1
|
Dharan R, Sorkin R. Biophysical aspects of migrasome organelle formation and their diverse cellular functions. Bioessays 2024; 46:e2400051. [PMID: 38922978 DOI: 10.1002/bies.202400051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
The transient cellular organelles known as migrasomes, which form during cell migration along retraction fibers, have emerged as a crutial factor in various fundamental cellular processes and pathologies. These membrane vesicles originate from local membrane swellings, encapsulate specific cytoplasmic content, and are eventually released to the extracellular environment or taken up by recipient cells. Migrasome biogenesis entails a sequential membrane remodeling process involving a complex interplay between various molecular factors such as tetraspanin proteins, and mechanical properties like membrane tension and bending rigidity. In this review, we summarize recent studies exploring the mechanism of migrasome formation. We emphasize how physical forces, together with molecular factors, shape migrasome biogenesis, and detail the involvement of migrasomes in various cellular processes and pathologies. A comprehensive understanding of the exact mechanism underlying migrasome formation and the identification of key molecules involved hold promise for advancing their therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Dharan R, Sorkin R. Tetraspanin proteins in membrane remodeling processes. J Cell Sci 2024; 137:jcs261532. [PMID: 39051897 DOI: 10.1242/jcs.261532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Membrane remodeling is a fundamental cellular process that is crucial for physiological functions such as signaling, membrane fusion and cell migration. Tetraspanins (TSPANs) are transmembrane proteins of central importance to membrane remodeling events. During these events, TSPANs are known to interact with themselves and other proteins and lipids; however, their mechanism of action in controlling membrane dynamics is not fully understood. Since these proteins span the membrane, membrane properties such as rigidity, curvature and tension can influence their behavior. In this Review, we summarize recent studies that explore the roles of TSPANs in membrane remodeling processes and highlight the unique structural features of TSPANs that mediate their interactions and localization. Further, we emphasize the influence of membrane curvature on TSPAN distribution and membrane domain formation and describe how these behaviors affect cellular functions. This Review provides a comprehensive perspective on the multifaceted function of TSPANs in membrane remodeling processes and can help readers to understand the intricate molecular mechanisms that govern cellular membrane dynamics.
Collapse
Affiliation(s)
- Raviv Dharan
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raya Sorkin
- School of Chemistry , Raymond & Beverly Sackler Faculty of Exact Sciences , Tel Aviv University, 6997801, Tel Aviv, Israel
- Center for Physics and Chemistry of Living Systems , Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
3
|
Sun M, Chen Z. Unveiling the Complex Role of Exosomes in Alzheimer's Disease. J Inflamm Res 2024; 17:3921-3948. [PMID: 38911990 PMCID: PMC11193473 DOI: 10.2147/jir.s466821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative illness, characterized by memory loss and cognitive decline, accounting for 60-80% of dementia cases. AD is characterized by senile plaques made up of amyloid β (Aβ) protein, intracellular neurofibrillary tangles caused by hyperphosphorylation of tau protein linked with microtubules, and neuronal loss. Currently, therapeutic treatments and nanotechnological developments are effective in treating the symptoms of AD, but a cure for the illness has not yet been found. Recently, the increased study of extracellular vesicles (EVs) has led to a growing awareness of their significant involvement in neurodegenerative disorders, including AD. Exosomes are small extracellular vesicles that transport various components including messenger RNAs, non-coding RNAs, proteins, lipids, DNA, and other bioactive compounds from one cell to another, facilitating information transmission and material movement. There is growing evidence indicating that exosomes have complex functions in AD. Exosomes may have a dual role in Alzheimer's disease by contributing to neuronal death and also helping to alleviate the pathological progression of the disease. Therefore, the primary aim of this review is to outline the updated understandings on exosomes biogenesis and many functions of exosomes in the generation, conveyance, distribution, and elimination of hazardous proteins related to Alzheimer's disease. This review is intended to provide novel insights for understanding the development, specific treatment, and early detection of Alzheimer's disease.
Collapse
Affiliation(s)
- Mingyue Sun
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| | - Zhuoyou Chen
- Department of Neurology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, 213000, People’s Republic of China
| |
Collapse
|
4
|
Inwood SN, Harrop TWR, Shields MW, Goldson SL, Dearden PK. Immune system modulation & virus transmission during parasitism identified by multi-species transcriptomics of a declining insect biocontrol system. BMC Genomics 2024; 25:311. [PMID: 38532315 DOI: 10.1186/s12864-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Morgan W Shields
- BioProtection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Gabdoulkhakova AG, Mingaleeva RN, Romozanova AM, Sagdeeva AR, Filina YV, Rizvanov AA, Miftakhova RR. Immunology of SARS-CoV-2 Infection. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:65-83. [PMID: 38467546 DOI: 10.1134/s0006297924010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 03/13/2024]
Abstract
According to the data from the World Health Organization, about 800 million of the world population had contracted coronavirus infection caused by SARS-CoV-2 by mid-2023. Properties of this virus have allowed it to circulate in the human population for a long time, evolving defense mechanisms against the host immune system. Severity of the disease depends largely on the degree of activation of the systemic immune response, including overstimulation of macrophages and monocytes, cytokine production, and triggering of adaptive T- and B-cell responses, while SARS-CoV-2 evades the immune system actions. In this review, we discuss immune responses triggered in response to the SARS-CoV-2 virus entry into the cell and malfunctions of the immune system that lead to the development of severe disease.
Collapse
Affiliation(s)
- Aida G Gabdoulkhakova
- Kazan Federal University, Kazan, 420008, Russia.
- Kazan State Medical Academy - Branch Campus of the Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Health of the Russian Federation, Kazan, 420012, Russia
| | | | | | | | | | - Albert A Rizvanov
- Kazan Federal University, Kazan, 420008, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, Kazan, 420111, Russia
| | | |
Collapse
|
6
|
Datta S, Chen DY, Tavares AH, Reyes-Robles T, Ryu KA, Khan N, Bechtel TJ, Bertoch JM, White CH, Hazuda DJ, Vora KA, Hett EC, Fadeyi OO, Oslund RC, Emili A, Saeed M. High-resolution photocatalytic mapping of SARS-CoV-2 spike interactions on the cell surface. Cell Chem Biol 2023; 30:1313-1322.e7. [PMID: 37499664 DOI: 10.1016/j.chembiol.2023.06.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023]
Abstract
Identifying virus-host interactions on the cell surface can improve our understanding of viral entry and pathogenesis. SARS-CoV-2, the causative agent of the COVID-19 disease, uses ACE2 as a receptor to enter cells. Yet the full repertoire of cell surface proteins that contribute to viral entry is unknown. We developed a photocatalyst-based viral-host protein microenvironment mapping platform (ViraMap) to probe the molecular neighborhood of the SARS-CoV-2 spike protein on the human cell surface. Application of ViraMap to ACE2-expressing cells captured ACE2, the established co-receptor NRP1, and several novel cell surface proteins. We systematically analyzed the relevance of these candidate proteins to SARS-CoV-2 entry by knockdown and overexpression approaches in pseudovirus and authentic infection models and identified PTGFRN and EFNB1 as bona fide viral entry factors. Our results highlight additional host targets that participate in SARS-CoV-2 infection and showcase ViraMap as a powerful platform for defining viral interactions on the cell surface.
Collapse
Affiliation(s)
- Suprama Datta
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA; Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Da-Yuan Chen
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Alexander H Tavares
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Tamara Reyes-Robles
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Keun Ah Ryu
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Nazimuddin Khan
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA
| | - Tyler J Bechtel
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Jayde M Bertoch
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Cory H White
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | - Daria J Hazuda
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA; Department of Infectious Diseases and Vaccines Research, Merck & Co., Inc, West Point, PA 19486, USA
| | - Kalpit A Vora
- Department of Infectious Diseases and Vaccines Research, Merck & Co., Inc, West Point, PA 19486, USA
| | - Erik C Hett
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA
| | | | - Rob C Oslund
- Merck Exploratory Science Center, Merck & Co., Inc, Cambridge, MA 02141, USA.
| | - Andrew Emili
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; Center for Network Systems Biology, Boston University, Boston, MA 02118, USA.
