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Cassari L, Pavan A, Zoia G, Chinellato M, Zeni E, Grinzato A, Rothenberger S, Cendron L, Dettin M, Pasquato A. SARS-CoV-2 S Mutations: A Lesson from the Viral World to Understand How Human Furin Works. Int J Mol Sci 2023; 24:4791. [PMID: 36902222 PMCID: PMC10003014 DOI: 10.3390/ijms24054791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiological agent responsible for the worldwide pandemic and has now claimed millions of lives. The virus combines several unusual characteristics and an extraordinary ability to spread among humans. In particular, the dependence of the maturation of the envelope glycoprotein S from Furin enables the invasion and replication of the virus virtually within the entire body, since this cellular protease is ubiquitously expressed. Here, we analyzed the naturally occurring variation of the amino acids sequence around the cleavage site of S. We found that the virus grossly mutates preferentially at P positions, resulting in single residue replacements that associate with gain-of-function phenotypes in specific conditions. Interestingly, some combinations of amino acids are absent, despite the evidence supporting some cleavability of the respective synthetic surrogates. In any case, the polybasic signature is maintained and, as a consequence, Furin dependence is preserved. Thus, no escape variants to Furin are observed in the population. Overall, the SARS-CoV-2 system per se represents an outstanding example of the evolution of substrate-enzyme interaction, demonstrating a fast-tracked optimization of a protein stretch towards the Furin catalytic pocket. Ultimately, these data disclose important information for the development of drugs targeting Furin and Furin-dependent pathogens.
Collapse
Affiliation(s)
- Leonardo Cassari
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Angela Pavan
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Giulia Zoia
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Chinellato
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Elena Zeni
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandro Grinzato
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38000 Grenoble, France
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35131 Padova, Italy
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Antonella Pasquato
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
15
|
Chiu W, Schepers J, Francken T, Vangeel L, Abbasi K, Jochmans D, De Jonghe S, Thibaut HJ, Thiel V, Neyts J, Laporte M, Leyssen P. Development of a robust and convenient dual-reporter high-throughput screening assay for SARS-CoV-2 antiviral drug discovery. Antiviral Res 2023; 210:105506. [PMID: 36565756 PMCID: PMC9767876 DOI: 10.1016/j.antiviral.2022.105506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Massive efforts on both vaccine development and antiviral research were launched to combat the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We contributed, amongst others, by the development of a high-throughput screening (HTS) antiviral assay against SARS-CoV-2 using a fully automated, high-containment robot system. Here, we describe the development of this novel, convenient and phenotypic dual-reporter virus-cell-based high-content imaging assay using the A549+hACE2+TMPRSS2_mCherry reporter lung carcinoma cell line and an ancestral SARS-CoV-2_Wuhan_mNeonGreen reporter virus. Briefly, by means of clonal selection, a host cell subclone was selected that (i) efficiently supports replication of the reporter virus with high expression, upon infection, of the NeonGreen fluorescent reporter protein, (ii) that is not affected by virus-induced cytopathogenic effects and, (iii) that expresses a strong fluorescent mCherry signal in the nucleus. The selected clone matched these criteria with an infection rate on average of 75% with limited cell death. The average (R)Z'-factors of the assay plates were all >0.8, which indicates a robust assay suitable for HTS purposes. A selection of reference compounds that inhibits SARS-CoV-2 replication in vitro were used to validate this novel dual-reporter assay and confirms the data reported in the literature. This assay is a convenient and powerful tool for HTS of large compound libraries against SARS-CoV-2.
Collapse
Affiliation(s)
- Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Joost Schepers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Thibault Francken
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Laura Vangeel
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Kayvan Abbasi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, Gaston Geenslaan 2, 3001, Leuven, Belgium
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern, Switzerland,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Manon Laporte
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 – box 1043, 3000, Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49 - box 1043, 3000, Leuven, Belgium.
| |
Collapse
|
16
|
Niu X, Xu J, Liu M, Tu H, Koenig SN, Saif LJ, Jones DM, Wang Q. Isolation and characterization of a SARS-CoV-2 variant with a Q677H mutation in the spike protein. Arch Virol 2023; 168:5. [PMID: 36539656 PMCID: PMC9767398 DOI: 10.1007/s00705-022-05621-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 10/17/2022] [Indexed: 12/24/2022]
Abstract
We isolated 20 SARS-CoV-2 strains from positive clinical samples collected in Columbus, Ohio, and investigated the replication of one pair of isolates: a clade 20G strain and a variant of this strain carrying a Q677H mutation in the spike protein and six other amino acid mutations. The OSU.20G variant replicated to a higher peak infectious titer than the 20G base strain in Vero-E6 cells, but the titers were similar when both strains were grown in Calu-3 cells. These results suggest that the OSU.20G variant has increased replication fitness compared to the 20G base strain. This may have contributed to its emergence in December 2020-January 2021.
Collapse
Affiliation(s)
- Xiaoyu Niu
- grid.261331.40000 0001 2285 7943Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA ,grid.10698.360000000122483208Present Address: Department of Epidemiology, University of North Carolina At Chapel Hill, Chapel Hill, NC 27516 USA
| | - Jiayu Xu
- grid.261331.40000 0001 2285 7943Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA
| | - Mingde Liu
- grid.261331.40000 0001 2285 7943Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA
| | - Huolin Tu
- grid.261331.40000 0001 2285 7943James Molecular Laboratory at Polaris, The Ohio State University James Cancer Center, Columbus, OH USA
| | - Sara N. Koenig
- grid.261331.40000 0001 2285 7943Dorothy M. Davis Heart and Lung Research Institute and Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University, Columbus, USA ,grid.261331.40000 0001 2285 7943Department of Physiology and Cell Biology, The Ohio State University, Columbus, USA
| | - Linda J. Saif
- grid.261331.40000 0001 2285 7943Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA
| | - Daniel M. Jones
- grid.261331.40000 0001 2285 7943James Molecular Laboratory at Polaris, The Ohio State University James Cancer Center, Columbus, OH USA ,grid.412332.50000 0001 1545 0811Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH USA ,grid.413944.f0000 0001 0447 4797The Ohio State University Comprehensive Cancer Center, The Ohio State University James Cancer Center, Columbus, OH USA
| | - Qiuhong Wang
- grid.261331.40000 0001 2285 7943Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH USA ,grid.261331.40000 0001 2285 7943Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH USA
| |
Collapse
|
17
|
Guo C, Tsai SJ, Ai Y, Li M, Anaya E, Pekosz A, Cox A, Gould SJ. The D614G mutation redirects SARS-CoV-2 spike to lysosomes and suppresses deleterious traits of the furin cleavage site insertion mutation. SCIENCE ADVANCES 2022; 8:eade5085. [PMID: 36563151 PMCID: PMC9788772 DOI: 10.1126/sciadv.ade5085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) egress occurs by lysosomal exocytosis. We show that the Spike D614G mutation enhances Spike trafficking to lysosomes, drives Spike-mediated reprogramming of lysosomes, and reduces cell surface Spike expression by ~3-fold. D614G is not a human-specific adaptation. Rather, it is an adaptation to the earlier furin cleavage site insertion (FCSI) mutation that occurred at the genesis of SARS-CoV-2. While advantageous to the virus, furin cleavage of spike has deleterious effects on spike structure and function, inhibiting its trafficking to lysosomes and impairing its infectivity by the transmembrane serine protease 2(TMPRSS2)-independent, endolysosomal pathway. D614G restores spike trafficking to lysosomes and enhances the earliest events in SARS-CoV-2 infectivity, while spike mutations that restore SARS-CoV-2's TMPRSS2-independent infectivity restore spike's trafficking to lysosomes. Together, these and other results show that D614G is an intragenic suppressor of deleterious traits linked to the FCSI and lend additional support to the endolysosomal model of SARS-CoV-2 egress and entry.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Shang-Jui Tsai
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Maggie Li
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eduardo Anaya
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrea Cox
- Department of Medicine, Department of Microbiology and Immunology, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| |
Collapse
|
18
|
Benlarbi M, Laroche G, Fink C, Fu K, Mulloy RP, Phan A, Ariana A, Stewart CM, Prévost J, Beaudoin-Bussières G, Daniel R, Bo Y, El Ferri O, Yockell-Lelièvre J, Stanford WL, Giguère PM, Mubareka S, Finzi A, Dekaban GA, Dikeakos JD, Côté M. Identification and differential usage of a host metalloproteinase entry pathway by SARS-CoV-2 Delta and Omicron. iScience 2022; 25:105316. [PMID: 36254158 PMCID: PMC9549715 DOI: 10.1016/j.isci.2022.105316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.
