1
|
Du P, Li N, Tang S, Zhou Z, Liu Z, Wang T, Li J, Zeng S, Chen J. Development and evaluation of vaccination strategies for addressing the continuous evolution SARS-CoV-2 based on recombinant trimeric protein technology: Potential for cross-neutralizing activity and broad coronavirus response. Heliyon 2024; 10:e34492. [PMID: 39148990 PMCID: PMC11324815 DOI: 10.1016/j.heliyon.2024.e34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Given the significant decline in vaccine efficacy against Omicron, the development of novel vaccines with specific or broad-spectrum effectiveness is paramount. In this study, we formulated four monovalent vaccines based on recombinant spike trimer proteins, along with three bivalent vaccines, and five monovalent vaccines based on recombinant spike proteins. We evaluated the efficacy of different vaccination regimens in eliciting neutralizing antibodies in mice through pseudovirus neutralization assays. Following two doses of primary immunization with D614G, mice received subsequent immunizations with Omicron (BA.1, BA.2, BA.4/5) boosters individually, which led to the generation of broader and more potent cross-neutralizing activity compared to D614G boosters. Notably, the BA.4/5 booster exhibited superior efficacy. Following two doses of primary immunization with Omicron (BA.1, BA.2, BA.4/5), mice were subsequently immunized with one dose of D614G booster which resulted in broader neutralizing activity compared to one dose of Omicron (BA.1, BA.2, or BA.4/5). In unvaccinated mice, full-course immunization with different bivalent vaccines induced broad neutralizing activity against Omicron and pre-Omicron variants, with D614G&BA.4/5 demonstrating superior efficacy. However, compared to other variants, the neutralizing activity against XBB.1.5/1.9.1 is notably reduced. This observation emphasizes the necessity of timely updates to the vaccine antigen composition. Based on these findings and existing studies, we propose a vaccination strategy aimed at preserving the epitope repertoire to its maximum potential: (1) Individuals previously vaccinated or infected with pre-Omicron variants should inoculate a monovalent vaccine containing Omicron components; (2) Individuals who have only been vaccinated or infected with Omicron should be inoculated a monovalent vaccine containing pre-Omicron variants components; (3) Individuals without SARS-CoV-2 infection and vaccination should inoculate a bivalent vaccine comprising both pre-Omicron and Omicron components for primary immunization. Additionally, through cross-inoculation of SARS-CoV-2 D614G spike trimer protein and SARS-CoV-1 spike protein in mice, we preliminarily demonstrated the possibility of cross-reaction between different coronavirus vaccines to produce resistance to the pan-coronavirus.
Collapse
Affiliation(s)
- Peng Du
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ning Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shengjun Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhihai Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Taorui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Jiahui Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Simiao Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| |
Collapse
|
2
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Petrovskis I, Skrastina D, Jansons J, Dislers A, Bogans J, Spunde K, Neprjakhina A, Zakova J, Zajakina A, Sominskaya I. Toward a SARS-CoV-2 VLP Vaccine: HBc/G as a Carrier for SARS-CoV-2 Spike RBM and Nucleocapsid Protein-Derived Peptides. Vaccines (Basel) 2024; 12:267. [PMID: 38543900 PMCID: PMC10974900 DOI: 10.3390/vaccines12030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 11/12/2024] Open
Abstract
Virus-like particles (VLPs) offer an attractive possibility for the development of vaccines. Recombinant core antigen (HBc) of Hepatitis B virus (HBV) was expressed in different systems, and the E. coli expression system was shown to be effective for the production of HBc VLPs. Here, we used HBc of the HBV genotype G (HBc/G) as a technologically promising VLP carrier for the presentation of spike RBM and nucleocapsid protein-derived peptides of the SARS-CoV-2 Delta variant for subsequent immunological evaluations of obtained fusion proteins. The major immunodominant region (MIR) of the HBc/G protein was modified through the insertion of a receptor binding motif (RBM) from the S protein or B-cell epitope-containing peptide from the N protein. The C-terminus of the two truncated HBc/G proteins was used for the insertion of a group of five cytotoxic T lymphocyte (CTL) epitopes from the N protein. After expression in E. coli, the MIR-derived proteins were found to be insoluble and were recovered through step-wise solubilization with urea, followed by refolding. Despite the lack of correct VLPs, the chimeric proteins induced high levels of antibodies in BALB/c mice. These antibodies specifically recognized either eukaryotically expressed hRBD or bacterially expressed N protein (2-220) of SARS-CoV-2. CTL-epitope-containing proteins were purified as VLPs. The production of cytokines was analyzed through flow cytometry after stimulation of T-cells with target CTL peptides. Only a protein with a deleted polyarginine (PA) domain was able to induce the specific activation of T-cells. At the same time, the T-cell response against the carrier HBc/G protein was detected for both proteins. The neutralization of SARS-CoV-2 pseudotyped murine retrovirus with anti-HBc/G-RBM sera was found to be low.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Irina Sominskaya
- Latvian Biomedical Research and Study Centre, Ratsupites 1, LV-1067 Riga, Latvia; (I.P.); (D.S.); (J.J.); (A.D.); (J.B.); (K.S.); (A.N.); (J.Z.); (A.Z.)
| |
Collapse
|
4
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
5
|
Usai C, Mateu L, Brander C, Vergara-Alert J, Segalés J. Animal models to study the neurological manifestations of the post-COVID-19 condition. Lab Anim (NY) 2023; 52:202-210. [PMID: 37620562 PMCID: PMC10462483 DOI: 10.1038/s41684-023-01231-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023]
Abstract
More than 40% of individuals infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have experienced persistent or relapsing multi-systemic symptoms months after the onset of coronavirus disease 2019 (COVID-19). This post-COVID-19 condition (PCC) has debilitating effects on the daily life of patients and encompasses a broad spectrum of neurological and neuropsychiatric symptoms including olfactory and gustative impairment, difficulty with concentration and short-term memory, sleep disorders and depression. Animal models have been instrumental to understand acute COVID-19 and validate prophylactic and therapeutic interventions. Similarly, studies post-viral clearance in hamsters, mice and nonhuman primates inoculated with SARS-CoV-2 have been useful to unveil some of the aspects of PCC. Transcriptomic alterations in the central nervous system, persistent activation of immune cells and impaired hippocampal neurogenesis seem to have a critical role in the neurological manifestations observed in animal models infected with SARS-CoV-2. Interestingly, the proinflammatory transcriptomic profile observed in the central nervous system of SARS-CoV-2-inoculated mice partially overlaps with the pathological changes that affect microglia in humans during Alzheimer's disease and aging, suggesting shared mechanisms between these conditions. None of the currently available animal models fully replicates PCC in humans; therefore, multiple models, together with the fine-tuning of experimental conditions, will probably be needed to understand the mechanisms of PCC neurological symptoms. Moreover, given that the intrinsic characteristics of the new variants of concern and the immunological status of individuals might influence PCC manifestations, more studies are needed to explore the role of these factors and their combinations in PCC, adding further complexity to the design of experimental models.
Collapse
Affiliation(s)
- Carla Usai
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Spain
| | - Lourdes Mateu
- Infectious Disease Service, Germans Trias i Pujol Research Institute and Hospital, Badalona, Spain
| | - Christian Brander
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBERINFEC, Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Júlia Vergara-Alert
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la UAB, Bellaterra, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.
- Department de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la UAB, Bellaterra, Spain.
| |
Collapse
|
6
|
Goenka MK, Goenka U, Patil VU, Das SS, Afzalpurkar S, Jajodia S, Mukherjee M, Shah BB, Moitra S. Kinetics of Covid-19 antibodies in terms of titre and duration among healthcare workers: A longitudinal study. THE NATIONAL MEDICAL JOURNAL OF INDIA 2023; 35:201-205. [PMID: 36715043 DOI: 10.25259/nmji_109_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Most individuals with Covid-19 infection develop antibodies specific to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the dynamics of these antibodies is variable and not well-studied. We aimed to determine the titres of naturally acquired antibodies over a 12-week follow-up. Methods We recruited healthcare workers who had tested positive on a specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for SARS-CoV-2, and then tested for the presence of immunoglobulin G (IgG) antibody against the same virus at baseline and again at 6 and 12 weeks. The antibody titre was determined by a semi-quantitative assay based on signal/cut-off ratio. Healthcare workers with antibody positivity were divided into those with high titre (ratio ≥12) and low titre (<12). Their demographic details and risk factors were surveyed through a Google form and analysed in relation to the antibody titres at three time-points. Results Of the 286 healthcare workers, 10.48% had high antibody titres. Healthcare workers who had tested positive by qRT-PCR and those who had received the Bacille Calmette-Guérin (BCG) vaccination or other immune-boosters had a higher frequency of high antibody titres. While there was a significant decline in antibody titres at 6 and 12 weeks, 87.46% of individuals positive for IgG antibody persisted to have the antibody even at 12 weeks. Conclusion Healthcare workers who tested positive for SARS-CoV-2 on qRT-PCR had a high positivity for the specific antibody, which continued to express in them even at 12 weeks. Further follow-up is likely to enhance our understanding of antibody kinetics following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mahesh Kumar Goenka
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Usha Goenka
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Vikram Uttam Patil
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Sudipta Sekhar Das
- Department of Transfusion Medicine and Blood Bank, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Shivaraj Afzalpurkar
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Surabhi Jajodia
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Muhuya Mukherjee
- Department of Biostatistics, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Bhavik Bharat Shah
- Department of Clinical Imaging and Interventional Radiology, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| | - Saibal Moitra
- Department of Allergy and Asthma Research Centre, Apollo Multispeciality Hospitals, Institute of Gastrosciences and Liver, Kolkata, West Bengal, India
| |
Collapse
|
7
|
Hajilooi M, Keramat F, Moazenian A, Rastegari-Pouyani M, Solgi G. The quantity and quality of anti-SARS-CoV-2 antibodies show contrariwise association with COVID-19 severity: lessons learned from IgG avidity. Med Microbiol Immunol 2023; 212:203-220. [PMID: 37103583 PMCID: PMC10133916 DOI: 10.1007/s00430-023-00763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Gaining more appreciation on the protective/damaging aspects of anti-SARS-CoV-2 immunity associated with disease severity is of great importance. This study aimed to evaluate the avidity of serum IgG antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) in hospitalized symptomatic COVID-19 patients and asymptomatic RT-PCR-confirmed SARS-CoV-2 carriers as well as to compare antibody avidities with respect to vaccination status, vaccination dose and reinfection status. Serum levels of anti-S and anti-N IgG were determined using specific ELISA kits. Antibody avidity was determined by urea dissociation assay and expressed as avidity index (AI) value. Despite higher IgG levels in the symptomatic group, AI values of both anti-S and anti-N IgG were significantly lower in this group compared to asymptomatic individuals. In both groups, anti-S AI values were elevated in one-dose and two-dose vaccinees versus unvaccinated subjects, although significant differences were only detected in the symptomatic group. However, anti-N avidity showed no significant difference between the vaccinated and unvaccinated subgroups. Almost all vaccinated patients of different subgroups (based on vaccine type) had higher anti-S IgG avidity, while the statistical significance was detected only between those receiving Sinopharm compared to the unvaccinated subgroup. Also, statistically significant differences in antibody AIs were only found between primarily infected individuals of the two groups. Our findings indicate a key role for anti-SARS-CoV-2 IgG avidity in protection from symptomatic COVID-19 and calls for the incorporation of antibody avidity measurement into the current diagnostic tests to predict effective immunity toward SARS-CoV-2 infection or even for prognostic purposes.
