1
|
Tong C, Mundt A, Meindl-Boehmer A, Haist V, Gallei A, Chen N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses 2024; 16:1043. [PMID: 39066207 PMCID: PMC11281586 DOI: 10.3390/v16071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Classical Swine Fever (CSF), a highly contagious viral disease affecting pigs and wild boar, results in significant economic losses in the swine industry. In endemic regions, prophylactic vaccination and stamping-out strategies are used to control CSF outbreaks. However, sporadic outbreaks and persistent infections continue to be reported. Although the conventional attenuated CSF vaccines protect pigs against the disease, they do not allow for the differentiation of infected from vaccinated animals (DIVA), limiting their use as an eradication tool. In this study, three targeted attenuation strategies were employed to generate vaccine candidates based on the current prevalent CSFV group 2 strains GD18 and QZ07: a single deletion of H79 in Erns (QZ07-sdErnsH-KARD), double deletion of H79 and C171 in Erns (GD18-ddErnsHC-KARD and QZ07-ddErnsHC-KARD), and deletion of H79 in Erns combined with a 5-168 amino acids deletion of Npro (GD18-ddNpro-ErnsH-KARD). Additionally, a negative serological marker with four substitutions in a highly conserved epitope in E2 recognized by the monoclonal antibody 6B8 was introduced in each candidate for DIVA purposes. The safety of these four resulting vaccine candidates was evaluated in pregnant sows. Two candidates, GD18-ddErnsHC-KARD and QZ07-sdErnsH-KARD were found to be safe for pregnant sows and unlikely to cause vertical transmission. Both candidates also demonstrated potential to be used as DIVA vaccines, as was shown using a proprietary blocking ELISA based on the 6B8 monoclonal antibody. These results, together with our previous work, constitute a proof-of-concept for the rational design of CSF antigenically marked modified live virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Classical Swine Fever/prevention & control
- Classical Swine Fever/virology
- Classical Swine Fever/immunology
- Swine
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/adverse effects
- Classical Swine Fever Virus/immunology
- Classical Swine Fever Virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Pregnancy
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Vaccines, Marker/immunology
- Vaccines, Marker/administration & dosage
- Vaccines, Marker/genetics
- Vaccination/veterinary
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| | - Alice Mundt
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Alexandra Meindl-Boehmer
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Verena Haist
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Andreas Gallei
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| |
Collapse
|
2
|
Lamothe-Reyes Y, Figueroa M, Sánchez O. Host cell factors involved in classical swine fever virus entry. Vet Res 2023; 54:115. [PMID: 38041163 PMCID: PMC10693020 DOI: 10.1186/s13567-023-01238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023] Open
Abstract
Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.
Collapse
Affiliation(s)
- Yaneysis Lamothe-Reyes
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
3
|
Bohn P, Waßmann I, Wendt L, Leske A, Hoenen T, Tews BA, Groseth A. A dsRNA-binding mutant reveals only a minor role of exonuclease activity in interferon antagonism by the arenavirus nucleoprotein. PLoS Pathog 2023; 19:e1011049. [PMID: 36603036 PMCID: PMC9815661 DOI: 10.1371/journal.ppat.1011049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
The arenavirus nucleoprotein (NP) plays an important role in the virus' ability to block interferon (IFN) production, and its exonuclease function appears to contribute to this activity. However, efforts to analyze this contribution are complicated by the functional overlap between the exonuclease active site and a neighboring region involved in IKKε-binding and subsequent inhibition of IRF3 activation, which also plays an important role in IFN production. To circumvent this issue, we mutated a residue located away from the active site that is involved in binding of the dsRNA substrate being targeted for exonuclease digestion, i.e. H426A. We found that expression of Tacaribe virus (TCRV) NP containing this RNA-binding H426A mutation was still able to efficiently block IFN-β promoter activity in response to Sendai virus infection, despite being strongly impaired in its exonuclease activity. This was in contrast to a conventional exonuclease active site mutant (E388A), which was impaired with respect to both exonuclease activity and IFN antagonism. Importantly, growth of a recombinant virus encoding the RNA-binding mutation (rTCRV-H426A) was similar to wild-type in IFN-deficient cells, unlike the active site mutant (rTCRV-E388A), which was already markedly impaired in these cells. Further, in IFN-competent cells, the TCRV-H426A RNA-binding mutant showed more robust growth and delayed IFN-β mRNA upregulation compared to the TCRV-E388A active site mutant. Taken together, this novel mutational approach, which allows us to now dissect the different contributions of the NP exonuclease activity and IKKε-binding/IRF3 inhibition to IFN antagonism, clearly suggests that conventional exonuclease mutants targeting the active site overestimate the contribution of the exonuclease function, and that rather other IFN antagonistic functions of NP play the dominant role in IFN-antagonism.
Collapse
Affiliation(s)
- Patrick Bohn
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Irke Waßmann
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Leske
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Birke A. Tews
- Institute of Infectology, Friedrich-Loeffler-Institut, Greifswald–Insel Riems, Germany
| | - Allison Groseth
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
4
|
Tong C, Liu H, Wang J, Sun Y, Chen N. Safety, efficacy, and DIVA feasibility on a novel live attenuated classical swine fever marker vaccine candidate. Vaccine 2022; 40:7219-7229. [PMID: 36328881 DOI: 10.1016/j.vaccine.2022.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Classical swine fever virus (CSFV) is the etiological agent of classical swine fever, a highly contagious disease that causes significant economic losses to the swine industry. Systemic prophylactic immunization with the live attenuated vaccine, the C-strain vaccine, is one of the effective measures for CSF control. However, one of the limitations of the C-strain vaccine is that the field strains-infected animals cannot be differentiated from the C-strain vaccinated herds by serological tests (DIVA). This constraint hampers the practical usage of the C-strain vaccine to eradicate the CSF in China. In the current study, a novel CSF modified live marker vaccine candidate was constructed based on the attenuation of the prevalent 2.1 genotype strain by the deletion of two virulence associated functional residues in the CSFV Erns, H79, and C171. Meanwhile, four residues S14, G22, E24, and E25 were identified specifically for the 6B8 mAb binding to the CSFV E2 as the novel conformational epitope. Then four substitutions of S14K, G22A, E24R, and G25D were further incorporated in the double deletion construct as a negative serological marker. Finally, the double-deletion marker MLV candidate GD18-ddErnHC-KARD was rescued, and its safety and efficacy profiles were evaluated in piglets. The safety study results indicated that the candidate did not induce fever, clinical signs, or pathological lesions with a high dose of 105.0 TCID50, and in addition, no virus shedding was detected until 21 days post-inoculation. Meanwhile, the efficacy study results demonstrated that at a low dose of 103.0 TCID50, it conferred complete clinical protection and no virus shedding was detected after the challenge with a highly virulent Shimen strain. Importantly, the infected animals were differentiated using the accompanied DIVA ELISA. These results constitute a proof-of-concept for rationally designing a CSF antigenically marked modified live vaccine candidate.