Collapse
Affiliation(s)
- Mehdi Benlarbi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corby Fink
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Kathy Fu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rory P. Mulloy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alexandra Phan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ardeshir Ariana
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Redaet Daniel
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Omar El Ferri
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julien Yockell-Lelièvre
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - William L. Stanford
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Patrick M. Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gregory A. Dekaban
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry Western University, London, ON N6A 5C1, Canada
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
19
|
Hao Y, Wang Y, Wang M, Zhou L, Shi J, Cao J, Wang D. The origins of COVID-19 pandemic: A brief overview. Transbound Emerg Dis 2022; 69:3181-3197. [PMID: 36218169 PMCID: PMC9874793 DOI: 10.1111/tbed.14732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease (COVID-19) outbreak that emerged at the end of 2019 has now swept the world for more than 2 years, causing immeasurable damage to the lives and economies of the world. It has drawn so much attention to discovering how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated and entered the human body. The current argument revolves around two contradictory theories: a scenario of laboratory spillover events and human contact with zoonotic diseases. Here, we reviewed the transmission, pathogenesis, possible hosts, as well as the genome and protein structure of SARS-CoV-2, which play key roles in the COVID-19 pandemic. We believe the coronavirus was originally transmitted to human by animals rather than by a laboratory leak. However, there still needs more investigations to determine the source of the pandemic. Understanding how COVID-19 emerged is vital to developing global strategies for mitigating future outbreaks.
Collapse
Affiliation(s)
- Ying‐Jian Hao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yu‐Lan Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Mei‐Yue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Lan Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jian‐Yun Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Ji‐Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - De‐Ping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
20
|
Jilani M, Turcan A, Haspel N, Jagodzinski F. Elucidating the Structural Impacts of Protein InDels. Biomolecules 2022; 12:1435. [PMID: 36291643 PMCID: PMC9599607 DOI: 10.3390/biom12101435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 09/17/2023] Open
Abstract
The effects of amino acid insertions and deletions (InDels) remain a rather under-explored area of structural biology. These variations oftentimes are the cause of numerous disease phenotypes. In spite of this, research to study InDels and their structural significance remains limited, primarily due to a lack of experimental information and computational methods. In this work, we fill this gap by modeling InDels computationally; we investigate the rigidity differences between the wildtype and a mutant variant with one or more InDels. Further, we compare how structural effects due to InDels differ from the effects of amino acid substitutions, which are another type of amino acid mutation. We finish by performing a correlation analysis between our rigidity-based metrics and wet lab data for their ability to infer the effects of InDels on protein fitness.
Collapse
Affiliation(s)
- Muneeba Jilani
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Alistair Turcan
- Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA
| | - Nurit Haspel
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
21
|
Virus Diversity, Abundance, and Evolution in Three Different Bat Colonies in Switzerland. Viruses 2022; 14:v14091911. [PMID: 36146717 PMCID: PMC9505930 DOI: 10.3390/v14091911] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Bats are increasingly recognized as reservoirs for many different viruses that threaten public health, such as Hendravirus, Ebolavirus, Nipahvirus, and SARS- and MERS-coronavirus. To assess spillover risk, viromes of bats from different parts of the world have been investigated in the past. As opposed to most of these prior studies, which determined the bat virome at a single time point, the current work was performed to monitor changes over time. Specifically, fecal samples of three endemic Swiss bat colonies consisting of three different bat species were collected over three years and analyzed using next-generation sequencing. Furthermore, single nucleotide variants of selected DNA and RNA viruses were analyzed to investigate virus genome evolution. In total, sequences of 22 different virus families were found, of which 13 are known to infect vertebrates. Most interestingly, in a Vespertilio murinus colony, sequences from a MERS-related beta-coronavirus were consistently detected over three consecutive years, which allowed us to investigate viral genome evolution in a natural reservoir host.
Collapse
|
22
|
Kim J, Yoon J, Park JE. Furin cleavage is required for swine acute diarrhea syndrome coronavirus spike protein-mediated cell-cell fusion. Emerg Microbes Infect 2022; 11:2176-2183. [PMID: 35976165 PMCID: PMC9518401 DOI: 10.1080/22221751.2022.2114850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) was reported in China in 2017 and is a causative agent of porcine enteric disease. Recent studies indicate that cells from various hosts are susceptible to SADS-CoV, suggesting the zoonotic potential of this virus. However, little is known about the mechanisms through which this virus enters cells. In this study, we investigated the role of furin in SADS-CoV spike (S)-mediated cell-cell fusion and entry. We found that the SADS-CoV S protein induced the fusion of various cells. Cell-cell fusion was inhibited by the proprotein convertase inhibitor dec-RVKR-cmk, and between cells transfected with mutant S proteins resistant to furin cleavage. These findings revealed that furin-induced cleavage of the SADS-CoV S protein is required for cell-cell fusion. Using mutagenesis analysis, we demonstrated that furin cleaves the SADS-CoV S protein near the S1/S2 cleavage site, 446RYVR449 and 543AVRR546. We used pseudotyped viruses to determine whether furin-induced S cleavage is also required for viral entry. Pseudotyped viruses expressing S proteins with a mutated furin cleavage site could be transduced into target cells, indicating that furin-induced cleavage is not required for pseudotyped virus entry. Our data indicate that S cleavage is critical for SADS-CoV S-mediated cell-cell fusion and suggest that furin might be a host target for SADS-CoV antivirals.
Collapse
Affiliation(s)
- Jinman Kim
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewon Yoon
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.,Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
23
|
Vu MN, Lokugamage KG, Plante JA, Scharton D, Bailey AO, Sotcheff S, Swetnam DM, Johnson BA, Schindewolf C, Alvarado RE, Crocquet-Valdes PA, Debbink K, Weaver SC, Walker DH, Russell WK, Routh AL, Plante KS, Menachery VD. QTQTN motif upstream of the furin-cleavage site plays a key role in SARS-CoV-2 infection and pathogenesis. Proc Natl Acad Sci U S A 2022; 119:e2205690119. [PMID: 35881779 PMCID: PMC9371735 DOI: 10.1073/pnas.2205690119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 02/08/2023] Open
Abstract
The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.
