1
|
Ly H. Highly pathogenic avian influenza H5N1 virus infection of companion animals. Virulence 2024; 15:2289780. [PMID: 38064414 PMCID: PMC10761027 DOI: 10.1080/21505594.2023.2289780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
2
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
3
|
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis 2023; 55:102638. [PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Virology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Keivan Zandi
- Arrowhead Pharmaceuticals, San Diego, CA, USA; Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Domańska-Blicharz K, Świętoń E, Świątalska A, Monne I, Fusaro A, Tarasiuk K, Wyrostek K, Styś-Fijoł N, Giza A, Pietruk M, Zecchin B, Pastori A, Adaszek Ł, Pomorska-Mól M, Tomczyk G, Terregino C, Winiarczyk S. Outbreak of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in cats, Poland, June to July 2023. Euro Surveill 2023; 28:2300366. [PMID: 37535474 PMCID: PMC10401911 DOI: 10.2807/1560-7917.es.2023.28.31.2300366] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
BackgroundOver a 3-week period in late June/early July 2023, Poland experienced an outbreak caused by highly pathogenic avian influenza (HPAI) A(H5N1) virus in cats.AimThis study aimed to characterise the identified virus and investigate possible sources of infection.MethodsWe performed next generation sequencing and phylogenetic analysis of detected viruses in cats.ResultsWe sampled 46 cats, and 25 tested positive for avian influenza virus. The identified viruses belong to clade 2.3.4.4b, genotype CH (H5N1 A/Eurasian wigeon/Netherlands/3/2022-like). In Poland, this genotype was responsible for several poultry outbreaks between December 2022 and January 2023 and has been identified only sporadically since February 2023. Viruses from cats were very similar to each other, indicating one common source of infection. In addition, the most closely related virus was detected in a dead white stork in early June. Influenza A(H5N1) viruses from cats possessed two amino acid substitutions in the PB2 protein (526R and 627K) which are two molecular markers of virus adaptation in mammals. The virus detected in the white stork presented one of those mutations (627K), which suggests that the virus that had spilled over to cats was already partially adapted to mammalian species.ConclusionThe scale of HPAI H5N1 virus infection in cats in Poland is worrying. One of the possible sources seems to be poultry meat, but to date no such meat has been identified with certainty. Surveillance should be stepped up on poultry, but also on certain species of farmed mammals kept close to infected poultry farms.
Collapse
Affiliation(s)
| | - Edyta Świętoń
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | | | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Aleksandra Giza
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Marta Pietruk
- Department of Omic Analyses, National Veterinary Research Institute, Puławy, Poland
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Ambra Pastori
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Łukasz Adaszek
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, University of Life Sciences, Poznan, Poland
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Stanisław Winiarczyk
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
- Director General, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
5
|
Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Melidou A, Mirinavičiūtė G, Niqueux É, Ståhl K, Staubach C, Terregino C, Baldinelli F, Broglia A, Kohnle L. Avian influenza overview April - June 2023. EFSA J 2023; 21:e08191. [PMID: 37485254 PMCID: PMC10358191 DOI: 10.2903/j.efsa.2023.8191] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Between 29 April and 23 June 2023, highly pathogenic avian influenza (HPAI) A(H5N1) virus (clade 2.3.4.4b) outbreaks were reported in domestic (98) and wild (634) birds across 25 countries in Europe. A cluster of outbreaks in mulard ducks for foie gras production was concentrated in Southwest France, whereas the overall A(H5N1) situation in poultry in Europe and worldwide has eased. In wild birds, black-headed gulls and several new seabird species, mostly gulls and terns (e.g. sandwich terns), were heavily affected, with increased mortality being observed in both adults and juveniles after hatching. Compared to the same period last year, dead seabirds have been increasingly found inland and not only along European coastlines. As regards mammals, A(H5N1) virus was identified in 24 domestic cats and one caracal in Poland between 10 and 30 June 2023. Affected animals showed neurological and respiratory signs, sometimes mortality, and were widely scattered across nine voivodeships in the country. All cases are genetically closely related and identified viruses cluster with viruses detected in poultry (since October 2022, but now only sporadic) and wild birds (December 2022-January 2023) in the past. Uncertainties still exist around their possible source of infection, with no feline-to-feline or feline-to-human transmission reported so far. Since 10 May 2023 and as of 4 July 2023, two A(H5N1) clade 2.3.4.4b virus detections in humans were reported from the United Kingdom, and two A(H9N2) and one A(H5N6) human infections in China. In addition, one person infected with A(H3N8) in China has died. The risk of infection with currently circulating avian H5 influenza viruses of clade 2.3.4.4b in Europe remains low for the general population in the EU/EEA, low to moderate for occupationally or otherwise exposed people to infected birds or mammals (wild or domesticated).
Collapse
|
6
|
Hiono T, Kobayashi D, Kobayashi A, Suzuki T, Satake Y, Harada R, Matsuno K, Sashika M, Ban H, Kobayashi M, Takaya F, Fujita H, Isoda N, Kimura T, Sakoda Y. Virological, pathological, and glycovirological investigations of an Ezo red fox and a tanuki naturally infected with H5N1 high pathogenicity avian influenza viruses in Hokkaido, Japan. Virology 2023; 578:35-44. [PMID: 36462496 DOI: 10.1016/j.virol.2022.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/30/2022]
Abstract
In winter/spring 2021-2022, high pathogenicity avian influenza viruses (HPAIVs) that are genetically closely related to each other were detected worldwide. In a public garden in Sapporo, Hokkaido, Japan, a crow die-off by HPAIV infection occurred from March 29 to May 18, 2022. During the event, H5N1 HPAIVs were isolated from an Ezo red fox (Vulpes vulpes schrencki) and a tanuki (Nyctereutes procyonoides albus) found in the same garden. The fox showed viral meningoencephalitis and moderate virus replication in the upper respiratory tract, whereas the tanuki showed viral conjunctivitis and secondary bacterial infection in the eyes accompanied with visceral larva migrans. Viruses isolated from the fox and the tanuki were genetically closely related to those isolated from crows in the same garden. Various α2-3 sialosides were found in the respiratory tracts of these canid mammals, consistent with HPAIV infections in these animals. This study highlighted the importance of monitoring HPAIV infections in wild carnivore mammals to detect the potential virus spreading in nature.
Collapse
Affiliation(s)
- Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Daiki Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tamami Suzuki
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Yuki Satake
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Rio Harada
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hinako Ban
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Fumihito Takaya
- Botanic Garden, Field Science Center for Northern Biosphere (FSC), Hokkaido University, Sapporo, Hokkaido, 060-0003, Japan
| | - Hiroko Fujita
- Botanic Garden, Field Science Center for Northern Biosphere (FSC), Hokkaido University, Sapporo, Hokkaido, 060-0003, Japan
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido, 060-0818, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan; Hokkaido University, Institute for Vaccine Research and Development (HU-IVReD), Sapporo, Hokkaido, 001-0021, Japan.
| |
Collapse
|
7
|
Yeo JY, Gan SKE. Peering into Avian Influenza A(H5N8) for a Framework towards Pandemic Preparedness. Viruses 2021; 13:2276. [PMID: 34835082 PMCID: PMC8622263 DOI: 10.3390/v13112276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022] Open
Abstract
2014 marked the first emergence of avian influenza A(H5N8) in Jeonbuk Province, South Korea, which then quickly spread worldwide. In the midst of the 2020-2021 H5N8 outbreak, it spread to domestic poultry and wild waterfowl shorebirds, leading to the first human infection in Astrakhan Oblast, Russia. Despite being clinically asymptomatic and without direct human-to-human transmission, the World Health Organization stressed the need for continued risk assessment given the nature of Influenza to reassort and generate novel strains. Given its promiscuity and easy cross to humans, the urgency to understand the mechanisms of possible species jumping to avert disastrous pandemics is increasing. Addressing the epidemiology of H5N8, its mechanisms of species jumping and its implications, mutational and reassortment libraries can potentially be built, allowing them to be tested on various models complemented with deep-sequencing and automation. With knowledge on mutational patterns, cellular pathways, drug resistance mechanisms and effects of host proteins, we can be better prepared against H5N8 and other influenza A viruses.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore;
- APD SKEG Pte Ltd., Singapore 439444, Singapore
| |
Collapse
|
8
|
The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 2021; 78:7237-7256. [PMID: 34677644 PMCID: PMC8532088 DOI: 10.1007/s00018-021-03957-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.