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Huanhuan Liu
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Jiaying Wang
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Yanyong Sun
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| |
Collapse
|
5
|
de Martin E, Schweizer M. Fifty Shades of Erns: Innate Immune Evasion by the Viral Endonucleases of All Pestivirus Species. Viruses 2022; 14:v14020265. [PMID: 35215858 PMCID: PMC8880635 DOI: 10.3390/v14020265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
The genus Pestivirus, family Flaviviridae, includes four historically accepted species, i.e., bovine viral diarrhea virus (BVDV)-1 and -2, classical swine fever virus (CSFV), and border disease virus (BDV). A large number of new pestivirus species were identified in recent years. A common feature of most members is the presence of two unique proteins, Npro and Erns, that pestiviruses evolved to regulate the host’s innate immune response. In addition to its function as a structural envelope glycoprotein, Erns is also released in the extracellular space, where it is endocytosed by neighboring cells. As an endoribonuclease, Erns is able to cleave viral ss- and dsRNAs, thus preventing the stimulation of the host’s interferon (IFN) response. Here, we characterize the basic features of soluble Erns of a large variety of classified and unassigned pestiviruses that have not yet been described. Its ability to form homodimers, its RNase activity, and the ability to inhibit dsRNA-induced IFN synthesis were investigated. Overall, we found large differences between the various Erns proteins that cannot be predicted solely based on their primary amino acid sequences, and that might be the consequence of different virus-host co-evolution histories. This provides valuable information to delineate the structure-function relationship of pestiviral endoribonucleases.
Collapse
Affiliation(s)
- Elena de Martin
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Länggass-Str. 122, POB, CH-3001 Bern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
6
|
The Molecular Basis for E rns Dimerization in Classical Swine Fever Virus. Viruses 2021; 13:v13112204. [PMID: 34835010 PMCID: PMC8625691 DOI: 10.3390/v13112204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
The pestivirus classical swine fever virus (CSFV) represents one of the most important pathogens of swine. Its virulence is dependent on the RNase activity of the essential structural glycoprotein Erns that uses an amphipathic helix as a membrane anchor and forms homodimers via disulfide bonds employing cysteine 171. Dimerization is not necessary for CSFV viability but for its virulence. Mutant Erns proteins lacking cysteine 171 are still able to interact transiently as shown in crosslink experiments. Deletion analysis did not reveal the presence of a primary sequence-defined contact surface essential for dimerization, but indicated a general importance of an intact ectodomain for efficient establishment of dimers. Pseudoreverted viruses reisolated in earlier experiments from pigs with mutations Cys171Ser/Ser209Cys exhibited partially restored virulence and restoration of the ability to form Erns homodimers. Dimer formation was also observed for experimentally mutated proteins, in which other amino acids at different positions of the membrane anchor region of Erns were replaced by cysteine. However, with one exception of two very closely located residues, the formation of disulfide-linked dimers was only observed for cysteine residues located at the same position of the helix.
Collapse
|
7
|
Abstract
Pestiviruses are members of the family Flaviviridae, a group of enveloped viruses that bud at intracellular membranes. Pestivirus particles contain three glycosylated envelope proteins, Erns, E1, and E2. Among them, E1 is the least characterized concerning both biochemical features and function. E1 from bovine viral diarrhea virus (BVDV) strain CP7 was analyzed with regard to its intracellular localization and membrane topology. Here, it is shown that even in the absence of other viral proteins, E1 is not secreted or expressed at the cell surface but localizes predominantly in the endoplasmic reticulum (ER). Using engineered chimeric transmembrane domains with sequences from E1 and vesicular stomatitis virus G protein, the E1 ER-retention signal could be narrowed down to six fully conserved polar residues in the middle part of the transmembrane domain of E1. Retention was observed even when several of these polar residues were exchanged for alanine. Mutations with a strong impact on E1 retention prevented recovery of infectious viruses when tested in the viral context. Analysis of the membrane topology of E1 before and after the signal peptide cleavage via a selective permeabilization and an in vivo labeling approach revealed that mature E1 is a typical type I transmembrane protein with a single span transmembrane anchor at its C terminus, whereas it adopts a hairpin-like structure with the C terminus located in the ER lumen when the precleavage situation is mimicked by blocking the cleavage site between E1 and E2. IMPORTANCE The shortage of specific antibodies against E1, making detection and further analysis of E1 difficult, resulted in a lack of knowledge on E1 compared to Erns and E2 with regard to biosynthesis, structure, and function. It is known that pestiviruses bud intracellularly. Here, we show that E1 contains its own ER retention signal: six fully conserved polar residues in the middle part of the transmembrane domain are shown to be the determinants for ER retention of E1. Moreover, those six polar residues could serve as a functional group that intensely affect the generation of infectious viral particles. In addition, the membrane topology of E1 has been determined. In this context, we also identified dynamic changes in membrane topology of E1 with the carboxy terminus located on the luminal side of the ER in the precleavage state and relocation of this sequence upon signal peptidase cleavage. Our work provides the first systematic analysis of the pestiviral E1 protein with regard to its biochemical and functional characteristics.
Collapse
|
8
|
Mu Y, Tews BA, Luttermann C, Meyers G. Interaction of Pestiviral E1 and E2 Sequences in Dimer Formation and Intracellular Retention. Int J Mol Sci 2021; 22:ijms22147285. [PMID: 34298900 PMCID: PMC8306095 DOI: 10.3390/ijms22147285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Pestiviruses contain three envelope proteins: Erns, E1, and E2. Expression of HA-tagged E1 or mutants thereof showed that E1 forms homodimers and -trimers. C123 and, to a lesser extent, C171, affected the oligomerization of E1 with a double mutant C123S/C171S preventing oligomerization completely. E1 also establishes disulfide linked heterodimers with E2, which are crucial for the recovery of infectious viruses. Co-expression analyses with the HA-tagged E1 wt/E1 mutants and E2 wt/E2 mutants demonstrated that C123 in E1 and C295 in E2 are the critical sites for E1/E2 heterodimer formation. Introduction of mutations preventing E1/E2 heterodimer formation into the full-length infectious clone of BVDV CP7 prevented the recovery of infectious viruses, proving that C123 in E1 and C295 in E2 play an essential role in the BVDV life cycle, and further support the conclusion that heterodimer formation is the crucial step. Interestingly, we found that the retention signal of E1 is mandatory for intracellular localization of the heterodimer, so that absence of the E1 retention signal directs the heterodimer to the cell surface even though the E2 retention signal is still present. The covalent linkage between E1 and E2 plays an essential role for this process.
Collapse
Affiliation(s)
- Yu Mu
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany; (Y.M.); (C.L.)
| | - Birke Andrea Tews
- Institut für Infektionsmedizin, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany;
| | - Christine Luttermann
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany; (Y.M.); (C.L.)
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany; (Y.M.); (C.L.)