Collapse
Affiliation(s)
- Mehrdad Hajilooi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Infectious Diseases, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Moazenian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran
| | - Mohsen Rastegari-Pouyani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Ghasem Solgi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box 6517838736, Hamadan, Iran.
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
8
|
Beaudoin-Bussières G, Tauzin A, Dionne K, Gendron-Lepage G, Medjahed H, Perreault J, Levade I, Alfadhli L, Bo Y, Bazin R, Côté M, Finzi A. A Recent SARS-CoV-2 Infection Enhances Antibody-Dependent Cellular Cytotoxicity against Several Omicron Subvariants following a Fourth mRNA Vaccine Dose. Viruses 2023; 15:1274. [PMID: 37376574 DOI: 10.3390/v15061274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Since the beginning of the SARS-CoV-2 pandemic, several variants of concern (VOCs), such as the Alpha, Beta, Gamma, Delta and Omicron variants, have arisen and spread worldwide. Today, the predominant circulating subvariants are sublineages of the Omicron variant, which have more than 30 mutations in their Spike glycoprotein compared to the ancestral strain. The Omicron subvariants were significantly less recognized and neutralized by antibodies from vaccinated individuals. This resulted in a surge in the number of infections, and booster shots were recommended to improve responses against these variants. While most studies mainly measured the neutralizing activity against variants, we and others previously reported that Fc-effector functions, including antibody-dependent cellular cytotoxicity (ADCC), play an important role in humoral responses against SARS-CoV-2. In this study, we analyzed Spike recognition and ADCC activity against several Omicron subvariants by generating cell lines expressing different Omicron subvariant Spikes. We tested these responses in a cohort of donors, who were recently infected or not, before and after a fourth dose of mRNA vaccine. We showed that ADCC activity is less affected than neutralization by the antigenic shift of the tested Omicron subvariant Spikes. Moreover, we found that individuals with a history of recent infection have higher antibody binding and ADCC activity against all Omicron subvariants than people who were not recently infected. With an increase in the number of reinfections, this study helps better understand Fc-effector responses in the context of hybrid immunity.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Katrina Dionne
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | | | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Inès Levade
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Laila Alfadhli
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
9
|
Baghban R, Ghasemian A, Mahmoodi S. Nucleic acid-based vaccine platforms against the coronavirus disease 19 (COVID-19). Arch Microbiol 2023; 205:150. [PMID: 36995507 PMCID: PMC10062302 DOI: 10.1007/s00203-023-03480-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/31/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has infected 673,010,496 patients and caused the death of 6,854,959 cases globally until today. Enormous efforts have been made to develop fundamentally different COVID-19 vaccine platforms. Nucleic acid-based vaccines consisting of mRNA and DNA vaccines (third-generation vaccines) have been promising in terms of rapid and convenient production and efficient provocation of immune responses against the COVID-19. Several DNA-based (ZyCoV-D, INO-4800, AG0302-COVID19, and GX-19N) and mRNA-based (BNT162b2, mRNA-1273, and ARCoV) approved vaccine platforms have been utilized for the COVID-19 prevention. mRNA vaccines are at the forefront of all platforms for COVID-19 prevention. However, these vaccines have lower stability, while DNA vaccines are needed with higher doses to stimulate the immune responses. Intracellular delivery of nucleic acid-based vaccines and their adverse events needs further research. Considering re-emergence of the COVID-19 variants of concern, vaccine reassessment and the development of polyvalent vaccines, or pan-coronavirus strategies, is essential for effective infection prevention.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
10
|
Monitoring of SARS-CoV-2 Infection in Ragusa Area: Next Generation Sequencing and Serological Analysis. Int J Mol Sci 2023; 24:ijms24054742. [PMID: 36902172 PMCID: PMC10003428 DOI: 10.3390/ijms24054742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
The coronavirus disease 19 (COVID-19) post pandemic evolution is correlated to the development of new variants. Viral genomic and immune response monitoring are fundamental to the surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since 1 January to 31 July 2022, we monitored the SARS-CoV-2 variants trend in Ragusa area sequencing n.600 samples by next generation sequencing (NGS) technology: n.300 were healthcare workers (HCWs) of ASP Ragusa. The evaluation of anti-Nucleocapside (N), receptor-binding domain (RBD), the two subunit of S protein (S1 and S2) IgG levels in 300 exposed vs. 300 unexposed HCWs to SARS-CoV-2 was performed. Differences in immune response and clinical symptoms related to the different variants were investigated. The SARS-CoV-2 variants trend in Ragusa area and in Sicily region were comparable. BA.1 and BA.2 were the most representative variants, whereas the diffusion of BA.3 and BA.4 affected some places of the region. Although no correlation was found between variants and clinical manifestations, anti-N and anti-S2 levels were positively correlated with an increase in the symptoms number. SARS-CoV-2 infection induced a statistically significant enhancement in antibody titers compared to that produced by SARS-CoV-2 vaccine administration. In post-pandemic period, the evaluation of anti-N IgG could be used as an early marker to identify asymptomatic subjects.
Collapse
|
11
|
Smit MJ, Sander AF, Ariaans MBPA, Fougeroux C, Heinzel C, Fendel R, Esen M, Kremsner PG, Ter Heine R, Wertheim HF, Idorn M, Paludan SR, Underwood AP, Binderup A, Ramirez S, Bukh J, Soegaard M, Erdogan SM, Gustavsson T, Clemmensen S, Theander TG, Salanti A, Hamborg M, de Jongh WA, McCall MBB, Nielsen MA, Mordmüller BG. First-in-human use of a modular capsid virus-like vaccine platform: an open-label, non-randomised, phase 1 clinical trial of the SARS-CoV-2 vaccine ABNCoV2. THE LANCET. MICROBE 2023; 4:e140-e148. [PMID: 36681093 PMCID: PMC9848408 DOI: 10.1016/s2666-5247(22)00337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Capsid virus-like particles (cVLP) have proven safe and immunogenic and can be a versatile platform to counter pandemics. We aimed to clinically test a modular cVLP COVID-19 vaccine in individuals who were naive to SARS-CoV-2. METHODS In this phase 1, single-centre, dose-escalation, adjuvant-selection, open-label clinical trial, we recruited participants at the Radboud University Medical Center in Nijmegen, Netherlands, and sequentially assigned them to seven groups. Eligible participants were healthy, aged 18-55 years, and tested negative for SARS-CoV-2 and anti-SARS-CoV-2 antibodies. Participants were vaccinated intramuscularly on days 0 and 28 with 6 μg, 12 μg, 25 μg, 50 μg, or 70 μg of the cVLP-based COVID-19 vaccine (ABNCoV2). A subgroup received MF59-adjuvanted ABNCoV2. Follow-up was for 24 weeks after second vaccination. The primary objectives were to assess the safety and tolerability of ABNCoV2 and to identify a dose that optimises the tolerability-immunogenicity ratio 14 days after the first vaccination. The primary safety endpoint was the number of related grade 3 adverse events and serious adverse events in the intention-to-treat population. The primary immunogenicity endpoint was the concentration of ABNCoV2-specific antibodies. The trial is registered with ClinicalTrials.gov, NCT04839146. FINDINGS 45 participants (six to nine per group) were enrolled between March 15 and July 15, 2021. Participants had a total of 249 at least possibly related solicited adverse events (185 grade 1, 63 grade 2, and one grade 3) within a week after vaccination. Two serious adverse events occurred; one was classified as a possible adverse reaction. Antibody titres were dose-dependent with levels plateauing at a vaccination dose of 25-70 μg ABNCoV2. After second vaccination, live virus neutralisation activity against major SARS-CoV-2 variants was high but was lower with an omicron (BA.1) variant. Vaccine-specific IFNγ+ CD4+ T cells were induced. INTERPRETATION Immunisation with ABNCoV2 was well tolerated, safe, and resulted in a functional immune response. The data support the need for additional clinical development of ABNCoV2 as a second-generation SARS-CoV-2 vaccine. The modular cVLP platform will accelerate vaccine development, beyond SARS-CoV-2. FUNDING EU, Carlsberg Foundation, and the Novo Nordisk Foundation.
Collapse
Affiliation(s)
- Merel J Smit
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Adam F Sander
- AdaptVac Aps, Copenhagen, Denmark; Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maud B P A Ariaans
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Constanze Heinzel
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; German Center for Infection Research, partner site Tübingen, Tübingen, Germany
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heiman F Wertheim
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manja Idorn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Alexander P Underwood
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Max Soegaard
- ExpreS2ion Biotechnologies Aps, Hørsholm, Denmark
| | - Sayit M Erdogan
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Gustavsson
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thor G Theander
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Matthew B B McCall
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Benjamin G Mordmüller
- Department of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
| | | |
Collapse
|
12
|
Lei Z, Zhu L, Pan P, Ruan Z, Gu Y, Xia X, Wang S, Ge W, Yao Y, Luo F, Xiao H, Guo J, Ding Q, Yin Z, Li Y, Luo Z, Zhang Q, Chen X, Wu J. A vaccine delivery system promotes strong immune responses against SARS-CoV-2 variants. J Med Virol 2023; 95:e28475. [PMID: 36606607 DOI: 10.1002/jmv.28475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Global coronavirus disease 2019 (COVID-19) pandemics highlight the need of developing vaccines with universal and durable protection against emerging SARS-CoV-2 variants. Here we developed an extended-release vaccine delivery system (GP-diABZI-RBD), consisting the original SARS-CoV-2 WA1 strain receptor-binding domain (RBD) as the antigen and diABZI stimulator of interferon genes (STING) agonist in conjunction with yeast β-glucan particles (GP-diABZI) as the platform. GP-diABZI-RBD could activate STING pathway and inhibit SARS-CoV-2 replication. Compared to diABZI-RBD, intraperitoneal injection of GP-diABZI-RBD elicited robust cellular and humoral immune responses in mice. Using SARS-CoV-2 GFP/ΔN transcription and replication-competent virus-like particle system (trVLP), we demonstrated that GP-diABZI-RBD-prototype vaccine exhibited the strongest and durable humoral immune responses and antiviral protection; whereas GP-diABZI-RBD-Omicron displayed minimum neutralization responses against trVLP. By using pseudotype virus (PsVs) neutralization assay, we found that GP-diABZI-RBD-Prototype, GP-diABZI-RBD-Delta, and GP-diABZI-RBD-Gamma immunized mice sera could efficiently neutralize Delta and Gamma PsVs, but had weak protection against Omicron PsVs. In contrast, GP-diABZI-RBD-Omicron immunized mice sera displayed the strongest neutralization response to Omicron PsVs. Taken together, the results suggest that GP-diABZI can serve as a promising vaccine delivery system for enhancing durable humoral and cellular immunity against broad SARS-CoV-2 variants. Our study provides important scientific basis for developing SARS-CoV-2 VOC-specific vaccines.