Collapse
Affiliation(s)
- Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Kumari G. Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
| | - Aaron O. Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Daniele M. Swetnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - R. Elias Alvarado
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX
| | | | - Kari Debbink
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21211
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew L. Routh
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
24
|
Espeseth AS, Yuan M, Citron M, Reiserova L, Morrow G, Wilson A, Horton M, Rukhman M, Kinek K, Hou F, Li SL, Li F, Choi Y, Heidecker G, Luo B, Wu G, Zhang L, Strable E, DeStefano J, Secore S, Mukhopadhyay TK, Richardson DD, Sayeed E, Welch LS, Bett AJ, Feinberg MB, Gupta SB, Cooper CL, Parks CL. Preclinical immunogenicity and efficacy of a candidate COVID-19 vaccine based on a vesicular stomatitis virus-SARS-CoV-2 chimera. EBioMedicine 2022; 82:104203. [PMID: 35915046 PMCID: PMC9338221 DOI: 10.1016/j.ebiom.2022.104203] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Background To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine. Methods We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters. Findings VSV∆G-SARS-CoV-2 delivered with a single intramuscular (IM) injection was immunogenic in cotton rats and hamsters and protected hamsters from weight loss following SARS-CoV-2 challenge. When mucosal vaccination was evaluated, cotton rats did not respond to the vaccine, whereas mucosal administration of VSV∆G-SARS-CoV-2 was found to be more immunogenic than IM injection in hamsters and induced immunity that significantly reduced SARS-CoV-2 challenge virus loads in both lung and nasal tissues. Interpretation VSV∆G-SARS-CoV-2 delivered by IM injection or mucosal administration was immunogenic in golden Syrian hamsters, and both vaccination methods effectively protected the lung from SARS-CoV-2 infection. Hamsters vaccinated by mucosal application of VSV∆G-SARS-CoV-2 also developed immunity that controlled SARS-CoV-2 replication in nasal tissue. Funding The study was funded by Merck Sharp & Dohme, Corp., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA, and The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA. Parts of this research was supported by the Biomedical Advanced Research and Development Authority (BARDA) and the Defense Threat Reduction Agency (DTRA) of the US Department of Defense.
Collapse
Affiliation(s)
| | - Maoli Yuan
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | | | - Lucia Reiserova
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | - Gavin Morrow
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | - Aaron Wilson
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | | | - Mark Rukhman
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | | | - Fuxiang Hou
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | - Shui L Li
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | | | - Yesle Choi
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | | | - Bin Luo
- Merck & Co., Inc., Rahway, New Jersey, USA
| | - Guoxin Wu
- Merck & Co., Inc., Rahway, New Jersey, USA
| | - Lan Zhang
- Merck & Co., Inc., Rahway, New Jersey, USA
| | | | - Joanne DeStefano
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | | | | | | | - Eddy Sayeed
- The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA
| | - Lisa S Welch
- The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA; Currently at Clover Biopharmaceuticals, Boston, Massachusetts, USA
| | | | - Mark B Feinberg
- The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA
| | - Swati B Gupta
- The International AIDS Vaccine Initiative, Inc. (IAVI), New York, USA
| | - Christopher L Cooper
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA
| | - Christopher L Parks
- The International AIDS Vaccine Initiative, Inc. (IAVI), Vaccine Design and Development Laboratory, New York, USA.
| |
Collapse
|
25
|
Lin PL, Wu MS, Wu PC, Chen HM, Peng YH, Hsu JC, Wang DY. A collaborative study to establish the national standard for SARS-CoV-2 RNA nucleic acid amplification techniques (NAAT) in Taiwan. Biologicals 2022; 79:31-37. [PMID: 36085128 PMCID: PMC9428600 DOI: 10.1016/j.biologicals.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/14/2022] [Accepted: 08/21/2022] [Indexed: 11/27/2022] Open
|
26
|
Yan K, Dumenil T, Tang B, Le TT, Bishop CR, Suhrbier A, Rawle DJ. Evolution of ACE2-independent SARS-CoV-2 infection and mouse adaption after passage in cells expressing human and mouse ACE2. Virus Evol 2022; 8:veac063. [PMID: 35919871 PMCID: PMC9338707 DOI: 10.1093/ve/veac063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Human ACE2 Human angiotensin converting enzyme 2 (hACE2) is the key cell attachment and entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the original SARS-CoV-2 isolates unable to use mouse ACE2 (mACE2). Herein we describe the emergence of a SARS-CoV-2 strain capable of ACE2-independent infection and the evolution of mouse-adapted (MA) SARS-CoV-2 by in vitro serial passaging of virus in co-cultures of cell lines expressing hACE2 and mACE2. MA viruses evolved with up to five amino acid changes in the spike protein, all of which have been seen in human isolates. MA viruses replicated to high titers in C57BL/6J mouse lungs and nasal turbinates and caused characteristic lung histopathology. One MA virus also evolved to replicate efficiently in several ACE2-negative cell lines across several species, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) ACE2 knockout cells. An E484D substitution is likely involved in ACE2-independent entry and has appeared in only ≈0.003 per cent of human isolates globally, suggesting that it provided no significant selection advantage in humans. ACE2-independent entry reveals a SARS-CoV-2 infection mechanism that has potential implications for disease pathogenesis, evolution, tropism, and perhaps also intervention development.
Collapse
Affiliation(s)
- Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Thuy T Le
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, 300 Herston Road, Herston, 4029 and The University of Queensland, St Lucia, 4072, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4029, Queensland, Australia
| |
Collapse
|
27
|
Abdelhamid AG, Faraone JN, Evans JP, Liu SL, Yousef AE. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens 2022; 11:837. [PMID: 36014958 PMCID: PMC9415055 DOI: 10.3390/pathogens11080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell's membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Julia N. Faraone
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Characterization of SARS-CoV-2 Escape Mutants to a Pair of Neutralizing Antibodies Targeting the RBD and the NTD. Int J Mol Sci 2022; 23:ijms23158177. [PMID: 35897753 PMCID: PMC9332373 DOI: 10.3390/ijms23158177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Mutations in the spike protein of SARS-CoV-2 can lead to evasion from neutralizing antibodies and affect the efficacy of passive and active immunization strategies. Immunization of mice harboring an entire set of human immunoglobulin variable region gene segments allowed to identify nine neutralizing monoclonal antibodies, which either belong to a cluster of clonally related RBD or NTD binding antibodies. To better understand the genetic barrier to emergence of SARS-CoV-2 variants resistant to these antibodies, escape mutants were selected in cell culture to one antibody from each cluster and a combination of the two antibodies. Three independently derived escape mutants to the RBD antibody harbored mutations in the RBD at the position T478 or S477. These mutations impaired the binding of the RBD antibodies to the spike protein and conferred resistance in a pseudotype neutralization assay. Although the binding of the NTD cluster antibodies were not affected by the RBD mutations, the RBD mutations also reduced the neutralization efficacy of the NTD cluster antibodies. The mutations found in the escape variants to the NTD antibody conferred resistance to the NTD, but not to the RBD cluster antibodies. A variant resistant to both antibodies was more difficult to select and only emerged after longer passages and higher inoculation volumes. VOC carrying the same mutations as the ones identified in the escape variants were also resistant to neutralization. This study further underlines the rapid emergence of escape mutants to neutralizing monoclonal antibodies in cell culture and indicates the need for thorough investigation of escape mutations to select the most potent combination of monoclonal antibodies for clinical use.