- Correspondence: ; Tel.: +49-(0)-3835-171-0
| |
Collapse
|
9
|
The E rns Carboxyterminus: Much More Than a Membrane Anchor. Viruses 2021; 13:v13071203. [PMID: 34201636 PMCID: PMC8310223 DOI: 10.3390/v13071203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pestiviruses express the unique essential envelope protein Erns, which exhibits RNase activity, is attached to membranes by a long amphipathic helix, and is partially secreted from infected cells. The RNase activity of Erns is directly connected with pestivirus virulence. Formation of homodimers and secretion of the protein are hypothesized to be important for its role as a virulence factor, which impairs the host's innate immune response to pestivirus infection. The unusual membrane anchor of Erns raises questions with regard to proteolytic processing of the viral polyprotein at the Erns carboxy-terminus. Moreover, the membrane anchor is crucial for establishing the critical equilibrium between retention and secretion and ensures intracellular accumulation of the protein at the site of virus budding so that it is available to serve both as structural component of the virion and factor controlling host immune reactions. In the present manuscript, we summarize published as well as new data on the molecular features of Erns including aspects of its interplay with the other two envelope proteins with a special focus on the biochemistry of the Erns membrane anchor.
Collapse
|
10
|
Induction of Robust and Specific Humoral and Cellular Immune Responses by Bovine Viral Diarrhea Virus Virus-Like Particles (BVDV-VLPs) Engineered with Baculovirus Expression Vector System. Vaccines (Basel) 2021; 9:vaccines9040350. [PMID: 33917272 PMCID: PMC8067437 DOI: 10.3390/vaccines9040350] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 02/02/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) is an important animal pathogen that affects cattle. Infections caused by the virus have resulted in substantial economic losses and outbreaks of BVDV are reported globally. Virus-like particles (VLPs) are promising vaccine technology largely due to their safety and strong ability to elicit robust immune responses. In this study, we developed a strategy to generate BVDV-VLPs using a baculovirus expression vector system (BEVS). We were able to assemble BVDV-VLPs composed of dimerized viral proteins E2 and Erns, and the VLPs were spherical particles with the diameters of about 50 nm. Mice immunized with 15 μg of VLPs adjuvanted with ISA201 elicited higher levels of E2-specific IgG, IgG1, and IgG2a antibodies as well as higher BVDV-neutralizing activity in comparison with controls. Re-stimulation of the splenocytes collected from mice immunized with VLPs led to significantly increased levels of CD3+CD4+T cells and CD3+CD8+T cells. In addition, the splenocytes showed dramatically enhanced proliferation and the secretion of Th1-associated IFN-γ and Th2-associated IL-4 compared to that of the unstimulated control group. Taken together, our data indicate that BVDV-VLPs efficiently induced BVDV-specific humoral and cellular immune responses in mice, showing a promising potential of developing BVDV-VLP-based vaccines for the prevention of BVDV infections.
Collapse
|
11
|
Oetter KM, Kühn J, Meyers G. Charged Residues in the Membrane Anchor of the Pestiviral E rns Protein Are Important for Processing and Secretion of E rns and Recovery of Infectious Viruses. Viruses 2021; 13:v13030444. [PMID: 33801849 PMCID: PMC8002126 DOI: 10.3390/v13030444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/28/2022] Open
Abstract
The pestivirus envelope protein Erns is anchored in membranes via a long amphipathic helix. Despite the unusual membrane topology of the Erns membrane anchor, it is cleaved from the following glycoprotein E1 by cellular signal peptidase. This was proposed to be enabled by a salt bridge-stabilized hairpin structure (so-called charge zipper) formed by conserved charged residues in the membrane anchor. We show here that the exchange of one or several of these charged residues reduces processing at the Erns carboxy-terminus to a variable extend, but reciprocal mutations restoring the possibility to form salt bridges did not necessarily restore processing efficiency. When introduced into an Erns-only expression construct, these mutations enhanced the naturally occurring Erns secretion significantly, but again to varying extents that did not correlate with the number of possible salt bridges. Equivalent effects on both processing and secretion were also observed when the proteins were expressed in avian cells, which points at phylogenetic conservation of the underlying principles. In the viral genome, some of the mutations prevented recovery of infectious viruses or immediately (pseudo)reverted, while others were stable and neutral with regard to virus growth.
Collapse
|
12
|
Downstream Sequences Control the Processing of the Pestivirus E rns-E1 Precursor. J Virol 2020; 95:JVI.01905-20. [PMID: 33028718 DOI: 10.1128/jvi.01905-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Like other enveloped viruses, pestiviruses employ cellular proteases for processing of their structural proteins. While typical signal peptidase cleavage motifs are present at the carboxy terminus of the signal sequence preceding Erns and the E1/E2 and E2/P7 sites, the Erns-E1 precursor is cleaved by signal peptidase at a highly unusual structure, in which the transmembrane sequence upstream of the cleavage site is replaced by an amphipathic helix. As shown before, the integrity of the amphipathic helix is crucial for efficient processing. The data presented here demonstrate that the E1 sequence downstream of this cleavage site is also important for the cleavage. Carboxy-terminal truncation of the E1 moiety as well as internal deletions in E1 reduced the cleavage efficiency to less than 30% of the wild-type (wt) level. Moreover, the C-terminal truncation by more than 30 amino acids resulted in strong secretion of the uncleaved fusion proteins. The reduced processing and increased secretion were even observed when 10 to 5 amino-terminal residues of E1 were left, whereas extensions by 1 or 3 E1 residues resulted in reduced processing but no significantly increased secretion. In contrast to the E1 sequences, a 10-amino-acid c-myc tag fused to the Erns C terminus had only marginal effect on secretion but was also not processed efficiently. Mutation of the von Heijne sequence upstream of E2 not only blocked the cleavage between E1 and E2 but also prevented the processing between Erns and E2. Thus, processing at the Erns-E1 site is a highly regulated process.IMPORTANCE Cellular signal peptidase (SPase) cleavage represents an important step in maturation of viral envelope proteins. Fine tuning of this system allows for establishment of concerted folding and processing processes in different enveloped viruses. We report here on SPase processing of the Erns-E1-E2 glycoprotein precursor of pestiviruses. Erns-E1 cleavage is delayed and only executed efficiently when the complete E1 sequence is present. C-terminal truncation of the Erns-E1 precursor impairs processing and leads to significant secretion of the protein. The latter is not detected when internal deletions preserving the E1 carboxy terminus are introduced, but also these constructs show impaired processing. Moreover, Erns-E1 is only processed after cleavage at the E1/E2 site. Thus, processing of the pestiviral glycoprotein precursor by SPase is done in an ordered way and depends on the integrity of the proteins for efficient cleavage. The functional importance of this processing scheme is discussed in the paper.
Collapse
|
13
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
A CRISPR/Cas9 Generated Bovine CD46-knockout Cell Line-A Tool to Elucidate the Adaptability of Bovine Viral Diarrhea Viruses (BVDV). Viruses 2020; 12:v12080859. [PMID: 32781607 PMCID: PMC7472008 DOI: 10.3390/v12080859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/16/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) entry into a host cell is mediated by the interaction of the viral glycoprotein E2 with the cellular transmembrane CD46 receptor. In this study, we generated a stable Madin-Darby Bovine Kidney (MDBK) CD46-knockout cell line to study the ability of different pestivirus A and B species (BVDV-1 and -2) to escape CD46-dependent cell entry. Four different BVDV-1/2 isolates showed a clearly reduced infection rate after inoculation of the knockout cells. However, after further passaging starting from the remaining virus foci on the knockout cell line, all tested virus isolates were able to escape CD46-dependency and grew despite the lack of the entry receptor. Whole-genome sequencing of the escape-isolates suggests that the genetic basis for the observed shift in infectivity is an amino acid substitution of an uncharged (glycine/asparagine) for a charged amino acid (arginine/lysine) at position 479 in the ERNS in three of the four isolates tested. In the fourth isolate, the exchange of a cysteine at position 441 in the ERNS resulted in a loss of ERNS dimerization that is likely to influence viral cell-to-cell spread. In general, the CD46-knockout cell line is a useful tool to analyze the role of CD46 for pestivirus replication and the virus-receptor interaction.