Collapse
Affiliation(s)
- Zhiwei Lei
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Leqing Zhu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China.,Guangzhou Laboratory, Bioland, Guangzhou, China
| | - Pan Pan
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhihui Ruan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Yu Gu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xichun Xia
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Shengli Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Weiwei Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangrong Yao
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Fazeng Luo
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Heng Xiao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yongkui Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China
| | - Xin Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Foshan Institute of Medical Microbiology, Foshan, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C, Metzler M, Kohmer N, Hoehl S, Marschalek R, Herrmann E, Helfritz FA, Wolf T, Goetsch U, Ciesek S. Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies. EBioMedicine 2022; 82:104158. [PMID: 35834885 DOI: 10.1101/2021.12.07.21267432] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND In recent months, Omicron variants of SARS-CoV-2 have become dominant in many regions of the world, and case numbers with Omicron subvariants BA.1 and BA.2 continue to increase. Due to numerous mutations in the spike protein, the efficacy of currently available vaccines, which are based on Wuhan-Hu 1 isolate of SARS-CoV-2, is reduced, leading to breakthrough infections. Efficacy of monoclonal antibody therapy is also likely impaired. METHODS In our in vitro study using A549-AT cells constitutively expressing ACE2 and TMPRSS2, we determined and compared the neutralizing capacity of vaccine-elicited sera, convalescent sera and monoclonal antibodies against authentic SARS-CoV-2 Omicron BA.1 and BA.2 compared with Delta. FINDINGS Almost no neutralisation of Omicron BA.1 and BA.2 was observed using sera from individuals vaccinated with two doses 6 months earlier, regardless of the type of vaccine taken. Shortly after the booster dose, most sera from triple BNT162b2-vaccinated individuals were able to neutralise both Omicron variants. In line with waning antibody levels three months after the booster, only weak residual neutralisation was observed for BA.1 (26%, n = 34, 0 median NT50) and BA.2 (44%, n = 34, 0 median NT50). In addition, BA.1 but not BA.2 was resistant to the neutralising monoclonal antibodies casirivimab/imdevimab, while BA.2 exhibited almost a complete evasion from the neutralisation induced by sotrovimab. INTERPRETATION Both SARS-CoV-2 Omicron subvariants BA.1 and BA.2 escape antibody-mediated neutralisation elicited by vaccination, previous infection with SARS-CoV-2, and monoclonal antibodies. Waning immunity renders the majority of tested sera obtained three months after booster vaccination negative in BA.1 and BA.2 neutralisation. Omicron subvariant specific resistance to the monoclonal antibodies casirivimab/imdevimab and sotrovimab emphasizes the importance of genotype-surveillance and guided application. FUNDING This study was supported in part by the Goethe-Corona-Fund of the Goethe University Frankfurt (M.W.) and the Federal Ministry of Education and Research (COVIDready; grant 02WRS1621C (M.W.).
Collapse
Affiliation(s)
- Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany.
| | - Katharina Grikscheit
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Tuna Toptan
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Barbara Schenk
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Christiane Pallas
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Melinda Metzler
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Niko Kohmer
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Fabian A Helfritz
- Bürgerhospital Frankfurt, Nibelungenallee 37-41, 60318 Frankfurt am Main, Germany
| | - Timo Wolf
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Udo Goetsch
- Health Protection Authority of the City of Frankfurt am Main, 60313 Frankfurt am Main, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany; German Centre for Infection Research (DZIF), partner site Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch Translational Medicine and Pharmacology, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, Al-Najjar SZ, Al-Sharify NT, Ahmed SM, Dehghani MH. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58628-58647. [PMID: 35794320 PMCID: PMC9258455 DOI: 10.1007/s11356-022-21652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab-al-Mu'adhem, P.O. Box 14150, Baghdad, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathabatha Frank Maleka
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maleke Maleke
- Department of Life Science, Faculty of Health and Environmental Science, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Alhaji Maolloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
| | - Liliana Godoy
- Department of Fruit and Oenology, Faculty of Agronomy and Forestry, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
| | - Mina Rezghi Rami
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahad Z Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Noor T Al-Sharify
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad, Iraq
| | - Sura M Ahmed
- Department of Electrical and Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Davenport BJ, Catala A, Weston SM, Johnson RM, Ardanuy J, Hammond HL, Dillen C, Frieman MB, Catalano CE, Morrison TE. Phage-like particle vaccines are highly immunogenic and protect against pathogenic coronavirus infection and disease. NPJ Vaccines 2022; 7:57. [PMID: 35618725 PMCID: PMC9135756 DOI: 10.1038/s41541-022-00481-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a "designer nanoparticle" platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.
Collapse
Affiliation(s)
- Bennett J Davenport
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexis Catala
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart M Weston
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert M Johnson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy Ardanuy
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carly Dillen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Thomas E Morrison
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Li Z, Ma Y, Huo S, Ke Y, Zhao A. Impact of COVID-19 Vaccination Status and Confidence on Dietary Practices among Chinese Residents. Foods 2022; 11:foods11091365. [PMID: 35564088 PMCID: PMC9104347 DOI: 10.3390/foods11091365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Healthy diets promote immune functions and have been shown to reduce COVID-19 severity. In 2021, COVID-19 vaccines have become available to the general public. However, whether vaccination status could affect individual and populational health behaviors is unknown. This study aimed to investigate the impacts of vaccination status and confidence on dietary practices. An online survey was conducted in August 2021. We collected data on dietary intake, diversity and behaviors, vaccination status and confidence and socio-demographic characteristics. Among the 5107 responses received, a total of 4873 study participants were included in the final analysis. Most of our participants aged between 18 and 45 years and 82% of them were fully vaccinated against COVID-19. Household level dietary diversity was found to be higher among people who were fully vaccinated (β = 0.321, 95%CI: 0.024 to 0.618) or who were more confident in the protectiveness of the vaccine (β for tertile 3 comparing with lowest tertile = 0.544, 95%CI: 0.407, 0.682). Vaccination promoted the intake of seafood, but it was also positively associated with the consumption of sugar, preserved, fried and barbequed foods and reduced vegetable intake. Higher vaccination confidence was associated with increased consumption of seafood, bean, fruits and vegetables and reduced fat intake. Changes in dietary behaviors compared with early 2021 (when vaccination was not common) were observed and differed by vaccination status and confidence level. Conclusion: COVID-19 vaccination status and confidence had varied, and possibly negative, impacts on dietary intake and behaviors. Our results suggest that vaccination status and confidence might be significant influencing factors affecting people’s health behaviors and highlight that healthy eating should be consistently promoted to prevent poor dietary practices during global health crisis.
Collapse
Affiliation(s)
- Zhongyu Li
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | - Yidi Ma
- School of Public Health, Peking University, Beijing 100191, China; (Y.M.); (S.H.); (Y.K.)
| | - Shanshan Huo
- School of Public Health, Peking University, Beijing 100191, China; (Y.M.); (S.H.); (Y.K.)
| | - Yalei Ke
- School of Public Health, Peking University, Beijing 100191, China; (Y.M.); (S.H.); (Y.K.)
| | - Ai Zhao
- Vanke School of Public Health, Tsinghua University, Beijing 100091, China;
- Correspondence: ; Tel.: +86-138-1113-1994
| |
Collapse
|
17
|
Klasse PJ, Moore JP. Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses. J Virol 2022; 96:e0003422. [PMID: 35384694 PMCID: PMC9044961 DOI: 10.1128/jvi.00034-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
With the much-debated exception of the modestly reduced acquisition reported for the RV144 efficacy trial, HIV-1 vaccines have not protected humans against infection, and a vaccine of similar design to that tested in RV144 was not protective in a later trial, HVTN 702. Similar vaccine regimens have also not consistently protected nonhuman primates (NHPs) against viral acquisition. Conversely, experimental vaccines of different designs have protected macaques from viral challenges but then failed to protect humans, while many other HIV-1 vaccine candidates have not protected NHPs. While efficacy varies more in NHPs than humans, vaccines have failed to protect in the most stringent NHP model. Intense investigations have aimed to identify correlates of protection (CoPs), even in the absence of net protection. Unvaccinated animals and humans vary vastly in their susceptibility to infection and in their innate and adaptive responses to the vaccines; hence, merely statistical associations with factors that do not protect are easily found. Systems biological analyses, including artificial intelligence, have identified numerous candidate CoPs but with no clear consistency within or between species. Proposed CoPs sometimes have only tenuous mechanistic connections to immune protection. In contrast, neutralizing antibodies (NAbs) are a central mechanistic CoP for vaccines that succeed against other viruses, including SARS-CoV-2. No HIV-1 vaccine candidate has yet elicited potent and broadly active NAbs in NHPs or humans, but narrow-specificity NAbs against the HIV-1 isolate corresponding to the immunogen do protect against infection by the autologous virus. Here, we analyze why so many HIV-1 vaccines have failed, summarize the outcomes of vaccination in NHPs and humans, and discuss the value and pitfalls of hunting for CoPs other than NAbs. We contrast the failure to find a consistent CoP for HIV-1 vaccines with the identification of NAbs as the principal CoP for SARS-CoV-2.
Collapse
Affiliation(s)
- P. J. Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - John P. Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
18
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not enhance viral infection. PLoS One 2022; 17:e0257930. [PMID: 35259162 PMCID: PMC8903276 DOI: 10.1371/journal.pone.0257930] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
The novel coronavirus, SARS-CoV-2 that causes COVID-19 has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination, and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization with a theoretical risk of antibody-dependent enhancement (ADE) of viral infection. Though vaccines elicit a strong and protective immune response and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV-2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, not only supports the therapeutic use of currently available antibody-based treatment, including the continuation of CCP transfusion strategies, but also the use of various vaccine platforms in a prophylactic approach.
Collapse
Affiliation(s)
- Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William Hartman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Susan Stramer
- American Red Cross, Washington, DC, United States of America
| | - Erin Goodhue
- American Red Cross, Washington, DC, United States of America
| | - John Weiss
- American Red Cross, Washington, DC, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Joseph P. Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
19
|
Jia J, Ao L, Luo Y, Liao T, Huang L, Zhuo D, Jiang C, Wang J, Hu J. Quantum dots assembly enhanced and dual-antigen sandwich structured lateral flow immunoassay of SARS-CoV-2 antibody with simultaneously high sensitivity and specificity. Biosens Bioelectron 2022; 198:113810. [PMID: 34840014 PMCID: PMC8595965 DOI: 10.1016/j.bios.2021.113810] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/27/2021] [Accepted: 11/13/2021] [Indexed: 12/13/2022]
Abstract
Exploring reliable and highly-sensitive SARS-CoV-2 antibody diagnosis by point-of-care (POC) manner, holds great public health significance for extensive COVID-19 screening and controlling. Unfortunately, the currently applied gold based lateral flow immunoassay (GLFIA) may expose both false-negative and false-positive interpretations owing to the sensitivity and specificity limitations, which may cause significant risk and waste of public resources for large population screening. To simultaneously overcome the drawbacks of GLFIA, a novel fluorescent LFIA based on signal amplification and dual-antigen sandwich structure was established with largely improved sensitivity and specificity. The compact three-dimensional incorporation of hydrophobic quantum dots within dendritic affinity templates and multilayer surface derivation guaranteed a high and robust fluorescence of single label, which lowered the false negative rate of GLFIA prominently. A dual-antigen sandwich structure using labeled/immobilized SARS-CoV-2 spike receptor binding domain antigen for capturing total human SARS-CoV-2 antibody was developed, instead of general indirect antibody capturing approach, to reduce the false positive rate of GLFIA. Over 300 cases of COVID-19 negative and 97 cases of COVID-19 positive samples, the current assay revealed a 100% sensitivity and 100% specificity confirmed by both polymerase chain reaction (PCR) and chemiluminescence immunoassay (CLIA), compared with the considerable misinterpretation cases by currently applied GLFIA. The quantitative results verified by receiver operating characteristic curve and other statistical analysis indicated a well-distinguished positive/negative sample groups. The proposed strategy is highly sensitive towards low concentrated SARS-CoV-2 antibody serums and highly specific towards serums from COVID-19 negative persons and patients infected by other viruses.
