1
|
Porras AO, Morales MP, Santamaría G, Torres-Fernández O. Dendritic pathology and overexpression of MAP2 in Purkinje cells from mice inoculated with rabies virus. J Mol Histol 2024; 56:62. [PMID: 39739067 DOI: 10.1007/s10735-024-10348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The effect of rabies virus infection on dendritic morphology and on the expression of the MAP2 protein in Purkinje cells in the cerebellum of mice was studied. ICR mice were inoculated with rabies virus, and six days later, the mice were sacrificed, the cerebellum was removed and processed for Golgi-Cox staining or MAP2 immunohistochemistry. Infection with rabies virus altered the dendritic pattern of Purkinje cells ranged from moderate changes to accentuated retraction in the dendritic tree of some Purkinje cells. The loss of dendritic branches in the samples of mice infected with RABV was also reflected in a decrease in intersections quantified using the Sholl technique, thus suggesting dendritic pathology. Immunoreactivity to MAP2 protein in the molecular layer of the cerebellum of control mice was mainly distributed in dendrites of Purkinje cells. Some somas were faintly stained. In infected mice immunoreactivity to MAP2 was intense in somas and dendrites of Purkinje cells and in some interneurons. These results are consistent with similar findings we previously reported for the cerebral cortex and spinal cord of rabies-infected mice. But they differ from studies in other pathologies where an association between dendritic pathology and loss of MAP2 immunoreactivity has been found. Our studies in rabies contribute to suggestion that MAP2 overexpression may also be associated with alterations in dendritic morphology. MAP2 protein contributes to maintaining cytoskeleton stability. However, in rabies, increased MAP2 expression here only determined by immunohistochemistry could destabilize the cytoskeleton of dendrites. Golgi staining is considered the gold standard for the study of dendritic morphology. Its association with changes in MAP2 expression appears to provide molecular support for the concept of dendritic pathology. These results contribute to the understanding of the effect of rabies virus infection on dendritic morphology. They therefore reinforce the idea that rabies not only has a dysfunctional effect on neurons, as some authors claim, but also affects their structure.
Collapse
Affiliation(s)
- Andrés Obdulio Porras
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia
| | - María Paula Morales
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia
| | - Gerardo Santamaría
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Instituto Nacional de Salud (INS), Av. Calle 26 No. 51-20, Bogotá, DC, 111321, Colombia.
| |
Collapse
|
2
|
Kiflu AB. The Immune Escape Strategy of Rabies Virus and Its Pathogenicity Mechanisms. Viruses 2024; 16:1774. [PMID: 39599888 PMCID: PMC11598914 DOI: 10.3390/v16111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
In contrast to most other rhabdoviruses, which spread by insect vectors, the rabies virus (RABV) is a very unusual member of the Rhabdoviridae family, since it has evolved to be fully adapted to warm-blooded hosts and spread directly between them. There are differences in the immune responses to laboratory-attenuated RABV and wild-type rabies virus infections. Various investigations showed that whilst laboratory-attenuated RABV elicits an innate immune response, wild-type RABV evades detection. Pathogenic RABV infection bypasses immune response by antagonizing interferon induction, which prevents downstream signal activation and impairs antiviral proteins and inflammatory cytokines production that could eliminate the virus. On the contrary, non-pathogenic RABV infection leads to immune activation and suppresses the disease. Apart from that, through recruiting leukocytes into the central nervous system (CNS) and enhancing the blood-brain barrier (BBB) permeability, which are vital factors for viral clearance and protection, cytokines/chemokines released during RABV infection play a critical role in suppressing the disease. Furthermore, early apoptosis of neural cells limit replication and spread of avirulent RABV infection, but street RABV strains infection cause delayed apoptosis that help them spread further to healthy cells and circumvent early immune exposure. Similarly, a cellular regulation mechanism called autophagy eliminates unused or damaged cytoplasmic materials and destroy microbes by delivering them to the lysosomes as part of a nonspecific immune defense mechanism. Infection with laboratory fixed RABV strains lead to complete autophagy and the viruses are eliminated. But incomplete autophagy during pathogenic RABV infection failed to destroy the viruses and might aid the virus in dodging detection by antigen-presenting cells, which could otherwise elicit adaptive immune activation. Pathogenic RABV P and M proteins, as well as high concentration of nitric oxide, which is produced during rabies virus infection, inhibits activities of mitochondrial proteins, which triggers the generation of reactive oxygen species, resulting in oxidative stress, contributing to mitochondrial malfunction and, finally, neuron process degeneration.
Collapse
Affiliation(s)
- Abraha Bahlbi Kiflu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China;
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Aliakbari S, Hasanzadeh L, Sayyah M, Amini N, Pourbadie HG. Induced expression of rabies glycoprotein in the dorsal hippocampus enhances hippocampal dependent memory in a rat model of Alzheimer's disease. J Neurovirol 2024; 30:274-285. [PMID: 38943023 DOI: 10.1007/s13365-024-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
The Rabies virus is a neurotropic virus that manipulates the natural cell death processes of its host to ensure its own survival and replication. Studies have shown that the anti-apoptotic effect of the virus is mediated by one of its protein named, rabies glycoprotein (RVG). Alzheimer's disease (AD) is characterized by the loss of neural cells and memory impairment. We aim to examine whether expression of RVG in the hippocampal cells can shield the detrimental effects induced by Aβ. Oligomeric form of Aβ (oAβ) or vehicle was bilaterally microinjected into the dorsal hippocampus of male Wistar rats. One week later, two μl (108 T.U. /ml) of the lentiviral vector carrying RVG gene was injected into their dorsal hippocampus (post-treatment). In another experiment, the lentiviral vector was microinjected one week before Aβ injection (pre-treatment). One week later, the rat's brain was sliced into cross-sections, and the presence of RVG-expressing neuronal cells was confirmed using fluorescent microscopy. Rats were subjected to assessments of spatial learning and memory as well as passive avoidance using the Morris water maze (MWM) and the Shuttle box apparatuses, respectively. Protein expression of AMPA receptor subunit (GluA1) was determined using western blotting technique. In MWM, Aβ treated rats showed decelerated acquisition of the task and impairment of reference memory. RVG expression in the hippocampus prevented and restored the deficits in both pre- and post- treatment conditions, respectively. It also improved inhibitory memory in the oAβ treated rats. RVG increased the expression level of GluA1 level in the hippocampus. Based on our findings, the expression of RVG in the hippocampus has the potential to enhance both inhibitory and spatial learning abilities, ultimately improving memory performance in an AD rat model. This beneficial effect is likely attributed, at least in part, to the increased expression of GluA1-containing AMPA receptors.
Collapse
Affiliation(s)
- Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Hasanzadeh
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Niloufar Amini
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
4
|
Albrakati A. The potential neuroprotective of luteolin against acetamiprid-induced neurotoxicity in the rat cerebral cortex. Front Vet Sci 2024; 11:1361792. [PMID: 38818490 PMCID: PMC11138160 DOI: 10.3389/fvets.2024.1361792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Acetamiprid is a class of neuroactive insecticides widely used to control insect pests. The current study aimed to investigate the potential neuroprotective effects of luteolin against acetamiprid-induced neurotoxicity in the rat cerebral cortex. Four equal groups of adult male rats (10 in each): control, acetamiprid (40 mg/kg for 28 days), luteolin (50 mg/kg for 28 days), and acetamiprid+luteolin cotreatment were used. Acetamiprid was shown to alter the oxidative state by increasing oxidant levels [nitric oxide (NO) and malondialdehyde (MDA)] and decreasing antioxidants [glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase-(CAT)], with increased activity of nuclear factor erythroid 2-related factor 2-(Nrf2). Likewise, acetamiprid increases the inflammatory response, as evidenced by increased interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nuclear factor kappa B-(NF-κB). In contrast, the treatment with luteolin brought these markers back to levels close to normal, showing that it protects neurocytes from oxidative damage and the neuroinflammation effects of acetamiprid-induced inflammation. Luteolin also demonstrated a neuroprotective role via the modulation of acetylcholinesterase (AChE) activity in the cerebral cortex tissue. Histopathology showed severe neurodegenerative changes, and apoptotic cells were seen in the acetamiprid-induced cerebral cortex layer, which was evident by increased protein expression levels of Bax and caspase-3 and decreased Bcl-2 levels. Histochemistry confirmed the neuronal degeneration, as proven by the change in neurocyte colour from brown to black when stained with a silver stain. Luteolin may have a neuroprotective effect against biochemical and histopathological changes induced by acetamiprid in the rat cerebral cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Wongchitrat P, Chanmee T, Govitrapong P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol Neurobiol 2024; 61:2881-2903. [PMID: 37946006 PMCID: PMC11043213 DOI: 10.1007/s12035-023-03761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Viral infections of the central nervous system (CNS) cause variable outcomes from acute to severe neurological sequelae with increased morbidity and mortality. Viral neuroinvasion directly or indirectly induces encephalitis via dysregulation of the immune response and contributes to the alteration of neuronal function and the degeneration of neuronal cells. This review provides an overview of the cellular and molecular mechanisms of virus-induced neurodegeneration. Neurotropic viral infections influence many aspects of neuronal dysfunction, including promoting chronic inflammation, inducing cellular oxidative stress, impairing mitophagy, encountering mitochondrial dynamics, enhancing metabolic rewiring, altering neurotransmitter systems, and inducing misfolded and aggregated pathological proteins associated with neurodegenerative diseases. These pathogenetic mechanisms create a multidimensional injury of the brain that leads to specific neuronal and brain dysfunction. The understanding of the molecular mechanisms underlying the neurophathogenesis associated with neurodegeneration of viral infection may emphasize the strategies for prevention, protection, and treatment of virus infection of the CNS.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | | |
Collapse
|
6
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
7
|
Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J, Fu ZF, Zhou M, Zhao L. Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism. mBio 2024; 15:e0288023. [PMID: 38349129 PMCID: PMC10936203 DOI: 10.1128/mbio.02880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
8
|
Shalaby OE, Ahmed YH, Mekkawy AM, Mahmoud MY, Khalil HMA, Elbargeesy GA. Assessment of the neuroprotective effect of selenium-loaded chitosan nanoparticles against silver nanoparticles-induced toxicity in rats. Neurotoxicology 2023; 95:232-243. [PMID: 36822375 DOI: 10.1016/j.neuro.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND With the recent growth in the applications of silver nanoparticles (Ag-NPs), worries about their harmful effects are increasing. Selenium plays a vital role in the antioxidant defense system as well as free radical scavenging activity. OBJECTIVES This study aims to inspect the neuroprotective effect of selenium-loaded chitosan nanoparticles (CS-SeNPs) against the adverse impact of Ag-NPs on brain tissue in adult rats. DESIGN Rats were divided into four groups: group I (control) was administered distilled water (0.5 mL/kg), group II was administered Ag-NPs (100 mg/kg), group III was administered Ag-NPs (100 mg/kg) and CS- SeNPs (0.5 mg/kg) and group IV received only CS- SeNPs (0.5 mg/kg) daily by oral gavage. After 60 days, rats were subjected to behavioral assessment and then euthanized. Brain tissues were obtained for estimation of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2-deoxy Guanosine (8-OHdG), and Nuclear Factor Erythroid 2 Like Protein 2 (Nrf2). Also, histological examination of the brain and immunohistochemical detection of glial fibrillary acidic protein (GFAP) were investigated RESULTS: exposure to Ag-NPs induced marked neurotoxicity in the brain tissue of rats that was manifested by decreased levels of TAC and Nrf2 with increased levels of MDA and 8-OHdG. Also, various pathological lesions with an increase in the number of GFAP immunoreactive cells were detected. While brain tissue of rats received Ag-NPs plus CS-SeNPs group (III) revealed significantly fewer pathological changes. CONCLUSION Co-administration of CS-SeNPs significantly ameliorates most of the Ag-NPs-induced brain damage.