Collapse
|
29
|
SARS-CoV-2 Spike Furin Cleavage Site and S2' Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner. J Virol 2022; 96:e0047422. [PMID: 35678602 PMCID: PMC9278140 DOI: 10.1128/jvi.00474-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
SARS-CoV-2 spike (S) envelope glycoprotein constitutes the main determinant of virus entry and the target of host immune response, thus being of great interest for antiviral research. It is constituted of S1 and S2 subunits, which are involved in ACE2 receptor binding and fusion between the viral envelope and host cell membrane, respectively. Induction of the fusion process requires S cleavage at the S1-S2 junction and the S2′ site located upstream of the fusion peptide. Interestingly, the SARS-CoV-2 spike harbors a 4-residue insertion at the S1-S2 junction that is absent in its closest relatives and constitutes a polybasic motif recognized by furin-like proteases. In addition, the S2′ site is characterized by the presence of conserved basic residues. Here, we sought to determine the importance of the furin cleavage site (FCS) and the S2′ basic residues for S-mediated entry functions. We determined the impact of mutations introduced at these sites on S processing, fusogenic activity, and its ability to mediate entry in different cellular backgrounds. Strikingly, mutation phenotypes were highly dependent on the host cell background. We confirmed that although the FCS was not absolutely required for virus entry, it contributed to extending the fusogenic potential of S. Cleavage site mutations, as well as inhibition of furin protease activity, affected the cell surface expression of S in a host cell-dependent manner. Finally, inhibition of furin activity differentially affected SARS-CoV-2 virus infectivity in the tested host cells, thereby confirming the host cell-dependent effect of spike processing for the viral life cycle. IMPORTANCE SARS-CoV-2 is responsible for the current global pandemic that has resulted in several million deaths. As the key determinant of virus entry into host cells and the main target of host immune response, the spike glycoprotein constitutes an attractive target for therapeutics development. Entry functions of spike rely on its processing at two sites by host cell proteases. While SARS-CoV-2 spike differs from its closest relatives by the insertion of a basic furin cleavage motif at the first site, it harbors conserved basic residues at the second cleavage site. Characterization of the importance of the basic sequences present at the two cleavage sites revealed that they were influencing spike processing, intracellular localization, induction of fusion, and entry in a host cell-dependent manner. Thus, our results revealed a high heterogeneity in spike sequence requirement for entry functions in the different host cells, in agreement with the high adaptability of the SARS-CoV-2 virus.
Collapse
|
30
|
SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ 2022; 29:1240-1254. [PMID: 34997207 PMCID: PMC9177730 DOI: 10.1038/s41418-021-00916-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/18/2023] Open
Abstract
A recent mutation analysis suggested that Non-Structural Protein 6 (NSP6) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a key determinant of the viral pathogenicity. Here, by transcriptome analysis, we demonstrated that the inflammasome-related NOD-like receptor signaling was activated in SARS-CoV-2-infected lung epithelial cells and Coronavirus Disease 2019 (COVID-19) patients' lung tissues. The induction of inflammasomes/pyroptosis in patients with severe COVID-19 was confirmed by serological markers. Overexpression of NSP6 triggered NLRP3/ASC-dependent caspase-1 activation, interleukin-1β/18 maturation, and pyroptosis of lung epithelial cells. Upstream, NSP6 impaired lysosome acidification to inhibit autophagic flux, whose restoration by 1α,25-dihydroxyvitamin D3, metformin or polydatin abrogated NSP6-induced pyroptosis. NSP6 directly interacted with ATP6AP1, a vacuolar ATPase proton pump component, and inhibited its cleavage-mediated activation. L37F NSP6 variant, which was associated with asymptomatic COVID-19, exhibited reduced binding to ATP6AP1 and weakened ability to impair lysosome acidification to induce pyroptosis. Consistently, infection of cultured lung epithelial cells with live SARS-CoV-2 resulted in autophagic flux stagnation, inflammasome activation, and pyroptosis. Overall, this work supports that NSP6 of SARS-CoV-2 could induce inflammatory cell death in lung epithelial cells, through which pharmacological rectification of autophagic flux might be therapeutically exploited.
Collapse
|
31
|
M.D OC, Solomon BA, Tauseef A, Haroon H, R. E. E. AG, K.C. SM. EMERGENCE OF NEW STRAINS OF SARS-COV-2: AFRICA'S FATE AND ITS PREPAREDNESS AGAINST COVID-19 INFECTION WAVES. Afr J Infect Dis 2022; 16:1-12. [PMID: 35582064 PMCID: PMC9097310 DOI: 10.21010/ajid.v16i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has infected over 100million individuals worldwide with diverse impacts on nations. The rising cases of new strains and resultant infection waves create an urgent need to assess the readiness of countries especially in Africa to mitigate the impact on community transmission. This paper delivers a brief synopsis of the novel SARS-CoV-2, emerging cases of new variants reported worldwide, and implications for genetic surveillance of disease transmission in low- and middle-income countries (LMICs) especially Africa. Materials and Methods Literature search used keywords like SARS-CoV-2; COVID-19 epidemiology; pandemic waves; corona outbreak, clinical syndromes, treatments, prevention and control. Cross-sectional and observational studies published on COVID-19 from 2019 till date of study provided main information sources. Databases such as Web of Science, Embase, PubMed and Google Scholar were utilised. Main findings Over 220 countries have documented COVID-19 cases with varied severity till date. Before the spikes in resurgence, a highly virulent mutated (>90% fatality rate) novel strain of COVID-19 had been documented. There is very little data to ascertain the impact of the COVID-19 infection waves in LMICs. Discussion LMICs especially African countries still grapple with significant challenges like inefficient surveillance mechanisms, inadequate vaccination coverage, inadequate enforcement of environmental health strategies, poor health systems etc. Hence, Africa's fate remains dicey in the face of the dynamic evolution of the SARS-CoV-2 and other identified challenges. Conclusion The adoption of a multidisciplinary approach to mitigate the impact of emergence of mutant SARS-CoV-2 variants and resurgence of infection spike is recommended.
Collapse
Affiliation(s)
- Ohia Chinenyenwa M.D
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
| | - Bakarey Adeleye Solomon
- Institute for Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Nigeria
| | - Ahmad Tauseef
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing 210096, China
| | - Haroon Haroon
- College of Life Sciences, Northwest University, No. 229, North Taibai Road, Xian, Shaanxi Province, 710069, China
| | - Ana Godson R. E. E.
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
| | - Sridhar Mynepalli K.C.
- Department of Environmental Health Sciences, Faculty of Public Health, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
32
|
Mélade J, Piorkowski G, Touret F, Fourié T, Driouich JS, Cochin M, Bouzidi HS, Coutard B, Nougairède A, de Lamballerie X. A simple reverse genetics method to generate recombinant coronaviruses. EMBO Rep 2022; 23:e53820. [PMID: 35239997 PMCID: PMC9066064 DOI: 10.15252/embr.202153820] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Engineering recombinant viruses is a pre‐eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on “infectious subgenomic amplicons” (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS‐CoV‐2 and also to the feline enteric coronavirus. In both cases we rescue wild‐type viruses with biological characteristics similar to original strains. Specific mutations and fluorescent red reporter genes can be readily incorporated into the SARS‐CoV‐2 genome enabling the generation of a genomic variants and fluorescent reporter strains for in vivo experiments, serological diagnosis, and antiviral assays. The swiftness and simplicity of the ISA method has the potential to facilitate the advance of coronavirus reverse genetics studies, to explore the molecular biological properties of the SARS‐CoV‐2 variants, and to accelerate the development of effective therapeutic reagents.
Collapse
Affiliation(s)
- Julien Mélade
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Toscane Fourié
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Jean-Sélim Driouich
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Maxime Cochin
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Hawa Sophia Bouzidi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Bruno Coutard
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Antoine Nougairède
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| |
Collapse
|
33
|
Peter AS, Roth E, Schulz SR, Fraedrich K, Steinmetz T, Damm D, Hauke M, Richel E, Mueller‐Schmucker S, Habenicht K, Eberlein V, Issmail L, Uhlig N, Dolles S, Grüner E, Peterhoff D, Ciesek S, Hoffmann M, Pöhlmann S, McKay PF, Shattock RJ, Wölfel R, Socher E, Wagner R, Eichler J, Sticht H, Schuh W, Neipel F, Ensser A, Mielenz D, Tenbusch M, Winkler TH, Grunwald T, Überla K, Jäck H. A pair of noncompeting neutralizing human monoclonal antibodies protecting from disease in a SARS-CoV-2 infection model. Eur J Immunol 2022; 52:770-783. [PMID: 34355795 PMCID: PMC8420377 DOI: 10.1002/eji.202149374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Abstract
TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.