| | - Mohsan Saeed
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
8
|
Mei X, Qiao P, Ma H, Qin S, Song X, Zhao Q, Shen D. Bombyx mori Tetraspanin A (BmTsp.A) is a facilitator in BmNPV invasion by regulating apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104736. [PMID: 37207976 DOI: 10.1016/j.dci.2023.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
BmTsp.A (Bombyx mori Tetraspanin A) is one of the four transmembrane proteins which are capable to regulate multiple aspects of the immune response and are involved in various stages of viral invasion of the hosts. This study focused on the sequence features, analysis of expression pattern, as well as the effect of BmTsp.A on BmNPV (Bombyx mori nucleopolyhedrovirus) infection in the apoptotic pathway. BmTsp.A features the typical tetraspanins family, including four transmembrane domains and a major large extracellular loop domain. It is highly expressed specifically in the malpighian tubes, and its expression is increased by BmNPV induction for 48 h and 72 h. Overexpression and RNAi (RNA interference) mediated by siRNA reveal that BmTsp.A can promote the infection and replication of the virus. In addition, the overexpression of BmTsp.A regulates BmNPV-induced apoptosis, leading to changes in the expression of apoptosis-related genes and thus affecting viral proliferation. When subjected to stimulation by BmNPV infection, on the one hand, BmTsp.A inhibits Bmp53 through a Caspase-dependent pathway, which consequently promotes the expression of Bmbuffy, thereby activating BmICE to inhibit apoptosis and causing the promotion of viral proliferation. On the other hand, BmTsp.A inhibits the expression of BmPTEN and BmPkc through the phosphatidylinositol 3 kinase (PI3K)/protein kinaseB(AKT) signaling pathway, thus affecting the regulation of apoptosis. To summarize, our results demonstrate that BmTsp.A promotes viral infection and replication by inhibiting apoptosis, which is fundamental for understanding the pathogenesis of BmNPV and the immune defense mechanism of silkworm.
Collapse
Affiliation(s)
- Xianghan Mei
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| | - Peitong Qiao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| | - Hengheng Ma
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| | - Siyu Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| | - Xia Song
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, China.
| |
Collapse
|
9
|
Dehler CE, Boudinot P, Collet B, Martin SM. Phylogeny and expression of tetraspanin CD9 paralogues in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104735. [PMID: 37187444 DOI: 10.1016/j.dci.2023.104735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
CD9 is a member of the tetraspanin family, which is characterised by a unique domain structure and conserved motifs. In mammals, CD9 is found in tetraspanin-enriched microdomains (TEMs) on the surface of virtually every cell type. CD9 has a wide variety of roles, including functions within the immune system. Here we show the first in-depth analysis of the cd9 gene family in salmonids, showing that this gene has expanded to six paralogues in three groups (cd9a, cd9b, cd9c) through whole genome duplication events. We suggest that through genome duplications, cd9 has undergone subfunctionalisation in the paralogues and that cd9c1 and cd9c2 in particular are involved in antiviral responses in salmonid fish. We show that these paralogues are significantly upregulated in parallel to classic interferon-stimulated genes (ISGs) active in the antiviral response. Expression analysis of cd9 may therefore become an interesting target to assess teleost responses to viruses.
Collapse
Affiliation(s)
- Carola E Dehler
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78350, Jouy-en-Josas, France
| | - SamuelA M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
10
|
El-Maradny YA, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic factors behind long-COVID: I. Prevalence of the extracellular vesicles. J Cell Biochem 2023; 124:656-673. [PMID: 37126363 DOI: 10.1002/jcb.30415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
- Biological Science Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Cortes-Galvez D, Dangerfield JA, Metzner C. Extracellular Vesicles and Their Membranes: Exosomes vs. Virus-Related Particles. MEMBRANES 2023; 13:397. [PMID: 37103824 PMCID: PMC10146078 DOI: 10.3390/membranes13040397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Cells produce nanosized lipid membrane-enclosed vesicles which play important roles in intercellular communication. Interestingly, a certain type of extracellular vesicle, termed exosomes, share physical, chemical, and biological properties with enveloped virus particles. To date, most similarities have been discovered with lentiviral particles, however, other virus species also frequently interact with exosomes. In this review, we will take a closer look at the similarities and differences between exosomes and enveloped viral particles, with a focus on events taking place at the vesicle or virus membrane. Since these structures present an area with an opportunity for interaction with target cells, this is relevant for basic biology as well as any potential research or medical applications.
Collapse
Affiliation(s)
- Daniela Cortes-Galvez
- AG Histology and Embryology, Institute of Morphology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | | |
Collapse
|
12
|
Hysenaj L, Little S, Kulhanek K, Magnen M, Bahl K, Gbenedio OM, Prinz M, Rodriguez L, Andersen C, Rao AA, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Mick E, Khalid MM, Taha TY, Kumar R, Li JZ, Ding VW, Matsumoto S, Maishan M, Sreekumar B, Simoneau C, Nazarenko I, Tomlinson MG, Khan K, von Gottberg A, Sigal A, Looney MR, Fragiadakis GK, Jablons DM, Langelier CR, Matthay M, Krummel M, Erle DJ, Combes AJ, Sil A, Ott M, Kratz JR, Roose JP. SARS-CoV-2 infection of airway organoids reveals conserved use of Tetraspanin-8 by Ancestral, Delta, and Omicron variants. Stem Cell Reports 2023; 18:636-653. [PMID: 36827975 PMCID: PMC9948283 DOI: 10.1016/j.stemcr.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Ancestral SARS coronavirus-2 (SARS-CoV-2) and variants of concern (VOC) caused a global pandemic with a spectrum of disease severity. The mechanistic explaining variations related to airway epithelium are relatively understudied. Here, we biobanked airway organoids (AO) by preserving stem cell function. We optimized viral infection with H1N1/PR8 and comprehensively characterized epithelial responses to SARS-CoV-2 infection in phenotypically stable AO from 20 different subjects. We discovered Tetraspanin-8 (TSPAN8) as a facilitator of SARS-CoV-2 infection. TSPAN8 facilitates SARS-CoV-2 infection rates independently of ACE2-Spike interaction. In head-to-head comparisons with Ancestral SARS-CoV-2, Delta and Omicron VOC displayed lower overall infection rates of AO but triggered changes in epithelial response. All variants shared highest tropism for ciliated and goblet cells. TSPAN8-blocking antibodies diminish SARS-CoV-2 infection and may spur novel avenues for COVID-19 therapy.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Samantha Little
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Melia Magnen
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kriti Bahl
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Oghenekevwe M Gbenedio
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Morgan Prinz
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Lauren Rodriguez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher Andersen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Arkal Rao
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alan Shen
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Leonard C Lupin-Jimenez
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA
| | - Luke R Bonser
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Nina K Serwas
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mir M Khalid
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Taha Y Taha
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renuka Kumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jack Z Li
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Vivianne W Ding
- Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shotaro Matsumoto
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mazharul Maishan
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bharath Sreekumar
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Camille Simoneau
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Khajida Khan
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa; SAMRC Antibody Immunity Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa; School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa; Max Planck Institute for Infection Biology, Berlin, Germany; Centre for the AIDS Program of Research, Durban, South Africa
| | - Mark R Looney
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Gabriela K Fragiadakis
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David M Jablons
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Michael Matthay
- Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA; Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew Krummel
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Division of Pulmonary and Critical Care, San Francisco, San Francisco, CA, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Melanie Ott
- Gladstone Institute of Virology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute COVID-19 Research Group, University of California, San Francisco, San Francisco, CA, USA
| | - Johannes R Kratz
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, USA; Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Karam J, Blanchet FP, Vivès É, Boisguérin P, Boudehen YM, Kremer L, Daher W. Mycobacterium abscessus alkyl hydroperoxide reductase C promotes cell invasion by binding to tetraspanin CD81. iScience 2023; 26:106042. [PMID: 36818301 PMCID: PMC9929602 DOI: 10.1016/j.isci.2023.106042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium abscessus (Mab) is an increasingly recognized pulmonary pathogen. How Mab is internalized by macrophages and establishes infection remains unknown. Here, we show that Mab uptake is significantly reduced in macrophages pre-incubated with neutralizing anti-CD81 antibodies or in cells in which the large extracellular loop (LEL) of CD81 has been deleted. Saturation of Mab with either soluble GST-CD81-LEL or CD81-LEL-derived peptides also diminished internalization of the bacilli. The mycobacterial alkyl hydroperoxide reductase C (AhpC) was unveiled as a major interactant of CD81-LEL. Pre-exposure of macrophages with soluble AhpC inhibited mycobacterial uptake whereas overexpression of AhpC in Mab enhanced its internalization. Importantly, pre-incubation of macrophages with anti-CD81-LEL antibodies inhibited phagocytosis of AhpC-coated beads, indicating that AhpC is a direct interactant of CD81-LEL. Conditional depletion of AhpC in Mab correlated with decreased internalization of Mab. These compelling data unravel a previously unexplored role for CD81/AhpC to promote uptake of pathogenic mycobacteria by host cells.