Collapse
|
9
|
Liu WJ, Li J, Zou R, Pan J, Jin T, Li L, Liu P, Zhao Y, Yu X, Wang H, Liu G, Jiang H, Bi Y, Liu L, Yuen KY, Liu Y, Gao GF. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A 2020; 117:23807-23814. [PMID: 32873642 PMCID: PMC7519270 DOI: 10.1073/pnas.2013267117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Avian-origin influenza viruses overcome the bottleneck of the interspecies barrier and infect humans through the evolution of variants toward more efficient replication in mammals. The dynamic adaptation of the genetic substitutions and the correlation with the virulence of avian-origin influenza virus in patients remain largely elusive. Here, based on the one-health approach, we retrieved the original virus-positive samples from patients with H7N9 and their surrounding poultry/environment. The specimens were directly deep sequenced, and the subsequent big data were integrated with the clinical manifestations. Unlike poultry/environment-derived samples with the consistent dominance of avian signature 627E of H7N9 polymerase basic protein 2 (PB2), patient specimens had diverse ratios of mammalian signature 627K, indicating the rapid dynamics of H7N9 adaptation in patients during the infection process. In contrast, both human- and poultry/environment-related viruses had constant dominance of avian signature PB2-701D. The intrahost dynamic adaptation was confirmed by the gradual replacement of 627E by 627K in H7N9 in the longitudinally collected specimens from one patient. These results suggest that host adaptation for better virus replication to new hosts, termed "genetic tuning," actually occurred in H7N9-infected patients in vivo. Notably, our findings also demonstrate the correlation between rapid host adaptation of H7N9 PB2-E627K and the fatal outcome and disease severity in humans. The feature of H7N9 genetic tuning in vivo and its correlation with the disease severity emphasize the importance of testing for the evolution of this avian-origin virus during the course of infection.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Tao Jin
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | | | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Guang Liu
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Hui Jiang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases and the HKU-Shenzhen Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
10
|
Suttie A, Deng YM, Greenhill AR, Dussart P, Horwood PF, Karlsson EA. Inventory of molecular markers affecting biological characteristics of avian influenza A viruses. Virus Genes 2019; 55:739-768. [PMID: 31428925 PMCID: PMC6831541 DOI: 10.1007/s11262-019-01700-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
Collapse
Affiliation(s)
- Annika Suttie
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
- School of Health and Life Sciences, Federation University, Churchill, Australia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yi-Mo Deng
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Andrew R Greenhill
- School of Health and Life Sciences, Federation University, Churchill, Australia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia
| | - Paul F Horwood
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Erik A Karlsson
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, 5 Monivong Blvd, PO Box #983, Phnom Penh, Cambodia.
| |
Collapse
|
11
|
Zhu W, Feng Z, Chen Y, Yang L, Liu J, Li X, Liu S, Zhou L, Wei H, Gao R, Wang D, Shu Y. Mammalian-adaptive mutation NP-Q357K in Eurasian H1N1 Swine Influenza viruses determines the virulence phenotype in mice. Emerg Microbes Infect 2019; 8:989-999. [PMID: 31267843 PMCID: PMC6609330 DOI: 10.1080/22221751.2019.1635873] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It has recently been proposed that the Eurasian avian-like H1N1 (EA H1N1) swine influenza virus (SIV) is one of the most likely zoonotic viruses to cause the next influenza pandemic. Two main genotypes EA H1N1 viruses have been recognized to be infected humans in China. Our study finds that one of the genotypes JS1-like viruses are avirulent in mice. However, the other are HuN-like viruses and are virulent in mice. The molecular mechanism underlying this difference shows that the NP gene determines the virulence of the EA H1N1 viruses in mice. In addition, a single substitution, Q357K, in the NP protein of the EA H1N1 viruses alters the virulence phenotype. This substitution is a typical human signature marker, which is prevalent in human viruses but rarely detected in avian influenza viruses. The NP-Q357K substitution is readily to be occurred when avian influenza viruses circulate in pigs, and may facilitate their infection of humans and allow viruses also carrying NP-357K to circulate in humans. Our study demonstrates that the substitution Q357K in the NP protein plays a key role in the virulence phenotype of EA H1N1 SIVs, and provides important information for evaluating the pandemic risk of field influenza strains.
Collapse
Affiliation(s)
- Wenfei Zhu
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Zhaomin Feng
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Yongkun Chen
- c School of Public Health (Shenzhen) , Sun Yat-sen University , Guangdong , People's Republic of China
| | - Lei Yang
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Jia Liu
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Xiyan Li
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Suli Liu
- c School of Public Health (Shenzhen) , Sun Yat-sen University , Guangdong , People's Republic of China
| | - Lijuan Zhou
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Hejiang Wei
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Rongbao Gao
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Dayan Wang
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China
| | - Yuelong Shu
- a National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases , Chinese Center for Disease Control and Prevention , Beijing , People's Republic of China.,b Key Laboratory for Medical Virology , National Health and Family Planning Commission , Beijing , People's Republic of China.,c School of Public Health (Shenzhen) , Sun Yat-sen University , Guangdong , People's Republic of China
| |
Collapse
|
12
|
Huang SY, Huang CH, Chen CJ, Chen TW, Lin CY, Lin YT, Kuo SM, Huang CG, Lee LA, Chen YH, Chen MF, Kuo RL, Shih SR. Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:10-23. [PMID: 31173947 PMCID: PMC6554369 DOI: 10.1016/j.omtn.2019.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
The role of microRNA (miRNA) in influenza A virus (IAV) host species specificity is not well understood as yet. Here, we show that a host miRNA, miR-1290, is induced through the extracellular signal-regulated kinase (ERK) pathway upon IAV infection and is associated with increased viral titers in human cells and ferret animal models. miR-1290 was observed to target and reduce expression of the host vimentin gene. Vimentin binds with the PB2 subunit of influenza A virus ribonucleoprotein (vRNP), and knockdown of vimentin expression significantly increased vRNP nuclear retention and viral polymerase activity. Interestingly, miR-1290 was not detected in either chicken cells or mouse animal models, and the 3′ UTR of the chicken vimentin gene contains no binding site for miR-1290. These findings point to a host species-specific mechanism by which IAV upregulates miR-1290 to disrupt vimentin expression and retain vRNP in the nucleus, thereby enhancing viral polymerase activity and viral replication.
Collapse
Affiliation(s)
- Sheng-Yu Huang
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Heng Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; The Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 11490, Taiwan; The Institute of Preventive Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Chi-Jene Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Chun-Yuan Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yueh-Te Lin
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Computer Science and Information Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shu-Ming Kuo
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chung-Guei Huang
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Li-Ang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Faculty of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Hsiang Chen
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mei-Feng Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Rei-Lin Kuo
- Graduate Institute of Biomedical Science, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
| |
Collapse
|
13
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
14
|
Ge Y, Yao Q, Chai H, Hua Y, Deng G, Chen H. A 627K variant in the PB2 protein of H9 subtype influenza virus in wild birds. Influenza Other Respir Viruses 2018; 12:728-741. [PMID: 29999583 PMCID: PMC6185888 DOI: 10.1111/irv.12592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/26/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Wild birds are gaining increasing attention as gene-mixing reservoirs for influenza viruses. To investigate the molecular properties of the viruses isolated and epidemiological analysis of H9N2 subtype AIV in wild birds, we studied samples obtained over two years (2014-2015) from wetlands in Anhui province, China. METHODS A total of 4534 samples were collected from migratory waterfowl in Anhui in 2014-2015, and 8 strains of H9 subtype AIV were isolated. RESULTS Phylogenetic analysis showed different degrees of gene segment reassortment in H9 viruses between the Eurasian lineage and the North American lineage. Most importantly, two viruses harbored the E627K mutation in the polymerase PB2 (PB2) protein. This is the first report of the mutation of this virus from low pathogenicity to high pathogenicity in wild birds. CONCLUSIONS The continued surveillance of wild birds, especially migratory birds, is important to provide early warning and control of AIV outbreaks. Our results highlight the high genetic diversity of AIV along the Eurasian-Australian migration flyway and the need for more extensive AIV surveillance in eastern China.