Collapse
|
34
|
Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol J 2022; 19:76. [PMID: 35473640 PMCID: PMC9038516 DOI: 10.1186/s12985-022-01802-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During the ongoing Covid-19 pandemic caused by the emerging virus SARS-CoV-2, research in the field of coronaviruses has expanded tremendously. The genome of SARS-CoV-2 has rapidly acquired numerous mutations, giving rise to several Variants of Concern (VOCs) with altered epidemiological, immunological, and pathogenic properties. METHODS As cell culture models are important tools to study viruses, we investigated replication kinetics and infectivity of SARS-CoV-2 in the African Green Monkey-derived Vero E6 kidney cell line and the two human cell lines Caco-2, a colon epithelial carcinoma cell line, and the airway epithelial carcinoma cell line Calu-3. We assessed viral RNA copy numbers and infectivity of viral particles in cell culture supernatants at different time points ranging from 2 to 96 h post-infection. RESULTS We here describe a systematic comparison of growth kinetics of the five SARS-CoV-2 VOCs Alpha/B.1.1.7, Beta/B.1.351, Gamma/P.1, Delta/B.1.617.2, and Omicron/B.1.1.529 and a non-VOC/B.1.1 strain on three different cell lines to provide profound information on the differential behaviour of VOCs in different cell lines for researchers worldwide. We show distinct differences in viral replication kinetics of the SARS-CoV-2 non-VOC and five VOCs on the three cell culture models Vero E6, Caco-2, and Calu-3. CONCLUSION This is the first systematic comparison of all SARS-CoV-2 VOCs on three different cell culture models. This data provides support for researchers worldwide in their experimental design for work on SARS-CoV-2. It is recommended to perform virus isolation and propagation on Vero E6 while infection studies or drug screening and antibody-based assays should rather be conducted on the human cell lines Caco-2 and Calu-3.
Collapse
Affiliation(s)
- Lena Mautner
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764, Oberschleißheim, Germany
| | - Mona Hoyos
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764, Oberschleißheim, Germany
| | - Alexandra Dangel
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764, Oberschleißheim, Germany
| | - Carola Berger
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764, Oberschleißheim, Germany
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany
| | - Armin Baiker
- Unit of Molecular Biologic Analytics and Biogenetics, Bavarian Health and Food Safety Authority, Veterinaerstrasse 2, 85764, Oberschleißheim, Germany. .,Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany.
| |
Collapse
|
35
|
Amicone M, Borges V, Alves MJ, Isidro J, Zé-Zé L, Duarte S, Vieira L, Guiomar R, Gomes JP, Gordo I. Mutation rate of SARS-CoV-2 and emergence of mutators during experimental evolution. Evol Med Public Health 2022; 10:142-155. [PMID: 35419205 PMCID: PMC8996265 DOI: 10.1093/emph/eoac010] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/08/2022] [Indexed: 01/13/2023] Open
Abstract
Background and objectives To understand how organisms evolve, it is fundamental to study how mutations emerge and establish. Here, we estimated the rate of mutation accumulation of SARS-CoV-2 in vitro and investigated the repeatability of its evolution when facing a new cell type but no immune or drug pressures. Methodology We performed experimental evolution with two strains of SARS-CoV-2, one carrying the originally described spike protein (CoV-2-D) and another carrying the D614G mutation that has spread worldwide (CoV-2-G). After 15 passages in Vero cells and whole genome sequencing, we characterized the spectrum and rate of the emerging mutations and looked for evidences of selection across the genomes of both strains. Results From the frequencies of the mutations accumulated, and excluding the genes with signals of selection, we estimate a spontaneous mutation rate of 1.3 × 10 -6 ± 0.2 × 10-6 per-base per-infection cycle (mean across both lineages of SARS-CoV-2 ± 2SEM). We further show that mutation accumulation is larger in the CoV-2-D lineage and heterogeneous along the genome, consistent with the action of positive selection on the spike protein, which accumulated five times more mutations than the corresponding genomic average. We also observe the emergence of mutators in the CoV-2-G background, likely linked to mutations in the RNA-dependent RNA polymerase and/or in the error-correcting exonuclease protein. Conclusions and implications These results provide valuable information on how spontaneous mutations emerge in SARS-CoV-2 and on how selection can shape its genome toward adaptation to new environments. Lay Summary: Each time a virus replicates inside a cell, errors (mutations) occur. Here, via laboratory propagation in cells originally isolated from the kidney epithelium of African green monkeys, we estimated the rate at which the SARS-CoV-2 virus mutates-an important parameter for understanding how it can evolve within and across humans. We also confirm the potential of its Spike protein to adapt to a new environment and report the emergence of mutators-viral populations where mutations occur at a significantly faster rate.
Collapse
Affiliation(s)
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Maria João Alves
- Centre for Vectors and Infectious Diseases Research, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Líbia Zé-Zé
- Centre for Vectors and Infectious Diseases Research, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Sílvia Duarte
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Raquel Guiomar
- National Reference Laboratory for Influenza and Other Respiratory Viruses, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Corresponding authors. Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal. E-mail: ; Instituto Gulbenkian de Ciência, Oeiras, Portugal. E-mail:
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Corresponding authors. Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal. E-mail: ; Instituto Gulbenkian de Ciência, Oeiras, Portugal. E-mail:
| |
Collapse
|
36
|
Li XF, Cui Z, Fan H, Chen Q, Cao L, Qiu HY, Zhang NN, Xu YP, Zhang RR, Zhou C, Ye Q, Deng YQ, Guo Y, Qin S, Fan K, Wang L, Jia Z, Cui Y, Wang X, Qin CF. A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters. Innovation (N Y) 2022; 3:100221. [PMID: 35252935 PMCID: PMC8888354 DOI: 10.1016/j.xinn.2022.100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhen Cui
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hang Fan
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Lei Cao
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ying Qiu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Na-Na Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan-Peng Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Chao Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yan Guo
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Si Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Kaiyue Fan
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zijing Jia
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yujun Cui
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiangxi Wang
- CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
| |
Collapse
|
37
|
Liao YC, Chen FJ, Chuang MC, Wu HC, Ji WC, Yu GY, Huang TS. High-Integrity Sequencing of Spike Gene for SARS-CoV-2 Variant Determination. Int J Mol Sci 2022; 23:3257. [PMID: 35328676 PMCID: PMC8954144 DOI: 10.3390/ijms23063257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/10/2022] Open
Abstract
For tiling of the SARS-CoV-2 genome, the ARTIC Network provided a V4 protocol using 99 pairs of primers for amplicon production and is currently the widely used amplicon-based approach. However, this technique has regions of low sequence coverage and is labour-, time-, and cost-intensive. Moreover, it requires 14 pairs of primers in two separate PCRs to obtain spike gene sequences. To overcome these disadvantages, we proposed a single PCR to efficiently detect spike gene mutations. We proposed a bioinformatic protocol that can process FASTQ reads into spike gene consensus sequences to accurately call spike protein variants from sequenced samples or to fairly express the cases of missing amplicons. We evaluated the in silico detection rate of primer sets that yield amplicon sizes of 400, 1200, and 2500 bp for spike gene sequencing of SARS-CoV-2 to be 59.49, 76.19, and 92.20%, respectively. The in silico detection rate of our proposed single PCR primers was 97.07%. We demonstrated the robustness of our analytical protocol against 3000 Oxford Nanopore sequencing runs of distinct datasets, thus ensuring high-integrity sequencing of spike genes for variant SARS-CoV-2 determination. Our protocol works well with the data yielded from versatile primer designs, making it easy to determine spike protein variants.