Collapse
Affiliation(s)
- Omnia E Shalaby
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Aya M Mekkawy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - G A Elbargeesy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| |
Collapse
|
9
|
Lian M, Hueffer K, Weltzin MM. Interactions between the rabies virus and nicotinic acetylcholine receptors: A potential role in rabies virus induced behavior modifications. Heliyon 2022; 8:e10434. [PMID: 36091963 PMCID: PMC9450143 DOI: 10.1016/j.heliyon.2022.e10434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marianne Lian
- University of Alaska Fairbanks, Department of Veterinary Medicine, 2141 Koyukuk Drive, Fairbanks, AK, 99775, USA
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Koppang, NO-2480, Norway
| | - Karsten Hueffer
- University of Alaska Fairbanks, Department of Veterinary Medicine, 2141 Koyukuk Drive, Fairbanks, AK, 99775, USA
| | - Maegan M. Weltzin
- University of Alaska Fairbanks, Department of Chemistry and Biochemistry, 1930 Yukon Dr. Fairbanks, AK, 99775, USA
- Corresponding author.
| |
Collapse
|
10
|
Sardana S, Singh KP, Saminathan M, Vineetha S, Panda S, Dinesh M, Maity M, Varshney R, Sulabh S, Sahoo M, Dutt T. Effect of inhibition of Toll-like receptor 3 signaling on pathogenesis of rabies virus in mouse model. Acta Trop 2022; 234:106589. [PMID: 35809612 DOI: 10.1016/j.actatropica.2022.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 11/01/2022]
Abstract
Rabies is a zoonotic viral disease with inevitably fatal outcome. Toll-like receptor 3 (TLR3) could sense dsRNA viral infections, and implicated in pathogenesis of rabies and Negri bodies (NBs) formation. Present study was undertaken to elucidate the role of TLR3 in pathogenesis, NBs formation, and therapeutic potential of blocking TLR3/dsRNA interaction in rabies infection. Young Swiss albino mice were infected with 100 LD50 of street rabies virus (SRABV) intracerebrally (i/c) on day 0 and treated with 30 μg of CU CPT 4a (selective TLR3 inhibitor) i/c on 0, 3 and 5 days post-infection (DPI). Three mice each were sacrificed at 1, 3, 5, 7, 9, 11, and 13 DPI to study sequential pathological consequences through histopathology, Seller's staining, immunofluorescence, immunohistochemistry, TUNEL assay, flow cytometry, and viral and cytokine genes quantification by real-time PCR. CU CPT 4a inhibited TLR3 expression resulted in delayed development and decreased intensity of clinical signs and pathological lesions, low viral load, significantly reduced NBs formation, and increased survival time in SRABV-infected mice. These parameters suggested that TLR3 did influence the SRABV replication and NBs formation. Inhibition of TLR3 led to decreased expression of pro-inflammatory cytokines and interferons indicated an anti-inflammatory effect of CU CPT 4a during SRABV infection. Further, TLR3-inhibited group revealed normal CD4+/CD8+ T-cells ratio with less TUNEL-positive apoptotic cells indicated that immune cell kinetics are not affected during TLR3-inhibition. SRABV-infected and mock-treated mice were developed severe clinical signs and histopathological lesions, more NBs formation, high viral load, increased pro-inflammatory cytokines expression in brain, which were correlated with higher expression levels of TLR3. In conclusion, these data suggested that TLR3/dsRNA signaling pathway could play critical role in pathogenesis of SRABV infection in vivo and opens up new avenues of therapeutics.
Collapse
Affiliation(s)
- Sumit Sardana
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Mani Saminathan
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| | - Sobharani Vineetha
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Shibani Panda
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajat Varshney
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India
| | - Sourabh Sulabh
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Monalisa Sahoo
- ICAR- International Centre for Foot and Mouth Disease, Khordha, Bhubaneswar, Odisha, India
| | - Triveni Dutt
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
11
|
Williams JA, Long SY, Zeng X, Kuehl K, Babka AM, Davis NM, Liu J, Trefry JC, Daye S, Facemire PR, Iversen PL, Bavari S, Pitt ML, Nasar F. Eastern equine encephalitis virus rapidly infects and disseminates in the brain and spinal cord of cynomolgus macaques following aerosol challenge. PLoS Negl Trop Dis 2022; 16:e0010081. [PMID: 35533188 PMCID: PMC9084534 DOI: 10.1371/journal.pntd.0010081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61–68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure. EEEV is an arbovirus endemic in parts of North America and is able to produce fatal encephalitis in humans and domesticated animals. Despite multiple human outbreaks during the last 80 years, there are still no therapeutic or vaccines to treat or prevent human disease. One critical obstacle in the development of effective countermeasure is the lack of insights into EEEV pathogenesis in a susceptible animal host. We recently conducted a study in cynomolgus macaques to investigate the disease course by measuring clinical parameters relevant to humans. Following infection, these parameters were rapidly and profoundly altered leading to severe disease. In this study, we examined the potential mechanisms that underlie pathogenesis to cause severe disease. The virus was present in many parts of the brain and spinal cord, however, minimal or no pathological lesions as well as active virus replication were observed. Additionally, neurons were the predominant target of EEEV infection and virus transport was facilitated via axonal transport system to spread neuron-to-neuron throughout the brain and spinal cord. These data show that EEEV likely hijacks essential transport system to rapidly spread in the brain and local/global neuronal dysfunction rather than neuronal death is the principal cause of severe disease.
Collapse
Affiliation(s)
- Janice A. Williams
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Simon Y. Long
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kathleen Kuehl
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - April M. Babka
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Neil M. Davis
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Jun Liu
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - John C. Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Paul R. Facemire
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Patrick L. Iversen
- Therapeutics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Margaret L. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| |
Collapse
|
12
|
Role of the glycoprotein thorns in anxious effects of rabies virus: Evidence from an animal study. Brain Res Bull 2022; 185:107-116. [DOI: 10.1016/j.brainresbull.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 12/17/2022]
|
13
|
Knobel DL, Jackson AC, Bingham J, Ertl HCJ, Gibson AD, Hughes D, Joubert K, Mani RS, Mohr BJ, Moore SM, Rivett-Carnac H, Tordo N, Yeates JW, Zambelli AB, Rupprecht CE. A One Medicine Mission for an Effective Rabies Therapy. Front Vet Sci 2022; 9:867382. [PMID: 35372555 PMCID: PMC8967983 DOI: 10.3389/fvets.2022.867382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the disease's long history, little progress has been made toward a treatment for rabies. The prognosis for patient recovery remains dire. For any prospect of survival, patients require aggressive critical care, which physicians in rabies endemic areas may be reluctant or unable to provide given the cost, clinical expertise required, and uncertain outcome. Systematic clinical research into combination therapies is further hampered by sporadic occurrence of cases. In this Perspective, we examine the case for a One Medicine approach to accelerate development of an effective therapy for rabies through the veterinary care and investigational treatment of naturally infected dogs in appropriate circumstances. We review the pathogenesis of rabies virus in humans and dogs, including recent advances in our understanding of the molecular basis for the severe neurological dysfunction. We propose that four categories of disease process need to be managed in patients: viral propagation, neuronal degeneration, inflammation and systemic compromise. Compassionate critical care and investigational treatment of naturally infected dogs receiving supportive therapy that mimics the human clinical scenario could increase opportunities to study combination therapies that address these processes, and to identify biomarkers for prognosis and therapeutic response. We discuss the safety and ethics of this approach, and introduce the Canine Rabies Treatment Initiative, a non-profit organization with the mission to apply a One Medicine approach to the investigation of diagnostic, prognostic, and therapeutic options for rabies in naturally infected dogs, to accelerate transformation of rabies into a treatable disease for all patients.