Collapse
Affiliation(s)
- Ye Ge
- Guangdong Ocean University, Zhanjiang, Guangdong Province, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.,College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Qiucheng Yao
- Guangdong Ocean University, Zhanjiang, Guangdong Province, China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Yuping Hua
- College of Wildlife Resources, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
15
|
Young SG, Kitchen A, Kayali G, Carrel M. Unlocking pandemic potential: prevalence and spatial patterns of key substitutions in avian influenza H5N1 in Egyptian isolates. BMC Infect Dis 2018; 18:314. [PMID: 29980172 PMCID: PMC6035396 DOI: 10.1186/s12879-018-3222-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/28/2018] [Indexed: 11/10/2022] Open
Abstract
Background Avian influenza H5N1 has a high human case fatality rate, but is not yet well-adapted to human hosts. Amino acid substitutions currently circulating in avian populations may enhance viral fitness in, and thus viral adaptation to, human hosts. Substitutions which could increase the risk of a human pandemic (through changes to host specificity, virulence, replication ability, transmissibility, or drug susceptibility) are termed key substitutions (KS). Egypt represents the epicenter of human H5N1 infections, with more confirmed cases than any other country. To date, however, there have not been any spatial analyses of KS in Egypt. Methods Using 925 viral samples of H5N1 from Egypt, we aligned protein sequences and scanned for KS. We geocoded isolates using dasymetric mapping, then carried out geospatial hot spot analyses to identify spatial clusters of high KS detection rates. KS prevalence and spatial clusters were evaluated for all detected KS, as well as when stratified by phenotypic consequence. Results A total of 39 distinct KS were detected in the wild, including 17 not previously reported in Egypt. KS were detected in 874 samples (94.5%). Detection rates varied by viral protein with most KS observed in the surface hemagglutinin (HA) and neuraminidase (NA) proteins, as well as the interior non-structural 1 (NS1) protein. The most frequently detected KS were associated with increased viral binding to mammalian cells and virulence. Samples with high overall detection rates of KS exhibited statistically significant spatial clustering in two governorates in the northwestern Nile delta, Alexandria and Beheira. Conclusions KS provide a possible mechanism by which avian influenza H5N1 could evolve into a pandemic candidate. With numerous KS circulating in Egypt, and non-random spatial clustering of KS detection rates, these findings suggest the need for increased surveillance in these areas.
Collapse
Affiliation(s)
- Sean G Young
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Andrew Kitchen
- Department of Anthropology, University of Iowa, Iowa City, IA, USA
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Sciences Center, Houston, TX, USA.,Department of Scientific Research, Human Link, Hazmieh, Lebanon
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Jang JW, Lee CY, Kim IH, Choi JG, Lee YJ, Yuk SS, Lee JH, Song CS, Kim JH, Kwon HJ. Optimized clade 2.3.2.1c H5N1 recombinant-vaccine strains against highly pathogenic avian influenza. J Vet Sci 2018; 18:299-306. [PMID: 28859269 PMCID: PMC5583417 DOI: 10.4142/jvs.2017.18.s1.299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023] Open
Abstract
A/Puerto Rico/8/34 (PR8)-derived recombinant viruses have been used for seasonal flu vaccines; however, they are insufficient for vaccines against some human-fatal H5N1 highly pathogenic avian influenza (HPAI) viruses (HPAIV) due to low productivity. Additionally, the polymerase basic 2 (PB2) protein, an important mammalian-pathogenicity determinant, of PR8 possesses several mammalian-pathogenic mutations. We previously reported two avian PB2 genes (01310 and 0028) related to efficient replication in embryonated chicken eggs (ECEs) and nonpathogenicity in BALB/c mice. In this study, we generated PR8-derived H5N1 recombinant viruses harboring hemagglutinin (attenuated) and neuraminidase genes of a clade 2.3.2.1c H5N1 HPAIV (K10-483), as well as the 01310 or 0028 PB2 genes, and investigated their replication and immunogenicity. Compared with a control virus harboring six internal PR8 genes (rK10-483), the recombinant viruses possessing the 01310 and 0028 PB2 genes showed significantly higher replication efficiency in ECEs and higher antibody titers in chickens. In contrast to rK10-483, none of the viruses replicated in BALB/c mice, and all showed low titers in Madin-Darby canine kidney cells. Additionally, the recombinant viruses did not induce a neutralization antibody but elicited decreased protective immune responses against K10-483 in mice. Thus, the highly replicative and mammalian nonpathogenic recombinant H5N1 strains might be promising vaccine candidates against HPAI in poultry.
Collapse
Affiliation(s)
- Jin-Wook Jang
- Laboratory of Avian Diseases, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| | - Chung-Young Lee
- Laboratory of Avian Diseases, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| | - Il-Hwan Kim
- Center for Infectious Diseases, Korean National Institute of Health, Osong 28159, Korea
| | - Jun-Gu Choi
- Laboratory of Foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Youn-Jeong Lee
- Laboratory of Avian Diseases, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Seong-Su Yuk
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Ji-Ho Lee
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Production Medicine, Seoul National University, Seoul 88026, Korea.,College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 88026, Korea
| |
Collapse
|
17
|
Synergistic effect of PB2 283M and 526R contributes to enhanced virulence of H5N8 influenza viruses in mice. Vet Res 2017; 48:67. [PMID: 29070059 PMCID: PMC5657129 DOI: 10.1186/s13567-017-0471-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N8 virus has caused considerable economic losses to poultry industry and poses a great threat to public health. Our previous study revealed two genetically similar HPAI H5N8 viruses displaying completely different virulence in mice. However, the molecular basis for viral pathogenicity to mammals remains unknown. Herein, we generated a series of reassortants between the two viruses and evaluated their virulence in mice. We demonstrated that 283M in PB2 is a new mammalian virulence marker for H5 viruses and that synergistic effect of amino acid residues 283M and 526R in PB2 is responsible for high virulence of the HPAI H5N8 virus. Analysis of available PB2 sequences showed that PB2 283M is highly conserved among influenza A viruses, while PB2 526R presents in most of human H3N2 and H5N1 isolates. Further study confirmed that the residues 283M and 526R had similar impacts on an HPAI H5N1 virus, suggesting that influenza viruses with both residues may replicate well in mammalian hosts. Together, these results present new insights for synergistic effect of 283M and 526R in PB2 of H5 HPAI virus on virulence to mammalian host, furthering our understanding of the pathogenesis of influenza A virus.
Collapse
|
18
|
Liu Q, Liu Y, Yang J, Huang X, Han K, Zhao D, Bi K, Li Y. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice. Front Microbiol 2016; 7:1737. [PMID: 27867373 PMCID: PMC5096341 DOI: 10.3389/fmicb.2016.01737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 12/02/2022] Open
Abstract
H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06) virus was highly pathogenic for mice, with a 50% mouse lethal dose (MLD50) of 102.83 50% egg infectious dose (EID50), whereas the A/duck/Nanjing/01/1999 (NJ01) virus was low pathogenic for mice, with a MLD50 of >106.81 EID50. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only 12 different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N) were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.