Collapse
|
15
|
Vieyres G, Pietschmann T. HCV Pit Stop at the Lipid Droplet: Refuel Lipids and Put on a Lipoprotein Coat before Exit. Cells 2019; 8:cells8030233. [PMID: 30871009 PMCID: PMC6468556 DOI: 10.3390/cells8030233] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023] Open
Abstract
The replication cycle of the liver-tropic hepatitis C virus (HCV) is tightly connected to the host lipid metabolism, during the virus entry, replication, assembly and egress stages, but also while the virus circulates in the bloodstream. This interplay coins viral particle properties, governs viral cell tropism, and facilitates immune evasion. This review summarizes our knowledge of these interactions focusing on the late steps of the virus replication cycle. It builds on our understanding of the cell biology of lipid droplets and the biosynthesis of liver lipoproteins and attempts to explain how HCV hijacks these organelles and pathways to assemble its lipo-viro-particles. In particular, this review describes (i) the mechanisms of viral protein translocation to and from the lipid droplet surface and the orchestration of an interface between replication and assembly complexes, (ii) the importance of the triglyceride mobilization from the lipid droplets for HCV assembly, (iii) the interplay between HCV and the lipoprotein synthesis pathway including the role played by apolipoproteins in virion assembly, and finally (iv) the consequences of these complex virus–host interactions on the virion composition and its biophysical properties. The wealth of data accumulated in the past years on the role of the lipid metabolism in HCV assembly and its imprint on the virion properties will guide vaccine design efforts and reinforce our understanding of the hepatic lipid metabolism in health and disease.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), 30625 Hannover, Germany.
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
16
|
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X. Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 2018; 119:248-254. [DOI: 10.1016/j.micpath.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
|
17
|
Lussi C, Sauter KS, Schweizer M. Homodimerisation-independent cleavage of dsRNA by a pestiviral nicking endoribonuclease. Sci Rep 2018; 8:8226. [PMID: 29844335 PMCID: PMC5974291 DOI: 10.1038/s41598-018-26557-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
The glycoprotein Erns plays a central role in the biology of the pestivirus bovine viral diarrhea virus (BVDV). This soluble endonuclease mediates the escape from an interferon (IFN) response in the infected fetus, thereby permitting the establishment of persistent infection. Viral single-stranded (ss) and double-stranded (ds) RNA act as potent IFN inducing signals and we previously showed that Erns efficiently cleaves these substrates, thereby inhibiting an IFN response that is crucial for successful fetal infection. Considering that a large variety of RNases and DNases require dimerisation to cleave double-stranded substrates, the activity of Erns against dsRNA was postulated to depend on homodimer formation mediated by disulfide bonds involving residue Cys171. Here, we show that monomeric Erns is equally able to cleave dsRNA and to inhibit dsRNA-induced IFN synthesis as the wild-type form. Furthermore, both forms were able to degrade RNA within a DNA/RNA- as well as within a methylated RNA/RNA-hybrid, with the DNA and the methylated RNA strand being resistant to degradation. These results support our model that Erns acts as 'nicking endoribonuclease' degrading ssRNA within double-stranded substrates. This efficiently prevents the activation of IFN and helps to maintain a state of innate immunotolerance in persistently infected animals.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology, Laenggass-Str. 122, CH-3001, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Kay-Sara Sauter
- Institute of Virology and Immunology, Laenggass-Str. 122, CH-3001, Bern, Switzerland.,Department of Clinical Research, Faculty of Medicine, University of Bern, CH-3010, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Laenggass-Str. 122, CH-3001, Bern, Switzerland. .,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Tucakov AK, Yavuz S, Schürmann EM, Mischler M, Klingebeil A, Meyers G. Restoration of glycoprotein E rns dimerization via pseudoreversion partially restores virulence of classical swine fever virus. J Gen Virol 2017; 99:86-96. [PMID: 29235980 DOI: 10.1099/jgv.0.000990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The classical swine fever virus (CSFV) represents one of the most important pathogens of swine. The CSFV glycoprotein Erns is an essential structural protein and an important virulence factor. The latter is dependent on the RNase activity of this envelope protein and, most likely, its secretion from the infected cell. A further important feature with regard to its function as a virulence factor is the formation of disulfide-linked Erns homodimers that are found in virus-infected cells and virions. Mutant CSFV lacking cysteine (Cys) 171, the residue responsible for intermolecular disulfide bond formation, were found to be attenuated in pigs (Tews BA, Schürmann EM, Meyers G. J Virol 2009;83:4823-4834). In the course of an animal experiment with such a dimerization-negative CSFV mutant, viruses were reisolated from pigs that contained a mutation of serine (Ser) 209 to Cys. This mutation restored the ability to form disulphide-linked Erns homodimers. In transient expression studies Erns mutants carrying the S209C change were found to form homodimers with about wt efficiency. Also the secretion level of the mutated proteins was equivalent to that of wt Erns. Virus mutants containing the Cys171Ser/Ser209Cys configuration exhibited wt growth rates and increased virulence when compared with the Cys171Ser mutant. These results provide further support for the connection between CSFV virulence and Erns dimerization.
Collapse
Affiliation(s)
- Anna Katharina Tucakov
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Sabine Yavuz
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany.,Present address: Fachdienst Verbraucherschutz und Veterinärangelegenheiten, Landratsamt Alb-Donau-Kreis, Ulm, Germany
| | - Eva-Maria Schürmann
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany.,Present address: Landesamt für Gesundheit und Lebensmittelsicherheit, Oberschleissheim, Germany
| | - Manjula Mischler
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Anne Klingebeil
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, D-17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
19
|
Tao J, Li B, Chen J, Zhang C, Ma Y, Zhu G, Liu H. N pro His49 and E rns Lys412 mutations in pig bovine viral diarrhea virus type 2 synergistically enhance the cellular antiviral response. Virus Genes 2017; 54:57-66. [PMID: 28852929 DOI: 10.1007/s11262-017-1506-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
Type I interferons are major components of the innate immune response of hosts, and accordingly, many viruses have evolved mechanisms to modulate the host response during infection. Bovine viral diarrhea virus (BVDV) nonstructural protein Npro and structural protein Erns play important roles in inhibiting type I interferon. The aim of this study was to explore the epistatic effects of amino acid mutations in Npro and Erns in porcine ST cells to characterize the immune response induced by BVDV-2. Plasmids with mutant amino acids His49 (H49), Glu22 (E22) in Npro, and His300 (H300), Lys412 (K412) in Erns which had been changed to Alanine (A) had similar effects on type I interferon production in MDBK and ST cells, but resulted in much greater ISG15, OAS, and Mx production in ST cells. The rescued vASH/NproH49ErnsK412 virus showed the best efficiency with respect to modulating antiviral cytokines, indicating that the amino acids Npro H49 and Erns K412 had highly synergistic effects in abolishing the ability to inhibit type I interferon. These findings have importance practical implications owing to the increasing prevalence of BVDV infections, including persistent infections, in domestic pigs.