Collapse
Affiliation(s)
- Darryn L. Knobel
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Canine Rabies Treatment Initiative, Salt Rock, South Africa
| | - Alan C. Jackson
- Department of Medicine, Northern Consultation Centre, Thompson General Hospital, Thompson, MB, Canada
- Department of Medicine, Lake of the Woods District Hospital, Kenora, ON, Canada
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Animal Health Laboratory at the Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | | | - Andrew D. Gibson
- Division of Genetics and Genomics, Easter Bush Veterinary Centre, The Roslin Institute and the Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Roslin, United Kingdom
| | - Daniela Hughes
- Canine Rabies Treatment Initiative, Salt Rock, South Africa
| | - Kenneth Joubert
- Veterinary Anaesthesia, Analgesia and Critical Care Services, Lonehill, South Africa
| | - Reeta S. Mani
- Department of Neurovirology, WHO Collaborating Centre for Reference and Research in Rabies, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Bert J. Mohr
- Canine Rabies Treatment Initiative, Salt Rock, South Africa
- Centre for Animal Research, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Susan M. Moore
- Veterinary Medical Diagnostic Laboratory, University of Missouri, Columbia, MO, United States
| | | | - Noël Tordo
- Institut Pasteur de Guinée, Conakry, Guinea
| | | | | | | |
Collapse
|
14
|
Harsha PK, Ranganayaki S, Yale G, Dey G, Mangalaparthi KK, Yarlagadda A, Chandrasekhar Sagar BK, Mahadevan A, Srinivas Bharath MM, Mani RS. Mitochondrial Dysfunction in Rabies Virus-Infected Human and Canine Brains. Neurochem Res 2022; 47:1610-1636. [PMID: 35229271 DOI: 10.1007/s11064-022-03556-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.
Collapse
Affiliation(s)
- Pulleri Kandi Harsha
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sathyanarayanan Ranganayaki
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Gourav Dey
- Manipal Academy of Higher Education, Manipal, India
- Institute of Bioinformatics, Bangalore, India
| | | | - Anusha Yarlagadda
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - B K Chandrasekhar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| |
Collapse
|
15
|
Ozkaraca M, Ozdemir S, Comakli S, Timurkan MO. Roles of apoptosis and autophagy in natural rabies infections. VET MED-CZECH 2022; 67:1-12. [PMID: 39169958 PMCID: PMC11334964 DOI: 10.17221/221/2020-vetmed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/24/2021] [Indexed: 08/23/2024] Open
Abstract
The aim of this study was to investigate the activity of apoptosis and autophagy in animals (cows, horses, donkeys, dogs and cats) naturally infected with rabies by using immunohistochemistry, immunofluorescence, and qPCR. The mRNA transcript levels of caspase-3, Bax, Bcl2 and LC3B were determined with qPCR. Caspase-3 and AIF immunopositivity were not observed in the immunohistochemical and immunofluorescence staining, whereas LC3B immunopositivity was determined intensively in the infected animals compared to the control groups. LC3B immunopositivity was detected in the cytoplasm of the Purkinje cells in the cerebellum of the cows, horses and donkeys, and also in the cytoplasm of the neurons in the cornu ammonis of the dogs and cats. While the expression levels of caspase-3 and Bax were downregulated, the Bcl2 expression was up-regulated in the infected animals compared to the uninfected animals. In addition, the LC3B levels were found to be significantly higher in the infected animals. To the best of our knowledge, this work represents the first report of neuronal death in the central nervous system by autophagy, rather than by caspase-dependent or AIF-containing caspase-independent apoptosis.
Collapse
Affiliation(s)
- Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkey
| | - Selcuk Ozdemir
- Department of Genetic, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Selim Comakli
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Ozkan Timurkan
- Department of Virology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
16
|
Comprehensive analysis of protein acetylation and glucose metabolism inmouse brains infected with rabies virus. J Virol 2021; 96:e0194221. [PMID: 34878915 DOI: 10.1128/jvi.01942-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed that high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infection and suggest that OAA treatment could be a potential strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy-dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to the energy requirements after RABV infection. Our study also indicates the potential role OAA could play in neuronal protection by suppressing excessive neuroinflammation.
Collapse
|
17
|
Scott TP, Nel LH. Lyssaviruses and the Fatal Encephalitic Disease Rabies. Front Immunol 2021; 12:786953. [PMID: 34925368 PMCID: PMC8678592 DOI: 10.3389/fimmu.2021.786953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa, six confirmed and one putative species of lyssavirus have been identified. Rabies lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the primary reservoir - resulting in the highest per capita death rate from rabies globally. Rabies is typically transmitted through the injection of virus-laden saliva through a bite or scratch from an infected animal. Due to the inhibition of specific immune responses by multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue and subsequently enters the peripheral nervous system at the neuromuscular junction. Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular apoptosis as the virus progresses to the central nervous system and brain using viral protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the encephalitic and the paralytic form - with differing clinical manifestations and survival times. Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal apoptosis. While much is known about rabies, there remain many gaps in knowledge about the neuropathology of the disease. It should be emphasized however, that rabies is vaccine preventable and dog-mediated human rabies has been eliminated in various countries. The global elimination of dog-mediated human rabies in the foreseeable future is therefore an entirely feasible goal.
Collapse
Affiliation(s)
| | - Louis Hendrik Nel
- Global Alliance for Rabies Control, Manhattan, KS, United States
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Feige L, Zaeck LM, Sehl-Ewert J, Finke S, Bourhy H. Innate Immune Signaling and Role of Glial Cells in Herpes Simplex Virus- and Rabies Virus-Induced Encephalitis. Viruses 2021; 13:2364. [PMID: 34960633 PMCID: PMC8708193 DOI: 10.3390/v13122364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
The environment of the central nervous system (CNS) represents a double-edged sword in the context of viral infections. On the one hand, the infectious route for viral pathogens is restricted via neuroprotective barriers; on the other hand, viruses benefit from the immunologically quiescent neural environment after CNS entry. Both the herpes simplex virus (HSV) and the rabies virus (RABV) bypass the neuroprotective blood-brain barrier (BBB) and successfully enter the CNS parenchyma via nerve endings. Despite the differences in the molecular nature of both viruses, each virus uses retrograde transport along peripheral nerves to reach the human CNS. Once inside the CNS parenchyma, HSV infection results in severe acute inflammation, necrosis, and hemorrhaging, while RABV preserves the intact neuronal network by inhibiting apoptosis and limiting inflammation. During RABV neuroinvasion, surveilling glial cells fail to generate a sufficient type I interferon (IFN) response, enabling RABV to replicate undetected, ultimately leading to its fatal outcome. To date, we do not fully understand the molecular mechanisms underlying the activation or suppression of the host inflammatory responses of surveilling glial cells, which present important pathways shaping viral pathogenesis and clinical outcome in viral encephalitis. Here, we compare the innate immune responses of glial cells in RABV- and HSV-infected CNS, highlighting different viral strategies of neuroprotection or Neuroinflamm. in the context of viral encephalitis.
Collapse
Affiliation(s)
- Lena Feige
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany;
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut (FLI), Federal Institute of Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (L.M.Z.); (S.F.)
| | - Hervé Bourhy
- Institut Pasteur, Université de Paris, Lyssavirus Epidemiology and Neuropathology, 28 Rue Du Docteur Roux, 75015 Paris, France;
| |
Collapse
|
19
|
Bashir DW, Rashad MM, Ahmed YH, Drweesh EA, Elzahany EAM, Abou-El-Sherbini KS, El-Leithy EMM. The ameliorative effect of nanoselenium on histopathological and biochemical alterations induced by melamine toxicity on the brain of adult male albino rats. Neurotoxicology 2021; 86:37-51. [PMID: 34216684 DOI: 10.1016/j.neuro.2021.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Melamine is a chemical substance used as a food adulterant because of its high nitrogen content; it is known to induce neurotoxicity, thereby adversely affecting the central nervous system. The biocompatibility, bioavailability, lower toxicity, and the large surface area of nanosized selenium relative to its other forms indicate that selenium nanoparticles (SeNPs) have a potential ameliorative effect against melamine-induced neurotoxicity. In this study, we tested this hypothesis using 40 adult male albino rats that were randomly assigned into four groups (n = 10 per group): group I rats served as the untreated negative controls and were fed with standard diet and distilled water; group II rats were orally treated with melamine (300 mg/kg body weight/d); group III rats orally received melamine (300 mg/kg body weight/d) and SeNPs (2 mg/kg body weight/d); and group IV rats received SeNPs only (2 mg/kg body weight/d) for 28 days. Blood and brain samples were collected from all rats and processed for biochemical, histopathological, and immunohistochemical investigations. SeNPs were encapsulated in starch as a natural stabilizer and a size-controlling agent (SeNP@starch). The prepared SeNPs were characterized using different techniques. Inductively coupled plasma-optical emission spectrometry (ICP-OES) indicated that the percentage of selenium loaded in starch was 1.888 %. Powder x-ray diffractometer (XRD) was used to investigate the crystalline structure of the Se-NP@starch, to be tubular and composed of amorphous starch as well as metallic selenium. Thermogravimetric analysis confirmed the thermal stability of the product and determined the interactions among the different components. Transmission electron microscope demonstrated the spherical shape of SeNPs and their dispersion into starch surface as well as evaluating their size in nanoscale (range 20-140 nm). Our results revealed that the melamine- exposed rats had significantly elevated in malondialdehyde levels, significantly reduced in total antioxidant capacity, down-regulated expression of the antioxidant related genes Nrf2 (nuclear factor erythroid 2-related factor 2) and GPx (glutathione peroxidase), as well as up-regulated expression of the apoptosis-related gene Bax (B-cell lymphoma 2-associated X protein), with down regulation of Bcl-2 (B-cell lymphoma 2). Histopathological examination exhibited several alterations in the cerebrum, cerebellum, and hippocampus of the treated rats compared with the controls. Neuronal degeneration, vacuolation of the neuropils, and pericellular and perivascular spaces were observed. In addition, the pyramidal and granular cell layers of the hippocampus and cerebellum, respectively, were found to have significantly reduced thickness. Furthermore, a significant decrease in the percentage area of the glial fibrillary acidic protein and a significant increase in the percentage area of caspase-3 were noted. On the other hand, co-treatment with SeNPs partially ameliorated these alterations. A significant reduction in malondialdehyde levels; a non- significant elevation in total antioxidant capacity; up-regulation, upregulation of Nrf2, GPx, and Bcl-2 and downregulation of Bax were recorded. Neuronal degeneration, vacuolation of neuropils, and pericellular spaces were reduced. The pyramidal and granular cell layers restored their normal thickness. The percentage area of the glial fibrillary acidic protein significantly increased, whereas that of caspase-3 significantly decreased. In conclusion, SeNPs have an ameliorative effect against melamine-induced neurotoxicity in albino rats.