Collapse
Affiliation(s)
- Qingtao Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yuzhuo Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Jing Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Xinmei Huang
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Kaikai Han
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Dongmin Zhao
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Keran Bi
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| | - Yin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, National Center for Engineering Research of Veterinary Bio-products, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural SciencesNanjing, China; Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
19
|
Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition. mBio 2016; 7:e00085-16. [PMID: 27094326 PMCID: PMC4850254 DOI: 10.1128/mbio.00085-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK) as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. Influenza A viruses are responsible for annual epidemics and occasional pandemics with important consequences for human health and the economy. The unfolded protein response is a defense mechanism fired by cells when the demand of protein synthesis and folding is excessive, for instance, during an acute virus infection. In this report, we show that influenza virus downregulates the unfolded protein response mediated by the PERK sensor, while Montelukast, a drug used to treat asthma in humans, specifically stimulated this response and downregulated viral protein synthesis and multiplication. Accordingly, we show that PERK phosphorylation was reduced in virus-infected cells and increased in cells treated with Montelukast. Hence, our studies suggest that modulation of the PERK-mediated unfolded protein response is a target for influenza virus inhibition.
Collapse
|
20
|
The 1918 Influenza Virus PB2 Protein Enhances Virulence through the Disruption of Inflammatory and Wnt-Mediated Signaling in Mice. J Virol 2015; 90:2240-53. [PMID: 26656717 DOI: 10.1128/jvi.02974-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.
Collapse
|
21
|
Park SJ, Kumar M, Kwon HI, Seong RK, Han K, Song JM, Kim CJ, Choi YK, Shin OS. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice. Sci Rep 2015; 5:16512. [PMID: 26576844 PMCID: PMC4649622 DOI: 10.1038/srep16512] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/12/2015] [Indexed: 11/10/2022] Open
Abstract
Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.
Collapse
Affiliation(s)
- Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Mukesh Kumar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Hyeok-il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science, Dankook University, Cheonan, 330-714 Republic of Korea
| | - Jae-min Song
- Department of Global Medical Science, Sungshin Women's University, Seoul, 136-742 Republic of Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764 Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju 361-763, Republic of Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, 152-703, Republic of Korea.,Department of Microbiology, College of Medicine, Korea University, Seoul, 136-701 Republic of Korea
| |
Collapse
|
22
|
Additional Evidence That the Polymerase Subunits Contribute to the Viral Replication and the Virulence of H5N1 Avian Influenza Virus Isolates in Mice. PLoS One 2015; 10:e0124422. [PMID: 25938456 PMCID: PMC4418698 DOI: 10.1371/journal.pone.0124422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/13/2015] [Indexed: 11/23/2022] Open
Abstract
Genetically similar H5N1 viruses circulating in the avian reservoir exhibit different levels of pathogenicity in mice. In this study, we characterized two highly pathogenic H5N1 avian isolates—A/Hunan/316/2005 (HN05), which is highly pathogenic in mice, and A/Hubei/489/2004 (HB04), which is nonpathogenic. In mammalian cells, HN05 replicates more efficiently than HB04, although both viruses have similar growth kinetics in avian cells. We used reverse genetics to generate recombinant H5N1 strains containing genes from HN05 and HB04 and examined their virulence. HN05 genes encoding the polymerase complex determine pathogenicity and viral replication ability both in vitro and in vivo. The PB2 subunit plays an important role in enhancing viral replication, and the PB1 and PA subunits contribute mainly to pathogenicity in mice. These results can be used to elucidate host-range expansion and the molecular basis of the high virulence of H5N1 viruses in mammalian species.
Collapse
|
23
|
Qi W, Tian J, Su S, Huang L, Li H, Liao M. Identification of potential virulence determinants associated H9N2 avian influenza virus PB2 E627K mutation by comparative proteomics. Proteomics 2015; 15:1512-24. [PMID: 25641917 DOI: 10.1002/pmic.201400309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/03/2014] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
Some highly pathogenic H5N1, H7N9, and H10N8 isolated from China carried six internal genes from H9N2 avian influenza viruses (AIV) and the key amino acids at 627 in PB2 of these viruses had mutated to K. To investigate the mechanism of increased pathogenicity for H9N2 AIV PB2 627K, we analyzed the difference in mouse lung proteins expression response to PB2 K627E. By iTRAQ method, we found that the mutated K627E contributed to a set of differentially expressed lung proteins, including five upregulated proteins and nine downregulated proteins at 12 h postinfection; ten upregulated proteins and 25 downregulated proteins at 72 h postinfection. These proteins were chiefly involved within the cytoskeleton and motor proteins, antiviral proteins, regulation of glucocorticoids signal-associated proteins, pro- and anti-inflammatory proteins. Alteration of moesin, FKBP4, Hsp70, ezrin, and pulmonary surfactant protein A (sp-A) may play important roles in increasing virulence and decreasing lungs antiviral response. Further, three upregulated proteins (moesin, ezrin, and sp-A) caused by PB2 K627E were also confirmed in A549 cells. Moreover, overexpression of sp-A in A549 inhibited virus replication and downregulation promoted virus replication. In this study, sp-A as a potential virulence determinant associated H9N2 AIV PB2 E627K mutation was identified using comparative proteomics.
Collapse
Affiliation(s)
- Wenbao Qi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | | | | | | | | | | |
Collapse
|
24
|
Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin. mBio 2014; 5:e02116. [PMID: 25406382 PMCID: PMC4251996 DOI: 10.1128/mbio.02116-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections with these subtypes may be important in controlling future outbreaks.
Collapse
|
25
|
PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host. J Virol 2014; 88:8735-42. [PMID: 24899203 DOI: 10.1128/jvi.00422-14] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. IMPORTANCE Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place.
Collapse
|
26
|
Boonnak K, Vogel L, Feldmann F, Feldmann H, Legge KL, Subbarao K. Lymphopenia associated with highly virulent H5N1 virus infection due to plasmacytoid dendritic cell-mediated apoptosis of T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5906-12. [PMID: 24829418 DOI: 10.4049/jimmunol.1302992] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although lymphopenia is a hallmark of severe infection with highly pathogenic H5N1 and the newly emerged H7N9 influenza viruses in humans, the mechanism(s) by which lethal H5N1 viruses cause lymphopenia in mammalian hosts remains poorly understood. Because influenza-specific T cell responses are initiated in the lung draining lymph nodes (LNs), and lymphocytes subsequently traffic to the lungs or peripheral circulation, we compared the immune responses in the lung draining LNs postinfection with a lethal A/HK/483/97 or nonlethal A/HK/486/97 (H5N1) virus in a mouse model. We found that lethal H5N1, but not nonlethal H5N1, virus infection in mice enhances Fas ligand (FasL) expression on plasmacytoid dendritic cells (pDCs), resulting in apoptosis of influenza-specific CD8(+) T cells via a Fas-FasL-mediated pathway. We also found that pDCs, but not other DC subsets, preferentially accumulate in the lung draining LNs of lethal H5N1 virus-infected mice, and that the induction of FasL expression on pDCs correlates with high levels of IL-12p40 monomer/homodimer in the lung draining LNs. Our data suggest that one of the mechanisms of lymphopenia associated with lethal H5N1 virus infection involves a deleterious role for pDCs.