Collapse
Affiliation(s)
- Jianghua Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Medicalsystem Biotechnology Co., Ltd, Ningbo, 315104, China
| | - Lijiao Ao
- Institute of Biomedical Engineering, The Second Clinical Medical College (Shenzhen People's Hospital) of Jinan University, Shenzhen, 518020, China
| | - Yongxin Luo
- Xinyu People's Hospital, Xinyu, 338000, China
| | - Tao Liao
- Shenzhen WWHS Biotech. Inc, Shenzhen, 518100, China
| | - Liang Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Dinglv Zhuo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenxing Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
20
|
Choudhury PR, Saha T, Goel S, Shah JM, Ganjewala D. Cross-species virus transmission and its pandemic potential. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:18. [PMID: 35095263 PMCID: PMC8787036 DOI: 10.1186/s42269-022-00701-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The majority of pandemics are known to be a result of either bacteria or viruses out of which viruses seem to be an entity of growing concern due to the sheer number of yet unidentified and potentially threatening viruses, their ability to quickly evolve and transform, their ability to transfer and change from one host organism to another and the difficulty in creating safe vaccines on time. MAIN BODY The present review attempts to bring forth the potential risks, prevention and its impact on the global society in terms of sociological and economic parameters. Taking hindsight from previously as well as ongoing current viral epidemics, this article aims to draw a concrete correlation between these viruses in terms of their origin, spread and attempts to compare how much they can affect the population. The study also assesses the worst-case scenarios and the amount of preparedness, required to fight against such pandemics and compares the required amount of preparedness to the current precautions and measures by different governments all across the world. SHORT CONCLUSION Learning from the current pandemic, we can implement certain measures to prevent the adverse effects of pandemics in the future and through severe preparedness can combat the challenges brought about by the pandemic.
Collapse
Affiliation(s)
- Priyanka Ray Choudhury
- Amity Institute of Biotechnology, Amity University Noida, Sector 125, Noida, 201303 India
| | - Tapoja Saha
- Amity Institute of Biotechnology, Amity University Noida, Sector 125, Noida, 201303 India
| | - Sachin Goel
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida, 201306 India
| | - Janvi Manish Shah
- Department of Biotechnology, Thadomal Shahani Engineering College, Mumbai, 400050 India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University Noida, Sector 125, Noida, 201303 India
| |
Collapse
|
21
|
Tauzin A, Gong SY, Beaudoin-Bussières G, Vézina D, Gasser R, Nault L, Marchitto L, Benlarbi M, Chatterjee D, Nayrac M, Laumaea A, Prévost J, Boutin M, Sannier G, Nicolas A, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Bo Y, Perreault J, Gokool L, Morrisseau C, Arlotto P, Bazin R, Dubé M, De Serres G, Brousseau N, Richard J, Rovito R, Côté M, Tremblay C, Marchetti GC, Duerr R, Martel-Laferrière V, Kaufmann DE, Finzi A. Strong humoral immune responses against SARS-CoV-2 Spike after BNT162b2 mRNA vaccination with a 16-week interval between doses. Cell Host Microbe 2022; 30:97-109.e5. [PMID: 34953513 PMCID: PMC8639412 DOI: 10.1016/j.chom.2021.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
The standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered three weeks apart. However, some public health authorities spaced these doses, raising questions about efficacy. We analyzed longitudinal humoral responses against the D614G strain and variants of concern for SARS-CoV-2 in a cohort of SARS-CoV-2-naive and previously infected individuals who received the BNT162b2 mRNA vaccine with sixteen weeks between doses. While administering a second dose to previously infected individuals did not significantly improve humoral responses, these responses significantly increased in naive individuals after a 16-week spaced second dose, achieving similar levels as in previously infected individuals. Comparing these responses to those elicited in individuals receiving a short (4-week) dose interval showed that a 16-week interval induced more robust responses among naive vaccinees. These findings suggest that a longer interval between vaccine doses does not compromise efficacy and may allow greater flexibility in vaccine administration.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lauriane Nault
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Marianne Boutin
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Gérémy Sannier
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Alexandre Nicolas
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | | | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa ON K1H 8M5, Canada
| | - Josée Perreault
- Héma-Québec, Affaires Médicales et Innovation, Quebec QC G1V 5C3, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | | | | | - Renée Bazin
- Héma-Québec, Affaires Médicales et Innovation, Quebec QC G1V 5C3, Canada
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec QC H2P 1E2, Canada
| | - Nicholas Brousseau
- Institut National de Santé Publique du Québec, Quebec QC H2P 1E2, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Roberta Rovito
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, and Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa ON K1H 8M5, Canada
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Giulia C Marchetti
- Clinic of Infectious Diseases, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
22
|
Two-Component Nanoparticle Vaccine Displaying Glycosylated Spike S1 Domain Induces Neutralizing Antibody Response against SARS-CoV-2 Variants. mBio 2021; 12:e0181321. [PMID: 34634927 PMCID: PMC8510518 DOI: 10.1128/mbio.01813-21] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Vaccines pave the way out of the SARS-CoV-2 pandemic. Besides mRNA and adenoviral vector vaccines, effective protein-based vaccines are needed for immunization against current and emerging variants. We have developed a virus-like particle (VLP)-based vaccine using the baculovirus-insect cell expression system, a robust production platform known for its scalability, low cost, and safety. Baculoviruses were constructed encoding SARS-CoV-2 spike proteins: full-length S, stabilized secreted S, or the S1 domain. Since subunit S only partially protected mice from SARS-CoV-2 challenge, we produced S1 for conjugation to bacteriophage AP205 VLP nanoparticles using tag/catcher technology. The S1 yield in an insect-cell bioreactor was ∼11 mg/liter, and authentic protein folding, efficient glycosylation, partial trimerization, and ACE2 receptor binding was confirmed. Prime-boost immunization of mice with 0.5 μg S1-VLPs showed potent neutralizing antibody responses against Wuhan and UK/B.1.1.7 SARS-CoV-2 variants. This two-component nanoparticle vaccine can now be further developed to help alleviate the burden of COVID-19.
Collapse
|
23
|
Clark NM, Janaka SK, Hartman W, Stramer S, Goodhue E, Weiss J, Evans DT, Connor JP. Anti-SARS-CoV-2 IgG and IgA antibodies in COVID-19 convalescent plasma do not facilitate antibody-dependent enhance of viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34545365 PMCID: PMC8452094 DOI: 10.1101/2021.09.14.460394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The novel coronavirus SARS-CoV2, which causes COVID-19, has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization, with the theoretical risk of antibody-dependent enhancement (ADE) of viral infection remaining undetermined. Though vaccines elicit a strong and protective immune response, and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcαR) or Fc gamma receptor IIA (FcγRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, support the clinical use of currently available antibody-based treatment including the continued study of CCP transfusion strategies.
Collapse
|
24
|
Yoshikawa T. Implementing vaccination policies based upon scientific evidence in Japan. Vaccine 2021; 39:5447-5450. [PMID: 34373119 PMCID: PMC8346366 DOI: 10.1016/j.vaccine.2021.07.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 01/29/2023]
Abstract
The theme of the 24th Annual Meeting of the Japanese Society for Vaccinology was “Sustainable Future Medical Care Created by Vaccines.” This theme includes topics such as the proposal to reduce the medical costs incurred by societies with aging populations through prophylactic vaccination. The coronavirus disease 2019 (COVID-19) pandemic alerted us to the important roles that preventive measures, such as vaccines, play in fighting infectious diseases. In order to inform the public of the benefits of vaccines, it is important to provide society with information regarding new vaccine developments, adjuvants, the cost–benefit ratio of vaccine introduction, and vaccine effectiveness and safety. Clinical research is essential for obtaining evidence of vaccine effectiveness and safety. The United States Centers for Disease Control and Prevention (CDC) conducts active surveillance in defined areas before and after the introduction of vaccines and documents the reduction in infection rates as a measure of vaccine effectiveness. However, vaccine efficacy and side effects may vary by country and ethnicity. Therefore, it is necessary for individual countries to develop their own evidence-based surveillance programs. We have studied vaccine efficacy and documented side-effects observed in patients for the varicella and rotavirus vaccines in Japan. This review outlines the importance of providing scientific evidence for vaccine effectiveness and safety.