Collapse
Affiliation(s)
- Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Elsayed A Drweesh
- Department of Inorganic Chemistry, National Research Centre, Giza, Egypt
| | - Eman A M Elzahany
- Department of Inorganic Chemistry, National Research Centre, Giza, Egypt
| | | | - Ebtihal M M El-Leithy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
20
|
Farahtaj F, Alizadeh L, Gholami A, Khosravy MS, Bashar R, Gharibzadeh S, Mahmoodzadeh Niknam H, Ghaemi A. Differential pathogenesis of intracerebral and intramuscular inoculation of street rabies virus and CVS-11 strains in a mouse model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:943-950. [PMID: 34712425 PMCID: PMC8528248 DOI: 10.22038/ijbms.2021.54264.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The mechanisms of rabies evasion and immunological interactions with the host defense have not been completely elucidated. Here, we evaluated the dynamic changes in the number of astrocytes, microglial and neuronal cells in the brain following intramuscular (IM) and intracerebral (IC) inoculations of street rabies virus (SRV). MATERIALS AND METHODS The SRV isolated from a jackal and CVS-11 were used to establish infection in NMRI-female mice. The number of astrocytes (by expression of GFAP), microglial (by Iba1), and neuronal cells (by MAP-2) in the brain following IM and IC inoculations of SRV were evaluated by immunohistochemistry and H & E staining 7 to 30 days post-infection. RESULTS Increased numbers of astrocytes and microglial cells in dead mice infected by SRV via both IC and IM routes were recorded. The number of neuronal cells in surviving mice was decreased only in IC-infected mice, while in the dead group, this number was decreased by both routes.The risk of death in SRV-infected mice was approximately 3 times higher than in the CVS-11 group. In IC-inoculated mice, viral dilution was the only influential factor in mortality, while the type of strain demonstrated a significant impact on the mortality rate in IM inoculations. CONCLUSION Our results suggested that microglial cells and their inflammatory cytokines may not contribute to the neuroprotection and recovery in surviving mice following intracerebral inoculation of SRV. An unexpected decrease in MAP2 expression via intramuscular inoculation indicates the imbalance in the integrity and stability of neuronal cytoskeleton which aggravates rabies infection.
Collapse
Affiliation(s)
- Firozeh Farahtaj
- National Center for Reference & Research on Rabies, Institut Pasteur of Iran, Tehran, Iran
| | - Leila Alizadeh
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Viral vaccine Production, Pasteur Institute of Iran, Karaj, Iran
| | | | - Rouzbeh Bashar
- National Center for Reference & Research on Rabies, Institut Pasteur of Iran, Tehran, Iran
| | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging of Infectious Diseases, Institut Pasteur of Iran, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Abstract
Viruses are obligatory intracellular parasites that use cell proteins to take the control of the cell functions in order to accomplish their life cycle. Studying the viral-host interactions would increase our knowledge of the viral biology and mechanisms of pathogenesis. Studies on pathogenesis mechanisms of lyssaviruses, which are the causative agents of rabies, have revealed some important host protein partners for viral proteins, especially for most studied species, i.e. RABV. In this review article, the key physical lyssavirus-host protein interactions, their contributions to rabies infection, and their exploitation are discussed to improve the knowledge about rabies pathogenesis.
Collapse
|
22
|
Farahtaj F, Gholami A, Khosravy MS, Gharibzadeh S, Niknam HM, Ghaemi A. Enhancement of immune responses by co-stimulation of TLR3 - TLR7 agonists as a potential therapeutics against rabies in mouse model. Microb Pathog 2021; 157:104971. [PMID: 34029660 DOI: 10.1016/j.micpath.2021.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/18/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Rabies is always fatal, when post-exposure prophylaxis is administered after the onset of clinical symptoms. To date, there is no effective treatment of rabies once clinical symptoms has initiated. Therefore, we aimed to provide evidences which indicate the promising effects of combination treatment with TLR agonists following rabies infection. Four groups of rabies infected-mice (10-mice/group) were treated with PolyI:C 50 μg (a TLR3 agonist), Imiquimod50 μg (a TLR7 agonist), (Poly + Imi)25 μg and (Poly + Imi)50 μg respectively. The immune responses in each experimental groups were investigated in the brain through evaluation of GFAP, MAP2, CD4, HSP70, TLR3, TLR7 and apoptotic cell expression as well as determination of IFN-γ, TNF-α and IL-4, levels. The treatment with combination of agonists (Poly + Imi)50 μg/mouse resulted a 75% decrease of mortality rate and better extended survival time following street rabies virus infection. Higher number of CD4+T cells, TLR3 and TLR7 expression in the brain parenchyma observed in the groups receiving both combined agonist therapies at the levels of 25 μg and 50 μg. In spite of decreased number of neuronal cell, significant higher number of astrocytes was shown in the group given (Poly + Imi)25 μg. The obtained results also pointed to the dramatic decrease of HSP70 expression in all groups of infected mice whereas higher number of apoptotic cells and Caspase 8 expression were recorded in (Poly + Imi)25 μg treated group. Furthermore, the cytokine profile consisting the increased levels of TNF-α, IFN-γ and IL-4 revealed that both humoral and cellular responses were highly modulated in combination therapy of 50 μg of Imiquimod and Poly I:C. Reduced viral load as quantified by real-time PCR of rabies N gene expression in the brain also correlated with the better survival of agonist-treated groups of mice. Based on obtained results, we have presented evidences of beneficial utilization of combined agonist therapy composed of TLR3/TLR7 ligands. This treatment regimen extended survival of infected mice and decreased significantly their mortality rate. We believe that the results of synergy-inducing protection of both TLR3/TLR7 agonists lead to the enhancement of innate immune responses cells residing in the CNS which warrant the studies to further understanding of crosstalk mechanisms in cellular immunity against rabies in the future.
Collapse
Affiliation(s)
- Firouzeh Farahtaj
- Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Gholami
- Viral Vaccine Production, Pasteur Institute of Iran, Karaj, Iran
| | | | - Safoora Gharibzadeh
- Department of Epidemiology and Biostatistics, Research Center for Emerging and Reemerging of Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
23
|
Rabies virus glycoprotein enhances spatial memory via the PDZ binding motif. J Neurovirol 2021; 27:434-443. [PMID: 33788140 DOI: 10.1007/s13365-021-00972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Rabies is a life-threatening viral infection of the brain. Rabies virus (RABV) merely infects excitable cells including neurons provoking drastic behaviors including negative emotional memories. RABV glycoprotein (RVG) plays a critical role in RABV pathogenesis. RVG interacts with various cytoplasmic PDZ (PSD-95/Dlg/ZO-1) containing proteins through its PDZ binding motif (PBM). PTZ domains have crucial role in formation and function of signal transduction. Hippocampus is one of the cerebral regions that contain high load of viral antigens. We examined impact of RVG expression in the dorsal hippocampus on aversive as well as spatial learning and memory performance in rats. Two microliter of the lentiviral vector (~108 T.U./ml) encoding RVG or ∆RVG (deleted PBM) genomes was microinjected into the hippocampal CA1. After 1 week, rat's brain was cross-sectioned and RVG/∆RVG-expressing neuronal cells were confirmed by fluorescent microscopy. Passive avoidance and spatial learning and memory were assessed in rats by Shuttle box and Morris water maze (MWM). In the shuttle box, both RVG and ∆RVG decreased the time spent in the dark compartment compared to control (p < 0.05). In MWM, RVG and ∆RVG did not affect the acquisition of spatial task. In the probe test, RVG-expressing rats spent more time in the target quadrant, and also reached the platform position sooner than control group (p < 0.05). Rats expressing ∆RVG significantly swam farther from the hidden platform than RVG group (p < 0.05). Our data indicate RVG expression in the hippocampus strengthens aversive and spatial learning and memory performance. The boosting effect on spatial but not avoidance memory is mediated through PBM.