Collapse
Affiliation(s)
- Jie Tao
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Benqiang Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Jinghua Chen
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Chunling Zhang
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Yufei Ma
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China.,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Huili Liu
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Engineering Research Center of Breeding Pig, BeiDi Rd 2901, Shanghai, 201106, China. .,Municipal Key Laboratory of Agri-Genetics and Breedings, Shanghai, 201106, China.
| |
Collapse
|
20
|
Classical Swine Fever-An Updated Review. Viruses 2017; 9:v9040086. [PMID: 28430168 PMCID: PMC5408692 DOI: 10.3390/v9040086] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/03/2023] Open
Abstract
Classical swine fever (CSF) remains one of the most important transboundary viral diseases of swine worldwide. The causative agent is CSF virus, a small, enveloped RNA virus of the genus Pestivirus. Based on partial sequences, three genotypes can be distinguished that do not, however, directly correlate with virulence. Depending on both virus and host factors, a wide range of clinical syndromes can be observed and thus, laboratory confirmation is mandatory. To this means, both direct and indirect methods are utilized with an increasing degree of commercialization. Both infections in domestic pigs and wild boar are of great relevance; and wild boars are a reservoir host transmitting the virus sporadically also to pig farms. Control strategies for epidemic outbreaks in free countries are mainly based on classical intervention measures; i.e., quarantine and strict culling of affected herds. In these countries, vaccination is only an emergency option. However, live vaccines are used for controlling the disease in endemically infected regions in Asia, Eastern Europe, the Americas, and some African countries. Here, we will provide a concise, updated review on virus properties, clinical signs and pathology, epidemiology, pathogenesis and immune responses, diagnosis and vaccination possibilities.
Collapse
|
21
|
Dietze K, Tucakov A, Engel T, Wirtz S, Depner K, Globig A, Kammerer R, Mouchantat S. Rope-based oral fluid sampling for early detection of classical swine fever in domestic pigs at group level. BMC Vet Res 2017; 13:5. [PMID: 28056961 PMCID: PMC5217651 DOI: 10.1186/s12917-016-0930-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-invasive sampling techniques based on the analysis of oral fluid specimen have gained substantial importance in the field of swine herd management. Methodological advances have a focus on endemic viral diseases in commercial pig production. More recently, these approaches have been adapted to non-invasive sampling of wild boar for transboundary animal disease detection for which these effective population level sampling methods have not been available. In this study, a rope-in-a-bait based oral fluid sampling technique was tested to detect classical swine fever virus nucleic acid shedding from experimentally infected domestic pigs. RESULTS Separated in two groups treated identically, the course of the infection was slightly differing in terms of onset of the clinical signs and levels of viral ribonucleic acid detection in the blood and oral fluid. The technique was capable of detecting classical swine fever virus nucleic acid as of day 7 post infection coinciding with the first detection in conventional oropharyngeal swab samples from some individual animals. Except for day 7 post infection in the "slower onset group", the chances of classical swine fever virus nucleic acid detection in ropes were identical or higher as compared to the individual sampling. CONCLUSIONS With the provided evidence, non-invasive oral fluid sampling at group level can be considered as additional cost-effective detection tool in classical swine fever prevention and control strategies. The proposed methodology is of particular use in production systems with reduced access to veterinary services such as backyard or scavenging pig production where it can be integrated in feeding or baiting practices.
Collapse
Affiliation(s)
- Klaas Dietze
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany.
| | - Anna Tucakov
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Tatjana Engel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Sabine Wirtz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Klaus Depner
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Anja Globig
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Robert Kammerer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Susan Mouchantat
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| |
Collapse
|
22
|
Tao J, Liao J, Wang J, Zhang X, Zhang Q, Zhu L, Zhang W, Liu H, Zhu G. Pig BVDV-2 non-structural protein (N pro) links to cellular antiviral response in vitro. Virus Genes 2016; 53:233-239. [PMID: 27866318 DOI: 10.1007/s11262-016-1410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
In this study, we constructed for the first time a full-length cDNA clone of pig-original bovine viral diarrhea virus 2 (BVDV-2) strain SH-28, modified the cDNA clone (pASH28) for mutant pASHΔNpro and derived virus strain vASHΔNpro by deleting the genomic region encoding the Npro polypeptide, and examined significance of protein Npro for antiviral responses in vitro. Data showed that Npro-deletion mutant virus vASHΔNpro led to significant overexpression of oligo adenylate synthetase (OAS), myxovirus-resistant protein 1 (Mx1), and ubiquitin-like protein 15 (ISG15). Data also revealed that overexpression of Npro, but not NS2 and NS3 proteins, resulted in significant down-regulation of OAS, Mx1, and ISG15 production (p ≤ 0.05) in bovine cells as well as porcine cells transfected with Npro recombinant eukaryotic expression plasmids. Npro (but not NS2 and NS3) was also found to inhibit poly(IC) from inducing production of type I interferon (IFN-I). These results indicated that protein Npro may play multiple roles in regulating antiviral response in host cells interfered by pig BVDV-2 strain, and provided useful information to understand better the mechanism of BVDV-2 persistent infection in pigs.
Collapse
Affiliation(s)
- Jie Tao
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.,Institute of Animal Sciences and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Jinhu Liao
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jianye Wang
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xinjun Zhang
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Qian Zhang
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Liqian Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Weiping Zhang
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Huili Liu
- Institute of Animal Sciences and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Lussi C, Schweizer M. What can pestiviral endonucleases teach us about innate immunotolerance? Cytokine Growth Factor Rev 2016; 29:53-62. [PMID: 27021825 PMCID: PMC7173139 DOI: 10.1016/j.cytogfr.2016.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
In this review, we describe the identification of the PRRs involved in the recognition of pestiviruses, and the mechanisms of these viruses to prevent the activation of host’s innate immune response with special emphasis on viral RNases. Most importantly, we extend these data and present our model of innate immunotolerance requiring continuous prevention of detection of immunostimulatory self nucleic acids, in contrast to the well-known long-term tolerance of the adaptive immune system targeted predominantly against proteins. This hypothesis is very likely relevant beyond the bovine species and might answer more fundamental questions on the discrimination between “self” and “viral nonself RNA”, which are relevant also for the prevention and treatment of chronic IFN induction and autoimmunity induced by “self-RNAs”.