Collapse
Affiliation(s)
- Kobporn Boonnak
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Leatrice Vogel
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Friederike Feldmann
- Veterinary Branch, Rocky Mountain Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Heinz Feldmann
- Laboratory of Virology, Rocky Mountain Laboratory, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Kevin L Legge
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Kanta Subbarao
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
27
|
Romero-Tejeda A, Capua I. Virus-specific factors associated with zoonotic and pandemic potential. Influenza Other Respir Viruses 2014; 7 Suppl 2:4-14. [PMID: 24034478 DOI: 10.1111/irv.12075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Influenza A is a highly contagious respiratory virus in constant evolution and represents a threat to both veterinary and human public health. IA viruses (IAVs) originate in avian reservoirs but may adapt to humans, either directly or through the spillover to another mammalian species, to the point of becoming pandemic. IAVs must successfully be able to (i) transmit from animal to human, (ii) interact with host cells, and (iii) transmit from human to human. The mechanisms by which viruses evolve, cause zoonotic infections, and adapt to a new host species are indeed complex and appear to be a heterogeneous collection of viral evolutionary events rather than a single phenomenon. Progress has been made in identifying some of the genetic markers mainly associated with virulence and transmission; this achievement has improved our knowledge of how to manage a pandemic event and of how to identify IAVs with pandemic potential. Early evidence of emerging viruses and surveillance of animal IAVs is made possible only by strengthening the collaboration between the public and veterinary health sectors.
Collapse
Affiliation(s)
- Aurora Romero-Tejeda
- Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | |
Collapse
|
28
|
Josset L, Tisoncik-Go J, Katze MG. Moving H5N1 studies into the era of systems biology. Virus Res 2013; 178:151-67. [PMID: 23499671 PMCID: PMC3834220 DOI: 10.1016/j.virusres.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
The dynamics of H5N1 influenza virus pathogenesis are multifaceted and can be seen as an emergent property that cannot be comprehended without looking at the system as a whole. In past years, most of the high-throughput studies on H5N1-host interactions have focused on the host transcriptomic response, at the cellular or the lung tissue level. These studies pointed out that the dynamics and magnitude of the innate immune response and immune cell infiltration is critical to H5N1 pathogenesis. However, viral-host interactions are multidimensional and advances in technologies are creating new possibilities to systematically measure additional levels of 'omic data (e.g. proteomic, metabolomic, and RNA profiling) at each temporal and spatial scale (from the single cell to the organism) of the host response. Natural host genetic variation represents another dimension of the host response that determines pathogenesis. Systems biology models of H5N1 disease aim at understanding and predicting pathogenesis through integration of these different dimensions by using intensive computational modeling. In this review, we describe the importance of 'omic studies for providing a more comprehensive view of infection and mathematical models that are being developed to integrate these data. This review provides a roadmap for what needs to be done in the future and what computational strategies should be used to build a global model of H5N1 pathogenesis. It is time for systems biology of H5N1 pathogenesis to take center stage as the field moves toward a more comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
29
|
Askovich PS, Sanders CJ, Rosenberger CM, Diercks AH, Dash P, Navarro G, Vogel P, Doherty PC, Thomas PG, Aderem A. Differential host response, rather than early viral replication efficiency, correlates with pathogenicity caused by influenza viruses. PLoS One 2013; 8:e74863. [PMID: 24073225 PMCID: PMC3779241 DOI: 10.1371/journal.pone.0074863] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/07/2013] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses exhibit large, strain-dependent differences in pathogenicity in mammalian hosts. Although the characteristics of severe disease, including uncontrolled viral replication, infection of the lower airway, and highly inflammatory cytokine responses have been extensively documented, the specific virulence mechanisms that distinguish highly pathogenic strains remain elusive. In this study, we focused on the early events in influenza infection, measuring the growth rate of three strains of varying pathogenicity in the mouse airway epithelium and simultaneously examining the global host transcriptional response over the first 24 hours. Although all strains replicated equally rapidly over the first viral life-cycle, their growth rates in both lung and tracheal tissue strongly diverged at later times, resulting in nearly 10-fold differences in viral load by 24 hours following infection. We identified separate networks of genes in both the lung and tracheal tissues whose rapid up-regulation at early time points by specific strains correlated with a reduced viral replication rate of those strains. The set of early-induced genes in the lung that led to viral growth restriction is enriched for both NF-κB binding site motifs and members of the TREM1 and IL-17 signaling pathways, suggesting that rapid, NF-κB –mediated activation of these pathways may contribute to control of viral replication. Because influenza infection extending into the lung generally results in severe disease, early activation of these pathways may be one factor distinguishing high- and low-pathogenicity strains.
Collapse
Affiliation(s)
- Peter S. Askovich
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Catherine J. Sanders
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Carrie M. Rosenberger
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Alan H. Diercks
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Pradyot Dash
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Garnet Navarro
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Peter Vogel
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter C. Doherty
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Alan Aderem
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
30
|
Evaluation of phenotypic markers in full genome sequences of avian influenza isolates from California. Comp Immunol Microbiol Infect Dis 2013; 36:521-36. [DOI: 10.1016/j.cimid.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/20/2022]
|
31
|
Tchitchek N, Eisfeld AJ, Tisoncik-Go J, Josset L, Gralinski LE, Bécavin C, Tilton SC, Webb-Robertson BJ, Ferris MT, Totura AL, Li C, Neumann G, Metz TO, Smith RD, Waters KM, Baric R, Kawaoka Y, Katze MG. Specific mutations in H5N1 mainly impact the magnitude and velocity of the host response in mice. BMC SYSTEMS BIOLOGY 2013; 7:69. [PMID: 23895213 PMCID: PMC3750405 DOI: 10.1186/1752-0509-7-69] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/27/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Influenza infection causes respiratory disease that can lead to death. The complex interplay between virus-encoded and host-specific pathogenicity regulators - and the relative contributions of each toward viral pathogenicity - is not well-understood. RESULTS By analyzing a collection of lung samples from mice infected by A/Vietnam/1203/2004 (H5N1; VN1203), we characterized a signature of transcripts and proteins associated with the kinetics of the host response. Using a new geometrical representation method and two criteria, we show that inoculation concentrations and four specific mutations in VN1203 mainly impact the magnitude and velocity of the host response kinetics, rather than specific sets of up- and down- regulated genes. We observed analogous kinetic effects using lung samples from mice infected with A/California/04/2009 (H1N1), and we show that these effects correlate with morbidity and viral titer. CONCLUSIONS We have demonstrated the importance of the kinetics of the host response to H5N1 pathogenesis and its relationship with clinical disease severity and virus replication. These kinetic properties imply that time-matched comparisons of 'omics profiles to viral infections give limited views to differentiate host-responses. Moreover, these results demonstrate that a fast activation of the host-response at the earliest time points post-infection is critical for protective mechanisms against fast replicating viruses.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Amie J Eisfeld
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Laurence Josset
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
| | - Lisa E Gralinski
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christophe Bécavin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 75015 Paris, France
| | - Susan C Tilton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Martin T Ferris
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison L Totura
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chengjun Li
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriele Neumann
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ralph Baric
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yoshihiro Kawaoka
- School of Veterinary Medicine, Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle, WA 98195 USA
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Abstract
The substitution of glutamic acid (E) for lysine (K) at position 627 of the PB2 protein of avian H5N1 viruses has been identified as a virulence and host range determinant for infection of mammals. Here, we report that the E-to-K host-adaptive mutation in the PB2 gene appeared from day 4 and 5 along the respiratory tracts of mice and was complete by day 6 postinoculation. This mutation correlated with efficient replication of the virus in mice.