Collapse
|
24
|
Ghassemi S, Asgari T, Mirzapour-Delavar H, Aliakbari S, Pourbadie HG, Prehaud C, Lafon M, Gholami A, Azadmanesh K, Naderi N, Sayyah M. Lentiviral Expression of Rabies Virus Glycoprotein in the Rat Hippocampus Strengthens Synaptic Plasticity. Cell Mol Neurobiol 2021; 42:1429-1440. [PMID: 33462779 DOI: 10.1007/s10571-020-01032-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
Rabies virus (RABV) is a neurotropic virus exclusively infecting neurons in the central nervous system. RABV encodes five proteins. Among them, the viral glycoprotein (RVG) plays a key role in viral entry into neurons and rabies pathogenesis. It was shown that the nature of the C-terminus of the RABV G protein, which possesses a PDZ-binding motif (PBM), modulates the virulence of the RABV strain. The neuronal protein partners recruited by this PBM may alter host cell function. This study was conducted to investigate the effect of RVG on synaptic function in the hippocampal dentate gyrus (DG) of rat. Two μl (108 T.U./ml) of the lentiviral vector containing RVG gene was injected into the DG of rat hippocampus. After 2 weeks, the rat's brain was cross-sectioned and RVG-expressing cells were detected by fluorescent microscopy. Hippocampal synaptic activity of the infected rats was then examined by recording the local field potentials from DG after stimulation of the perforant pathway. Short-term synaptic plasticity was also assessed by double pulse stimulation. Expression of RVG in DG increased long-term potentiation population spikes (LTP-PS), whereas no facilitation of LTP-PS was found in neurons expressing δRVG (deleted PBM). Furthermore, RVG and δRVG strengthened paired-pulse facilitation. Heterosynaptic long-term depression (LTD) in the DG was significantly blocked in RVG-expressing group compared to the control group. This blockade was dependent to PBM motif as rats expressing δRVG in the DG-expressed LTD comparable to the RVG group. Our data demonstrate that RVG expression facilitates both short- and long-term synaptic plasticity in the DG indicating that it may involve both pre- and postsynaptic mechanisms to alter synaptic function. Further studies are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Soheil Ghassemi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Tara Asgari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Shayan Aliakbari
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Christophe Prehaud
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris, France
| | - Monique Lafon
- Institut Pasteur, Unité de Neuroimmunologie Virale, UMR 3569, CNRS, Paris, France
| | - Alireza Gholami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sayyah
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
25
|
Aboelwafa HR, El-kott AF, Abd-Ella EM, Yousef HN. The Possible Neuroprotective Effect of Silymarin against Aluminum Chloride-Prompted Alzheimer's-Like Disease in Rats. Brain Sci 2020; 10:E628. [PMID: 32932753 PMCID: PMC7564174 DOI: 10.3390/brainsci10090628] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is a worldwide rapidly growing neurodegenerative disease. Here, we elucidated the neuroprotective effects of silymarin (SM) on the hippocampal tissues of aluminum chloride (AlCl3)-induced Alzheimer-like disease in rats using biochemical, histological, and ultrastructural approaches. Forty rats were divided into control, SM, AlCl3, and AlCl3 + SM groups. Biochemically, AlCl3 administration resulted in marked elevation in levels of lipid peroxidation (LPO) and nitric oxide (NO) and decrease in levels of reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). Moreover, AlCl3 significantly increased tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1β), and acetylcholinesterase (AChE) activities. Furthermore, myriad histological and ultrastructural alterations were recorded in the hippocampal tissues of AlCl3-treated rats represented as marked degenerative changes of pyramidal neurons, astrocytes, and oligodendrocytes. Additionally, some myelinated nerve fibers exhibited irregular arrangement of their myelin coats, while the others revealed focal degranulation of their myelin sheaths. Severe defects in the blood-brain barrier (BBB) were also recorded. However, co-administration of SM with AlCl3 reversed most of the biochemical, histological, and ultrastructural changes triggered by AlCl3 in rats. The results of the current study indicate that SM can potentially mend most of the previously evoked neuronal damage in the hippocampal tissues of AlCl3-kindled rats.
Collapse
Affiliation(s)
- Hanaa R. Aboelwafa
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11566, Egypt;
| | - Attalla F. El-kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Eman M. Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum 63514, Egypt;
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq 65581, Saudi Arabia
| | - Hany N. Yousef
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
26
|
Mastraccio KE, Huaman C, Warrilow D, Smith GA, Craig SB, Weir DL, Laing ED, Smith IL, Broder CC, Schaefer BC. Establishment of a longitudinal pre-clinical model of lyssavirus infection. J Virol Methods 2020; 281:113882. [PMID: 32407866 PMCID: PMC8056983 DOI: 10.1016/j.jviromet.2020.113882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Traditional mouse models of lyssavirus pathogenesis rely on euthanizing large groups of animals at various time points post-infection, processing infected tissues, and performing histological and molecular analyses to determine anatomical sites of infection. While powerful by some measures, this approach is limited by the inability to monitor disease progression in the same mice over time. In this study, we established a novel non-invasive mouse model of lyssavirus pathogenesis, which consists of longitudinal imaging of a luciferase-expressing Australian bat lyssavirus (ABLV) reporter virus. In vivo bioluminescence imaging (BLI) in mice revealed viral spread from a peripheral site of inoculation into the central nervous system (CNS), with kinetically and spatially distinct foci of replication in the footpad, spinal cord, and hindbrain. Detection of virus within the CNS was associated with onset of clinical disease. Quantification of virus-derived luminescent signal in the brain was found to be a reliable measure of viral replication, when compared to traditional molecular methods. Furthermore, we demonstrate that in vivo imaging of ABLV infection is not restricted to the use of albino strains of mice, but rather strong BLI signal output can be achieved by shaving the hair from the heads and spines of pigmented strains, such as C57BL/6. Overall, our data show that in vivo BLI can be used to rapidly and non-invasively identify sites of lyssavirus replication and to semi-quantitatively determine viral load without the need to sacrifice mice at multiple time points.
Collapse
Affiliation(s)
- Kate E Mastraccio
- Uniformed Services University, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Celeste Huaman
- Uniformed Services University, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - David Warrilow
- Queensland Health Forensic and Scientific Services, Archerfield, Australia.
| | - Greg A Smith
- Queensland Health Forensic and Scientific Services, Archerfield, Australia.
| | - Scott B Craig
- Queensland Health Forensic and Scientific Services, Archerfield, Australia.
| | - Dawn L Weir
- Uniformed Services University, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Eric D Laing
- Uniformed Services University, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Ina L Smith
- Queensland Health Forensic and Scientific Services, Archerfield, Australia; Risk Evaluation and Preparedness Program, Health and Biosecurity, CSIRO, Black Mountain, ACT, Australia.
| | - Christopher C Broder
- Uniformed Services University, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Brian C Schaefer
- Uniformed Services University, Department of Microbiology and Immunology, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
27
|
Novel role of SARM1 mediated axonal degeneration in the pathogenesis of rabies. PLoS Pathog 2020; 16:e1008343. [PMID: 32069324 PMCID: PMC7048299 DOI: 10.1371/journal.ppat.1008343] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Neurotropic viral infections continue to pose a serious threat to human and animal wellbeing. Host responses combatting the invading virus in these infections often cause irreversible damage to the nervous system, resulting in poor prognosis. Rabies is the most lethal neurotropic virus, which specifically infects neurons and spreads through the host nervous system by retrograde axonal transport. The key pathogenic mechanisms associated with rabies infection and axonal transmission in neurons remains unclear. Here we studied the pathogenesis of different field isolates of lyssavirus including rabies using ex-vivo model systems generated with mouse primary neurons derived from the peripheral and central nervous systems. In this study, we show that neurons activate selective and compartmentalized degeneration of their axons and dendrites in response to infection with different field strains of lyssavirus. We further show that this axonal degeneration is mediated by the loss of NAD and calpain-mediated digestion of key structural proteins such as MAP2 and neurofilament. We then analysed the role of SARM1 gene in rabies infection, which has been shown to mediate axonal self-destruction during injury. We show that SARM1 is required for the accelerated execution of rabies induced axonal degeneration and the deletion of SARM1 gene significantly delayed axonal degeneration in rabies infected neurons. Using a microfluidic-based ex-vivo neuronal model, we show that SARM1-mediated axonal degeneration impedes the spread of rabies virus among interconnected neurons. However, this neuronal defense mechanism also results in the pathological loss of axons and dendrites. This study therefore identifies a potential host-directed mechanism behind neurological dysfunction in rabies infection. This study also implicates a novel role of SARM1 mediated axonal degeneration in neurotropic viral infection. Lyssaviruses including rabies, still causes devastating loss of human life every year and many victims are children under the age of 15. Rabies infection causes severe neurological dysfunction in the host resulting in paralysis, cognitive deficits and behavioural abnormalities. The mechanism of how rabies infection induces neurological dysfunction in the host remains unclear. This is because unlike other microbial infections, rabies infection rarely causes neuronal cell death and loss of neurons in the host nervous system. In this study, we show that neurons activate specific axonal self-destruction mechanism during rabies infection to prevent the spread of virus. However, this neuronal self-defense mechanism results in the loss of axons and dendrites, the structural components essential for the functioning of neurons. We further show that axonal degeneration in rabies infection is mediated by SARM1 gene, which has been previously shown to mediate defensive self-destruction of axons and dendrites in the event of neuronal injury. In summary, this study identifies a novel molecular mechanism behind neuronal dysfunction in rabies infection. This study also describes a novel intrinsic anti-viral defence mechanism in neurons, which could influence the pathogenesis of neurotropic viral infections.
Collapse
|
28
|
Galal MK, Elleithy EMM, Abdrabou MI, Yasin NAE, Shaheen YM. Modulation of caspase-3 gene expression and protective effects of garlic and spirulina against CNS neurotoxicity induced by lead exposure in male rats. Neurotoxicology 2019; 72:15-28. [PMID: 30703413 DOI: 10.1016/j.neuro.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/06/2023]
Abstract
Lead (Pb) is a ubiquitous environmental and industrial pollutant with worldwide health problems. The present study was designed to investigate the neurotoxic effects of Pb in albino rats and to evaluate the ameliorative role of garlic as well as Spirulina maxima against such toxic effects. Forty adult male rats were used in this investigation (10 rats/group). Group I: served as control, Group II: rats received lead acetate (100 mg/kg), Group III: rats received both lead acetate (100 mg/kg) and garlic (600 mg/kg) and Group IV: rats received both lead acetate (100 mg/kg) and spirulina (500 mg/kg) daily by oral gavage for one month. Exposure to Pb acetate adversely affected the measured acetyl cholinesterase enzyme activity, oxidative stress and lipid peroxidation parameters as well as caspase-3 gene expression in brain tissue (cerebrum and cerebellum). Light and electron microscopical examination of the cerebrum and cerebellum showed various lesions after exposure to Pb which were confirmed by immunohistochemistry. On the other hand, administration of garlic and spirulina concomitantly with lead acetate ameliorated most of the undesirable effects. It could be concluded that, the adverse effects induced by lead acetate, were markedly ameliorated by co-treatment with S. maxima more than garlic.