Pestiviruses including bovine viral diarrhea virus (BVDV), border disease virus (BDV) and classical swine fever virus (CSFV), occur worldwide and are important pathogens of livestock. A large part of their success can be attributed to the induction of central immunotolerance including B- and T-cells upon fetal infection leading to the generation of persistently infected (PI) animals. In the past few years, it became evident that evasion of innate immunity is a central element to induce and maintain persistent infection. Hence, the viral non-structural protease Npro heads the transcription factor IRF-3 for proteasomal degradation, whereas an extracellularly secreted, soluble form of the envelope glycoprotein Erns degrades immunostimulatory viral single- and double-stranded RNA, which makes this RNase unique among viral endoribonucleases. We propose that these pestiviral interferon (IFN) antagonists maintain a state of innate immunotolerance mainly pertaining its viral nucleic acids, in contrast to the well-established immunotolerance of the adaptive immune system, which is mainly targeted at proteins. In particular, the unique extension of ‘self’ to include the viral genome by degrading immunostimulatory viral RNA by Erns is reminiscent of various host nucleases that are important to prevent inappropriate IFN activation by the host’s own nucleic acids in autoimmune diseases such as Aicardi-Goutières syndrome or systemic lupus erythematosus. This mechanism of “innate tolerance” might thus provide a new facet to the role of extracellular RNases in the sustained prevention of the body’s own immunostimulatory RNA to act as a danger-associated molecular pattern that is relevant across various species.
Collapse
Affiliation(s)
- Carmela Lussi
- Institute of Virology and Immunology, Federal Food Safety and Veterinary Office (FSVO) and Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Schweizer
- Institute of Virology and Immunology, Federal Food Safety and Veterinary Office (FSVO) and Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland.
| |
Collapse
|
24
|
Abstract
Classical swine fever is a highly contagious disease that affects domestic and wild pigs worldwide. The causative agent of the disease is Classical swine fever virus (CSFV), which belongs to the genus Pestivirus within the family Flaviviridae. On the genome level, CSFV can be divided into three genotypes with three to four sub-genotypes. Those genotypes can be assigned to distinct geographical regions. Knowledge about CSFV diversity and distribution is important for the understanding of disease dynamics and evolution, and can thus help to design optimized control strategies. For this reason, the geographical pattern of CSFV diversity and distribution are outlined in the presented review. Moreover, current knowledge with regard to genetic virulence markers or determinants and the role of the quasispecies composition is discussed.
Collapse
|
25
|
Aberle D, Oetter KM, Meyers G. Lipid Binding of the Amphipathic Helix Serving as Membrane Anchor of Pestivirus Glycoprotein Erns. PLoS One 2015; 10:e0135680. [PMID: 26270479 PMCID: PMC4536213 DOI: 10.1371/journal.pone.0135680] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/26/2015] [Indexed: 01/30/2023] Open
Abstract
Pestiviruses express a peculiar protein named Erns representing envelope glycoprotein and RNase, which is important for control of the innate immune response and persistent infection. The latter functions are connected with secretion of a certain amount of Erns from the infected cell. Retention/secretion of Erns is most likely controlled by its unusual membrane anchor, a long amphipathic helix attached in plane to the membrane. Here we present results of experiments conducted with a lipid vesicle sedimentation assay able to separate lipid-bound from unbound protein dissolved in the water phase. Using this technique we show that a protein composed of tag sequences and the carboxyterminal 65 residues of Erns binds specifically to membrane vesicles with a clear preference for compositions containing negatively charged lipids. Mutations disturbing the helical folding and/or amphipathic character of the anchor as well as diverse truncations and exchange of amino acids important for intracellular retention of Erns had no or only small effects on the proteins membrane binding. This result contrasts the dramatically increased secretion rates observed for Erns proteins with equivalent mutations within cells. Accordingly, the ratio of secreted versus cell retained Erns is not determined by the lipid affinity of the membrane anchor.
Collapse
Affiliation(s)
- Daniel Aberle
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Kay-Marcus Oetter
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald—Insel Riems, Germany
- * E-mail:
| |
Collapse
|
26
|
Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters. Viruses 2015; 7:3506-29. [PMID: 26131960 PMCID: PMC4517112 DOI: 10.3390/v7072783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase) activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.
Collapse
|
27
|
Summerfield A, Ruggli N. Immune Responses Against Classical Swine Fever Virus: Between Ignorance and Lunacy. Front Vet Sci 2015; 2:10. [PMID: 26664939 PMCID: PMC4672165 DOI: 10.3389/fvets.2015.00010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/20/2015] [Indexed: 11/14/2022] Open
Abstract
Classical swine fever virus infection of pigs causes disease courses from life-threatening to asymptomatic, depending on the virulence of the virus strain and the immunocompetence of the host. The virus targets immune cells, which are central in orchestrating innate and adaptive immune responses such as macrophages and conventional and plasmacytoid dendritic cells. Here, we review current knowledge and concepts aiming to explain the immunopathogenesis of the disease at both the host and the cellular level. We propose that the interferon type I system and in particular the interaction of the virus with plasmacytoid dendritic cells and macrophages is crucial to understand elements governing the induction of protective rather than pathogenic immune responses. The review also concludes that despite the knowledge available many aspects of classical swine fever immunopathogenesis are still puzzling.
Collapse
Affiliation(s)
| | - Nicolas Ruggli
- Institute of Virology and Immunology - IVI , Bern , Switzerland
| |
Collapse
|
28
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
29
|
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: Making the best of a bad virus. Virus Res 2015; 197:35-47. [DOI: 10.1016/j.virusres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
|
30
|
Zürcher C, Sauter KS, Schweizer M. Pestiviral E(rns) blocks TLR-3-dependent IFN synthesis by LL37 complexed RNA. Vet Microbiol 2014; 174:399-408. [PMID: 25457366 DOI: 10.1016/j.vetmic.2014.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/05/2023]
Abstract
The ribonuclease activity of the soluble glycoprotein E(rns) of pestiviruses represents a unique mechanism to circumvent the host's innate immune system by blocking interferon type-I synthesis in response to extracellularly added single- (ss) and double-stranded (ds) RNA. However, the reason why pestiviruses encode a ribonuclease in addition to the abundant serum RNases remained elusive. Here, we show that the 5' UTR and NS5B regions of various strains of the RNA genome of the pestivirus bovine viral diarrhea virus (BVDV) are resistant to serum RNases and are potent TLR-3 agonists. Inhibitory activity of E(rns) was restricted to cleavable RNA products, and did not extend to the synthetic TLR-7/8 agonist R-848. RNA complexed with the antimicrobial peptide LL37 was protected from degradation by E(rns)in vitro but was fully inhibited by E(rns) in its ability to induce IFN in cell cultures, suggesting that the viral protein is mainly active in cleaving RNA in an intracellular compartment. We propose that secreted E(rns) represents a potent IFN antagonist, which degrades viral RNA that is resistant to the ubiquitous host RNases in the extracellular space. Thus, the viral RNase prevents its own pathogen-associated molecular pattern (PAMP) to inadvertently activate the IFN response that might break innate immunotolerance required for persistent pestivirus infections.
Collapse
Affiliation(s)
- Christoph Zürcher
- Institute of Veterinary Virology (current name: Institute of Virology and Immunology), Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Kay-Sara Sauter
- Institute of Veterinary Virology (current name: Institute of Virology and Immunology), Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute of Veterinary Virology (current name: Institute of Virology and Immunology), Vetsuisse Faculty University of Bern, Laenggass-Str. 122, CH-3001 Bern, Switzerland.
| |
Collapse
|
31
|
Aberle D, Muhle-Goll C, Bürck J, Wolf M, Reißer S, Luy B, Wenzel W, Ulrich AS, Meyers G. Structure of the membrane anchor of pestivirus glycoprotein E(rns), a long tilted amphipathic helix. PLoS Pathog 2014; 10:e1003973. [PMID: 24586172 PMCID: PMC3937272 DOI: 10.1371/journal.ppat.1003973] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/20/2014] [Indexed: 01/02/2023] Open
Abstract
E(rns) is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns) membrane contact, processing and secretion.