Collapse
|
33
|
Mok CKP, Lee HHY, Chan MCW, Sia SF, Lestra M, Nicholls JM, Zhu H, Guan Y, Peiris JMS. Pathogenicity of the novel A/H7N9 influenza virus in mice. mBio 2013; 4:e00362-13. [PMID: 23820393 PMCID: PMC3705449 DOI: 10.1128/mbio.00362-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six "internal gene segments" were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 10(3), 10(4), and 10(5) PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. IMPORTANCE An H7N9 virus isolate causing fatal human disease was found to be more pathogenic for mice than other avian H9N2 or H7N9 viruses but less pathogenic than the highly pathogenic avian influenza virus (HPAI) H5N1. Similarly, the ability of Sh2/H7N9 to elicit proinflammatory cytokines in the lung and serum of mice was intermediate to ck/H9N2 and dk/H7N9 on the one hand and HPAI H5N1 on the other. These findings accord with the observed epidemiology in humans, in whom, as with seasonal influenza viruses, H7N9 viruses cause severe disease predominantly in older persons while HPAI H5N1 can cause severe respiratory disease and death in children and young adults.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- HKU-Pasteur Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Horace Hok Yeung Lee
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- HKU-Pasteur Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Chi Wai Chan
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Sin Fun Sia
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Maxime Lestra
- HKU-Pasteur Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - John Malcolm Nicholls
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huachen Zhu
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yi Guan
- Centre of Influenza Research, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | |
Collapse
|
34
|
Rimmelzwaan GF, Katz JM. Immune responses to infection with H5N1 influenza virus. Virus Res 2013; 178:44-52. [PMID: 23735534 DOI: 10.1016/j.virusres.2013.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 04/03/2013] [Accepted: 05/20/2013] [Indexed: 01/22/2023]
Abstract
Influenza A H5N1 viruses remain a substantial threat to global public health. In particular, the expanding genetic diversity of H5N1 viruses and the associated risk for human adaptation underscore the importance of better understanding host immune responses that may protect against disease or infection. Although much emphasis has been placed on investigating early virus-host interactions and the induction of innate immune responses, little is known of the consequent adaptive immune response to H5N1 virus infection. In this review, we describe the H5N1 virus-specific and cross-reactive antibody and T cell responses in humans and animal models. Data from limited studies suggest that although initially robust, there is substantial waning of the serum antibody responses in survivors of H5N1 virus infection. Characterization of monoclonal antibodies generated from memory B cells of survivors of H5N1 virus infection has provided an understanding of the fine specificity of the human antibody response to H5N1 virus infection and identified strategies for immunotherapy. Human T cell responses induced by infection with seasonal influenza viruses are directed to relatively conserved internal proteins and cross-react with the H5N1 subtype. A role for T cell-based heterosubtypic immunity against H5N1 viruses is suggested in animal studies. Further studies on adaptive immune responses to H5N1 virus infection in both humans and animals are needed to inform the design of optimal immunological treatment and prevention modalities.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Viroscience Laboratory, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
35
|
Gabriel G, Czudai-Matwich V, Klenk HD. Adaptive mutations in the H5N1 polymerase complex. Virus Res 2013; 178:53-62. [PMID: 23732876 DOI: 10.1016/j.virusres.2013.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
Adaptation of the viral polymerase to host factors plays an important role in interspecies transmission of H5N1 viruses. Several adaptive mutations have been identified that, in general, determine not only host range, but also pathogenicity and transmissibility of the virus. The available evidence indicates that most of these mutations are found in the PB2 subunit of the polymerase. Particularly prominent mutations are located in the C-terminal domain of PB2 involving the amino acid exchanges E627K and D701N. Both mutations, that are also responsible for the adaptation of other avian viruses to mammalian hosts, have been described in human H5N1 isolates. In animal models, it could be demonstrated that they enhance pathogenicity in mice and induce contact transmission in guinea pigs. Mutation E627K has also been identified as a determinant of air-borne H5N1 transmission in ferrets. We are only beginning to understand the underlying mechanisms at the molecular level. Thus, mutation D701N promotes importin-α mediated nuclear transport in mammalian cells. Mutation E627K also enhances the replication rate in an importin-α dependent fashion in mammalian cells, yet without affecting nuclear entry of PB2. Numerous other adaptive mutations, some of which compensate for the lack of PB2 E627K, have been observed in PB2 as well as in the polymerase subunit PB1, the nucleoprotein NP, and the nuclear export protein NEP (NS2).
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
36
|
Belser JA, Tumpey TM. H5N1 pathogenesis studies in mammalian models. Virus Res 2013; 178:168-85. [PMID: 23458998 DOI: 10.1016/j.virusres.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
H5N1 influenza viruses are capable of causing severe disease and death in humans, and represent a potential pandemic subtype should they acquire a transmissible phenotype. Due to the expanding host and geographic range of this virus subtype, there is an urgent need to better understand the contribution of both virus and host responses following H5N1 virus infection to prevent and control human disease. The use of mammalian models, notably the mouse and ferret, has enabled the detailed study of both complex virus-host interactions as well as the contribution of individual viral proteins and point mutations which influence virulence. In this review, we describe the behavior of H5N1 viruses which exhibit high and low virulence in numerous mammalian species, and highlight the contribution of inoculation route to virus pathogenicity. The involvement of host responses as studied in both inbred and outbred mammalian models is discussed. The roles of individual viral gene products and molecular determinants which modulate the severity of H5N1 disease in vivo are presented. This research contributes not only to our understanding of influenza virus pathogenesis, but also identifies novel preventative and therapeutic targets to mitigate the disease burden caused by avian influenza viruses.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | | |
Collapse
|
37
|
Moncorgé O, Long JS, Cauldwell AV, Zhou H, Lycett SJ, Barclay WS. Investigation of influenza virus polymerase activity in pig cells. J Virol 2013; 87:384-94. [PMID: 23077313 PMCID: PMC3536367 DOI: 10.1128/jvi.01633-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/12/2012] [Indexed: 02/04/2023] Open
Abstract
Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a "mixing vessel" for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs.
Collapse
Affiliation(s)
- Olivier Moncorgé
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Jason S. Long
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Anna V. Cauldwell
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Hongbo Zhou
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| | - Samantha J. Lycett
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Wendy S. Barclay
- Section of Virology, Department of Medicine, Imperial College London, St. Mary's Campus, London, United Kingdom
| |
Collapse
|
38
|
The PA-gene-mediated lethal dissemination and excessive innate immune response contribute to the high virulence of H5N1 avian influenza virus in mice. J Virol 2012; 87:2660-72. [PMID: 23255810 DOI: 10.1128/jvi.02891-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Highly pathogenic H5N1 influenza A virus remains a substantial threat to public health. To understand the molecular basis and host mechanism for the high virulence of H5N1 viruses in mammals, we compared two H5N1 isolates which have similar genetic backgrounds but greatly differ in their virulence in mice. A/Chicken/Jiangsu/k0402/2010 (CK10) is highly pathogenic, whereas A/Goose/Jiangsu/k0403/2010 (GS10) is nonpathogenic. We first showed that CK10 elicited a more potent innate immune response than did GS10 in mouse lungs by increasing the number and expression levels of activated genes. We then generated a series of reassortants between the two viruses and evaluated their virulence in mice. Inclusion of the CK10 PA gene in the GS10 background resulted in a dramatic increase in virulence. Conversely, expression of the GS10 PA gene in the CK10 background significantly attenuated the virulence. These results demonstrated that the PA gene mainly determines the pathogenicity discrepancy between CK10 and GS10 in mice. We further determined that arginine (R) at position 353 of the PA gene contributes to the high virulence of CK10 in mice. The reciprocal substitution at position 353 in PA or the exchange of the entire PA gene largely caused the transfer of viral phenotypes, including virus replication, polymerase activity, and manipulation of the innate response, between CK10 and GS10. We therefore defined a novel molecular marker associated with the high virulence of H5N1 influenza viruses, providing further insights into the pathogenesis of H5N1 viruses in mammals.
Collapse
|
39
|
Korth MJ, Tchitchek N, Benecke AG, Katze MG. Systems approaches to influenza-virus host interactions and the pathogenesis of highly virulent and pandemic viruses. Semin Immunol 2012; 25:228-39. [PMID: 23218769 PMCID: PMC3596458 DOI: 10.1016/j.smim.2012.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/08/2012] [Indexed: 12/14/2022]
Abstract
Influenza virus research has recently undergone a shift from a virus-centric perspective to one that embraces the full spectrum of virus-host interactions and cellular signaling events that determine disease outcome. This change has been brought about by the increasing use and expanding scope of high-throughput molecular profiling and computational biology, which together fuel discovery in systems biology. In this review, we show how these approaches have revealed an uncontrolled inflammatory response as a contributor to the extreme virulence of the 1918 pandemic and avian H5N1 viruses, and how this response differs from that induced by the 2009 H1N1 viruses responsible for the most recent influenza pandemic. We also discuss how new animal models, such as the Collaborative Cross mouse systems genetics platform, are key to the necessary systematic investigation of the impact of host genetics on infection outcome, how genome-wide RNAi screens have identified hundreds of cellular factors involved in viral replication, and how systems biology approaches are making possible the rational design of new drugs and vaccines against an ever-evolving respiratory virus.