Collapse
Affiliation(s)
- Tetsushi Yoshikawa
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| |
Collapse
|
25
|
Yang S, Li Y, Dai L, Wang J, He P, Li C, Fang X, Wang C, Zhao X, Huang E, Wu C, Zhong Z, Wang F, Duan X, Tian S, Wu L, Liu Y, Luo Y, Chen Z, Li F, Li J, Yu X, Ren H, Liu L, Meng S, Yan J, Hu Z, Gao L, Gao GF. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. THE LANCET. INFECTIOUS DISEASES 2021; 21:1107-1119. [PMID: 33773111 DOI: 10.1101/2020.12.20.20248602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Although several COVID-19 vaccines have been developed so far, they will not be sufficient to meet the global demand. Development of a wider range of vaccines, with different mechanisms of action, could help control the spread of SARS-CoV-2 globally. We developed a protein subunit vaccine against COVID-19 using a dimeric form of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein as the antigen. We aimed to assess the safety and immunogenicity of this vaccine, ZF2001, and determine the appropriate dose and schedule for an efficacy study. METHODS We did two randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Phase 1 was done at two university hospitals in Chongqing and Beijing, China, and phase 2 was done at the Hunan Provincial Center for Disease Control and Prevention in Xiangtan, China. Healthy adults aged 18-59 years, without a history of SARS-CoV or SARS-CoV-2 infection, an RT-PCR-positive test result for SARS-CoV-2, a history of contact with confirmed or suspected COVID-19 cases, and severe allergies to any component of the vaccine were eligible for enrolment. In phase 1, participants were randomly assigned (2:2:1) to receive three doses of the vaccine (25 μg or 50 μg) or placebo intramuscularly, 30 days apart. In phase 2, participants were randomly assigned (1:1:1:1:1:1) to receive the vaccine (25 μg or 50 μg) or placebo intramuscularly, 30 days apart, in either a two-dose schedule or a three-dose schedule. Investigators, participants, and the laboratory team were masked to group allocation. For phase 1, the primary outcome was safety, measured by the occurrence of adverse events and serious adverse events. For phase 2, the primary outcome was safety and immunogenicity (the seroconversion rate and the magnitude, in geometric mean titres [GMTs], of SARS-CoV-2-neutralising antibodies). Analyses were done on an intention-to-treat and per-protocol basis. These trials are registered with ClinicalTrials.gov (NCT04445194 and NCT04466085) and participant follow-up is ongoing. FINDINGS Between June 22 and July 3, 2020, 50 participants were enrolled into the phase 1 trial and randomly assigned to receive three doses of placebo (n=10), the 25 μg vaccine (n=20), or the 50 μg vaccine (n=20). The mean age of participants was 32·6 (SD 9·4) years. Between July 12 and July 17, 2020, 900 participants were enrolled into the phase 2 trial and randomly assigned to receive two doses of placebo (n=150), 25 μg vaccine (n=150), or 50 μg vaccine (n=150), or three doses of placebo (n=150), 25 μg vaccine (n=150), or 50 μg vaccine (n=150). The mean age of participants was 43·5 (SD 9·2) years. In both phase 1 and phase 2, adverse events reported within 30 days after vaccination were mild or moderate (grade 1 or 2) in most cases (phase 1: six [60%] of ten participants in the placebo group, 14 [70%] of 20 in the 25 μg group, and 18 [90%] of 20 in the 50 μg group; phase 2: 37 [25%] of 150 in the two-dose placebo group, 43 [29%] of 150 in the two-dose 25 μg group, 50 [33%] of 150 in the two-dose 50 μg group, 47 [31%] of 150 in the three-dose placebo group, 72 [48%] of 150 in the three-dose 25 μg group, and 65 [43%] of 150 in the three-dose 50 μg group). In phase 1, two (10%) grade 3 or worse adverse events were reported in the 50 μg group. In phase 2, grade 3 or worse adverse events were reported by 18 participants (four [3%] in the two-dose 25 μg vaccine group, two [1%] in the two-dose 50 μg vaccine group, two [1%] in the three-dose placebo group, four [3%] in the three-dose 25 μg vaccine group, and six [4%] in the three-dose 50 μg vaccine group), and 11 were considered vaccine related (two [1%] in the two-dose 25 μg vaccine group, one [1%] in the two-dose 50 μg vaccine group, one [1%] in the three-dose placebo group, two [1%] in the three-dose 25 μg vaccine group, and five [3%] in the three-dose 50 μg vaccine group); seven participants reported serious adverse events (one [1%] in the two-dose 25 μg vaccine group, one [1%] in the two-dose 50 μg vaccine group, two [1%] in the three-dose placebo group, one [1%] in the three-dose 25 μg vaccine group, and two [1%] in the three-dose 50 μg vaccine group), but none was considered vaccine related. In phase 2, on the two-dose schedule, seroconversion rates of neutralising antibodies 14 days after the second dose were 76% (114 of 150 participants) in the 25 μg group and 72% (108 of 150) in the 50 μg group; on the three-dose schedule, seroconversion rates of neutralising antibodies 14 days after the third dose were 97% (143 of 148 participants) in the 25 μg group and 93% (138 of 148) in the 50 μg group. In the two-dose groups in phase 2, the SARS-CoV-2-neutralising GMTs 14 days after the second dose were 17·7 (95% CI 13·6-23·1) in the 25 μg group and 14·1 (10·8-18·3) in the 50 μg group. In the three-dose groups in phase 2, the SARS-CoV-2-neutralising GMTs 14 days after the third dose were 102·5 (95% CI 81·8-128·5) in the 25 μg group and 69·1 (53·0-90·0) in the 50 μg group. INTERPRETATION The protein subunit vaccine ZF2001 appears to be well tolerated and immunogenic. The safety and immunogenicity data from the phase 1 and 2 trials support the use of the 25 μg dose in a three-dose schedule in an ongoing phase 3 trial for large-scale evaluation of ZF2001's safety and efficacy. FUNDING National Program on Key Research Project of China, National Science and Technology Major Projects of Drug Discovery, Strategic Priority Research Program of the Chinese Academy of Sciences, and Anhui Zhifei Longcom Biopharmaceutical. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Shilong Yang
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Yan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Wang
- National Institute for Food and Drug Control, Beijing, China
| | - Peng He
- National Institute for Food and Drug Control, Beijing, China
| | - Changgui Li
- National Institute for Food and Drug Control, Beijing, China
| | - Xin Fang
- National Institute for Food and Drug Control, Beijing, China
| | - Chenfei Wang
- National Institute for Food and Drug Control, Beijing, China
| | - Xiang Zhao
- National Institute for Food and Drug Control, Beijing, China
| | - Enqi Huang
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Changwei Wu
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Zaixin Zhong
- Anhui Zhifei Longcom Biopharmaceutical, Hefei, China
| | - Fengze Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Duan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Siyu Tian
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lili Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- Chongqing Medleader Bio-Pharm, Chongqing, China
| | - Yi Luo
- Beijing Keytech Statistical Technology, Beijing, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fangjun Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Junhua Li
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China
| | - Xian Yu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lihong Liu
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shufang Meng
- National Institute for Food and Drug Control, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhongyu Hu
- National Institute for Food and Drug Control, Beijing, China
| | - Lidong Gao
- Hunan Provincial Center for Disease Control and Prevention, Changsha, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Tauzin A, Nayrac M, Benlarbi M, Gong SY, Gasser R, Beaudoin-Bussières G, Brassard N, Laumaea A, Vézina D, Prévost J, Anand SP, Bourassa C, Gendron-Lepage G, Medjahed H, Goyette G, Niessl J, Tastet O, Gokool L, Morrisseau C, Arlotto P, Stamatatos L, McGuire AT, Larochelle C, Uchil P, Lu M, Mothes W, De Serres G, Moreira S, Roger M, Richard J, Martel-Laferrière V, Duerr R, Tremblay C, Kaufmann DE, Finzi A. A single dose of the SARS-CoV-2 vaccine BNT162b2 elicits Fc-mediated antibody effector functions and T cell responses. Cell Host Microbe 2021; 29:1137-1150.e6. [PMID: 34133950 PMCID: PMC8175625 DOI: 10.1016/j.chom.2021.06.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
While the standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered 3 weeks apart, some public health authorities are spacing these doses, raising concerns about efficacy. However, data indicate that a single dose can be up to 90% effective starting 14 days post-administration. To assess the mechanisms contributing to protection, we analyzed humoral and T cell responses three weeks after a single BNT162b2 dose. We observed weak neutralizing activity elicited in SARS-CoV-2 naive individuals but strong anti-receptor binding domain and spike antibodies with Fc-mediated effector functions and cellular CD4+ T cell responses. In previously infected individuals, a single dose boosted all humoral and T cell responses, with strong correlations between T helper and antibody immunity. Our results highlight the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support for spacing doses to vaccinate more individuals in conditions of vaccine scarcity.
Collapse
Affiliation(s)
- Alexandra Tauzin
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Manon Nayrac
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | - Annemarie Laumaea
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada
| | | | | | | | | | - Julia Niessl
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, USA
| | - Olivier Tastet
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | - Laurie Gokool
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada
| | | | | | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA; University of Washington, Department of Global Health, Seattle, WA 98109, USA
| | - Andrew T McGuire
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA 98109, USA
| | - Catherine Larochelle
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département des Neurosciences, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pradeep Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Maolin Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gaston De Serres
- Institut National de Santé Publique du Québec, Quebec, QC, H2P 1E2, Canada
| | - Sandrine Moreira
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Michel Roger
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, QC H9X 3R5, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Valérie Martel-Laferrière
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Cécile Tremblay
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Consortium for HIV/AIDS Vaccine Development (CHAVD), La Jolla, CA, USA.
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2BA, Canada.
| |
Collapse
|
27
|
Vashishtha VM, Kumar P. Development of SARS-CoV-2 vaccines: challenges, risks, and the way forward. Hum Vaccin Immunother 2021; 17:1635-1649. [PMID: 33270478 PMCID: PMC7754925 DOI: 10.1080/21645515.2020.1845524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic mandates the development of a safe and effective Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccine. This review analyzes the complexities, challenges, and other vital issues associated with the development of the SARS-CoV-2 vaccine. A brief review of the immune responses (innate, antibody, and T-cell) to SARS-CoV-2, including immune targets, correlates of protection, and duration of immunity is presented. Approaches to vaccine development including different vaccine platforms, critical attributes of novel vaccine candidates, the status of the ongoing clinical trials, and the ways to speed up vaccine development are also reviewed. Despite a historical average success rate of only 6%, and a usual gestation period of 10-12 years for the development of a new vaccine, the world is on the verge of developing COVID-19 vaccines in an extraordinary short time span.
Collapse
Affiliation(s)
- Vipin M. Vashishtha
- Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor, India
| | | |
Collapse
|
28
|
Zhao M, Su PY, Castro DA, Tripler TN, Hu Y, Cook M, Ko AI, Farhadian SF, Israelow B, Dela Cruz CS, Xiong Y, Sutton RE. Rapid, reliable, and reproducible cell fusion assay to quantify SARS-Cov-2 spike interaction with hACE2. PLoS Pathog 2021; 17:e1009683. [PMID: 34166473 PMCID: PMC8263067 DOI: 10.1371/journal.ppat.1009683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/07/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a global crisis of unimagined dimensions. Currently, Remedesivir is only fully licensed FDA therapeutic. A major target of the vaccine effort is the SARS-CoV-2 spike-hACE2 interaction, and assessment of efficacy relies on time consuming neutralization assay. Here, we developed a cell fusion assay based upon spike-hACE2 interaction. The system was tested by transient co-transfection of 293T cells, which demonstrated good correlation with standard spike pseudotyping for inhibition by sera and biologics. Then established stable cell lines were very well behaved and gave even better correlation with pseudotyping results, after a short, overnight co-incubation. Results with the stable cell fusion assay also correlated well with those of a live virus assay. In summary we have established a rapid, reliable, and reproducible cell fusion assay that will serve to complement the other neutralization assays currently in use, is easy to implement in most laboratories, and may serve as the basis for high throughput screens to identify inhibitors of SARS-CoV-2 virus-cell binding and entry.
Collapse
Affiliation(s)
- Min Zhao
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Pei-Yi Su
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Danielle A. Castro
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Therese N. Tripler
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yingxia Hu
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Matthew Cook
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Albert I. Ko
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Shelli F. Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Benjamin Israelow
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Charles S. Dela Cruz
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Richard E. Sutton
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, Connecticut, United States of America
| | | |
Collapse
|
29
|
The Association between Influenza Vaccination and COVID-19 and Its Outcomes: A Systematic Review and Meta-Analysis of Observational Studies. Vaccines (Basel) 2021; 9:vaccines9050529. [PMID: 34065294 PMCID: PMC8161076 DOI: 10.3390/vaccines9050529] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Influenza could circulate in parallel with COVID-19. In the context of COVID-19, some studies observed inverse associations between influenza vaccination and SARS-CoV-2 infection and clinical outcomes, while others did not. We conducted a meta-analysis to assess the association between influenza vaccination and SARS-CoV-2 infection and clinical outcomes, aiming to provide evidence for COVID-19 prevention and vaccination promotion. We searched four databases from inception to 10 March, 2021. Random effects and fixed effects models were used to pool odds ratios (ORs) and adjusted estimates with 95% confidence intervals (CIs). We used funnel plots to evaluate the publication bias, I2 statistics to evaluate the heterogeneity, and conducted subgroup analyses. Sixteen observational studies involving 290,327 participants were included. Influenza vaccination was associated with a lower risk of SARS-CoV-2 infection (pooled adjusted OR: 0.86, 95%CI: 0.81–0.91), while not significantly associated with adverse outcomes (intensive care: adjusted OR 0.63, 95%CI: 0.22–1.81; hospitalization: adjusted OR 0.74, 95%CI: 0.51–1.06; mortality: adjusted OR 0.89, 95%CI: 0.73–1.09). Our findings suggest that influenza vaccination is associated with a lower risk of SARS-CoV-2 infection. It is crucial for policy makers to implement strategies on influenza vaccination, for it may also have benefits for COVID-19 prevention.