Collapse
Affiliation(s)
- Yu-Chieh Liao
- Institute of Population Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan; (F.-J.C.); (H.-C.W.); (G.-Y.Y.)
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (M.-C.C.); (W.-C.J.)
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan; (F.-J.C.); (H.-C.W.); (G.-Y.Y.)
| | - Wan-Chen Ji
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan; (M.-C.C.); (W.-C.J.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan; (F.-J.C.); (H.-C.W.); (G.-Y.Y.)
| | - Tsi-Shu Huang
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
| |
Collapse
|
38
|
Muñoz-Valle JF, Venancio-Landeros AA, Sánchez-Sánchez R, Reyes-Díaz K, Galindo-Ornelas B, Hérnandez-Monjaraz WS, García-Ríos A, García-Ortega LF, Hernández-Bello J, Peña-Rodríguez M, Vega-Magaña N, Delaye L, Díaz-Sánchez M, García-González OP. An Upgrade on the Surveillance System of SARS-CoV-2: Deployment of New Methods for Genetic Inspection. Int J Mol Sci 2022; 23:3143. [PMID: 35328562 PMCID: PMC8950365 DOI: 10.3390/ijms23063143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 variants surveillance is a worldwide task that has been approached with techniques such as Next Generation Sequencing (NGS); however, this technology is not widely available in developing countries because of the lack of equipment and limited funding in science. An option is to deploy a RT-qPCR screening test which aids in the analysis of a higher number of samples, in a shorter time and at a lower cost. In this study, variants present in samples positive for SARS-CoV-2 were identified with a RT-qPCR mutation screening kit and were later confirmed by NGS. A sample with an abnormal result was found with the screening test, suggesting the simultaneous presence of two viral populations with different mutations. The DRAGEN Lineage analysis identified the Delta variant, but there was no information about the other three mutations previously detected. When the sequenced data was deeply analyzed, there were reads with differential mutation patterns, that could be identified and classified in terms of relative abundance, whereas only the dominant population was reported by DRAGEN software. Since most of the software developed to analyze SARS-CoV-2 sequences was aimed at obtaining the consensus sequence quickly, the information about viral populations within a sample is scarce. Here, we present a faster and deeper SARS-CoV-2 surveillance method, from RT-qPCR screening to NGS analysis.
Collapse
Affiliation(s)
- José Francisco Muñoz-Valle
- Institute for Research in Biomedical Sciences (IICB), University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (J.H.-B.); (N.V.-M.)
| | | | | | - Karen Reyes-Díaz
- Research and Development Department, Genes2Life (Grupo T), Irapuato 36615, Mexico; (K.R.-D.); (B.G.-O.); (W.S.H.-M.); (A.G.-R.); (M.D.-S.)
| | - Byron Galindo-Ornelas
- Research and Development Department, Genes2Life (Grupo T), Irapuato 36615, Mexico; (K.R.-D.); (B.G.-O.); (W.S.H.-M.); (A.G.-R.); (M.D.-S.)
| | - Wendy Susana Hérnandez-Monjaraz
- Research and Development Department, Genes2Life (Grupo T), Irapuato 36615, Mexico; (K.R.-D.); (B.G.-O.); (W.S.H.-M.); (A.G.-R.); (M.D.-S.)
| | - Alejandra García-Ríos
- Research and Development Department, Genes2Life (Grupo T), Irapuato 36615, Mexico; (K.R.-D.); (B.G.-O.); (W.S.H.-M.); (A.G.-R.); (M.D.-S.)
| | - Luis Fernando García-Ortega
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Irapuato 36824, Mexico; (L.F.G.-O.); (L.D.)
| | - Jorge Hernández-Bello
- Institute for Research in Biomedical Sciences (IICB), University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (J.H.-B.); (N.V.-M.)
| | - Marcela Peña-Rodríguez
- Laboratory for the Diagnosis of Emerging and Reemerging Diseases (LaDEER), University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Natali Vega-Magaña
- Institute for Research in Biomedical Sciences (IICB), University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (J.H.-B.); (N.V.-M.)
- Laboratory for the Diagnosis of Emerging and Reemerging Diseases (LaDEER), University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico;
| | - Luis Delaye
- Department of Genetic Engineering, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Irapuato 36824, Mexico; (L.F.G.-O.); (L.D.)
| | - Mauricio Díaz-Sánchez
- Research and Development Department, Genes2Life (Grupo T), Irapuato 36615, Mexico; (K.R.-D.); (B.G.-O.); (W.S.H.-M.); (A.G.-R.); (M.D.-S.)
| | | |
Collapse
|
39
|
Escalera A, Gonzalez-Reiche AS, Aslam S, Mena I, Laporte M, Pearl RL, Fossati A, Rathnasinghe R, Alshammary H, van de Guchte A, Farrugia K, Qin Y, Bouhaddou M, Kehrer T, Zuliani-Alvarez L, Meekins DA, Balaraman V, McDowell C, Richt JA, Bajic G, Sordillo EM, Dejosez M, Zwaka TP, Krogan NJ, Simon V, Albrecht RA, van Bakel H, García-Sastre A, Aydillo T. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe 2022; 30:373-387.e7. [PMID: 35150638 PMCID: PMC8776496 DOI: 10.1016/j.chom.2022.01.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022]
Abstract
SARS-CoV-2 lineages have diverged into highly prevalent variants termed "variants of concern" (VOCs). Here, we characterized emerging SARS-CoV-2 spike polymorphisms in vitro and in vivo to understand their impact on transmissibility and virus pathogenicity and fitness. We demonstrate that the substitution S:655Y, represented in the gamma and omicron VOCs, enhances viral replication and spike protein cleavage. The S:655Y substitution was transmitted more efficiently than its ancestor S:655H in the hamster infection model and was able to outcompete S:655H in the hamster model and in a human primary airway system. Finally, we analyzed a set of emerging SARS-CoV-2 variants to investigate how different sets of mutations may impact spike processing. All VOCs tested exhibited increased spike cleavage and fusogenic capacity. Taken together, our study demonstrates that the spike mutations present in VOCs that become epidemiologically prevalent in humans are linked to an increase in spike processing and virus transmission.
Collapse
Affiliation(s)
- Alba Escalera
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manon Laporte
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca L Pearl
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Fossati
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Raveen Rathnasinghe
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keith Farrugia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yiren Qin
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - David A Meekins
- Department of Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Velmurugan Balaraman
- Department of Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Chester McDowell
- Department of Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Jürgen A Richt
- Department of Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marion Dejosez
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Thomas P Zwaka
- Huffington Center for Cell-based Research in Parkinson's Disease, Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10502, USA
| | - Nevan J Krogan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; QBI Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2140, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
40
|
Detection of the ORF1 Gene Is an Indicator of the Possible Isolation of Severe Acute Respiratory Syndrome Coronavirus 2. Pathogens 2022; 11:pathogens11030302. [PMID: 35335626 PMCID: PMC8953321 DOI: 10.3390/pathogens11030302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
In the ongoing coronavirus diseases 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), real-time RT-PCR based diagnostic assays have been used for the detection of infection, but the positive signal of real-time RT-PCR does not necessarily indicate the infectivity of the patient. Due to the unique replication system of the coronavirus, primer/probe sets targeted nucleocapsid (N) and spike (S) protein detect the abundantly synthesized subgenomic RNAs as well as the virus genome, possibly making the assay unsuitable for estimation of the infectivity of the specimen, although it has an advantage for the diagnostic tests. In this study, the primer/probe set targeting the open reading frame 1a (ORF1a) gene was developed to specifically detect viral genomic RNA. Then the relation between the ORF1a signal and infectivity of the clinical specimens was validated by virus isolation using VeroE6 cells, which constitutively express transmembrane protease, serine 2, (VeroE6/TMPRSS2). The analytical sensitivity of developed ORF1a set was similar to that of previously developed N and S sets. Nevertheless, in the assay of the clinical specimen, detection rate of the ORF1a gene was lower than that of the N and S genes. These data indicated that clinical specimens contain a significant amount of subgenomic RNAs. However, as expected, the isolation-succeeded specimen always showed an RT-PCR-positive signal for the ORF1a gene, suggesting ORF1a detection in combination with N and S sets could be a more rational indicator for the possible infectivity of the clinical specimens.