Collapse
Affiliation(s)
- Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Fabien P. Blanchet
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Éric Vivès
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR, 9214 Montpellier, France
| | - Prisca Boisguérin
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR, 9214 Montpellier, France
| | - Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
14
|
Malla R, Kamal MA. Tetraspanin-enriched Microdomain Containing CD151, CD9, and TSPAN 8 - Potential Mediators of Entry and Exit Mechanisms in Respiratory Viruses Including SARS-CoV-2. Curr Pharm Des 2022; 28:3649-3657. [PMID: 36173052 DOI: 10.2174/1381612828666220907105543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 01/28/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, the Hubei region of China, has become a pandemic worldwide. It can transmit through droplets and enter via oral, nasal, and eye mucous membranes. It consists of single-stranded RNA (positive-sense), nonstructural proteins including enzymes and transcriptional proteins, and structural proteins such as Spike, Membrane, Envelope, and Nucleocapsid -proteins. SARS-CoV-2 mediates S-proteins entry and exit via binding to host cell surface proteins like tetraspanins. The transmembrane tetraspanins, CD151, CD9, and tetraspanin 8 (TSPAN8), facilitate the entry of novel coronaviruses by scaffolding host cell receptors and proteases. Also, CD151 was reported to increase airway hyperresponsiveness to calcium and nuclear viral export signaling. They may facilitate entry and exit by activating the serine proteases required to prime S-proteins in tetraspanin-enriched microdomains (TEMs). This article updates recent advances in structural proteins, their epitopes and putative receptors, and their regulation by proteases associated with TEMs. This review furnishes recent updates on the role of CD151 in the pathophysiology of SARS-CoV-2. We describe the role of CD151 in a possible mechanism of entry and exit in the airway, a major site for infection of SARS-CoV-2. We also updated current knowledge on the role of CD9 and TSPAN 8 in the entry and exit mechanism of coronaviruses. Finally, we discussed the importance of some small molecules which target CD151 as possible targeted therapeutics for COVID-19. In conclusion, this study could identify new targets and specific therapeutics to control emerging virus infections.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Ashulia, Bangladesh.,Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham NSW 2770, Australia
| |
Collapse
|
15
|
Berry F, Morin‐Dewaele M, Majidipur A, Jamet T, Bartier S, Ignjatovic E, Toniutti D, Gaspar Lopes J, Soyeux‐Porte P, Maillé P, Saldana C, Brillet R, Ahnou N, Softic L, Couturaud B, Huet É, Ahmed‐Belkacem A, Fourati S, Louis B, Coste A, Béquignon É, de la Taille A, Destouches D, Vacherot F, Pawlotsky J, Firlej V, Bruscella P. Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. J Extracell Vesicles 2022; 11:e12269. [PMID: 36271885 PMCID: PMC9587708 DOI: 10.1002/jev2.12269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.
Collapse
Affiliation(s)
- François Berry
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Margot Morin‐Dewaele
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Amene Majidipur
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Thibaud Jamet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Sophie Bartier
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Eva Ignjatovic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Donatella Toniutti
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Jeanne Gaspar Lopes
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Soyeux‐Porte
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Maillé
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of PathologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Carolina Saldana
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of OncologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Rozenn Brillet
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Nazim Ahnou
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Laurent Softic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Benoit Couturaud
- Institute of Chemistry and Materials (ICMPE)Univ Paris Est Creteil, CNRS UMR7182CréteilFrance
| | - Éric Huet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Abdelhakim Ahmed‐Belkacem
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Slim Fourati
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - André Coste
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Émilie Béquignon
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Alexandre de la Taille
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of UrologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Damien Destouches
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Francis Vacherot
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Jean‐Michel Pawlotsky
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Virginie Firlej
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Patrice Bruscella
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| |
Collapse
|
16
|
Becic A, Leifeld J, Shaukat J, Hollmann M. Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Front Mol Neurosci 2022; 14:801882. [PMID: 35046772 PMCID: PMC8761850 DOI: 10.3389/fnmol.2021.801882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Tetraspanins (Tspans) comprise a membrane protein family structurally defined by four transmembrane domains and intracellular N and C termini that is found in almost all cell types and tissues of eukaryotes. Moreover, they are involved in a bewildering multitude of diverse biological processes such as cell adhesion, motility, protein trafficking, signaling, proliferation, and regulation of the immune system. Beside their physiological roles, they are linked to many pathophysiological phenomena, including tumor progression regulation, HIV-1 replication, diabetes, and hepatitis. Tetraspanins are involved in the formation of extensive protein networks, through interactions not only with themselves but also with numerous other specific proteins, including regulatory proteins in the central nervous system (CNS). Interestingly, recent studies showed that Tspan7 impacts dendritic spine formation, glutamatergic synaptic transmission and plasticity, and that Tspan6 is correlated with epilepsy and intellectual disability (formerly known as mental retardation), highlighting the importance of particular tetraspanins and their involvement in critical processes in the CNS. In this review, we summarize the current knowledge of tetraspanin functions in the brain, with a particular focus on their impact on glutamatergic neurotransmission. In addition, we compare available resolved structures of tetraspanin family members to those of auxiliary proteins of glutamate receptors that are known for their modulatory effects.
Collapse
|
17
|
Liao L, Wu Z, Chen W, Zhang H, Li A, Yan Y, Xie Z, Li H, Lin W, Ma J, Zhang X, Xie Q. Anti-CD81 antibody blocks vertical transmission of avian leukosis virus subgroup J. Vet Microbiol 2021; 264:109293. [PMID: 34883334 DOI: 10.1016/j.vetmic.2021.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022]
Abstract
Control of ALV-J in breed of chicken is still a serious issue that need more attention to be paid. Vertical transmission of ALV-J often give rise to more adverse pathogenicity. However, the way to elimination of ALV-J underlying vertical transmission remains not-well understood. In addition, effective vaccines or drugs have not been developed to prevent and control the transmission of ALV-J so far. CD81, a member of the tetraspanins superfamily, plays important roles in regulating membrane proteins, facilitating cells adhesion or fusion, and also participates in viral infection. The purpose of this study was to investigate whether antibodies against certain tetraspanins affect infection of ALV-J. Here, we showed that anti-CD81 antibody could inhibit viral RNA and protein level. We also found that anti-CD81 antibody interacts with viral protein p27, p32 and gp37. Moreover, treatment with antibody to CD81 can effectively prevent the vertical transmission of ALV-J in animal model. Collectively, current study provides new avenues for the control of ALV-J transmission.
Collapse
Affiliation(s)
- Liqin Liao
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; College of Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Zhiqiang Wu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, 527400, Guangdong, PR China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; College of Science and Engineering, Jinan University, Guangzhou, 510632, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA
| | - Aijun Li
- College of Science and Engineering, Jinan University, Guangzhou, 510632, PR China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Zi Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Hongxin Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China
| | - Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China.
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Lab of Agro Animal Genomics and Molecular Breeding, Guangzhou, 510642, PR China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou, 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, 510642, PR China.
| |
Collapse
|
18
|
Mikuličić S, Strunk J, Florin L. HPV16 Entry into Epithelial Cells: Running a Gauntlet. Viruses 2021; 13:v13122460. [PMID: 34960729 PMCID: PMC8706107 DOI: 10.3390/v13122460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus–vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.
Collapse
|
19
|
New C, Lee ZY, Tan KS, Wong AHP, Wang DY, Tran T. Tetraspanins: Host Factors in Viral Infections. Int J Mol Sci 2021; 22:11609. [PMID: 34769038 PMCID: PMC8583825 DOI: 10.3390/ijms222111609] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Tetraspanins are transmembrane glycoproteins that have been shown increasing interest as host factors in infectious diseases. In particular, they were implicated in the pathogenesis of both non-enveloped (human papillomavirus (HPV)) and enveloped (human immunodeficiency virus (HIV), Zika, influenza A virus, (IAV), and coronavirus) viruses through multiple stages of infection, from the initial cell membrane attachment to the syncytium formation and viral particle release. However, the mechanisms by which different tetraspanins mediate their effects vary. This review aimed to compare and contrast the role of tetraspanins in the life cycles of HPV, HIV, Zika, IAV, and coronavirus viruses, which cause the most significant health and economic burdens to society. In doing so, a better understanding of the relative contribution of tetraspanins in virus infection will allow for a more targeted approach in the treatment of these diseases.
Collapse
Affiliation(s)
- ChihSheng New
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kai Sen Tan
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Singapore
| | - Amanda Huee-Ping Wong
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - De Yun Wang
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore 119228, Singapore; (C.N.); (Z.-Y.L.); (K.S.T.); (A.H.-P.W.)