Collapse
Affiliation(s)
- Daniel Aberle
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Claudia Muhle-Goll
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
| | - Jochen Bürck
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Moritz Wolf
- Karlsruhe Institute of Technology, Institut für Nanotechnologie, Karlsruhe, Germany
| | - Sabine Reißer
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
| | - Burkhard Luy
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Wolfgang Wenzel
- Karlsruhe Institute of Technology, Institut für Nanotechnologie, Karlsruhe, Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology, Institut für Organische Chemie, Karlsruhe, Germany
- Karlsruhe Institute of Technology, Institut für Biologische Grenzflächen (IBG-2), Karlsruhe, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
32
|
Reddy KE, Noh JH, Kim YH, Yoo MS, Doan HTT, Ramya M, Jung SC, Quyen DV, Kang SW. Analysis of the nonstructural and structural polyprotein regions, and complete genome sequences of Israel acute paralysis viruses identified from honeybees (Apis mellifera) in Korea. Virology 2013; 444:211-7. [PMID: 23886494 DOI: 10.1016/j.virol.2013.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 11/17/2022]
Abstract
Phylogenetic trees were constructed for 24 partial nucleotide sequences of the nonstructural polyprotein (ORF1) and structural polyprotein regions (ORF2) of Korean IAPV genotypes, as well as eight previously reported IAPV sequences from various countries. Most of the Korean genotypes formed a distinct cluster, separate from other country genotypes. To investigate this phenomenon in more detail, three complete IAPV genome sequences were identified from different regions in Korea, i.e., Korea1, Korea2, and Korea3. These sequences were aligned with eight previously reported complete genome sequences and various genome regions were compared. The Korean IAPVs were very similar to those from China and Israel, but highly diverged from USA and Australian genotypes. Interestingly, they showed greater variability than the USA and Australian genotypes in ORF1, but highly similar to the Australian genotype in the ORF2 region. Thus, genetic recombination may account for the spatial distance between the Korean IAPV genotypes and those from other countries.
Collapse
Affiliation(s)
- Kondreddy Eswar Reddy
- Parasitology and Insect Disease Research Laboratory, Animal and Plant Quarantine Agency, 480 Anyang, 6 dong, Anyang 420-480, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Python S, Gerber M, Suter R, Ruggli N, Summerfield A. Efficient sensing of infected cells in absence of virus particles by plasmacytoid dendritic cells is blocked by the viral ribonuclease E(rns.). PLoS Pathog 2013; 9:e1003412. [PMID: 23785283 PMCID: PMC3681750 DOI: 10.1371/journal.ppat.1003412] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 04/25/2013] [Indexed: 02/07/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) have been shown to efficiently sense HCV- or HIV-infected cells, using a virion-free pathway. Here, we demonstrate for classical swine fever virus, a member of the Flaviviridae, that this process is much more efficient in terms of interferon-alpha induction when compared to direct stimulation by virus particles. By employment of virus replicon particles or infectious RNA which can replicate but not form de novo virions, we exclude a transfer of virus from the donor cell to the pDC. pDC activation by infected cells was mediated by a contact-dependent RNA transfer to pDC, which was sensitive to a TLR7 inhibitor. This was inhibited by drugs affecting the cytoskeleton and membrane cholesterol. We further demonstrate that a unique viral protein with ribonuclease activity, the viral Erns protein of pestiviruses, efficiently prevented this process. This required intact ribonuclease function in intracellular compartments. We propose that this pathway of activation could be of particular importance for viruses which tend to be mostly cell-associated, cause persistent infection, and are non-cytopathogenic. Plasmacytoid dendritic cells (pDC) represent the most potent producers of interferon type I and are therefore of major importance in antiviral defences. A TLR7-dependent induction of interferon-α in pDC by infected cells in the absence of virions has been demonstrated for hepatitis C virus. Here, we show that this pathway is also very efficient for classical swine fever virus, a pestivirus that is also a member of the Flaviviridae. Our data indicate a transfer of RNA from the donor cell to pDC in a cell-contact-dependent manner requiring intact lipid rafts and cytoskeleton of the donor cell. Importantly, we demonstrate that the enigmatic viral Erns protein unique to pestiviruses efficiently prevents this pathway of pDC activation. This novel function of Erns is dependent on its RNase activity within intracellular compartments. The present study underlines the importance of pDC activation by infected cells and identifies a novel pathway of virus escaping the interferon system. Considering that Erns is required for pestiviruses to establish persistent infection of foetuses after transplacental virus transmission resulting in the development of immunotolerant animals, this report also points on a possible role of pDC in preventing immunotolerance after viral infection of foetuses.
Collapse
Affiliation(s)
- Sylvie Python
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Markus Gerber
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Rolf Suter
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
| | - Nicolas Ruggli
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- * E-mail: (NR); (AS)
| | - Artur Summerfield
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- * E-mail: (NR); (AS)
| |
Collapse
|
34
|
Reddy KE, Noh JH, Choe SE, Kweon CH, Yoo MS, Doan HTT, Ramya M, Yoon BS, Nguyen LTK, Nguyen TTD, Van Quyen D, Jung SC, Chang KY, Kang SW. Analysis of the complete genome sequence and capsid region of black queen cell viruses from infected honeybees (Apis mellifera) in Korea. Virus Genes 2013; 47:126-32. [DOI: 10.1007/s11262-013-0902-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/11/2013] [Indexed: 10/27/2022]
|
35
|
Leifer I, Ruggli N, Blome S. Approaches to define the viral genetic basis of classical swine fever virus virulence. Virology 2013; 438:51-5. [PMID: 23415391 DOI: 10.1016/j.virol.2013.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Classical swine fever (CSF), a highly contagious disease of pigs caused by the classical swine fever virus (CSFV), can lead to important economic losses in the pig industry. Numerous CSFV isolates with various degrees of virulence have been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe peracute hemorrhagic fever with nearly 100% mortality. Knowledge of the molecular determinants of CSFV virulence is an important issue for effective disease control and development of safe and effective marker vaccines. In this review, the latest studies in the field of CSFV virulence are discussed. The topic of virulence is addressed from different angles; nonconventional approaches like codon pair usage and quasispecies are considered. Future research approaches in the field of CSFV virulence are proposed.