Collapse
|
30
|
Kunzelmann K. Getting hands on a drug for Covid-19: Inhaled and Intranasal Niclosamide. LANCET REGIONAL HEALTH-EUROPE 2021; 4:100094. [PMID: 33870260 PMCID: PMC8041586 DOI: 10.1016/j.lanepe.2021.100094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Karl Kunzelmann
- Physiological Institute, University of Regensburg, University street 31, D-93053 Regensburg
| |
Collapse
|
31
|
Tripp RA, Stambas J. Intervention Strategies for Seasonal and Emerging Respiratory Viruses with Drugs and Vaccines Targeting Viral Surface Glycoproteins. Viruses 2021; 13:v13040625. [PMID: 33917411 PMCID: PMC8067509 DOI: 10.3390/v13040625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines and therapeutics targeting viral surface glycoproteins are a major component of disease prevention for respiratory viral diseases. Over the years, vaccines have proven to be the most successful intervention for preventing disease. Technological advances in vaccine platforms that focus on viral surface glycoproteins have provided solutions for current and emerging pathogens like SARS-CoV-2, and our understanding of the structural basis for antibody neutralization is guiding the selection of other vaccine targets for respiratory viruses like RSV. This review discusses the role of viral surface glycoproteins in disease intervention approaches.
Collapse
Affiliation(s)
- Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30605, USA
- Correspondence:
| | - John Stambas
- School of Medicine, Geelong Waurn Ponds, Deakin University, Melbourne, VIC 3125, Australia;
| |
Collapse
|
32
|
Forest SK, Orner EP, Goldstein DY, Wirchnianski AS, Bortz RH, Laudermilch E, Florez C, Malonis RJ, Georgiev GI, Vergnolle O, Lo Y, Campbell ST, Barnhill J, Cadoff EM, Lai JR, Chandran K, Weiss LM, Fox AS, Prystowsky MB, Wolgast LR. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Qualitative IgG Assays: The Value of Numeric Reporting. Arch Pathol Lab Med 2021; 145:929-936. [PMID: 33821952 DOI: 10.5858/arpa.2020-0851-sa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG testing is used for serosurveillance and will be important to evaluate vaccination status. Given the urgency to release coronavirus disease 2019 (COVID-19) serology tests, most manufacturers have developed qualitative tests. OBJECTIVE To evaluate clinical performance of six different SARS-CoV-2 IgG assays and their quantitative results to better elucidate the clinical role of serology testing in COVID-19. DESIGN Six SARS-CoV-2 IgG assays were tested using remnant specimens from 190 patients. Sensitivity and specificity were evaluated for each assay with the current manufacturer's cutoff and a lower cutoff. A numeric result analysis and discrepancy analysis were performed Results: The specificity was >93% for all assays, and sensitivity was >80% for all assays (≥ 7 days post-polymerase chain reaction [PCR] testing). Inpatients with more severe disease had higher numeric values compared to health care workers with mild or moderate disease. Several discrepant serology results were those just below the manufacturers cutoff. CONCLUSIONS SARS-CoV-2 IgG antibody testing can aid in the diagnosis of COVID-19 especially with negative PCR. Quantitative COVID-19 IgG results are important to better understand the immunological response and disease course of this novel virus and to assess immunity as part of future vaccination programs.
Collapse
Affiliation(s)
- Stefanie K Forest
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Erika P Orner
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - D Yitzchak Goldstein
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Ariel S Wirchnianski
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Robert H Bortz
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Ethan Laudermilch
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Catalina Florez
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Ryan J Malonis
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - George I Georgiev
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Olivia Vergnolle
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Yungtai Lo
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Sean T Campbell
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Jason Barnhill
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Evan M Cadoff
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Jonathan R Lai
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Kartik Chandran
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Louis M Weiss
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Amy S Fox
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Michael B Prystowsky
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| | - Lucia R Wolgast
- Department of Pathology (Forest, Orner, Goldstein, Campbell, Cadoff, Weiss, Fox, Prystowsky, Wolgast), Department of Microbiology and Immunology (Wirchnianski, Bortz III, Laudermilch, Florez, Chandran), Department of Biochemistry (Malonis, Georgiev, Vergnolle, Lai), and the Department of Epidemiology and Population Medicine (Lo), at Albert Einstein College of Medicine, Bronx, NY; Department of Chemistry and Life Sciences, United States Military Academy, West Point, NY (Florez, Barnhill); Department of Radiology, Uniformed Services University of Health Science, Bethesda, MD (Barnhill)
| |
Collapse
|
33
|
Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021; 9:683. [PMID: 33810287 PMCID: PMC8067309 DOI: 10.3390/microorganisms9040683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Laboratory of Immunobiotechnology, Tucuman CP4000, Argentina
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China;
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Livestock Immunology Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
34
|
Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. THE LANCET. INFECTIOUS DISEASES 2021; 21:1107-1119. [PMID: 33773111 PMCID: PMC7990482 DOI: 10.1016/s1473-3099(21)00127-4] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Accepted: 02/15/2021] [Indexed: 12/13/2022]
Abstract
Background Although several COVID-19 vaccines have been developed so far, they will not be sufficient to meet the global demand. Development of a wider range of vaccines, with different mechanisms of action, could help control the spread of SARS-CoV-2 globally. We developed a protein subunit vaccine against COVID-19 using a dimeric form of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein as the antigen. We aimed to assess the safety and immunogenicity of this vaccine, ZF2001, and determine the appropriate dose and schedule for an efficacy study. Methods We did two randomised, double-blind, placebo-controlled, phase 1 and phase 2 trials. Phase 1 was done at two university hospitals in Chongqing and Beijing, China, and phase 2 was done at the Hunan Provincial Center for Disease Control and Prevention in Xiangtan, China. Healthy adults aged 18–59 years, without a history of SARS-CoV or SARS-CoV-2 infection, an RT-PCR-positive test result for SARS-CoV-2, a history of contact with confirmed or suspected COVID-19 cases, and severe allergies to any component of the vaccine were eligible for enrolment. In phase 1, participants were randomly assigned (2:2:1) to receive three doses of the vaccine (25 μg or 50 μg) or placebo intramuscularly, 30 days apart. In phase 2, participants were randomly assigned (1:1:1:1:1:1) to receive the vaccine (25 μg or 50 μg) or placebo intramuscularly, 30 days apart, in either a two-dose schedule or a three-dose schedule. Investigators, participants, and the laboratory team were masked to group allocation. For phase 1, the primary outcome was safety, measured by the occurrence of adverse events and serious adverse events. For phase 2, the primary outcome was safety and immunogenicity (the seroconversion rate and the magnitude, in geometric mean titres [GMTs], of SARS-CoV-2-neutralising antibodies). Analyses were done on an intention-to-treat and per-protocol basis. These trials are registered with ClinicalTrials.gov (NCT04445194 and NCT04466085) and participant follow-up is ongoing. Findings Between June 22 and July 3, 2020, 50 participants were enrolled into the phase 1 trial and randomly assigned to receive three doses of placebo (n=10), the 25 μg vaccine (n=20), or the 50 μg vaccine (n=20). The mean age of participants was 32·6 (SD 9·4) years. Between July 12 and July 17, 2020, 900 participants were enrolled into the phase 2 trial and randomly assigned to receive two doses of placebo (n=150), 25 μg vaccine (n=150), or 50 μg vaccine (n=150), or three doses of placebo (n=150), 25 μg vaccine (n=150), or 50 μg vaccine (n=150). The mean age of participants was 43·5 (SD 9·2) years. In both phase 1 and phase 2, adverse events reported within 30 days after vaccination were mild or moderate (grade 1 or 2) in most cases (phase 1: six [60%] of ten participants in the placebo group, 14 [70%] of 20 in the 25 μg group, and 18 [90%] of 20 in the 50 μg group; phase 2: 37 [25%] of 150 in the two-dose placebo group, 43 [29%] of 150 in the two-dose 25 μg group, 50 [33%] of 150 in the two-dose 50 μg group, 47 [31%] of 150 in the three-dose placebo group, 72 [48%] of 150 in the three-dose 25 μg group, and 65 [43%] of 150 in the three-dose 50 μg group). In phase 1, two (10%) grade 3 or worse adverse events were reported in the 50 μg group. In phase 2, grade 3 or worse adverse events were reported by 18 participants (four [3%] in the two-dose 25 μg vaccine group, two [1%] in the two-dose 50 μg vaccine group, two [1%] in the three-dose placebo group, four [3%] in the three-dose 25 μg vaccine group, and six [4%] in the three-dose 50 μg vaccine group), and 11 were considered vaccine related (two [1%] in the two-dose 25 μg vaccine group, one [1%] in the two-dose 50 μg vaccine group, one [1%] in the three-dose placebo group, two [1%] in the three-dose 25 μg vaccine group, and five [3%] in the three-dose 50 μg vaccine group); seven participants reported serious adverse events (one [1%] in the two-dose 25 μg vaccine group, one [1%] in the two-dose 50 μg vaccine group, two [1%] in the three-dose placebo group, one [1%] in the three-dose 25 μg vaccine group, and two [1%] in the three-dose 50 μg vaccine group), but none was considered vaccine related. In phase 2, on the two-dose schedule, seroconversion rates of neutralising antibodies 14 days after the second dose were 76% (114 of 150 participants) in the 25 μg group and 72% (108 of 150) in the 50 μg group; on the three-dose schedule, seroconversion rates of neutralising antibodies 14 days after the third dose were 97% (143 of 148 participants) in the 25 μg group and 93% (138 of 148) in the 50 μg group. In the two-dose groups in phase 2, the SARS-CoV-2-neutralising GMTs 14 days after the second dose were 17·7 (95% CI 13·6–23·1) in the 25 μg group and 14·1 (10·8–18·3) in the 50 μg group. In the three-dose groups in phase 2, the SARS-CoV-2-neutralising GMTs 14 days after the third dose were 102·5 (95% CI 81·8–128·5) in the 25 μg group and 69·1 (53·0–90·0) in the 50 μg group. Interpretation The protein subunit vaccine ZF2001 appears to be well tolerated and immunogenic. The safety and immunogenicity data from the phase 1 and 2 trials support the use of the 25 μg dose in a three-dose schedule in an ongoing phase 3 trial for large-scale evaluation of ZF2001's safety and efficacy. Funding National Program on Key Research Project of China, National Science and Technology Major Projects of Drug Discovery, Strategic Priority Research Program of the Chinese Academy of Sciences, and Anhui Zhifei Longcom Biopharmaceutical. Translation For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
|
35
|
Lidbury BA. Ross River Virus Immune Evasion Strategies and the Relevance to Post-viral Fatigue, and Myalgic Encephalomyelitis Onset. Front Med (Lausanne) 2021; 8:662513. [PMID: 33842517 PMCID: PMC8024622 DOI: 10.3389/fmed.2021.662513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Ross River virus (RRV) is an endemic Australian arbovirus, and member of the Alphavirus family that also includes Chikungunya virus (CHIK). RRV is responsible for the highest prevalence of human disease cases associated with mosquito-borne transmission in Australia, and has long been a leading suspect in cases of post-viral fatigue syndromes, with extrapolation of this link to Myalgic Encephalomyelitis (ME). Research into RRV pathogenesis has revealed a number of immune evasion strategies, impressive for a virus with a genome size of 12 kb (plus strand RNA), which resonate with insights into viral pathogenesis broadly. Drawing from observations on RRV immune evasion, mechanisms of relevance to long term idiopathic fatigue are featured as a perspective on infection and eventual ME symptoms, which include considerations of; (1) selective pro-inflammatory gene suppression post antibody-dependent enhancement (ADE) of RRV infection, (2) Evidence from other virus families of immune disruption and evasion post-ADE, and (3) how virally-driven immune evasion may impact on mitochondrial function via target of rapamycin (TOR) complexes. In light of these RRV measures to counter the host immune - inflammatory responses, links to recent discoveries explaining cellular, immune and metabolomic markers of ME will be explored and discussed, with the implications for long-COVID post SARS-CoV-2 also considered. Compelling issues on the connections between virally-induced alterations in cytokine expression, for example, will be of particular interest in light of energy pathways, and how these perturbations manifest clinically.