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
20
|
Soliman HM, Ghonaim GA, Gharib SM, Chopra H, Farag AK, Hassanin MH, Nagah A, Emad-Eldin M, Hashem NE, Yahya G, Emam SE, Hassan AEA, Attia MS. Exosomes in Alzheimer's Disease: From Being Pathological Players to Potential Diagnostics and Therapeutics. Int J Mol Sci 2021; 22:10794. [PMID: 34639135 PMCID: PMC8509246 DOI: 10.3390/ijms221910794] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Exosomes (EXOs) were given attention as an extracellular vesicle (EV) with a pivotal pathophysiological role in the development of certain neurodegenerative disorders (NDD), such as Parkinson's and Alzheimer's disease (AD). EXOs have shown the potential to carry pathological and therapeutic cargo; thus, researchers have harnessed EXOs in drug delivery applications. EXOs have shown low immunogenicity as natural drug delivery vehicles, thus ensuring efficient drug delivery without causing significant adverse reactions. Recently, EXOs provided potential drug delivery opportunities in AD and promising future clinical applications with the diagnosis of NDD and were studied for their usefulness in disease detection and prediction prior to the emergence of symptoms. In the future, the microfluidics technique will play an essential role in isolating and detecting EXOs to diagnose AD before the development of advanced symptoms. This review is not reiterative literature but will discuss why EXOs have strong potential in treating AD and how they can be used as a tool to predict and diagnose this disorder.
Collapse
Affiliation(s)
- Hagar M. Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Ghada A. Ghonaim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Shaza M. Gharib
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Aya K. Farag
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Mohamed H. Hassanin
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Abdalrazeq Nagah
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Mahmoud Emad-Eldin
- Department of Clinical, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Nevertary E. Hashem
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Sherif E. Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| | - Abdalla E. A. Hassan
- Applied Nucleic Acids Research Center & Chemistry, Faculty of Science, Zagazig 44519, Egypt;
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (G.A.G.); (S.M.G.); (A.K.F.); (M.H.H.); (A.N.); (N.E.H.); (S.E.E.)
| |
Collapse
|
21
|
Stevens CS, Oguntuyo KY, Lee B. Proteases and variants: context matters for SARS-CoV-2 entry assays. Curr Opin Virol 2021; 50:49-58. [PMID: 34365113 PMCID: PMC8302850 DOI: 10.1016/j.coviro.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), like other coronaviruses, relies on a flexible array of entry mechanisms, driven by the spike (S) protein. Entry is dependent on proteolytic priming, activation, and receptor binding; all of which can be variable, dependent on context. Here we review the implications of the complexity of SARS-CoV-2 entry pathways on entry assays that then drive our understanding of humoral immunity, therapeutic efficacy, and tissue restriction. We focus especially on the proteolytic activation of SARS-CoV-2 spike and how this constellation of proteases lends deeper insight to our understanding of arising variants and their putative role transmission or variable pathogenicity in vivo. In this review, we argue for better universal standards to assay virus entry as well as suggest best practices for reporting viral passage number, the cell line used, and proteases present, among other important considerations.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| |
Collapse
|
22
|
Dunsing V, Petrich A, Chiantia S. Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. eLife 2021; 10:e69687. [PMID: 34494547 PMCID: PMC8545396 DOI: 10.7554/elife.69687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2021] [Indexed: 01/20/2023] Open
Abstract
Signaling pathways in biological systems rely on specific interactions between multiple biomolecules. Fluorescence fluctuation spectroscopy provides a powerful toolbox to quantify such interactions directly in living cells. Cross-correlation analysis of spectrally separated fluctuations provides information about intermolecular interactions but is usually limited to two fluorophore species. Here, we present scanning fluorescence spectral correlation spectroscopy (SFSCS), a versatile approach that can be implemented on commercial confocal microscopes, allowing the investigation of interactions between multiple protein species at the plasma membrane. We demonstrate that SFSCS enables cross-talk-free cross-correlation, diffusion, and oligomerization analysis of up to four protein species labeled with strongly overlapping fluorophores. As an example, we investigate the interactions of influenza A virus (IAV) matrix protein 2 with two cellular host factors simultaneously. We furthermore apply raster spectral image correlation spectroscopy for the simultaneous analysis of up to four species and determine the stoichiometry of ternary IAV polymerase complexes in the cell nucleus.
Collapse
Affiliation(s)
- Valentin Dunsing
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Annett Petrich
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| | - Salvatore Chiantia
- Universität Potsdam, Institute of Biochemistry and BiologyPotsdamGermany
| |
Collapse
|
23
|
Cholesterol plays a decisive role in tetraspanin assemblies during bilayer deformations. Biosystems 2021; 209:104505. [PMID: 34403719 DOI: 10.1016/j.biosystems.2021.104505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.
Collapse
|
24
|
Koch J, Uckeley ZM, Doldan P, Stanifer M, Boulant S, Lozach PY. TMPRSS2 expression dictates the entry route used by SARS-CoV-2 to infect host cells. EMBO J 2021; 40:e107821. [PMID: 34159616 PMCID: PMC8365257 DOI: 10.15252/embj.2021107821] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.
Collapse
Affiliation(s)
- Jana Koch
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zina M Uckeley
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Patricio Doldan
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Megan Stanifer
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Steeve Boulant
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Center (DKFZ), Heidelberg, Germany
| | - Pierre-Yves Lozach
- Center for Integrative Infectious Diseases Research (CIID), University Hospital Heidelberg, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg, Germany.,Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| |
Collapse
|
25
|
York SB, Sun L, Cone AS, Duke LC, Cheerathodi MR, Meckes DG. Zika Virus Hijacks Extracellular Vesicle Tetraspanin Pathways for Cell-to-Cell Transmission. mSphere 2021; 6:e0019221. [PMID: 34190582 PMCID: PMC8265634 DOI: 10.1128/msphere.00192-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells which carry signaling factors, proteins, and microRNAs that mediate intercellular communication. Accumulating evidence supports an important role of EVs in the progression of neurological conditions and both the spread and pathogenesis of infectious diseases. It has recently been demonstrated that EVs from hepatitis C virus (HCV)-infected individuals and cells contained replicative-competent viral RNA that was capable of infecting hepatocytes. Being a member of the same viral family, it is likely the Zika virus also hijacks EV pathways to package viral components and secrete vesicles that are infectious and potentially less immunogenic. As EVs have been shown to cross blood-brain and placental barriers, it is possible that Zika virus could usurp normal EV biology to gain access to the brain or developing fetus. Here, we demonstrate that Zika virus-infected cells secrete distinct EV subpopulations with specific viral protein profiles and infectious genomes. Zika virus infection resulted in the enhanced production of EVs with various sizes and densities compared to those released from noninfected cells. We also show that the EV-enriched tetraspanin CD63 regulates the release of EVs and Zika viral genomes and capsids following infection. Overall, these findings provide evidence for an alternative means of Zika virus transmission and demonstrate the role of EV biogenesis and trafficking proteins in the modulation of Zika virus infection and virion morphogenesis. IMPORTANCE Zika virus is a reemerging infectious disease that spread rapidly across the Caribbean and South America. Infection of pregnant women during the first trimester has been linked to microcephaly, a neurological condition where babies are born with smaller heads due to abnormal brain development. Babies born with microcephaly can develop convulsions and suffer disabilities as they age. Despite the significance of Zika virus, little is known about how the virus infects the fetus or causes disease. Extracellular vesicles (EVs) are membrane-encapsulated structures released by cells that are present in all biological fluids. EVs carry signaling factors, proteins, and microRNAs that mediate intercellular communication. EVs have been shown to be a means by which some viruses can alter cellular environments and cross previously unpassable cellular barriers. Thus, gaining a greater understanding of how Zika virus affects EV cargo may aid in the development of better diagnostics, targeted therapeutics, and/or prophylactic treatments.
Collapse
Affiliation(s)
- Sara B. York
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Li Sun
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Allaura S. Cone
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Leanne C. Duke
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - Mujeeb R. Cheerathodi
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| | - David G. Meckes
- Florida State University College of Medicine, Department of Biomedical Sciences, Tallahassee, Florida, USA
| |
Collapse
|
26
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
27
|
Elovanoids downregulate SARS-CoV-2 cell-entry, canonical mediators and enhance protective signaling in human alveolar cells. Sci Rep 2021; 11:12324. [PMID: 34112906 PMCID: PMC8192580 DOI: 10.1038/s41598-021-91794-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
The pro-homeostatic lipid mediators elovanoids (ELVs) attenuate cell binding and entrance of the SARS-CoV-2 receptor-binding domain (RBD) as well as of the SARS-CoV-2 virus in human primary alveoli cells in culture. We uncovered that very-long-chain polyunsaturated fatty acid precursors (VLC-PUFA, n-3) activate ELV biosynthesis in lung cells. Both ELVs and their precursors reduce the binding to RBD. ELVs downregulate angiotensin-converting enzyme 2 (ACE2) and enhance the expression of a set of protective proteins hindering cell surface virus binding and upregulating defensive proteins against lung damage. In addition, ELVs and their precursors decreased the signal of spike (S) protein found in SARS-CoV-2 infected cells, suggesting that the lipids curb viral infection. These findings open avenues for potential preventive and disease-modifiable therapeutic approaches for COVID-19.