Collapse
Affiliation(s)
- Mona K Galal
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtihal M M Elleithy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed I Abdrabou
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Noha A E Yasin
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Youssef M Shaheen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
29
|
Stassen QEM, Grinwis GCM, van Rhijn NC, Beukers M, Verhoeven-Duif NM, Leegwater PAJ. Focal epilepsy with fear-related behavior as primary presentation in Boerboel dogs. J Vet Intern Med 2018; 33:694-700. [PMID: 30580458 PMCID: PMC6430876 DOI: 10.1111/jvim.15346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/05/2018] [Indexed: 11/27/2022] Open
Abstract
Background Focal seizures with fear as a primary ictal manifestation, their diagnostic challenges, and impact on quality of life are well described in human medicine. Reports focusing on ictal fear‐like behavior in animals are scarce. Objective To describe the clinical and histopathological characteristics of a novel focal epilepsy in Boerboel dogs. Animals Five client‐owned Boerboel littermates presented for evaluation of sudden episodes of severe fear‐related behavior. Methods Clinical examination, complete blood cell count, routine blood biochemistry, and urinalysis were performed in all dogs. Magnetic resonance imaging (MRI) scans of the brain were performed in 3 affected Boerboels. In addition, in 2 affected Boerboels, metabolic screening, cerebrospinal fluid (CSF) analysis, and necropsy were performed. Results Onset of signs was 3 months of age in all affected Boerboels. All Boerboels howled loudly, had an extremely fearful facial expression and trembled during seizures. All affected Boerboels also had autonomic or motor signs. Results of laboratory investigations, diagnostic imaging, and metabolic screening were generally unremarkable. Histopathology showed moderate numbers of single large vacuoles in the perikaryon of neurons throughout the brain, specifically in the deeper cerebral cortical regions. Family history, pedigree analysis, and the homogenous phenotype were suggestive of autosomal recessive inheritance. Conclusions and Clinical Importance The observed paroxysmal fear‐related behavior represents a newly recognized hereditary focal epilepsy in dogs with distinctive clinical and histopathologic features. Veterinarians should be aware that sudden episodes of unusual behavior can represent focal epilepsy.
Collapse
Affiliation(s)
- Quirine E M Stassen
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nieke C van Rhijn
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martjin Beukers
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Department of Genetics and Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
30
|
Inhibition of MALT1 Decreases Neuroinflammation and Pathogenicity of Virulent Rabies Virus in Mice. J Virol 2018; 92:JVI.00720-18. [PMID: 30158289 DOI: 10.1128/jvi.00720-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/05/2018] [Indexed: 12/15/2022] Open
Abstract
Rabies virus is a neurovirulent RNA virus, which causes about 59,000 human deaths each year. Treatment for rabies does not exist due to incomplete understanding of the pathogenesis. MALT1 mediates activation of several immune cell types and is involved in the proliferation and survival of cancer cells. MALT1 acts as a scaffold protein for NF-κB signaling and a cysteine protease that cleaves substrates, leading to the expression of immunoregulatory genes. Here, we examined the impact of genetic or pharmacological MALT1 inhibition in mice on disease development after infection with the virulent rabies virus strain CVS-11. Morbidity and mortality were significantly delayed in Malt1 -/- compared to Malt1 +/+ mice, and this effect was associated with lower viral load, proinflammatory gene expression, and infiltration and activation of immune cells in the brain. Specific deletion of Malt1 in T cells also delayed disease development, while deletion in myeloid cells, neuronal cells, or NK cells had no effect. Disease development was also delayed in mice treated with the MALT1 protease inhibitor mepazine and in knock-in mice expressing a catalytically inactive MALT1 mutant protein, showing an important role of MALT1 proteolytic activity. The described protective effect of MALT1 inhibition against infection with a virulent rabies virus is the precise opposite of the sensitizing effect of MALT1 inhibition that we previously observed in the case of infection with an attenuated rabies virus strain. Together, these data demonstrate that the role of immunoregulatory responses in rabies pathogenicity is dependent on virus virulence and reveal the potential of MALT1 inhibition for therapeutic intervention.IMPORTANCE Rabies virus is a neurotropic RNA virus that causes encephalitis and still poses an enormous challenge to animal and public health. Efforts to establish reliable therapeutic strategies have been unsuccessful and are hampered by gaps in the understanding of virus pathogenicity. MALT1 is an intracellular protease that mediates the activation of several innate and adaptive immune cells in response to multiple receptors, and therapeutic MALT1 targeting is believed to be a valid approach for autoimmunity and MALT1-addicted cancers. Here, we study the impact of MALT1 deficiency on brain inflammation and disease development in response to infection of mice with the highly virulent CVS-11 rabies virus. We demonstrate that pharmacological or genetic MALT1 inhibition decreases neuroinflammation and extends the survival of CVS-11-infected mice, providing new insights in the biology of MALT1 and rabies virus infection.
Collapse
|
31
|
Abd-Ellah HF, Abou-Zeid NRA, Nasr NM. The possible protective effect of N-acetyl-L-cysteine and folic acid in combination against aspartame-induced cerebral cortex neurotoxicity in adult male rats: a light and transmission electron microscopic study. Ultrastruct Pathol 2018; 42:228-245. [DOI: 10.1080/01913123.2018.1440270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hala F. Abd-Ellah
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, Egypt
| | - Nadia R. A. Abou-Zeid
- Electron Microscope Lab., Ain Shams Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Nadia M. Nasr
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
32
|
Singh R, Singh KP, Cherian S, Saminathan M, Kapoor S, Manjunatha Reddy GB, Panda S, Dhama K. Rabies - epidemiology, pathogenesis, public health concerns and advances in diagnosis and control: a comprehensive review. Vet Q 2017. [PMID: 28643547 DOI: 10.1080/01652176.2017.1343516] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a zoonotic, fatal and progressive neurological infection caused by rabies virus of the genus Lyssavirus and family Rhabdoviridae. It affects all warm-blooded animals and the disease is prevalent throughout the world and endemic in many countries except in Islands like Australia and Antarctica. Over 60,000 peoples die every year due to rabies, while approximately 15 million people receive rabies post-exposure prophylaxis (PEP) annually. Bite of rabid animals and saliva of infected host are mainly responsible for transmission and wildlife like raccoons, skunks, bats and foxes are main reservoirs for rabies. The incubation period is highly variable from 2 weeks to 6 years (avg. 2-3 months). Though severe neurologic signs and fatal outcome, neuropathological lesions are relatively mild. Rabies virus exploits various mechanisms to evade the host immune responses. Being a major zoonosis, precise and rapid diagnosis is important for early treatment and effective prevention and control measures. Traditional rapid Seller's staining and histopathological methods are still in use for diagnosis of rabies. Direct immunofluoroscent test (dFAT) is gold standard test and most commonly recommended for diagnosis of rabies in fresh brain tissues of dogs by both OIE and WHO. Mouse inoculation test (MIT) and polymerase chain reaction (PCR) are superior and used for routine diagnosis. Vaccination with live attenuated or inactivated viruses, DNA and recombinant vaccines can be done in endemic areas. This review describes in detail about epidemiology, transmission, pathogenesis, advances in diagnosis, vaccination and therapeutic approaches along with appropriate prevention and control strategies.
Collapse
Affiliation(s)
- Rajendra Singh
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Karam Pal Singh
- b Centre for Animal Disease Research and Diagnosis (CADRAD) , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Susan Cherian
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Mani Saminathan
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Sanjay Kapoor
- c Department of Veterinary Microbiology , LLR University of Veterinary and Animal Sciences , Hisar , Haryana , India
| | - G B Manjunatha Reddy
- d ICAR-National Institute of Veterinary Epidemiology and Disease Informatics , Bengaluru , Karnataka , India
| | - Shibani Panda
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| | - Kuldeep Dhama
- a Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , Uttar Pradesh , India
| |
Collapse
|
33
|
Pfankuche VM, Jo WK, van der Vries E, Jungwirth N, Lorenzen S, Osterhaus ADME, Baumgärtner W, Puff C. Neuronal Vacuolization in Feline Panleukopenia Virus Infection. Vet Pathol 2017; 55:294-297. [PMID: 29157191 DOI: 10.1177/0300985817738096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Feline panleukopenia virus (FPV) infections are typically associated with anorexia, vomiting, diarrhea, neutropenia, and lymphopenia. In cases of late prenatal or early neonatal infections, cerebellar hypoplasia is reported in kittens. In addition, single cases of encephalitis are described. FPV replication was recently identified in neurons, although it is mainly found in cells with high mitotic activity. A female cat, 2 months old, was submitted to necropsy after it died with neurologic deficits. Besides typical FPV intestinal tract changes, multifocal, randomly distributed intracytoplasmic vacuoles within neurons of the thoracic spinal cord were found histologically. Next-generation sequencing identified FPV-specific sequences within the central nervous system. FPV antigen was detected within central nervous system cells, including the vacuolated neurons, via immunohistochemistry. In situ hybridization confirmed the presence of FPV DNA within the vacuolated neurons. Thus, FPV should be considered a cause for neuronal vacuolization in cats presenting with ataxia.
Collapse
Affiliation(s)
- Vanessa M Pfankuche
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany.,Both of these authors contributed equally to this work
| | - Wendy K Jo
- 2 Center for Systems Neuroscience, Hannover, Germany.,3 Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany.,Both of these authors contributed equally to this work
| | | | - Nicole Jungwirth
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Stephan Lorenzen
- 4 Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Albert D M E Osterhaus
- 2 Center for Systems Neuroscience, Hannover, Germany.,3 Research Center for Emerging Infections and Zoonoses (RIZ), Hannover, Germany.,5 Artemis One Health, Utrecht, Netherlands
| | - Wolfgang Baumgärtner
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany.,2 Center for Systems Neuroscience, Hannover, Germany
| | - Christina Puff
- 1 Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
34
|
Abstract
Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo, where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons.IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy.