Collapse
|
41
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
42
|
Development of an in vitro model for animal species susceptibility to SARS-CoV-2 replication based on expression of ACE2 and TMPRSS2 in avian cells. Virology 2022; 569:1-12. [PMID: 35217403 PMCID: PMC8837912 DOI: 10.1016/j.virol.2022.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023]
Abstract
The SARS-CoV-2 (SARS-CoV-2) virus has caused a worldwide pandemic because of the virus's ability to transmit efficiently human-to-human. A key determinant of infection is the attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Because of the presumed zoonotic origin of SARS-CoV-2, there is no practical way to assess the susceptibility of every species to SARS-CoV-2 by direct challenge studies. In an effort to have a better predictive model of animal host susceptibility to SARS-CoV-2, we expressed the ACE2 and/or transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that expression of both human ACE2 and TMPRSS2 genes is necessary to support SARS-CoV-2 infection and replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SARS-CoV-2 in these cell lines were comparable to those observed in control Vero cells. To further test the model, we developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived from Felis catus (cat), Equus caballus (horse), Sus domesticus (pig), Capra hircus (goat), Mesocricetus auratus (Golden hamster), Myotis lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells. Results demonstrate permissive replication of SARS-CoV-2 in cat, Golden hamster, and goat species, but not pig or horse, which correlated with the results of reported challenge studies. Cells expressing genes from either bat species tested demonstrated temporal replication of SARS-CoV-2 that peaked early and was not sustained. The development of this cell culture model allows for more efficient testing of the potential susceptibility of many different animal species for SARS-CoV-2 and emerging variant viruses.
Collapse
|
43
|
Spelios MG, Capanelli JM, Li AW. A novel antibody against the furin cleavage site of SARS-CoV-2 spike protein: Effects on proteolytic cleavage and ACE2 binding. Immunol Lett 2022; 242:1-7. [PMID: 35007661 PMCID: PMC8739817 DOI: 10.1016/j.imlet.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 harbors a unique S1/S2 furin cleavage site within its spike protein, which can be cleaved by furin and other proprotein convertases. Proteolytic activation of SARS-CoV-2 spike protein at the S1/S2 boundary facilitates interaction with host ACE2 receptor for cell entry. To address this, high titer antibody was generated against the SARS-CoV-2-specific furin motif. Using a series of innovative ELISA-based assays, this furin site blocking antibody displayed high sensitivity and specificity for the S1/S2 furin cleavage site, including with a P681R mutation, and demonstrated effective blockage of both enzyme-mediated cleavage and spike-ACE2 interaction. The results suggest that immunological blocking of the furin cleavage site may afford a suitable approach to stem proteolytic activation of SARS-CoV-2 spike protein and curtail viral infectivity.
Collapse
Affiliation(s)
- Michael G Spelios
- EpiGentek Group Inc., 110 Bi County Boulevard, Suite 122, Farmingdale, NY, 11735, United States of America
| | - Jeanne M Capanelli
- EpiGentek Group Inc., 110 Bi County Boulevard, Suite 122, Farmingdale, NY, 11735, United States of America
| | - Adam W Li
- EpiGentek Group Inc., 110 Bi County Boulevard, Suite 122, Farmingdale, NY, 11735, United States of America.
| |
Collapse
|
44
|
Colson P, Delerce J, Burel E, Beye M, Fournier PE, Levasseur A, Lagier JC, Raoult D. Occurrence of a substitution or deletion of SARS-CoV-2 spike amino acid 677 in various lineages in Marseille, France. Virus Genes 2022; 58:53-58. [PMID: 34839413 PMCID: PMC8627157 DOI: 10.1007/s11262-021-01877-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022]
Abstract
Great concerns have been raised about SARS-CoV-2 variants over the past six months. At the end of 2020, an increasing incidence of spike substitutions Q677H/P was described in the USA, which involved six independent lineages. We searched for changes to this amino acid in the sequence database of SARS-CoV-2 genomes obtained at the IHU Méditerranée Infection (Marseille, France) from 3634 patients sampled between February 2020 and April 2021. In seven genomes (0.2%), we found a deletion of five amino acids at spike positions 675-679 (QTQTN) including Q677, and in 76 genomes (2.3%) we found a Q677H substitution. The 83 genomes were classified in ten different Pangolin lineages. Genomes with a spike Q677 deletion were obtained from respiratory samples collected in six cases between 28 March 2020 and 12 October 2020 and in one case on 1 February 2021. The Q677H substitution was found in genomes all obtained from respiratory samples collected from 19 January 2021 and were classified in seven different lineages. Most of these genomes (41 cases) were of UK variant. Two others were classified in the B.1.160 Pangolin lineage (Marseille-4 variant) which was first detected in July 2020 in our institute but was devoid of this substitution until 19 January 2021. Also, eight genomes were classified in the A.27/Marseille-501 lineage which was first detected in our institute in January 2021 and which either harboured or did not harbour the Q677H substitution. Thus, the spike Q677H substitution should be considered as another example of convergent evolution, as it is the case of spike substitutions L18F, E484K, L452R, and N501Y which also independently appeared in various lineages.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jeremy Delerce
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Emilie Burel
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Mamadou Beye
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
| | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005, Marseille, France.