Collapse
|
28
|
Hysenaj L, Little S, Kulhanek K, Gbenedio OM, Rodriguez L, Shen A, Lone JC, Lupin-Jimenez LC, Bonser LR, Serwas NK, Bahl K, Mick E, Li JZ, Ding VW, Matsumoto S, Maishan M, Simoneau C, Fragiadakis G, Jablons DM, Langelier CR, Matthay M, Ott M, Krummel M, Combes AJ, Sil A, Erle DJ, Kratz JR, Roose JP. SARS-CoV-2 infection studies in lung organoids identify TSPAN8 as novel mediator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.01.446640. [PMID: 34100012 PMCID: PMC8183007 DOI: 10.1101/2021.06.01.446640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS coronavirus-2 (SARS-CoV-2) is causing a global pandemic with large variation in COVID-19 disease spectrum. SARS-CoV-2 infection requires host receptor ACE2 on lung epithelium, but epithelial underpinnings of variation are largely unknown. We capitalized on comprehensive organoid assays to report remarkable variation in SARS-CoV-2 infection rates of lung organoids from different subjects. Tropism is highest for TUBA- and MUC5AC-positive organoid cells, but levels of TUBA-, MUC5A-, or ACE2- positive cells do not predict infection rate. We identify surface molecule Tetraspanin 8 (TSPAN8) as novel mediator of SARS-CoV-2 infection, which is not downregulated by this specific virus. TSPAN8 levels, prior to infection, strongly correlate with infection rate and TSPAN8-blocking antibodies diminish SARS-CoV-2 infection. We propose TSPAN8 as novel functional biomarker and potential therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Lisiena Hysenaj
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Samantha Little
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Oghenekevwe M. Gbenedio
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Lauren Rodriguez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
- UCSF CoLabs, University of California San Francisco, San Francisco, California 94143, USA
| | - Alan Shen
- UCSF CoLabs, University of California San Francisco, San Francisco, California 94143, USA
| | - Jean-Christophe Lone
- School of Life Science, University of Essex, Wivenhoe Park,Colchester C04 3SQ, United Kingdom
| | | | - Luke R. Bonser
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Nina K. Serwas
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Kriti Bahl
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| | - Eran Mick
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, California 94143, USA and Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jack Z. Li
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California 94143, USA
| | - Vivianne W. Ding
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California 94143, USA
| | - Shotaro Matsumoto
- Gladstone Institute of Virology, Department of Medicine, University of California San Francisco, California 94143, USA
| | - Mazharul Maishan
- Gladstone Institute of Virology, Department of Medicine, University of California San Francisco, California 94143, USA
| | - Camille Simoneau
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Gabriela Fragiadakis
- UCSF CoLabs, University of California San Francisco, San Francisco, California 94143, USA
| | - David M. Jablons
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California 94143, USA
| | - Charles R. Langelier
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, California 94143, USA and Department of Surgery, Division of Cardiothoracic Surgery, University of California, San Francisco, San Francisco, California 94143, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Michael Matthay
- Gladstone Institute of Virology, Department of Medicine, University of California San Francisco, California 94143, USA
| | - Melanie Ott
- Department of Medicine, Division of Rheumatology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Matthew Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Alexis J. Combes
- UCSF CoLabs, University of California San Francisco, San Francisco, California 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143, USA
| | - David J. Erle
- UCSF CoLabs, University of California San Francisco, San Francisco, California 94143, USA
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, USA
| | - Johannes R. Kratz
- Cardiovascular Research Institute, Departments of Medicine and Anesthesia, University of California, San Francisco, San Francisco, California 94143, USA
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
29
|
Assessment of TSPAN Expression Profile and Their Role in the VSCC Prognosis. Int J Mol Sci 2021; 22:ijms22095015. [PMID: 34065085 PMCID: PMC8125994 DOI: 10.3390/ijms22095015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
The role and prognostic value of tetraspanins (TSPANs) in vulvar squamous cell carcinoma (VSCC) remain poorly understood. We sought to primarily determine, at both the molecular and tissue level, the expression profile of the TSPANs CD9, CD63, CD81, and CD82 in archived VSCC samples (n = 117) and further investigate their clinical relevance as prognostic markers. Our studies led us to identify CD63 as the most highly expressed TSPAN, at the gene and protein levels. Multicomparison studies also revealed that the expression of CD9 was associated with tumor size, whereas CD63 upregulation was associated with histological diagnosis and vascular invasion. Moreover, low expression of CD81 and CD82 was associated with worse prognosis. To determine the role of TSPANs in VSCC at the cellular level, we assessed the mRNA levels of CD63 and CD82 in established metastatic (SW962) and non-metastatic (SW954) VSCC human cell lines. CD82 was found to be downregulated in SW962 cells, thus supporting its metastasis suppressor role. However, CD63 was significantly upregulated in both cell lines. Silencing of CD63 by siRNA led to a significant decrease in proliferation of both SW954 and SW962. Furthermore, in SW962 particularly, CD63-siRNA also remarkably inhibited cell migration. Altogether, our data suggest that the differential expression of TSPANs represents an important feature for prognosis of VSCC patients and indicates that CD63 and CD82 are likely potential therapeutic targets in VSCC.
Collapse
|
30
|
Millet JK, Jaimes JA, Whittaker GR. Molecular diversity of coronavirus host cell entry receptors. FEMS Microbiol Rev 2021; 45:fuaa057. [PMID: 33118022 PMCID: PMC7665467 DOI: 10.1093/femsre/fuaa057] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
Coronaviruses are a group of viruses causing disease in a wide range of animals, and humans. Since 2002, the successive emergence of bat-borne severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), swine acute diarrhea syndrome coronavirus (SADS-CoV) and SARS-CoV-2 has reinforced efforts in uncovering the molecular and evolutionary mechanisms governing coronavirus cell tropism and interspecies transmission. Decades of studies have led to the discovery of a broad set of carbohydrate and protein receptors for many animal and human coronaviruses. As the main determinant of coronavirus entry, the spike protein binds to these receptors and mediates membrane fusion. Prone to mutations and recombination, spike evolution has been studied extensively. The interactions between spike proteins and their receptors are often complex and despite many advances in the field, there remains many unresolved questions concerning coronavirus tropism modification and cross-species transmission, potentially leading to delays in outbreak responses. The emergence of SARS-CoV-2 underscores the need to address these outstanding issues in order to better anticipate new outbreaks. In this review, we discuss the latest advances in the field of coronavirus receptors emphasizing on the molecular and evolutionary processes that underlie coronavirus receptor usage and host range expansion.
Collapse
Affiliation(s)
- Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouy-en-Josas, France
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Master of Public Health Program, Cornell University, Ithaca, NY 14853, USA
- Cornell Feline Health Center, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Ahmed W, Neelakanta G, Sultana H. Tetraspanins as Potential Therapeutic Candidates for Targeting Flaviviruses. Front Immunol 2021; 12:630571. [PMID: 33968023 PMCID: PMC8097176 DOI: 10.3389/fimmu.2021.630571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Tetraspanin family of proteins participates in numerous fundamental signaling pathways involved in viral transmission, virus-specific immunity, and virus-mediated vesicular trafficking. Studies in the identification of novel therapeutic candidates and strategies to target West Nile virus, dengue and Zika viruses are highly warranted due to the failure in development of vaccines. Recent evidences have shown that the widely distributed tetraspanin proteins may provide a platform for the development of novel therapeutic approaches. In this review, we discuss the diversified and important functions of tetraspanins in exosome/extracellular vesicle biology, virus-host interactions, virus-mediated vesicular trafficking, modulation of immune mechanism(s), and their possible role(s) in host antiviral defense mechanism(s) through interactions with noncoding RNAs. We also highlight the role of tetraspanins in the development of novel therapeutics to target arthropod-borne flaviviral diseases.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
32
|
Whittaker GR, Daniel S, Millet JK. Coronavirus entry: how we arrived at SARS-CoV-2. Curr Opin Virol 2021; 47:113-120. [PMID: 33744490 PMCID: PMC7942143 DOI: 10.1016/j.coviro.2021.02.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 01/12/2023]
Abstract
Because of the COVID-19 pandemic, the novel coronavirus SARS-CoV-2 has risen to shape scientific research during 2020, with its spike (S) protein being a predominant focus. The S protein is likely the most complicated of all viral glycoproteins and is a key factor in immunological responses and virus pathogenesis. It is also the driving force dictating virus entry mechanisms, which are highly 'plastic' for coronaviruses, allowing a plethora of options for different virus variants and strains in different cell types. Here we review coronavirus entry as a foundation for current work on SARS-CoV-2. We focus on the post-receptor binding events and cellular pathways that direct the membrane fusion events necessary for genome delivery, including S proteolytic priming and activation. We also address aspects of the entry process important for virus evolution and therapeutic development.