Collapse
Affiliation(s)
- Marcus J Korth
- Department of Microbiology, School of Medicine, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195-8070, USA
| | | | | | | |
Collapse
|
40
|
Josset L, Belser JA, Pantin-Jackwood MJ, Chang JH, Chang ST, Belisle SE, Tumpey TM, Katze MG. Implication of inflammatory macrophages, nuclear receptors, and interferon regulatory factors in increased virulence of pandemic 2009 H1N1 influenza A virus after host adaptation. J Virol 2012; 86:7192-206. [PMID: 22532695 PMCID: PMC3416346 DOI: 10.1128/jvi.00563-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/13/2012] [Indexed: 12/13/2022] Open
Abstract
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for the modeling of human lung pathology in this species. Genetic determinants of mouse-adapted 2009 H1N1 viral pathogenicity have been identified, but the molecular and signaling characteristics of the host response following infection with this adapted virus have not been described. Here we compared the gene expression response following infection of mice with A/CA/04/2009 (CA/04) or the virulent mouse-adapted strain (MA-CA/04). Microarray analysis revealed that increased pathogenicity of MA-CA/04 was associated with the following: (i) an early and sustained inflammatory and interferon response that could be driven in part by interferon regulatory factors (IRFs) and increased NF-κB activation, as well as inhibition of the negative regulator TRIM24, (ii) early and persistent infiltration of immune cells, including inflammatory macrophages, and (iii) the absence of activation of lipid metabolism later in infection, which may be mediated by inhibition of nuclear receptors, including PPARG and HNF1A and -4A, with proinflammatory consequences. Further investigation of these signatures in the host response to other H1N1 viruses of various pathogenicities confirmed their general relevance for virulence of influenza virus and suggested that lung response to MA-CA/04 virus was similar to that following infection with lethal H1N1 r1918 influenza virus. This study links differential activation of IRFs, nuclear receptors, and macrophage infiltration with influenza virulence in vivo.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Arafa AS, Hagag N, Erfan A, Mady W, El-Husseiny M, Adel A, Nasef S. Complete genome characterization of avian influenza virus subtype H9N2 from a commercial quail flock in Egypt. Virus Genes 2012; 45:283-94. [DOI: 10.1007/s11262-012-0775-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
|
42
|
A single E627K mutation in the PB2 protein of H9N2 avian influenza virus increases virulence by inducing higher glucocorticoids (GCs) level. PLoS One 2012; 7:e38233. [PMID: 22719870 PMCID: PMC3374829 DOI: 10.1371/journal.pone.0038233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/01/2012] [Indexed: 12/13/2022] Open
Abstract
While repeated infection of humans and enhanced replication and transmission in mice has attracted more attention to it, the pathogenesis of H9N2 virus was less known in mice. PB2 residue 627 as the virulent determinant of H5N1 virus is associated with systemic infection and impaired TCR activation, but the impact of this position in H9N2 virus on the host immune response has not been evaluated. In this study, we quantified the cellular immune response to infection in the mouse lung and demonstrate that VK627 and rTsE627K infection caused a significant reduction in the numbers of T cells and inflammatory cells (Macrophage, Neutrophils, Dendritic cells) compared to mice infected with rVK627E and TsE627. Further, we discovered (i) a high level of thymocyte apoptosis resulted in impaired T cell development, which led to the reduced amount of mature T cells into lung, and (ii) the reduced inflammatory cells entering into lung was attributed to the diminished levels in pro-inflammatory cytokines and chemokines. Thereafter, we recognized that higher GCs level in plasma induced by VK627 and rTsE627K infection was associated with the increased apoptosis in thymus and the reduced pro-inflammatory cytokines and chemokines levels in lung. These data demonstrated that VK627 and rTsE627K infection contributing to higher GCs level would decrease the magnitude of antiviral response in lung, which may be offered as a novel mechanism of enhanced pathogenicity for H9N2 AIV.
Collapse
|
43
|
Hu J, Zhao K, Liu X, Wang X, Chen Z, Liu X. Two highly pathogenic avian influenza H5N1 viruses of clade 2.3.2.1 with similar genetic background but with different pathogenicity in mice and ducks. Transbound Emerg Dis 2012; 60:127-39. [PMID: 22498319 DOI: 10.1111/j.1865-1682.2012.01325.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of genetic markers for virulence of avian influenza viruses (AIVs) in different hosts have been identified. However, we isolated two H5N1 AIVs, A/Chicken/Jiangsu/k0402/2010(CK/10) and A/Goose/Jiangsu/k0403/2010(GS/10) with similar genetic background, but most well-defined molecular markers for virulence in mammals and avian species were not found in both viral genomes. In addition, pathogenicity of this pair of viruses in different hosts remains unclear. Therefore, we evaluated their pathogenicity in chickens, mice, ducks and guinea pigs. Infection of CK/10 and GS/10 in chickens caused 100% mortality within 24 h. Mouse experiment showed that CK/10 was highly pathogenic (MLD50 = 0.33 log10 EID50), whereas GS/10 was avirulent (MLD50 > 6.32 log10 EID50). Interestingly, the virulence of CK/10 in ducks (DLD50 = 3.83 log10 EID50) was higher than that of GS/10 (DLD50 = 7.7 log10 EID50), which correlated with viral pathogenicity in mice. Although CK/10 and GS/10 showed distinct pathogenicity in mice, they both were lethal to guinea pigs, with CK/10 replicating to higher titres in airways than GS/10. Collectively, these findings suggest that AIVs with similar genetic backgrounds may exhibit distinct pathogenicity in specific hosts and that some unknown molecular markers for virulence may exist and need to be identified.
Collapse
Affiliation(s)
- J Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | | | | | |
Collapse
|
44
|
Integrated clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J Virol 2012; 86:6055-66. [PMID: 22491448 DOI: 10.1128/jvi.00365-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral pneumonia has been frequently reported during early stages of influenza virus pandemics and in many human cases of highly pathogenic avian influenza (HPAI) H5N1 virus infection. To better understand the pathogenesis of this disease, we produced nonlethal viral pneumonia in rhesus macaques by using an HPAI H5N1 virus (A/Anhui/2/2005; referred to as Anhui/2). Infected macaques were monitored for 14 days, and tissue samples were collected at 6 time points for virologic, histopathologic, and transcriptomic analyses. Anhui/2 efficiently replicated in the lung from 12 h to 3 days postinfection (p.i.) and caused temporal but severe pneumonia that began to resolve by day 14. Lung transcriptional changes were first observed at 6 h, and increased expression of vascular permeability regulators and neutrophil chemoattractants correlated with increased serum leakage and neutrophil infiltration in situ. Additional inflammatory, antiviral, and apoptotic genes were upregulated from 12 h, concurrent with viral antigen detection and increasing immune cell populations. A shift toward upregulation of acquired immunity was apparent after day 6. Expression levels of established immune cell molecular markers revealed remarkable similarity with pathological findings, indicating early and robust neutrophil infiltration, a slight delay in macrophage accumulation, and abundant late populations of T lymphocytes. We also characterized the putative mechanisms regulating a unique, pneumonia-associated biphasic fever pattern. Thus, this study is the first to use a comprehensive and integrative approach to delineate specific molecular mechanisms regulating influenza virus-induced pneumonia in nonhuman primates, an important first step toward better management of human influenza virus disease.