Collapse
Affiliation(s)
- Immanuel Leifer
- Institute of Virology and Immunoprophylaxis (IVI), Sensemattstrasse 293, CH-3147 Mittelhäusern, Switzerland.
| | | | | |
Collapse
|
36
|
Peterhans E, Schweizer M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013; 41:39-51. [DOI: 10.1016/j.biologicals.2012.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
|
37
|
Krey T, Bontems F, Vonrhein C, Vaney MC, Bricogne G, Rümenapf T, Rey FA. Crystal structure of the pestivirus envelope glycoprotein E(rns) and mechanistic analysis of its ribonuclease activity. Structure 2012; 20:862-73. [PMID: 22579253 DOI: 10.1016/j.str.2012.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/29/2012] [Accepted: 03/03/2012] [Indexed: 01/24/2023]
Abstract
Pestiviruses, which belong to the Flaviviridae family of RNA viruses, are important agents of veterinary diseases causing substantial economical losses in animal farming worldwide. Pestivirus particles display three envelope glycoproteins at their surface: E(rns), E1, and E2. We report here the crystal structure of the catalytic domain of E(rns), the ribonucleolytic activity of which is believed to counteract the innate immunity of the host. The structure reveals a three-dimensional fold corresponding to T2 ribonucleases from plants and fungi. Cocrystallization experiments with mono- and oligonucleotides revealed the structural basis for substrate recognition at two binding sites previously identified for T2 RNases. A detailed analysis of poly-U cleavage products using (31)P-NMR and size exclusion chromatography, together with molecular docking studies, provides a comprehensive mechanistic picture of E(rns) activity on its substrates and reveals the presence of at least one additional nucleotide binding site.
Collapse
Affiliation(s)
- Thomas Krey
- Unité de Virologie Structurale, Institut Pasteur, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Identification of conformational epitopes and antigen-specific residues at the D/A domains and the extramembrane C-terminal region of E2 glycoprotein of classical swine fever virus. Virus Res 2012; 168:56-63. [PMID: 22727685 DOI: 10.1016/j.virusres.2012.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 11/20/2022]
Abstract
Envelope glycoprotein E2 of classical swine fever virus (CSFV) is the major antigen that induces neutralizing antibodies in infected pigs. Previous studies revealed that both conformation-dependent and linear epitopes are most present within domains B/C/D/A in the N-terminal half of E2. However, studies of antigenicity beyond the B/C domains remain limited. This study revealed that conformational epitopes were present on the D/A domains as well as the proximal C-terminal of E2, since the mutation of cysteine abrogated their bindings to monoclonal antibodies (mAbs). The residue R845 at domain A and E902 at the C-terminal region were critical for specific binding to mAbs, further supporting the presence of antigenic determinants on these regions. Substitutions of cysteines in domains D/A not only abrogated the binding to mAbs directed to D/A, but also affected the binding of the downstream C-terminal region to its specific mAbs, suggesting a close interaction between the two conformational epitopes. Mutations on the five proximal cysteines at positions 869, 877, 893, 896 and 930 in the C-terminal region only affected the binding to its specific mAbs binding sites. In addition, mutation on the three distal C-terminal cysteines at positions 945, 966, and 983 resulted in loss of E2 homodimerization. This study demonstrates new antigenic epitopes on D/A domains and C-terminal of E2 that have not been reported before, and that the nine cysteines in the C-terminal function differently in either maintaining the antigenic structure or in intermolecular dimerization of E2.
Collapse
|
39
|
Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J Virol 2012; 86:8602-13. [PMID: 22674973 DOI: 10.1128/jvi.00551-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE(-) was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE(-) vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE(-)/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs.
Collapse
|
40
|
Sakoda Y. [Pestivirus]. Uirusu 2011; 61:239-248. [PMID: 22916570 DOI: 10.2222/jsv.61.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Members of the genus Pestivirus, are causative agents of economically important diseases for livestock and wild animals that occur worldwide, such as bovine viral diarrhea, classical swine fever, and border disease of sheep. Pestivirus have novel insertions of host genes in the viral genome and functions of unique viral proteins, N(pro) and E(rns), related to the pathogenicity although genomic structure is closely related to the other viruses of Flaviviridae family, especially hepatitis C virus. In this review, recent studies on the molecular basis of pathogenicity of pestivirus infections were summarized.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Sapporo 060-0818, Japan.
| |
Collapse
|
41
|
Substitution of specific cysteine residues in the E1 glycoprotein of classical swine fever virus strain Brescia affects formation of E1-E2 heterodimers and alters virulence in swine. J Virol 2011; 85:7264-72. [PMID: 21561909 DOI: 10.1128/jvi.00186-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E1, along with E(rns) and E2, is one of the three envelope glycoproteins of classical swine fever virus (CSFV). E1 and E2 are anchored to the virus envelope at their carboxyl termini, and E(rns) loosely associates with the viral envelope. In infected cells, E2 forms homodimers and heterodimers with E1 mediated by disulfide bridges between cysteine residues. The E1 protein of CSFV strain Brescia contains six cysteine residues at positions 5, 20, 24, 94, 123, and 171. The role of these residues in the formation of E1-E2 heterodimers and their effect on CSFV viability in vitro and in vivo remain unclear. Here we observed that recombinant viruses harboring individual cysteine-to-serine substitutions within the E1 envelope protein still have formation of E1-E2 heterodimers which are functional in terms of allowing efficient virus progeny yields in infected primary swine cells. Additionally, these single cysteine mutant viruses were virulent in infected swine. However, a double mutant harboring Cys24Ser and Cys94Ser substitutions within the E1 protein altered formation of E1-E2 heterodimers in infected cells. This recombinant virus, E1ΔCys24/94v, showed delayed growth kinetics in primary swine macrophage cultures and was attenuated in swine. Furthermore, despite the observed diminished growth in vitro, infection with E1ΔCys24/94v protected swine from challenge with virulent CSFV strain Brescia at 3 and 28 days postinfection.
Collapse
|
42
|
MacIntosh GC. RNase T2 Family: Enzymatic Properties, Functional Diversity, and Evolution of Ancient Ribonucleases. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2011. [DOI: 10.1007/978-3-642-21078-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Gladue DP, Holinka LG, Fernandez-Sainz IJ, Prarat MV, O'Donell V, Vepkhvadze N, Lu Z, Rogers K, Risatti GR, Borca MV. Effects of the interactions of classical swine fever virus Core protein with proteins of the SUMOylation pathway on virulence in swine. Virology 2010; 407:129-36. [PMID: 20800867 DOI: 10.1016/j.virol.2010.07.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 02/07/2023]
Abstract
Here we have identified host cell proteins involved with the cellular SUMOylation pathway, SUMO-1 (small ubiquitin-like modifier) and UBC9, a SUMO-1 conjugating enzyme that interact with classical swine fever virus (CSFV) Core protein. Five highly conserved lysine residues (K179, K180, K220, K221, and K246) within the CSFV Core were identified as putative SUMOylation sites. Analysis of these interactions showed that K179A, K180A, and K221A substitutions disrupt Core-SUMO-1 binding, while K220A substitution precludes Core-UBC9 binding. In vivo, Core mutant viruses (K179A, K180A, K220A, K221A) and (K220A, K221A) harboring those substitutions were attenuated in swine. These data shows a clear correlation between the disruption of Core protein binding to SUMO-1 and UBC9 and CSFV attenuation. Overall, these data suggest that the interaction of Core with the cellular SUMOylation pathway plays a significant role in the CSFV growth cycle in vivo.
Collapse
Affiliation(s)
- D P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Genetic analysis and phylogenetic comparison of Black queen cell virus genotypes. Vet Microbiol 2009; 139:227-34. [DOI: 10.1016/j.vetmic.2009.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 05/20/2009] [Accepted: 06/03/2009] [Indexed: 11/17/2022]
|