Collapse
Affiliation(s)
- Gary R Whittaker
- Department of Microbiology and Immunology and Master of Public Health Program, Cornell University, Ithaca, NY, USA.
| | - Susan Daniel
- Robert Frederick Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| |
Collapse
|
33
|
Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Pharmacotherapeutics of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2021; 16:12-37. [PMID: 33403500 PMCID: PMC7785334 DOI: 10.1007/s11481-020-09968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023]
Abstract
The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibodies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a comprehensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for SARS-CoV-2.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Pb, India
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | | | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - St Patrick M Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chamindie Punyadeera
- The School of Biomedical Sciences and the Institute of Health and Biomedical Innovation, Queensland University of Technology and the Translational Research Institute, Brisbane, Australia
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
34
|
Karmakar D, Lahiri B, Ranjan P, Chatterjee J, Lahiri P, Sengupta S. Road Map to Understanding SARS-CoV-2 Clinico-Immunopathology and COVID-19 Disease Severity. Pathogens 2020; 10:5. [PMID: 33374748 PMCID: PMC7823523 DOI: 10.3390/pathogens10010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2, a novel coronavirus, was first identified in Wuhan, China in December 2019. The rapid spread of the virus worldwide prompted the World Health Organization (WHO) to declare COVID-19 a pandemic in March 2020. COVID-19 discontinuing's a global health crisis. Approximately 80% of the patients infected with SARS-CoV-2 display undetectable to mild inflammation confined in the upper respiratory tract. In remaining patients, the disease turns into a severe form affecting almost all major organs predominantly due to an imbalance of innate and adaptive arms of host immunity. The purpose of the present review is to narrate the virus's invasion through the system and the host's reaction. A thorough discussion on disease severity is also presented regarding the behavior of the host's immune system, which gives rise to the cytokine storm particularly in elderly patients and those with comorbidities. A multifaceted yet concise description of molecular aspects of disease progression and its repercussion on biochemical and immunological features in infected patients is tabulated. The summary of pathological, clinical, immunological, and molecular accounts discussed in this review is of theranostic importance to clinicians for early diagnosis of COVID-19 and its management.
Collapse
Affiliation(s)
- Deepmala Karmakar
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| | - Basudev Lahiri
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Piyush Ranjan
- Department of Medicine, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Pooja Lahiri
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India;
| |
Collapse
|
35
|
Oroojalian F, Haghbin A, Baradaran B, Hemmat N, Shahbazi MA, Baghi HB, Mokhtarzadeh A, Hamblin MR. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int J Biol Macromol 2020; 165:18-43. [PMID: 32991900 PMCID: PMC7521454 DOI: 10.1016/j.ijbiomac.2020.09.204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The emergence of the global pandemic caused by the novel SARS-CoV-2 virus has motivated scientists to find a definitive treatment or a vaccine against it in the shortest possible time. Current efforts towards this goal remain fruitless without a full understanding of the behavior of the virus and its adaptor proteins. This review provides an overview of the biological properties, functional mechanisms, and molecular components of SARS-CoV-2, along with investigational therapeutic and preventive approaches for this virus. Since the proteolytic cleavage of the S protein is critical for virus penetration into cells, a set of drugs, such as chloroquine, hydroxychloroquine, camostat mesylate have been tested in clinical trials to suppress this event. In addition to angiotensin-converting enzyme 2, the role of CD147 in the viral entrance has also been proposed. Mepolizumab has shown to be effective in blocking the virus's cellular entrance. Antiviral drugs, such as remdesivir, ritonavir, oseltamivir, darunavir, lopinavir, zanamivir, peramivir, and oseltamivir, have also been tested as treatments for COVID-19. Regarding preventive vaccines, the whole virus, vectors, nucleic acids, and structural subunits have been suggested for vaccine development. Mesenchymal stem cells and natural killer cells could also be used against SARS-CoV-2. All the above-mentioned strategies, as well as the role of nanomedicine for the diagnosis and treatment of SARS-CoV-2 infection, have been discussed in this review.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Haghbin
- Department of Pediatrics, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
36
|
Bratosiewicz-Wąsik J, Wąsik TJ. Does Virus-Receptor Interplay Influence Human Coronaviruses Infection Outcome? Med Sci Monit 2020; 26:e928572. [PMID: 33311429 PMCID: PMC7745603 DOI: 10.12659/msm.928572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the third (following SARS-CoV and Middle East Respiratory Syndrome-CoV) zoonotic coronavirus that has crossed the species barrier in the 21st century, resulting in the development of serious human infection. The punishing effect of the recent outbreak of pandemic disease termed COVID-19 (coronavirus disease-19) caused by SARS-CoV-2 impelled us to gather the facts about the nature of coronaviruses. First, we introduce the basic information about coronavirus taxonomy, structure, and replication process to create the basis for more advanced consideration. In the following part of this review, we focused on interactions between the virus and the receptor on the host cell, as this stage is the critical process determining the species and tissue tropism, as well as clinical course of infection. We also illuminate the molecular basis of the strategy used by coronaviruses to cross the species barrier. We give special attention to the cellular receptor's interaction with S protein of different CoVs (dipeptidyl peptidase IV and angiotensin-converting enzyme 2), as well as the cellular proteases involved in proteolysis of this protein. These factors determine the virus entry and replication; thus, even fine quantitative or qualitative differences in their expression may crucially affect outcomes of infection. Understanding virus biology and characterization of the host factors involved in coronavirus transmission and pathogenesis may offer novel options for development of efficient therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Jolanta Bratosiewicz-Wąsik
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| | - Tomasz J. Wąsik
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
37
|
Sangsri T, Saiprom N, Tubsuwan A, Monk P, Partridge LJ, Chantratita N. Tetraspanins are involved in Burkholderia pseudomallei-induced cell-to-cell fusion of phagocytic and non-phagocytic cells. Sci Rep 2020; 10:17972. [PMID: 33087788 PMCID: PMC7577983 DOI: 10.1038/s41598-020-74737-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
Tetraspanins are four-span transmembrane proteins of host cells that facilitate infections by many pathogens. Burkholderia pseudomallei is an intracellular bacterium and the causative agent of melioidosis, a severe disease in tropical regions. This study investigated the role of tetraspanins in B. pseudomallei infection. We used flow cytometry to determine tetraspanins CD9, CD63, and CD81 expression on A549 and J774A.1 cells. Their roles in B. pseudomallei infection were investigated in vitro using monoclonal antibodies (MAbs) and recombinant large extracellular loop (EC2) proteins to pretreat cells before infection. Knockout of CD9 and CD81 in cells was performed using CRISPR Cas9 to confirm the role of tetraspanins. Pretreatment of A549 cells with MAb against CD9 and CD9-EC2 significantly enhanced B. pseudomallei internalization, but MAb against CD81 and CD81-EC2 inhibited MNGC formation. Reduction of MNGC formation was consistently observed in J774.A1 cells pretreated with MAbs specific to CD9 and CD81 and with CD9-EC2 and CD81-EC2. Data from knockout experiments confirmed that CD9 enhanced bacterial internalization and that CD81 inhibited MNGC formation. Our data indicate that tetraspanins are host cellular factors that mediated internalization and membrane fusion during B. pseudomallei infection. Tetraspanins may be the potential therapeutic targets for melioidosis.