Collapse
|
35
|
Lyssavirus phosphoproteins increase mitochondrial complex I activity and levels of reactive oxygen species. J Neurovirol 2017; 23:756-762. [DOI: 10.1007/s13365-017-0550-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
|
36
|
Zan J, Liu S, Sun DN, Mo KK, Yan Y, Liu J, Hu BL, Gu JY, Liao M, Zhou JY. Rabies Virus Infection Induces Microtubule Depolymerization to Facilitate Viral RNA Synthesis by Upregulating HDAC6. Front Cell Infect Microbiol 2017; 7:146. [PMID: 28491824 PMCID: PMC5405082 DOI: 10.3389/fcimb.2017.00146] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Rabies virus (RABV) is the cause of rabies, and is associated with severe neurological symptoms, high mortality rate, and a serious threat to human health. Although cellular tubulin has recently been identified to be incorporated into RABV particles, the effects of RABV infection on the microtubule cytoskeleton remain poorly understood. In this study, we show that RABV infection induces microtubule depolymerization as observed by confocal microscopy, which is closely associated with the formation of the filamentous network of the RABV M protein. Depolymerization of microtubules significantly increases viral RNA synthesis, while the polymerization of microtubules notably inhibits viral RNA synthesis and prevents the viral M protein from inducing the formation of the filamentous network. Furthermore, the histone deacetylase 6 (HDAC6) expression level progressively increases during RABV infection, and the inhibition of HDAC6 deacetylase activity significantly decreases viral RNA synthesis. In addition, the expression of viral M protein alone was found to significantly upregulate HDAC6 expression, leading to a substantial reduction in its substrate, acetylated α-tubulin, eventually resulting in microtubule depolymerization. These results demonstrate that HDAC6 plays a positive role in viral transcription and replication by inducing microtubule depolymerization during RABV infection.
Collapse
Affiliation(s)
- Jie Zan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Song Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Dong-Nan Sun
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Kai-Kun Mo
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Juan Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Bo-Li Hu
- Institute of Immunology, Nanjing Agricultural UniversityNanjing, China
| | - Jin-Yan Gu
- Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China
| | - Ji-Yong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang UniversityHangzhou, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang UniversityHangzhou, China
| |
Collapse
|
37
|
Kammouni W, Wood H, Jackson AC. Serine residues at positions 162 and 166 of the rabies virus phosphoprotein are critical for the induction of oxidative stress in rabies virus infection. J Neurovirol 2016; 23:358-368. [DOI: 10.1007/s13365-016-0506-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022]
|
38
|
Abstract
Rabies is a zoonotic disease that is usually transmitted to humans by animal bites. Dogs are the most important vector worldwide. There are encephalitic and paralytic forms of the disease. There are differences in the clinical features of the disease acquired from dogs and bats. Neuroimaging is non-specific. Confirmatory diagnostic laboratory tests for rabies include detection of neutralizing anti-rabies virus antibodies in serum or cerebrospinal fluid and rabies virus antigen or RNA in tissues or fluids. Rabies is preventable after recognized exposures with wound cleansing and administration of rabies vaccine and rabies immune globulin. Rabies is virtually always fatal after clinical disease develops, and there have only been rare survivors. The Milwaukee protocol, which includes therapeutic coma, has been shown to be ineffective and should no longer be used. The development of novel therapeutic approaches may depend on a better understanding of basic mechanisms underlying the disease.
Collapse
|
39
|
Scott TP, Nel LH. Subversion of the Immune Response by Rabies Virus. Viruses 2016; 8:v8080231. [PMID: 27548204 PMCID: PMC4997593 DOI: 10.3390/v8080231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/24/2022] Open
Abstract
Rabies has affected mankind for several centuries and is one of the oldest known zoonoses. It is peculiar how little is known regarding the means by which rabies virus (RABV) evades the immune response and kills its host. This review investigates the complex interplay between RABV and the immune system, including the various means by which RABV evades, or advantageously utilizes, the host immune response in order to ensure successful replication and spread to another host. Different factors that influence immune responses—including age, sex, cerebral lateralization and temperature—are discussed, with specific reference to RABV and the effects on host morbidity and mortality. We also investigate the role of apoptosis and discuss whether it is a detrimental or beneficial mechanism of the host’s response to infection. The various RABV proteins and their roles in immune evasion are examined in depth with reference to important domains and the downstream effects of these interactions. Lastly, an overview of the means by which RABV evades important immune responses is provided. The research discussed in this review will be important in determining the roles of the immune response during RABV infections as well as to highlight important therapeutic target regions and potential strategies for rabies treatment.
Collapse
Affiliation(s)
- Terence P Scott
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | - Louis H Nel
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
40
|
Zan J, Liu J, Zhou JW, Wang HL, Mo KK, Yan Y, Xu YB, Liao M, Su S, Hu RL, Zhou JY. Rabies virus matrix protein induces apoptosis by targeting mitochondria. Exp Cell Res 2016; 347:83-94. [PMID: 27426727 DOI: 10.1016/j.yexcr.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/25/2022]
Abstract
Apoptosis, as an innate antiviral defense, not only functions to limit viral replication by eliminating infected cells, but also contribute to viral dissemination, particularly at the late stages of infection. A highly neurotropic CVS strain of rabies virus induces apoptosis both in vitro and in vivo. However, the detailed mechanism of CVS-mediated neuronal apoptosis is not entirely clear. Here, we show that CVS induces apoptosis through mitochondrial pathway by dissipating mitochondrial membrane potential, release of cytochrome c and AIF. CVS blocks Bax activation at the early stages of infection; while M protein partially targets mitochondria and induces mitochondrial apoptosis at the late stages of infection. The α-helix structure spanning 67-79 amino acids of M protein is essential for mitochondrial targeting and induction of apoptosis. These results suggest that CVS functions on mitochondria to regulate apoptosis at different stages of infection, so as to for viral replication and dissemination.
Collapse
Affiliation(s)
- Jie Zan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Juan Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Jian-Wei Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Hai-Long Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Kai-Kun Mo
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Yan Yan
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Yun-Bin Xu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China
| | - Shuo Su
- Institute of Immunology, Nanjing Agricultural University, Nanjing, PR China
| | - Rong-Liang Hu
- Laboratory of Epidemiology, Veterinary Institute, Academy of military Medical Sciences, Changchun, PR China
| | - Ji-Yong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, PR China; Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, PR China; Institute of Immunology, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
41
|
Mahadevan A, Suja MS, Mani RS, Shankar SK. Perspectives in Diagnosis and Treatment of Rabies Viral Encephalitis: Insights from Pathogenesis. Neurotherapeutics 2016; 13:477-92. [PMID: 27324391 PMCID: PMC4965414 DOI: 10.1007/s13311-016-0452-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rabies viral encephalitis, though one of the oldest recognized infectious disease of humans, remains an incurable, fatal encephalomyelitis, despite advances in understanding of its pathobiology. Advances in science have led us on the trail of the virus in the host, but the sanctuaries in which the virus remains hidden for its survival are unknown. Insights into host-pathogen interactions have facilitated evolving immunologic therapeutic strategies, though we are far from a cure. Most of the present-day knowledge has evolved from in vitro studies using fixed (attenuated) laboratory strains that may not be applicable in the clinical setting. Much remains to be unraveled about this elusive virus. This review attempts to re-examine the current advances in understanding of the pathobiology of the rabies virus that modulate the diagnosis, treatment, and prevention of this fatal disease.
Collapse
Affiliation(s)
- Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India.
| | - M S Suja
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Reeta S Mani
- Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| | - Susarala K Shankar
- Department of Neuropathology, National Institute of Mental Health & Neurosciences, Bangalore, 560 029, India
| |
Collapse
|
42
|
Li L, Wang H, Jin H, Cao Z, Feng N, Zhao Y, Zheng X, Wang J, Li Q, Zhao G, Yan F, Wang L, Wang T, Gao Y, Tu C, Yang S, Xia X. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection. Arch Virol 2016; 161:1285-93. [PMID: 26906695 DOI: 10.1007/s00705-016-2795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/14/2016] [Indexed: 11/25/2022]
Abstract
Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.
Collapse
Affiliation(s)
- Ling Li
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Changchun SR Biological Technology Co., Ltd., Changchun, 130012, China
| | - Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Xuexing Zheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Jianzhong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Department of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Guoxing Zhao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225000, China.
| |
Collapse
|
43
|
Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ, Jessell TM, Losonczy A. Rabies Virus CVS-N2c(ΔG) Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron 2016; 89:711-24. [PMID: 26804990 DOI: 10.1016/j.neuron.2016.01.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/22/2015] [Accepted: 12/24/2015] [Indexed: 12/20/2022]
Abstract
Virally based transsynaptic tracing technologies are powerful experimental tools for neuronal circuit mapping. The glycoprotein-deletion variant of the SAD-B19 vaccine strain rabies virus (RABV) has been the reagent of choice in monosynaptic tracing, since it permits the mapping of synaptic inputs to genetically marked neurons. Since its introduction, new helper viruses and reagents that facilitate complementation have enhanced the efficiency of SAD-B19(ΔG) transsynaptic transfer, but there has been little focus on improvements to the core RABV strain. Here we generate a new deletion mutant strain, CVS-N2c(ΔG), and examine its neuronal toxicity and efficiency in directing retrograde transsynaptic transfer. We find that by comparison with SAD-B19(ΔG), the CVS-N2c(ΔG) strain exhibits a reduction in neuronal toxicity and a marked enhancement in transsynaptic neuronal transfer. We conclude that the CVS-N2c(ΔG) strain provides a more effective means of mapping neuronal circuitry and of monitoring and manipulating neuronal activity in vivo in the mammalian CNS.