Collapse
Affiliation(s)
- Brett A Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
36
|
Abstract
Most viral vaccines are based on inducing neutralizing antibodies (NAbs) against the virus envelope or spike glycoproteins. Many viral surface proteins exist as trimers that transition from a pre-fusion state when key NAb epitopes are exposed to a post-fusion form in which the potential for virus-cell fusion no longer exists. For optimal vaccine performance, these viral proteins are often engineered to enhance stability and presentation of these NAb epitopes. The method involves the structure-guided introduction of proline residues at key positions that maintain the trimer in the pre-fusion configuration. We review how this technique emerged during HIV-1 Env vaccine development and its subsequent wider application to other viral vaccines including SARS-CoV-2.
Collapse
Affiliation(s)
- Rogier W Sanders
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
37
|
Klasse PJ, Nixon DF, Moore JP. Immunogenicity of clinically relevant SARS-CoV-2 vaccines in nonhuman primates and humans. SCIENCE ADVANCES 2021; 7:eabe8065. [PMID: 33608249 PMCID: PMC7978427 DOI: 10.1126/sciadv.abe8065] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/22/2021] [Indexed: 05/17/2023]
Abstract
Multiple preventive vaccines are being developed to counter the coronavirus disease 2019 pandemic. The leading candidates have now been evaluated in nonhuman primates (NHPs) and human phase 1 and/or phase 2 clinical trials. Several vaccines have already advanced into phase 3 efficacy trials, while others will do so before the end of 2020. Here, we summarize what is known of the antibody and T cell immunogenicity of these vaccines in NHPs and humans. To the extent possible, we compare how the vaccines have performed, taking into account the use of different assays to assess immunogenicity and inconsistencies in how the resulting data are presented. We also review the outcome of challenge experiments with severe acute respiratory syndrome coronavirus 2 in immunized macaques, while noting variations in the protocols used, including but not limited to the virus challenge doses. Press releases on the outcomes of vaccine efficacy trials are also summarized.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Douglas F Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
38
|
Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 2021; 170:71-82. [PMID: 33421475 PMCID: PMC7788321 DOI: 10.1016/j.addr.2021.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023]
Abstract
With the COVID-19 pandemic now ongoing for close to a year, people all over the world are still waiting for a vaccine to become available. The initial focus of accelerated global research and development efforts to bring a vaccine to market as soon as possible was on novel platform technologies that promised speed but had limited history in the clinic. In contrast, recombinant protein vaccines, with numerous examples in the clinic for many years, missed out on the early wave of investments from government and industry. Emerging data are now surfacing suggesting that recombinant protein vaccines indeed might offer an advantage or complement to the nucleic acid or viral vector vaccines that will likely reach the clinic faster. Here, we summarize the current public information on the nature and on the development status of recombinant subunit antigens and adjuvants targeting SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Jeroen Pollet
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America.
| | - Wen-Hsiang Chen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| | - Ulrich Strych
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX, United States of America
| |
Collapse
|
39
|
He L, Lin X, Wang Y, Abraham C, Sou C, Ngo T, Zhang Y, Wilson IA, Zhu J. Single-component, self-assembling, protein nanoparticles presenting the receptor binding domain and stabilized spike as SARS-CoV-2 vaccine candidates. SCIENCE ADVANCES 2021; 7:eabf1591. [PMID: 33741598 PMCID: PMC7978432 DOI: 10.1126/sciadv.abf1591] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 05/14/2023]
Abstract
Vaccination against SARS-CoV-2 provides an effective tool to combat the COVID-19 pandemic. Here, we combined antigen optimization and nanoparticle display to develop vaccine candidates for SARS-CoV-2. We first displayed the receptor-binding domain (RBD) on three self-assembling protein nanoparticle (SApNP) platforms using the SpyTag/SpyCatcher system. We then identified heptad repeat 2 (HR2) in S2 as the cause of spike metastability, designed an HR2-deleted glycine-capped spike (S2GΔHR2), and displayed S2GΔHR2 on SApNPs. An antibody column specific for the RBD enabled tag-free vaccine purification. In mice, the 24-meric RBD-ferritin SApNP elicited a more potent neutralizing antibody (NAb) response than the RBD alone and the spike with two stabilizing proline mutations in S2 (S2P). S2GΔHR2 elicited twofold higher NAb titers than S2P, while S2GΔHR2 SApNPs derived from multilayered E2p and I3-01v9 60-mers elicited up to 10-fold higher NAb titers. The S2GΔHR2-presenting I3-01v9 SApNP also induced critically needed T cell immunity, thereby providing a promising vaccine candidate.
Collapse
Affiliation(s)
- Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy Ngo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
- Department of Microbiology and Immunology, Temple University, Philadelphia, PA 19140, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Su S, Du L, Jiang S. Learning from the past: development of safe and effective COVID-19 vaccines. Nat Rev Microbiol 2021; 19:211-219. [PMID: 33067570 PMCID: PMC7566580 DOI: 10.1038/s41579-020-00462-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/29/2023]
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has elicited an equally rapid response aiming to develop a COVID-19 vaccine. These efforts are encouraging; however, comprehensive efficacy and safety evaluations are essential in the development of a vaccine, and we can learn from previous vaccine development campaigns. In this Perspective, we summarize examples of vaccine-associated disease enhancement in the history of developing vaccines against respiratory syncytial virus, dengue virus, SARS-CoV and Middle East respiratory syndrome coronavirus, which highlight the importance of a robust safety and efficacy profile, and present recommendations for preclinical and clinical evaluation of COVID-19 vaccine candidates as well as for vaccine design and optimization.
Collapse
Affiliation(s)
- Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/MOH/CAM), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/MOH/CAM), School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
41
|
Oh TK, Song IA, Jeon YT. Statin Therapy and the Risk of COVID-19: A Cohort Study of the National Health Insurance Service in South Korea. J Pers Med 2021; 11:116. [PMID: 33578937 PMCID: PMC7916713 DOI: 10.3390/jpm11020116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/21/2022] Open
Abstract
We aimed to investigate whether statin therapy is associated with the incidence of coronavirus disease 2019 (COVID-19) among the South Korean population. In addition, we examined whether statin therapy affects hospital mortality among COVID-19 patients. The National Health Insurance Service (NHIS)-COVID-19 database in South Korea was used for data extraction for this population-based cohort study. A total of 122,040 adult individuals, with 22,633 (18.5%) in the statin therapy group and 101,697 (91.5%) in the control group, were included in the analysis. Among them, 7780 (6.4%) individuals were diagnosed with COVID-19 and hospital mortality occurred in 251 (3.2%) COVID-19 cases. After propensity score matching, logistic regression analysis showed that the odds of developing COVID-19 were 35% lower in the statin therapy group than in the control group (odds ratio: 0.65, 95% confidence interval: 0.60 to 0.71; p < 0.001). Regarding hospital mortality among COVID-19 patients, the multivariable model indicated that there were no differences between the statin therapy and control groups (odds ratio: 0.74, 95% confidence interval: 0.52 to 1.05; p = 0.094). Statin therapy may have potential benefits for the prevention of COVID-19 in South Korea. However, we found that statin therapy does not affect the hospital mortality of patients who are diagnosed with COVID-19.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (T.K.O.); (I.-A.S.)
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (T.K.O.); (I.-A.S.)
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, Korea; (T.K.O.); (I.-A.S.)
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| |
Collapse
|
42
|
Ismail AA. SARS-CoV-2 (Covid-19): A short update on molecular biochemistry, pathology, diagnosis and therapeutic strategies. Ann Clin Biochem 2021; 59:59-64. [PMID: 33478237 DOI: 10.1177/0004563221992390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ongoing coronavirus (covid-19) pandemic highlights the need for global scientific cooperation to advance our understanding of the immunological, molecular and biochemical mechanisms causing infection by this virus. Better understanding of key processes has allowed the development of vaccines in record time, and of agents with the potential to treat and neutralize current and future coronavirus outbreaks. To date, clinically effective agents for prevention and treatment of covid-19 infections are limited. This review provides a brief synopsis regarding the molecular biology, pathology and laboratory tests commonly used in the diagnosis and prognosis of covid-19, as well as the development of vaccines and therapeutic strategies to manage its current and future mutations.
Collapse
Affiliation(s)
- Adel Aa Ismail
- Retired Consultant in Clinical Biochemistry and Chemical Endocrinology, West Yorkshire, UK
| |
Collapse
|
43
|
Yoo JH. What We Do Know and Do Not Yet Know about COVID-19 Vaccines as of the Beginning of the Year 2021. J Korean Med Sci 2021; 36:e54. [PMID: 33559409 PMCID: PMC7870421 DOI: 10.3346/jkms.2021.36.e54] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), which started at the end of 2019 and has spread worldwide, has remained unabated in 2021. Since non-pharmaceutical interventions including social distancing are facing limitations in controlling COVID-19, additional absolute means to change the trend are necessary. To this end, coronavirus-specific antiviral drugs and vaccines are urgently needed, but for now, the priority is to promote herd immunity through extensive nationwide vaccination campaign. In addition to the vaccines based on the conventional technology such inactivated or killed virus or protein subunit vaccines, several vaccines on the new technological platforms, for example, nucleic acids-based vaccines delivered by viral carriers, nanoparticles, or plasmids as a medium were introduced in this pandemic. In addition to achieving sufficient herd immunity with vaccination, the development of antiviral treatments that work specifically against COVID-19 will also be necessary to terminate the epidemic completely.
Collapse
Affiliation(s)
- Jin Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary's Hospital, Bucheon, Korea
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
44
|
Abstract
Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity.