Collapse
Affiliation(s)
- Tanes Sangsri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Peter Monk
- Department of Infection, Immunity and Cardiovascular Disease, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
38
|
Affiliation(s)
- Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany.
| | - Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
39
|
Mikuličić S, Fritzen A, Scheffer K, Strunk J, Cabañas C, Sperrhacke M, Reiss K, Florin L. Tetraspanin CD9 affects HPV16 infection by modulating ADAM17 activity and the ERK signalling pathway. Med Microbiol Immunol 2020; 209:461-471. [PMID: 32385608 PMCID: PMC7206579 DOI: 10.1007/s00430-020-00671-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022]
Abstract
Human papillomaviruses (HPV) are causative agents of various tumours such as cervical cancer. HPV binding to the cell surface of keratinocytes leads to virus endocytosis at tetraspanin enriched microdomains. Complex interactions of the capsid proteins with host proteins as well as ADAM17-dependent ERK1/2 signal transduction enable the entry platform assembly of the oncogenic HPV type 16. Here, we studied the importance of tetraspanin CD9, also known as TSPAN29, in HPV16 infection of different epithelial cells. We found that both overexpression and loss of the tetraspanin decreased infection rates in cells with low endogenous CD9 levels, while reduction of CD9 expression in keratinocytes that exhibit high-CD9 protein amounts, led to an increase of infection. Therefore, we concluded that low-CD9 supports infection. Moreover, we found that changes in CD9 amounts affect the shedding of the ADAM17 substrate transforming growth factor alpha (TGFα) and the downstream phosphorylation of ERK. These effects correlate with those on infection rates suggesting that a specific CD9 optimum promotes ADAM17 activity, ERK signalling and virus infection. Together, our findings implicate that CD9 regulates HPV16 infection through the modulation of ADAM17 sheddase activity.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Augustusplatz, 55131, Mainz, Germany
| | - Anna Fritzen
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Augustusplatz, 55131, Mainz, Germany
| | - Konstanze Scheffer
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Augustusplatz, 55131, Mainz, Germany
| | - Johannes Strunk
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Augustusplatz, 55131, Mainz, Germany
- Max Planck Graduate Center, Mainz, Germany
| | - Carlos Cabañas
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049, Madrid, Spain
- Department of Immunology, Ophthalmology and Otorhinolaryngology (IOO), Faculty of Medicine, Universidad Complutense, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (i+12), 28041, Madrid, Spain
| | - Maria Sperrhacke
- Department of Dermatology and Allergology, University Hospital Schleswig-Holstein Campus, Rosalind-Franklin-Straße 9, 24105, Kiel, Germany
| | - Karina Reiss
- Department of Dermatology and Allergology, University Hospital Schleswig-Holstein Campus, Rosalind-Franklin-Straße 9, 24105, Kiel, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Augustusplatz, 55131, Mainz, Germany.
| |
Collapse
|
40
|
Benayas B, Sastre I, López-Martín S, Oo A, Kim B, Bullido MJ, Aldudo J, Yáñez-Mó M. Tetraspanin CD81 regulates HSV-1 infection. Med Microbiol Immunol 2020; 209:489-498. [PMID: 32500359 PMCID: PMC7271138 DOI: 10.1007/s00430-020-00684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
Different members of the tetraspanin superfamily have been described to regulate different virus infectious cycles at several stages: viral entry, viral replication or virion exit or infectivity. In addition, tetraspanin CD81 regulates HIV reverse transcription through its association with the dNTP hydrolase SAMHD1. Here we aimed at analysing the role of CD81 in Herpes simplex virus 1 infectivity using a neuroblastoma cell model. For this purpose, we generated a CD81 KO cell line using the CRISPR/Cas9 technology. Despite being CD81 a plasma membrane protein, CD81 KO cells showed no defects in viral entry nor in the expression of early protein markers. In contrast, glycoprotein B and C, which require viral DNA replication for their expression, were significantly reduced in CD81 KO infected cells. Indeed, HSV-1 DNA replication and the formation of new infectious particles were severely compromised in CD81 KO cells. We could not detect significant changes in SAMHD1 total expression levels, but a relocalization into endosomal structures was observed in CD81 KO cells. In summary, CD81 KO cells showed impaired viral DNA replication and produced greatly diminished viral titers.
Collapse
Affiliation(s)
- Beatriz Benayas
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006, Madrid, Spain
| | - Isabel Sastre
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Soraya López-Martín
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006, Madrid, Spain
| | - Adrian Oo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria J Bullido
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto de Investigación Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | - Jesús Aldudo
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Centro de Investigacion Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto de Investigación Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain.
| | - María Yáñez-Mó
- Centro de Biología Molecular, "Severo Ochoa" (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, 28049, Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), 28006, Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, UAM, Centro de Biología Molecular Severo Ochoa, Lab 412, C/Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
41
|
SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction. Int J Mol Sci 2020; 21:ijms21124549. [PMID: 32604730 PMCID: PMC7352545 DOI: 10.3390/ijms21124549] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023] Open
Abstract
The recently emerged SARS-CoV-2 is the cause of the global health crisis of the coronavirus disease 2019 (COVID-19) pandemic. No evidence is yet available for CoV infection into hosts upon zoonotic disease outbreak, although the CoV epidemy resembles influenza viruses, which use sialic acid (SA). Currently, information on SARS-CoV-2 and its receptors is limited. O-acetylated SAs interact with the lectin-like spike glycoprotein of SARS CoV-2 for the initial attachment of viruses to enter into the host cells. SARS-CoV-2 hemagglutinin-esterase (HE) acts as the classical glycan-binding lectin and receptor-degrading enzyme. Most β-CoVs recognize 9-O-acetyl-SAs but switched to recognizing the 4-O-acetyl-SA form during evolution of CoVs. Type I HE is specific for the 9-O-Ac-SAs and type II HE is specific for 4-O-Ac-SAs. The SA-binding shift proceeds through quasi-synchronous adaptations of the SA-recognition sites of the lectin and esterase domains. The molecular switching of HE acquisition of 4-O-acetyl binding from 9-O-acetyl SA binding is caused by protein–carbohydrate interaction (PCI) or lectin–carbohydrate interaction (LCI). The HE gene was transmitted to a β-CoV lineage A progenitor by horizontal gene transfer from a 9-O-Ac-SA–specific HEF, as in influenza virus C/D. HE acquisition, and expansion takes place by cross-species transmission over HE evolution. This reflects viral evolutionary adaptation to host SA-containing glycans. Therefore, CoV HE receptor switching precedes virus evolution driven by the SA-glycan diversity of the hosts. The PCI or LCI stereochemistry potentiates the SA–ligand switch by a simple conformational shift of the lectin and esterase domains. Therefore, examination of new emerging viruses can lead to better understanding of virus evolution toward transitional host tropism. A clear example of HE gene transfer is found in the BCoV HE, which prefers 7,9-di-O-Ac-SAs, which is also known to be a target of the bovine torovirus HE. A more exciting case of such a switching event occurs in the murine CoVs, with the example of the β-CoV lineage A type binding with two different subtypes of the typical 9-O-Ac-SA (type I) and the exclusive 4-O-Ac-SA (type II) attachment factors. The protein structure data for type II HE also imply the virus switching to binding 4-O acetyl SA from 9-O acetyl SA. Principles of the protein–glycan interaction and PCI stereochemistry potentiate the SA–ligand switch via simple conformational shifts of the lectin and esterase domains. Thus, our understanding of natural adaptation can be specified to how carbohydrate/glycan-recognizing proteins/molecules contribute to virus evolution toward host tropism. Under the current circumstances where reliable antiviral therapeutics or vaccination tools are lacking, several trials are underway to examine viral agents. As expected, structural and non-structural proteins of SARS-CoV-2 are currently being targeted for viral therapeutic designation and development. However, the modern global society needs SARS-CoV-2 preventive and therapeutic drugs for infected patients. In this review, the structure and sialobiology of SARS-CoV-2 are discussed in order to encourage and activate public research on glycan-specific interaction-based drug creation in the near future.
Collapse
|
42
|
Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular Vesicles in Viral Spread and Antiviral Response. Viruses 2020; 12:E623. [PMID: 32521696 PMCID: PMC7354624 DOI: 10.3390/v12060623] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Viral spread by both enveloped and non-enveloped viruses may be mediated by extracellular vesicles (EVs), including microvesicles (MVs) and exosomes. These secreted vesicles have been demonstrated to be an efficient mechanism that viruses can use to enter host cells, enhance spread or evade the host immune response. However, the complex interplay between viruses and EVs gives rise to antagonistic biological tasks-to benefit the viruses, enhancing infection and interfering with the immune system or to benefit the host, by mediating anti-viral responses. Exosomes from cells infected with herpes simplex type 1 (HSV-1) may transport viral and host transcripts, proteins and innate immune components. This virus may also use MVs to expand its tropism and evade the host immune response. This review aims to describe the current knowledge about EVs and their participation in viral infection, with a specific focus on the role of exosomes and MVs in herpesvirus infections, particularly that of HSV-1.
Collapse
Affiliation(s)
- Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - Inés Ripa
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| | - José Antonio López-Guerrero
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (I.R.); (J.A.L.-G.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
43
|
Finke J, Mikuličić S, Loster AL, Gawlitza A, Florin L, Lang T. Anatomy of a viral entry platform differentially functionalized by integrins α3 and α6. Sci Rep 2020; 10:5356. [PMID: 32210347 PMCID: PMC7093462 DOI: 10.1038/s41598-020-62202-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
During cell invasion, human papillomaviruses use large CD151 patches on the cell surface. Here, we studied whether these patches are defined architectures with features for virus binding and/or internalization. Super-resolution microscopy reveals that the patches are assemblies of closely associated nanoclusters of CD151, integrin α3 and integrin α6. Integrin α6 is required for virus attachment and integrin α3 for endocytosis. We propose that CD151 organizes viral entry platforms with different types of integrin clusters for different functionalities. Since numerous viruses use tetraspanin patches, we speculate that this building principle is a blueprint for cell-surface architectures utilized by viral particles.
