1
|
Zhang Y, Zhai S, Qin S, Chen Y, Chen K, Huang Z, Lan X, Luo Y, Li G, Li H, He X, Chen M, Zhang Z, Peng X, Jiang X, Huang H, Song X. MHCI trafficking signal-based mRNA vaccines strengthening immune protection against RNA viruses. Bioeng Transl Med 2025; 10:e10709. [PMID: 39801759 PMCID: PMC11711215 DOI: 10.1002/btm2.10709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 01/16/2025] Open
Abstract
The major histocompatibility complex class I (MHCI) trafficking signal (MITD) plays a pivotal role in enhancing the efficacy of mRNA vaccines. However, there was a lack of research investigating its efficacy in enhancing immune responses to RNA virus infections. Here, we have developed an innovative strategy for the formulation of mRNA vaccines. This approach involved the integration of MITD into the mRNA sequence encoding the virus antigen. Mechanistically, MITD-based mRNA vaccines can strengthen immune protection by mimicking the dynamic trafficking properties of MHCI molecule and thus expand the memory specific B and T cells. The model MITD-based mRNA vaccines encoding binding receptor-binding domain (RBD) of SARS-CoV-2 were indeed found to achieve protective duration, optimal storage stability, broad efficacy, and high safety.
Collapse
Affiliation(s)
- Yupei Zhang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Songhui Zhai
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
- Department of PediatricsWest China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Shugang Qin
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yuting Chen
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Kepan Chen
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Zhiying Huang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xing Lan
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yaoyao Luo
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Guohong Li
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hao Li
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xi He
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of MacauMacauChina
| | - Zhongwei Zhang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xingchen Peng
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Jiang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hai Huang
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiangrong Song
- Department of Critical Care MedicineFrontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Pickering S, Wilson H, Bravo E, Perera MR, Seow J, Graham C, Almeida N, Fotopoulos L, Williams T, Moitra A, Winstone H, Nissen TAD, Galão RP, Snell LB, Doores KJ, Malim MH, Neil SJD. Antibodies to the RBD of SARS-CoV-2 spike mediate productive infection of primary human macrophages. Nat Commun 2024; 15:10764. [PMID: 39737903 DOI: 10.1038/s41467-024-54458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/07/2024] [Indexed: 01/01/2025] Open
Abstract
The role of myeloid cells in the pathogenesis of SARS-CoV-2 is well established, in particular as drivers of cytokine production and systemic inflammation characteristic of severe COVID-19. However, the potential for myeloid cells to act as bona fide targets of productive SARS-CoV-2 infection, and the specifics of entry, remain unclear. Using a panel of anti-SARS-CoV-2 monoclonal antibodies (mAbs) we performed a detailed assessment of antibody-mediated infection of monocytes/macrophages. mAbs with the most consistent potential to mediate infection were those targeting a conserved region of the receptor binding domain (RBD; group 1/class 4). Infection was closely related to the neutralising concentration of the mAbs, with peak infection occurring below the IC50, while pre-treating cells with remdesivir or FcγRI-blocking antibodies inhibited infection. Studies performed in primary macrophages demonstrated high-level and productive infection, with infected macrophages appearing multinucleated and syncytial. Infection was not seen in the absence of antibody with the same quantity of virus. Addition of ruxolitinib significantly increased infection, indicating restraint of infection through innate immune mechanisms rather than entry. High-level production of pro-inflammatory cytokines directly correlated with macrophage infection levels. We hypothesise that infection via antibody-FcR interactions could contribute to pathogenesis in primary infection, systemic virus spread or persistent infection.
Collapse
MESH Headings
- Humans
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Macrophages/immunology
- Macrophages/virology
- Macrophages/metabolism
- SARS-CoV-2/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- COVID-19/immunology
- COVID-19/virology
- Antibodies, Viral/immunology
- Nitriles/pharmacology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Pyrimidines/pharmacology
- Pyrazoles/pharmacology
- Alanine/analogs & derivatives
- Alanine/pharmacology
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Adenosine Monophosphate/analogs & derivatives
- Adenosine Monophosphate/pharmacology
- Protein Domains
- Cells, Cultured
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Suzanne Pickering
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK.