Collapse
Affiliation(s)
- Thomas R Reardon
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Andrew J Murray
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA.
| | - Gergely F Turi
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Katherine R Croce
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10032, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA
| |
Collapse
|
44
|
Afifi OK, Embaby AS. Histological Study on the Protective Role of Ascorbic Acid on Cadmium Induced Cerebral Cortical Neurotoxicity in Adult Male Albino Rats. J Microsc Ultrastruct 2016; 4:36-45. [PMID: 30023208 PMCID: PMC6014236 DOI: 10.1016/j.jmau.2015.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/01/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022] Open
Abstract
Cadmium (Cd) toxicity represents a worldwide problem in environmental contamination and a common cause of occupational and non-occupational neurological diseases. So, this study aimed to evaluate the histological changes induced by Cd on the cerebral cortex of adult rats and evaluating the possible ameliorating role of ascorbic acid (AA). Twenty adult male rats were divided into; control group, AA group (each rat was received a daily oral dose of 200 mg AA/kg body weight (b.w) and Cd group (each rat was received 5 mg Cd/kg b.w orally) and protective group (each rat was given AA concomitantly with Cd at the same dose, route and period of administration of the previous groups. After two months the cerebral cortexes were processed for histological examination. The cerebral cortex of Cd treated animals exhibited severe degenerative changes especially in pyramidal and granule cells. Structural changes in these cells were in the form of dilated rER and Golgi complex, swollen mitochondria and marginated nuclear chromatin. Myelinated nerve fibers displayed myelination disruption and irregular neurofilaments. The neuropil appeared vacuolated with accumulation of neuroglial cells. On the other hand, these changes were ameliorated in rats which received AA concomitantly with Cd. So, it could be concluded that AA can ameliorate the histological changes induced by Cd and this direct the attention to the antioxidants as protective measures for the neurotoxicity.
Collapse
Affiliation(s)
- Omayma Kamel Afifi
- Histology Department, Faculty of Medicine, Tanta University, Egypt, Taif University, KSA
| | | |
Collapse
|
45
|
Davis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol 2015; 2:451-71. [PMID: 26958924 DOI: 10.1146/annurev-virology-100114-055157] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cultural impact of rabies, the fatal neurological disease caused by infection with rabies virus, registers throughout recorded history. Although rabies has been the subject of large-scale public health interventions, chiefly through vaccination efforts, the disease continues to take the lives of about 40,000-70,000 people per year, roughly 40% of whom are children. Most of these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, although the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is currently no effective treatment that will save the life of a symptomatic rabies patient. This review focuses on the major unanswered research questions related to rabies virus pathogenesis, especially those connecting the disease progression of rabies with the complex dysfunction caused by the virus in infected cells. The recent applications of cutting-edge research strategies to this question are described in detail.
Collapse
Affiliation(s)
| | - Glenn F Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Matthias J Schnell
- Department of Microbiology and Immunology and.,Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; .,Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
46
|
Diabolical effects of rabies encephalitis. J Neurovirol 2015; 22:8-13. [PMID: 25994917 DOI: 10.1007/s13365-015-0351-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 12/19/2022]
Abstract
Rabies is an acute encephalomyelitis in humans and animals caused by rabies virus (RABV) infection. Because the neuropathological changes are very mild in rabies, it has been assumed that neuronal dysfunction likely explains the severe clinical disease. Recently, degenerative changes have been observed in neuronal processes (dendrites and axons) in experimental rabies. In vitro studies have shown evidence of oxidative stress that is caused by mitochondrial dysfunction. Recent work has shown that the RABV phosphoprotein (P) interacts with mitochondrial Complex I leading to overproduction of reactive oxygen species, which results in injury to axons. Amino acids at positions 139 to 172 of the P are critical in this process. Rabies vectors frequently show behavioral changes. Aggressive behavior with biting is important for transmission of the virus to new hosts at a time when virus is secreted in the saliva. Aggression is associated with low serotonergic activity in the brain. Charlton and coworkers performed studies in experimentally infected striped skunks with skunk rabies virus and observed aggressive behavioral responses. Heavy accumulation of RABV antigen was found in the midbrain raphe nuclei, indicating that impaired serotonin neurotransmission from the brainstem may account for the aggressive behavior. We now have an improved understanding of how RABV causes neuronal injury and how the infection results in behavioral changes that promote viral transmission to new hosts.
Collapse
|
47
|
Rabies virus phosphoprotein interacts with mitochondrial Complex I and induces mitochondrial dysfunction and oxidative stress. J Neurovirol 2015; 21:370-82. [PMID: 25698500 DOI: 10.1007/s13365-015-0320-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/09/2015] [Accepted: 01/16/2015] [Indexed: 12/25/2022]
Abstract
Our previous studies in an experimental model of rabies showed neuronal process degeneration in association with severe clinical disease. Cultured adult rodent dorsal root ganglion neurons infected with challenge virus standard (CVS)-11 strain of rabies virus (RABV) showed axonal swellings and reduced axonal growth with evidence of oxidative stress. We have shown that CVS infection alters a variety of mitochondrial parameters and increases reactive oxygen species (ROS) production and mitochondrial Complex I activity vs. mock infection. We have hypothesized that a RABV protein targets mitochondria and triggers dysfunction. Mitochondrial extracts of mouse neuroblastoma cells were analyzed with a proteomics approach. We have identified peptides belonging to the RABV nucleocapsid protein (N), phosphoprotein (P), and glycoprotein (G), and our data indicate that the extract was most highly enriched with P. P was also detected by immunoblotting in RABV-infected purified mitochondrial extracts and also in Complex I immunoprecipitates from the extracts but not in mock-infected extracts. A plasmid expressing P in cells increased Complex I activity and increased ROS generation, whereas expression of other RABV proteins did not. We have analyzed recombinant plasmids encoding various P gene segments. Expression of a peptide from amino acid 139-172 increased Complex I activity and ROS generation similar to expression of the entire P protein, whereas peptides that did not contain this region did not increase Complex I activity or induce ROS generation. These results indicate that a region of the RABV P interacts with Complex I in mitochondria causing mitochondrial dysfunction, increased generation of ROS, and oxidative stress.
Collapse
|
48
|
Mehta SM, Banerjee SM, Chowdhary AS. Postgenomics biomarkers for rabies—the next decade of proteomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:67-79. [PMID: 25611201 DOI: 10.1089/omi.2014.0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rabies is one of the oldest diseases known to mankind. The pathogenic mechanisms by which rabies virus infection leads to development of neurological disease and death are still poorly understood. Analysis of rabies-infected proteomes may help identify novel biomarkers for antemortem diagnosis of the disease and target molecules for therapeutic intervention. This article offers a literature synthesis and critique of the differentially expressed proteins that have been previously reported from various in vitro/in vivo model systems and naturally infected clinical specimens. The emerging data collectively indicate that, in addition to the obvious alterations in proteins involved in synapse and neurotransmission, a majority of cytoskeletal proteins are relevant as well, providing evidence of neuronal degeneration. An interesting observation is that certain molecules, such as KPNA4, could be potential diagnostic markers for rabies. Importantly, proteomic studies with body fluids such as cerebrospinal fluid provide newer insights into antemortem diagnosis. In order to develop a complete integrative biology picture, it is essential to analyze the entire CNS (region-wise) and in particular, the brain. We suggest the use of laboratory animal models over cell culture systems using a combinatorial proteomics approach, as the former is a closer match to the actual host response. While most studies have focused on the terminal stages of the disease in mice, a time-series analysis could provide deeper insights for therapy. Postgenomics technologies such as proteomics warrant more extensive applications in rabies and similar diseases impacting public health around the world.
Collapse
Affiliation(s)
- Shraddha M Mehta
- Department of Virology and Immunology, Haffkine Institute for Training , Research and Testing, Parel, Mumbai, India
| | | | | |
Collapse
|
49
|
Abstract
Toxoplasma gondii is an obligate, intracellular parasite with a broad host range, including humans and rodents. In both humans and rodents, Toxoplasma establishes a lifelong persistent infection in the brain. While this brain infection is asymptomatic in most immunocompetent people, in the developing fetus or immunocompromised individuals such as acquired immune deficiency syndrome (AIDS) patients, this predilection for and persistence in the brain can lead to devastating neurologic disease. Thus, it is clear that the brain-Toxoplasma interaction is critical to the symptomatic disease produced by Toxoplasma, yet we have little understanding of the cellular or molecular interaction between cells of the central nervous system (CNS) and the parasite. In the mouse model of CNS toxoplasmosis it has been known for over 30 years that neurons are the cells in which the parasite persists, but little information is available about which part of the neuron is generally infected (soma, dendrite, axon) and if this cellular relationship changes between strains. In part, this lack is secondary to the difficulty of imaging and visualizing whole infected neurons from an animal. Such images would typically require serial sectioning and stitching of tissue imaged by electron microscopy or confocal microscopy after immunostaining. By combining several techniques, the method described here enables the use of thick sections (160 µm) to identify and image whole cells that contain cysts, allowing three-dimensional visualization and analysis of individual, chronically infected neurons without the need for immunostaining, electron microscopy, or serial sectioning and stitching. Using this technique, we can begin to understand the cellular relationship between the parasite and the infected neuron.
Collapse
Affiliation(s)
- Anita A Koshy
- Department of Neurology, University of Arizona; Department of Immunobiology, University of Arizona; Bio5 Institute, University of Arizona;
| | | |
Collapse
|
50
|
Schutsky K, Portocarrero C, Hooper DC, Dietzschold B, Faber M. Limited brain metabolism changes differentiate between the progression and clearance of rabies virus. PLoS One 2014; 9:e87180. [PMID: 24763072 PMCID: PMC3998930 DOI: 10.1371/journal.pone.0087180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/19/2013] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) metabolic profiles were examined from rabies virus (RABV)-infected mice that were either mock-treated or received post-exposure treatment (PET) with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.
Collapse
Affiliation(s)
- Keith Schutsky
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Carla Portocarrero
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - D. Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Bernhard Dietzschold
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|