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
45
|
Geerling E, Pinski AN, Stone TE, DiPaolo RJ, Zulu MZ, Maroney KJ, Brien JD, Messaoudi I, Pinto AK. Roles of antiviral sensing and type I interferon signaling in the restriction of SARS-CoV-2 replication. iScience 2022; 25:103553. [PMID: 34877479 PMCID: PMC8639477 DOI: 10.1016/j.isci.2021.103553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019. Few studies have compared replication dynamics and host responses to SARS-CoV-2 in cell lines from different tissues and species. Therefore, we investigated the role of tissue type and antiviral genes during SARS-CoV-2 infection in nonhuman primate (kidney) and human (liver, respiratory epithelial, gastric) cell lines. We report different viral growth kinetics and release among the cell lines despite comparable ACE2 expression. Transcriptomics revealed that absence of STAT1 in nonhuman primate cells appeared to enhance inflammatory responses without effecting infectious viral titer. Deletion of RL-6 in respiratory epithelial cells increased viral replication. Impaired infectious virus release was detected in Huh7 but not Huh7.5 cells, suggesting a role for RIG1. Gastric cells MKN45 exhibited robust antiviral gene expression and supported viral replication. Data here provide insight into molecular pathogenesis of and alternative cell lines for studying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Elizabeth Geerling
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Amanda N. Pinski
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Taylor E. Stone
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Richard J. DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Michael Z. Zulu
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Kevin J. Maroney
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - James D. Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - Amelia K. Pinto
- Department of Molecular Microbiology and Immunology, Saint Louis University, St Louis, MO 63103, USA
| |
Collapse
|
46
|
Liu X, Guo L, Xu T, Lu X, Ma M, Sheng W, Wu Y, Peng H, Cao L, Zheng F, Huang S, Yang Z, Du J, Shi M, Guo D. A comprehensive evolutionary and epidemiological characterization of insertion and deletion mutations in SARS-CoV-2 genomes. Virus Evol 2022; 7:veab104. [PMID: 35039785 PMCID: PMC8754802 DOI: 10.1093/ve/veab104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2, which causes the current pandemic of respiratory illness, is evolving continuously and generating new variants. Nevertheless, most of the sequence analyses thus far focused on nucleotide substitutions despite the fact that insertions and deletions (indels) are equally important in the evolution of SARS-CoV-2. In this study, we analyzed 1,099,664 high-quality sequences of SARS-CoV-2 genomes to re-construct the evolutionary and epidemiological histories of indels. Our analysis revealed 289 circulating indel types (237 deletion and 52 insertion types, each represented by more than ten genomic sequences), among which eighteen were recurrent indel types, each represented by more than 500 genome sequences. Although indels were identified across the entire genome, most of them were identified in nsp6, S, ORF8, and N genes, among which ORF8 indel types had the highest frequencies of frameshift. Geographical and temporal analyses of these variants revealed a few alterations of dominant indel types, each accompanied by geographic expansion to different countries and continents, which resulted in the fixation of several types of indels in the field, including the current variants of concern. Evolutionary and structural analyses revealed that indels involving S N-terminal domain regions were linked to the 3/4 variants of concern, resulting in significantly altered S protein that might contribute to the selective advantage of the corresponding variant. In sum, our study highlights the important role of insertions and deletions in the evolution and spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Xue Liu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liping Guo
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Tiefeng Xu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaoyu Lu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Mingpeng Ma
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Wenyu Sheng
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yinxia Wu
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Hong Peng
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Liu Cao
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fuxiang Zheng
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siyao Huang
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zixiao Yang
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jie Du
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Mang Shi
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Deyin Guo
- Centre for Infection and Immunity Study (CIIS), School of Medicine (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
47
|
Abstract
Compared with other SARS-related coronaviruses (SARSr-CoVs), SARS-CoV-2 possesses a unique furin cleavage site (FCS) in its spike. This has stimulated discussion pertaining to the origin of SARS-CoV-2 because the FCS has been observed to be under strong selective pressure in humans and confers the enhanced ability to infect some cell types and induce cell-cell fusion. Furthermore, scientists have demonstrated interest in studying novel cleavage sites by introducing them into SARSr-CoVs. We review what is known about the SARS-CoV-2 FCS in the context of its pathogenesis, origin, and how future wildlife coronavirus sampling may alter the interpretation of existing data.
Collapse
Affiliation(s)
- Yujia Alina Chan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shing Hei Zhan
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Melnik LI, Guha S, Ghimire J, Smither AR, Beddingfield BJ, Hoffmann AR, Sun L, Ungerleider NA, Baddoo MC, Flemington EK, Gallaher WR, Wimley WC, Garry RF. Ebola virus delta peptide is an enterotoxin. Cell Rep 2022; 38:110172. [PMID: 34986351 DOI: 10.1016/j.celrep.2021.110172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
During the 2013-2016 West African (WA) Ebola virus (EBOV) outbreak, severe gastrointestinal symptoms were common in patients and associated with poor outcome. Delta peptide is a conserved product of post-translational processing of the abundant EBOV soluble glycoprotein (sGP). The murine ligated ileal loop model was used to demonstrate that delta peptide is a potent enterotoxin. Dramatic intestinal fluid accumulation follows injection of biologically relevant amounts of delta peptide into ileal loops, along with gross alteration of villous architecture and loss of goblet cells. Transcriptomic analyses show that delta peptide triggers damage response and cell survival pathways and downregulates expression of transporters and exchangers. Induction of diarrhea by delta peptide occurs via cellular damage and regulation of genes that encode proteins involved in fluid secretion. While distinct differences exist between the ileal loop murine model and EBOV infection in humans, these results suggest that delta peptide may contribute to EBOV-induced gastrointestinal pathology.
Collapse
Affiliation(s)
- Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Allison R Smither
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Brandon J Beddingfield
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew R Hoffmann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Leisheng Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | - William R Gallaher
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Mockingbird Nature Research Group, Pearl River, LA 70452, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Zalgen Labs, Germantown, MD 20876, USA.
| |
Collapse
|
49
|
Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol 2022; 66:15-23. [PMID: 34561887 PMCID: PMC8652499 DOI: 10.1111/1348-0421.12945] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/27/2022]
Abstract
Spike (S) protein cleavage is a crucial step in coronavirus infection. In this review, this process is discussed, with particular focus on the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Compared with influenza virus and paramyxovirus membrane fusion proteins, the cleavage activation mechanism of coronavirus S protein is much more complex. The S protein has two cleavage sites (S1/S2 and S2'), and the cleavage motif for furin protease at the S1/S2 site that results from a unique four-amino acid insertion is one of the distinguishing features of SARS-CoV-2. The viral particle incorporates the S protein, which has already undergone S1/S2 cleavage by furin, and then undergoes further cleavage at the S2' site, mediated by the type II transmembrane serine protease transmembrane protease serine 2 (TMPRSS2), after binding to the receptor angiotensin-converting enzyme 2 (ACE2) to facilitate membrane fusion at the plasma membrane. In addition, SARS-CoV-2 can enter the cell by endocytosis and be proteolytically activated by cathepsin L, although this is not a major mode of SARS-CoV-2 infection. SARS-CoV-2 variants with enhanced infectivity have been emerging throughout the ongoing pandemic, and there is a close relationship between enhanced infectivity and changes in S protein cleavability. All four variants of concern carry the D614G mutation, which indirectly enhances S1/S2 cleavability by furin. The P681R mutation of the delta variant directly increases S1/S2 cleavability, enhancing membrane fusion and SARS-CoV-2 virulence. Changes in S protein cleavability can significantly impact viral infectivity, tissue tropism, and virulence. Understanding these mechanisms is critical to counteracting the coronavirus pandemic.
Collapse
Affiliation(s)
- Makoto Takeda
- Department of Virology 3National Institute of Infectious DiseasesTokyoJapan
| |
Collapse
|
50
|
Gong YN, Lee KM, Shih SR. Evolution and Epidemiology of SARS-CoV-2 Virus. Methods Mol Biol 2022; 2452:3-18. [PMID: 35554897 DOI: 10.1007/978-1-0716-2111-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A novel coronavirus (CoV) that emerged in Wuhan, Hubei province in China, in December 2019, has rapidly spread worldwide. Named as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this virus has been responsible for infecting about 153 million people and causing 3 million deaths by May 2021. There is obvious interest in gaining novel insights into the epidemiologic evolution of this virus; however, inappropriate application and interpretation of genomic and phylogenetic analyses has led to dangerous outcomes and misunderstandings. This chapter focuses on not only introducing this virus, its genomic characteristics and molecular mechanisms but also describing the application and interpretation of phylogenetic tree analyses, in order to provide useful information to better understand the evolution and epidemiology of this virus. In addition, recombinant region and genetic ancestry of SARS-CoV-2 remain unknown. It is urgently required to collect samples and obtain related viral genetic data from animal sources for identifying the intermediate host of SARS-CoV-2 that is responsible for its cross-species transmission.
Collapse
Affiliation(s)
- Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|