Collapse
Affiliation(s)
- Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Laferl H, Kelani H, Seitz T, Holzer B, Zimpernik I, Steinrigl A, Schmoll F, Wenisch C, Allerberger F. An approach to lifting self-isolation for health care workers with prolonged shedding of SARS-CoV-2 RNA. Infection 2021; 49:95-101. [PMID: 33025521 PMCID: PMC7538033 DOI: 10.1007/s15010-020-01530-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/16/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE According to the European Public Health Authority guidance for ending isolation in the context of COVID-19, a convalescent healthcare worker (HCW) can end their isolation at home and resume work upon clinical improvement and two negative RT-PCR tests from respiratory specimens obtained at 24-h intervals at least 8 days after the onset of symptoms. However, convalescent HCWs may shed SARS-CoV-2 viral RNA for prolonged periods. METHODS 40 healthy HCWs off work because of ongoing positive RT-PCR results in combined nasopharyngeal (NP) and oropharyngeal (OP) swabs following SARS-CoV-2 infection were invited to participate in this study. These HCWs had been in self-isolation because of a PCR-confirmed SARS-CoV-2 infection. NP and OP swabs as well as a blood sample were collected from each participant. RT-PCR and virus isolation was performed with each swab sample and serum neutralization test as well as two different ELISA tests were performed on all serum samples. RESULTS No viable virions could be detected in any of 29 nasopharyngeal and 29 oropharyngeal swabs taken from 15 long-time carriers. We found SARSCoV- 2 RNA in 14/29 nasopharyngeal and 10/29 oropharyngeal swabs obtained from screening 15 HCWs with previous COVID-19 up to 55 days after symptom onset. Six (40%) of the 15 initially positive HCWs converted to negative and later reverted to positive again according to their medical records. All but one HCW, a healthy volunteer banned from work, showed the presence of neutralizing antibodies in concomitantly taken blood samples. Late threshold cycle (Ct) values in RT-PCR [mean 37.4; median 37.3; range 30.8-41.7] and the lack of virus growth in cell culture indicate that despite the positive PCR results no infectivity remained. CONCLUSION We recommend lifting isolation if the RT-PCR Ct-value of a naso- or oropharyngeal swab sample is over 30. Positive results obtained from genes targeted with Ct-values > 30 correspond to non-viable/noninfectious particles that are still detected by RT-PCR. In case of Ct-values lower than 30, a blood sample from the patient should be tested for the presence of neutralizing antibodies. If positive, non-infectiousness can also be assumed.
Collapse
Affiliation(s)
- H Laferl
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Kaiser Franz Josef Hospital, 1100, Vienna, Austria.
| | - H Kelani
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Kaiser Franz Josef Hospital, 1100, Vienna, Austria
| | - T Seitz
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Kaiser Franz Josef Hospital, 1100, Vienna, Austria
| | - B Holzer
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, 2340, Mödling, Austria
| | - I Zimpernik
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, 2340, Mödling, Austria
| | - A Steinrigl
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, 2340, Mödling, Austria
| | - F Schmoll
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, 2340, Mödling, Austria
| | - C Wenisch
- 4th Medical Department with Infectious Diseases and Tropical Medicine, Kaiser Franz Josef Hospital, 1100, Vienna, Austria
| | - F Allerberger
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control Mödling, 2340, Mödling, Austria
| |
Collapse
|
46
|
Oh TK, Song IA, Song KH, Jeon YT. Comparison of All-Cause Mortality Between Individuals With COVID-19 and Propensity Score-Matched Individuals Without COVID-19 in South Korea. Open Forum Infect Dis 2021; 8:ofab057. [PMID: 33937433 PMCID: PMC7928610 DOI: 10.1093/ofid/ofab057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Background We compared all-cause mortality between individuals in South Korea with and without coronavirus disease 2019 (COVID-19) using propensity score (PS) matching. Methods This population-based cohort study used data from the National Health Insurance Service COVID-19 cohort database. In the database, we included individuals (COVID-19 patients, control population, and test-negative individuals) aged 20 years or older, regardless of hospitalization. The primary end point was all-cause mortality between January 1, 2020, and August 27, 2020. Results A total of 328 374 adults were included in the study: 7713 and 320 660 in the COVID-19 group and the control group. After PS matching, a total of 15 426 individuals (7713 per group) were included in the analysis. All-cause mortality was 3.2% (248/7713) and 1.6% (126/7713) in the COVID-19 group and the control group, respectively. In Cox regression analysis after PS matching, the risk of death in the COVID-19 group was twice as high (hazard ratio, 2.00; 95% CI, 1.61–2.48; P < .001) as that in the control group. Among patients aged ≥60 years, the COVID-19 group had a 2.32-fold higher all-cause mortality compared with the control group, while statistically significant differences were not observed in the age groups 20–39 years (P = .339) and 40–59 years (P = .562). Conclusions In South Korea, all-cause mortality was twice as high among individuals with COVID-19 as among those with similar underlying risks, primarily because of the elevated COVID-19-associated mortality in those aged ≥60 years. Our results highlight the need for prevention of COVID-19 with respect to mortality as a public health outcome.
Collapse
Affiliation(s)
- Tak Kyu Oh
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - In-Ae Song
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoung-Ho Song
- Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Young-Tae Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Anesthesiology and Pain Medicine, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
47
|
Kabak M, Çil B, Hocanlı I. Relationship between leukocyte, neutrophil, lymphocyte, platelet counts, and neutrophil to lymphocyte ratio and polymerase chain reaction positivity. Int Immunopharmacol 2021; 93:107390. [PMID: 33529907 PMCID: PMC7846459 DOI: 10.1016/j.intimp.2021.107390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/12/2023]
Abstract
Background Exposure to viral or bacterial pathogens increases the number of neutrophils with a relative decrease in lymphocytes, leading to elevated neutrophil to lymphocyte ratio (NLR). This study aimed to investigate whether differences in NLR among real-time polymerase chain reaction (PCR)-positive and -negative patients presenting with a prediagnosis of COVID-19 pneumonia could be useful in the differential diagnosis. Methods The study included 174 patients admitted because of suspected COVID-19 infection between March and April 2020. Patients were divided into two groups: PCR-negative and PCR-positive. Hemogram, NLR, urea, creatinine, aspartate aminotransferase, alanine aminotransferase, bilirubin, ferritin, D-dimer, C-reactive protein, procalcitonin, troponin, and coagulation parameters were analyzed. Results On comparison of laboratory parameters between both groups at presentation, PCR-positive patients were significantly more likely to have leukopenia (p < 0.001), thrombocytopenia (p = 0.006), neutropenia (p < 0.001), lymphopenia (p = 0.001), and increased NLR (p = 0.003). Furthermore, PCR-positive patients showed significant elevations of ferritin (p = 0.012) and procalcitonin (p = 0.038) and significant lower potassium levels (p = 0.05). Conclusion COVID-19 pneumonia has become a major global health problem. Early diagnosis and treatment of these patients are crucial, as COVID-19 pneumonia shows a rapid progression in most cases. Thus, leukopenia, thrombocytopenia, elevated NLR, and elevated ferritin may be useful as supplementary diagnostic tests in these patients, which may allow early initiation of treatment and may contribute to preventing progression in patients with abnormal results.
Collapse
Affiliation(s)
- M Kabak
- Mardin State Hospital, Department of Chest Disease, Mardin, Turkey.
| | - B Çil
- Mardin State Hospital, Department of Chest Disease, Mardin, Turkey.
| | - I Hocanlı
- Harran University Medical Faculty, Department of Chest Disease, Sanliurfa, Turkey.
| |
Collapse
|
48
|
Mortality, Severity, and Hospital Admission among COVID-19 Patients with ACEI/ARB Use: A Meta-Analysis Stratifying Countries Based on Response to the First Wave of the Pandemic. Healthcare (Basel) 2021; 9:healthcare9020127. [PMID: 33525596 PMCID: PMC7912160 DOI: 10.3390/healthcare9020127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022] Open
Abstract
Background: The use of angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) is controversial for treating COVID-19 patients. We aimed to estimate pooled risks of mortality, disease severity, and hospitalization associated with ACEI/ARB use and stratify them by country and country clusters. Methods: We conducted a search in various databases through 4 July 2020 and then applied random-effects models to estimate pooled risks (ORp) across stratifications by country cluster. Clusters were chosen to reflect outbreak times (China followed by Korea/Italy, others subsequently) and mobility restrictions (China and Denmark/France/Spain with stricter lockdowns than the UK/US). Results: Overall analysis showed no increase in mortality; however, a statistical increase in mortality was seen in the US/UK cluster with ORp = 1.28 [95% CI = 1.04; 1.56] and a decrease in China with ORp = 0.65 [95% CI = 0.43; 0.96] and France with OR = 0.31 [95% CI = 0.14; 0.69]. Severity and hospitalization were not statistically significant in the analysis; however, several associations were seen in specific countries but not in country clusters. Conclusion: The country-cluster meta-analysis provided a reasonable explanation for COVID-19 mortality among ACEI/ARB users. The analysis did not explain differences in severity and suggested the involvement of other factors. Hospitalization findings among ACEI/ARB users may be considered informative as they may have been subjected to clinical decisions and hospital-bed availability.
Collapse
|
49
|
Oronsky B, Gruber HE, Reiners W, Reid TR. A short discussion about the SARS-CoV-2 mRNA-1273 vaccine. Int J Infect Dis 2021; 104:532-533. [PMID: 33493690 PMCID: PMC7825869 DOI: 10.1016/j.ijid.2021.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
The COVID-19 global pandemic has prompted accelerated vaccine development efforts. This perspective discusses the importance of SARS-CoV-2 vaccine candidates’ recruitment of cellular T-cell immunity and encourages industry to increasingly investigate and publish parameters related to cellular immunity in their research reports.
Collapse
Affiliation(s)
| | | | | | - Tony R Reid
- EpicentRx Inc., La Jolla, CA, USA; Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
50
|
Fiorini AC, Scorza CA, de Almeida ACG, Fonseca MC, Finsterer J, Fonseca FL, Scorza FA. Antiviral activity of Brazilian Green Propolis extract against SARS-CoV-2 (Severe Acute Respiratory Syndrome - Coronavirus 2) infection: case report and review. Clinics (Sao Paulo) 2021; 76:e2357. [PMID: 33503192 PMCID: PMC7811834 DOI: 10.6061/clinics/2021/e2357] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ana C. Fiorini
- Departamento de Fonoaudiologia. Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR. Programa de Estudos Pos-Graduado em Fonoaudiologia, Pontificia Universidade Catolica de Sao Paulo (PUC-SP), Sao Paulo, SP, BR
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima.” Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | - Carla A. Scorza
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima.” Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | - Antonio-Carlos G. de Almeida
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima.” Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Laboratorio de Neurociencia Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de Sao Joao del-Rei (UFSJ), Minas Gerais, MG, BR
| | - Marcelo C.M. Fonseca
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima.” Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Departamento de Ginecologia. Nucleo de Avaliacao de Tecnologias em Saude. Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | - Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria
| | - Fernando L.A. Fonseca
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima.” Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Departamento de Patologia e Analises Clinicas, Programa de Pos-graduacao em Ciencias da Saude da FMABC, Santo André, SP, BR
- Departamento de Ciencias Farmaceuticas. Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP, BR
| | - Fulvio A. Scorza
- Centro de Neurociencias e Saude da Mulher “Professor Geraldo Rodrigues de Lima.” Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- Disciplina de Neurociencia. Escola Paulista de Medicina / Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|