Collapse
Affiliation(s)
- Jérôme Finke
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany
| | - Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Anna-Lena Loster
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Alexander Gawlitza
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Straße 67, 55131, Mainz, Germany
| | - Thorsten Lang
- Department of Membrane Biochemistry, Life & Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115, Bonn, Germany.
| |
Collapse
|
44
|
Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int J Mol Sci 2020; 21:ijms21062091. [PMID: 32197477 PMCID: PMC7140000 DOI: 10.3390/ijms21062091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
Collapse
|
45
|
Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci 2020; 12:9. [PMID: 32127517 PMCID: PMC7054527 DOI: 10.1038/s41368-020-0075-9] [Citation(s) in RCA: 1062] [Impact Index Per Article: 212.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/05/2023] Open
Abstract
A novel β-coronavirus (2019-nCoV) caused severe and even fetal pneumonia explored in a seafood market of Wuhan city, Hubei province, China, and rapidly spread to other provinces of China and other countries. The 2019-nCoV was different from SARS-CoV, but shared the same host receptor the human angiotensin-converting enzyme 2 (ACE2). The natural host of 2019-nCoV may be the bat Rhinolophus affinis as 2019-nCoV showed 96.2% of whole-genome identity to BatCoV RaTG13. The person-to-person transmission routes of 2019-nCoV included direct transmission, such as cough, sneeze, droplet inhalation transmission, and contact transmission, such as the contact with oral, nasal, and eye mucous membranes. 2019-nCoV can also be transmitted through the saliva, and the fetal-oral routes may also be a potential person-to-person transmission route. The participants in dental practice expose to tremendous risk of 2019-nCoV infection due to the face-to-face communication and the exposure to saliva, blood, and other body fluids, and the handling of sharp instruments. Dental professionals play great roles in preventing the transmission of 2019-nCoV. Here we recommend the infection control measures during dental practice to block the person-to-person transmission routes in dental clinics and hospitals.
Collapse
Affiliation(s)
- Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Reynolds JL, Mahajan SD. Transmigration of Tetraspanin 2 (Tspan2) siRNA Via Microglia Derived Exosomes across the Blood Brain Barrier Modifies the Production of Immune Mediators by Microglia Cells. J Neuroimmune Pharmacol 2019; 15:554-563. [PMID: 31823250 DOI: 10.1007/s11481-019-09895-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Microglia are implicated in the neuropathogenesis of HIV. Tetraspanin 2 (Tspan2) is closely related to CD9 and CD81 proteins, and are expressed on microglia cells. They have been implicated in cell fusion and adhesion and in the immune response, and neuroinflammation. Developing therapeutics that target microglia remains a challenge as these therapeutics must cross the Blood-Brain Barrier (BBB). Our goal was to use microglia derived exosomes as a vehicle to deliver siRNA across the BBB to target human telomerase reverse transcriptase immortalized human microglial cells (HTHU) latently infected by HIV (HTHU-HIV) and to evaluate if the knockdown of Tspan2 gene expression in changes the activation state of microglia cells, thereby modulating the neuroinflammatory response. A blood brain barrier (BBB) model that closely mimics and accurately reflects the characteristics and functional properties of the in vivo BBB was used to examine HTHU microglia exosome effects on BBB permeability, and their ability to migrate across the and delivery small interfering RNA (siRNA) to cells on the CNS side of the BBB model. Exosomes were loaded with Texas-Red control siRNA (20 pmol) or Cy5-Tspan2 siRNA and then placed in the apical side of the BBB model, 24 h after incubation, HTHU-HIV cells microglial cells on the lower chamber were either imaged for siRNA uptake or analyzed for gene expression induced modifications. HTHU exosomes transmigrate from the apical side of the BBB to deliver Texas-Red control siRNA or Cy5-Tspan2 siRNA to HTHU-HIV microglia cells on the CNS side of the BBB model. A dose dependent (5-40 pmol) increase in Cy5-Tspan2 uptake with a corresponding decrease in gene expression for Tspan2 occurred in HTHU-HIV microglia. A decrease in Tspan2 gene expression as a consequence of knockdown with Tspan2 siRNA at both 20 and 40 pmol concentrations resulted in a significant decrease in C-X-C motif chemokine 12 (CXCL12) and C-X-C chemokine receptor type 4 (CXCR4) gene expression in HTHU-HIV microglia. Furthermore, a decrease in the gene expression levels of the Interleukins, IL-13 and IL-10 and an increase in the gene expression levels for the Fc gamma receptor 2A(FCGR2A) and TNF-α occurred in HTHU-HIV microglial cells These data demonstrate that HTHU exosomes cross the BBB and are efficient delivery vehicles to the CNS. Moreover, modifying the expression levels of Tspan2, has downstream consequences that includes alterations in cytokines and microglia biomarkers. Graphical Abstract Microglia-derived exosomes loaded with Tspan2 siRNA transmigrate across the BBB and knockdown Tspan2 gene expression in human microglial cells latently infected by HIV. This knockdown increases CXCL12, CXCR4, FCGR2A and TNF-α while decreasing IL-13 and IL-10 gene expression in HTHU-HIV microglial cells. Modulating Tspan2 modulates microglia cytokines and phenotype biomarkers.
Collapse
Affiliation(s)
- Jessica L Reynolds
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Supriya D Mahajan
- Department of Medicine, Division of Allergy, Immunology & Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
47
|
Tomii K, Santos HJ, Nozaki T. Genome-Wide Analysis of Known and Potential Tetraspanins in Entamoeba histolytica. Genes (Basel) 2019; 10:genes10110885. [PMID: 31684194 PMCID: PMC6895871 DOI: 10.3390/genes10110885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Tetraspanins are membrane proteins involved in intra- and/or intercellular signaling, and membrane protein complex formation. In some organisms, their role is associated with virulence and pathogenesis. Here, we investigate known and potential tetraspanins in the human intestinal protozoan parasite Entamoeba histolytica. We conducted sequence similarity searches against the proteome data of E. histolytica and newly identified nine uncharacterized proteins as potential tetraspanins in E. histolytica. We found three subgroups within known and potential tetraspanins, as well as subgroup-associated features in both their amino acid and nucleotide sequences. We also examined the subcellular localization of a few representative tetraspanins that might be potentially related to pathogenicity. The results in this study could be useful resources for further understanding and downstream analyses of tetraspanins in Entamoeba.
Collapse
Affiliation(s)
- Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
48
|
Sidahmed-Adrar N, Ottavi JF, Benzoubir N, Ait Saadi T, Bou Saleh M, Mauduit P, Guettier C, Desterke C, Le Naour F. Tspan15 Is a New Stemness-Related Marker in Hepatocellular Carcinoma. Proteomics 2019; 19:e1900025. [PMID: 31390680 DOI: 10.1002/pmic.201900025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second cause of cancer-related deaths worldwide. A clearer understanding of the molecular mechanisms underlying tumor growth and invasiveness remains crucial for developing new therapies. Here, the expression of tetraspanins, a family of plasma membrane organizers involved in tumor progression, has been addressed. Integrative approaches combining transcriptomics and bioinformatics allow demonstrating the induced and heterogeneous expression of Tspan15 in HCC. Tspan15 positive tumors exhibit signatures related to hepatic progenitor cells as well as recurrence of cancer. Immunohistochemistry experiments confirm Tspan15 expression in the subset of HCC expressing stemness-related markers such as EpCAM and Cytokeratin-19. Functional networks reveal that most of these genes expressed in correlation to Tspan15 support cell proliferation. Furthermore, Tspan15 overexpression in the hepatoma cell line HepG2 significantly increases cell proliferation. A quantitative proteomic analysis of the secretome reveals a higher abundance of the protein connective tissue growth factor (CTGF), a pleiotropic matricellular signaling protein. Proteomic profiling of Tspan15 complexes allows identifying numerous membrane proteins including several growth factor receptors. Finally, Tspan15 increases ERK1/2 phosphorylation that directly controls CTGF expression and secretion. In conclusion, Tspan15 is a new stemness-related marker in HCC which exhibits high potential of tumor growth and recurrence.
Collapse
Affiliation(s)
- Nazha Sidahmed-Adrar
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Jean-François Ottavi
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Nassima Benzoubir
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Taous Ait Saadi
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Mohamed Bou Saleh
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Philippe Mauduit
- Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, Unité 1197, Villejuif, F-94800, France
| | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,AP-HP Hôpital Bicêtre, Service d'Anatomopathologie, Le Kremlin-Bicêtre, F-94275, France
| | - Christophe Desterke
- Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| |
Collapse
|