Collapse
|
45
|
Zhu W, Zhu Y, Qin K, Yu Z, Gao R, Yu H, Zhou J, Shu Y. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice. PLoS One 2012; 7:e33383. [PMID: 22438920 PMCID: PMC3305307 DOI: 10.1371/journal.pone.0033383] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1), A/Sichuan/1/2009 (SC), were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT) or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Cell Line
- Dogs
- Female
- Genes, Viral
- History, 21st Century
- Humans
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza, Human/epidemiology
- Influenza, Human/history
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Site-Directed
- Mutation
- Orthomyxoviridae Infections/virology
- Pandemics/history
- Polymorphism, Single Nucleotide
- RNA-Dependent RNA Polymerase/genetics
- RNA-Dependent RNA Polymerase/metabolism
- Recombination, Genetic
- Swine
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virulence/genetics
- Virulence/physiology
- Virus Replication
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianfang Zhou
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
- * E-mail: (JFZ); (YLS)
| | - Yuelong Shu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, People's Republic of China
- * E-mail: (JFZ); (YLS)
| |
Collapse
|
46
|
Fan K, Jia Y, Wang S, Li H, Wu D, Wang G, Chen JL. Role of Itk signalling in the interaction between influenza A virus and T-cells. J Gen Virol 2012; 93:987-997. [PMID: 22302878 DOI: 10.1099/vir.0.041228-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although the T-cell-mediated immune response to influenza virus has been studied extensively, little information is available on the direct interaction between influenza virus and T-cells that pertains to severe diseases in humans and animals. To address these issues, we utilized the BALB/c mouse model combined with primary T-cells infected with A/WSN/33 influenza virus to investigate whether influenza virus has an affinity for T-cells in vivo. We observed that small proportions of CD4(+) T-cells and CD8(+) T-cells in spleen and thymus expressed viral proteins in infected mice. A significant proportion of mouse primary T-cells displayed expression of α-2,6 sialic acid-linked influenza virus receptor and were infected directly by influenza A virus. These experiments reveal that there exists a population of T-cells that is susceptible to influenza A virus infection. Furthermore, we employed human Jurkat T-cells to investigate the virus-T-cell interaction, with particular emphasis on understanding whether Itk (interleukin-2-inducible T-cell kinase), a Tec family tyrosine kinase that regulates T-cell activation, is involved in virus infection of T-cells. Interestingly, influenza virus infection resulted in an increased recruitment of Itk to the plasma membrane and an increased level of phospholipase C-γ1 (PLC-γ1) phosphorylation, suggesting that Itk/PLC-γ1 signalling is activated by the virus infection. We demonstrated that depletion of Itk inhibited the replication of influenza A virus, whereas overexpression of Itk increased virus replication. These results indicate that Itk is required for efficient replication of influenza virus in infected T-cells.
Collapse
Affiliation(s)
- Kewei Fan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Yinping Jia
- College of Animal Science and Technology, Southwest University, Chongqing, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Song Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Hua Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Defeng Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Guoshun Wang
- Gene Therapy Program, Department of Medicine and Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| |
Collapse
|
47
|
Darwish I, Mubareka S, Liles WC. Immunomodulatory therapy for severe influenza. Expert Rev Anti Infect Ther 2012; 9:807-22. [PMID: 21810053 DOI: 10.1586/eri.11.56] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza A virus is a significant cause of morbidity and mortality worldwide. Severe influenza is recognized as a clinical syndrome, characterized by hyperinduction of proinflammatory cytokine production, otherwise known as hypercytokinemia or a 'cytokine storm'. Research focused on therapeutics to modulate influenza virus-induced inflammation is currently underway. In this review, we discuss the limitations of current antiviral drug treatment strategies, describe the influenza viral and host pathogenicity determinants, and present the evidence supporting the use of immunomodulatory therapy to target the host inflammatory response as a means to improve clinical outcome in severe influenza. We then review the experimental data on investigational immunomodulatory agents targeting the host inflammatory response in severe influenza, including anti-TNF therapy, statins, glucocorticoids, cyclooxygenase-2 inhibitors, macrolides, peroxisome proliferator-activated receptor agonists, AMP-activated protein kinase agonists and high mobility group box 1 antagonists. We then conclude with a rationale for the use of mesenchymal stromal (stem) cells and angiopoietin-1 therapy against deleterious influenza-induced host responses that mediate end-organ injury and dysfunction.
Collapse
Affiliation(s)
- Ilyse Darwish
- Faculty of Medicine, Institute of Medical Science, McLaughlin-Rotman Centre for Global Health, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
48
|
The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J Virol 2011; 86:2706-14. [PMID: 22205751 DOI: 10.1128/jvi.05546-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates.
Collapse
|
49
|
Chang ST, Tchitchek N, Ghosh D, Benecke A, Katze MG. A chemokine gene expression signature derived from meta-analysis predicts the pathogenicity of viral respiratory infections. BMC SYSTEMS BIOLOGY 2011; 5:202. [PMID: 22189154 PMCID: PMC3297540 DOI: 10.1186/1752-0509-5-202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND During respiratory viral infections host injury occurs due in part to inappropriate host responses. In this study we sought to uncover the host transcriptional responses underlying differences between high- and low-pathogenic infections. RESULTS From a compendium of 12 studies that included responses to influenza A subtype H5N1, reconstructed 1918 influenza A virus, and SARS coronavirus, we used meta-analysis to derive multiple gene expression signatures. We compared these signatures by their capacity to segregate biological conditions by pathogenicity and predict pathogenicity in a test data set. The highest-performing signature was expressed as a continuum in low-, medium-, and high-pathogenicity samples, suggesting a direct, analog relationship between expression and pathogenicity. This signature comprised 57 genes including a subnetwork of chemokines, implicating dysregulated cell recruitment in injury. CONCLUSIONS Highly pathogenic viruses elicit expression of many of the same key genes as lower pathogenic viruses but to a higher degree. This increased degree of expression may result in the uncontrolled co-localization of inflammatory cell types and lead to irreversible host damage.
Collapse
Affiliation(s)
- Stewart T Chang
- Department of Microbiology, University of Washington, Seattle WA, USA
| | | | - Debashis Ghosh
- Department of Statistics, Pennsylvania State University, University Park PA, USA
| | - Arndt Benecke
- Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France
| | - Michael G Katze
- Department of Microbiology, University of Washington, Seattle WA, USA
- Washington National Primate Research Center, Seattle WA, USA
| |
Collapse
|
50
|
Benítez-Páez A, Cárdenas-Brito S, Gutiérrez AJ. A practical guide for the computational selection of residues to be experimentally characterized in protein families. Brief Bioinform 2011; 13:329-36. [PMID: 21930656 DOI: 10.1093/bib/bbr052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, numerous biocomputational tools have been designed to extract functional and evolutionary information from multiple sequence alignments (MSAs) of proteins and genes. Most biologists working actively on the characterization of proteins from a single or family perspective use the MSA analysis to retrieve valuable information about amino acid conservation and the functional role of residues in query protein(s). In MSAs, adjustment of alignment parameters is a key point to improve the quality of MSA output. However, this issue is frequently underestimated and/or misunderstood by scientists and there is no in-depth knowledge available in this field. This brief review focuses on biocomputational approaches complementary to MSA to help distinguish functional residues in protein families. These additional analyses involve issues ranging from phylogenetic to statistical, which address the detection of amino acids pivotal for protein function at any level. In recent years, a large number of tools has been designed for this very purpose. Using some of these relevant, useful tools, we have designed a practical pipeline to perform in silico studies with a view to improving the characterization of family proteins and their functional residues. This review-guide aims to present biologists a set of specially designed tools to study proteins. These tools are user-friendly as they use web servers or easy-to-handle applications. Such criteria are essential for this review as most of the biologists (experimentalists) working in this field are unfamiliar with these biocomputational analysis approaches.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Bioinformatic Analysis Group - GABi, Centro de Investigación y Desarrollo en Biotecnología, Bogotá DC, Colombia.
| | | | | |
Collapse
|