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Enrico Bravo
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Marianne R Perera
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Carl Graham
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Nathalia Almeida
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Lazaros Fotopoulos
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Thomas Williams
- The Stem Cell Hotel, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London, SE1 9RT, UK
| | - Atlanta Moitra
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Helena Winstone
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Tinne A D Nissen
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michael H Malim
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
3
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMID: 39772079 PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. METHODS To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. RESULTS RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. CONCLUSIONS The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
4
|
Coish JM, MacNeil LA, MacNeil AJ. The SARS-CoV-2 antibody-dependent enhancement façade. Microbes Infect 2024:105464. [PMID: 39662700 DOI: 10.1016/j.micinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Antibody-dependent enhancement (ADE) is an immunological paradox whereby sensitization following a primary viral infection results in the subsequent enhancement of a similar secondary infection. This idiosyncratic immune response has been established in dengue virus infections, driven by four antigenically related serotypes co-circulating in endemic regions. Several coronaviruses exhibit antibody-mediated mechanisms of viral entry, which has led to speculation of an ADE capacity for SARS-CoV-2, though in vivo and epidemiological evidence do not currently support this phenomenon. Three distinct antibody-dependent mechanisms for SARS-CoV-2 entry have recently been demonstrated: 1. FcR-dependent, 2. ACE2-FcR-interdependent, and 3. FcR-independent. These mechanisms of viral entry may be dependent on SARS-CoV-2 antibody specificity; antibodies targeting the receptor binding domain (RBD) typically result in Fc-dependent and ACE2-FcR-interdependent entry, whereas antibodies targeting the N-terminal domain can induce a conformational change to the RBD that optimizes ACE2-receptor binding domain interactions independent of Fc receptors. Whether these antibody-dependent entry mechanisms of SARS-CoV-2 result in the generation of infectious progenies and enhancement of infection has not been robustly demonstrated. Furthermore, ADE of SARS-CoV-2 mediated by antigenic seniority remains a theoretical concern, as no evidence suggests that SARS-CoV-2 imprinting blunts a subsequent immune response, contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Jeremia M Coish
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Lori A MacNeil
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
5
|
Yang X, Sun E, Zhai H, Wang T, Wang S, Gao Y, Hou Q, Guan X, Li S, Li LF, Wu H, Luo Y, Li S, Sun Y, Zhao D, Li Y, Qiu HJ. The antibodies against the A137R protein drive antibody-dependent enhancement of African swine fever virus infection in porcine alveolar macrophages. Emerg Microbes Infect 2024; 13:2377599. [PMID: 38973388 PMCID: PMC11259084 DOI: 10.1080/22221751.2024.2377599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), a highly contagious disease that can kill up to 100% of domestic pigs and wild boars. It has been shown that the pigs inoculated with some ASF vaccine candidates display more severe clinical signs and die earlier than do pigs not immunized. We hypothesize that antibody-dependent enhancement (ADE) of ASFV infection may be caused by the presence of some unidentified antibodies. In this study, we found that the ASFV-encoded structural protein A137R (pA137R) can be recognized by the anti-ASFV positive sera, indicating that the anti-pA137R antibodies are induced in the ASFV-infected pigs. Interestingly, our results demonstrated that the anti-pA137R antibodies produced in rabbits or pigs enhanced viral replication of different ASFV strains in primary porcine alveolar macrophages (PAMs), the target cells of ASFV. Mechanistic investigations revealed that anti-pA137R antibodies were able to promote the attachment of ASFV to PAMs and two types of Fc gamma receptors (FcγRs), FcγRII and FcγRIII, mediated the ADE of ASFV infection. Taken together, anti-pA137R antibodies are able to drive ASFV ADE in PAMs. These findings shed new light on the roles of anti-ASFV antibodies and have implications for the pathophysiology of the disease and the development of ASF vaccines.
Collapse
Affiliation(s)
- Xiaoke Yang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Encheng Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
- Institute of Western Agriculture, CAAS, Changji, People’s Republic of China
| | - Huanjie Zhai
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Shida Wang
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuxuan Gao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Qinghe Hou
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Xiangyu Guan
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuzi Luo
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, CAAS, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Liu P, Huang ML, Guo H, McCallum M, Si JY, Chen YM, Wang CL, Yu X, Shi LL, Xiong Q, Ma CB, Bowen JE, Tong F, Liu C, Sun YH, Yang X, Chen J, Guo M, Li J, Corti D, Veesler D, Shi ZL, Yan H. Design of customized coronavirus receptors. Nature 2024; 635:978-986. [PMID: 39478224 DOI: 10.1038/s41586-024-08121-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Mei-Ling Huang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Hua Guo
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jun-Yu Si
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Mei Chen
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chun-Li Wang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lu-Lu Shi
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Xiong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Cheng-Bao Ma
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - John E Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Fei Tong
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chen Liu
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Ye-Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Yang
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Li
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Davide Corti
- Humabs BioMed SA, subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| | - Zheng-Li Shi
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Huan Yan
- State Key Laboratory of Virology, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Aynekulu Mersha DG, van der Sterren I, van Leeuwen LPM, Langerak T, Hakim MS, Martina B, van Lelyveld SFL, van Gorp ECM. The role of antibody-dependent enhancement in dengue vaccination. Trop Dis Travel Med Vaccines 2024; 10:22. [PMID: 39482727 PMCID: PMC11529159 DOI: 10.1186/s40794-024-00231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 11/03/2024] Open
Abstract
Dengue is the most rapidly spreading vector-borne disease worldwide, with over half the global population at risk for an infection. Antibody-dependent enhancement (ADE) is associated with increased disease severity and may also be attributable to the deterioration of disease in vaccinated people. Two dengue vaccines are approved momentarily, with more in development. The increasing use of vaccines against dengue, combined with the development of more, makes a thorough understanding of the processes behind ADE more important than ever. Above that, due to the lack of treatment options, this method of prevention is of great importance. This review aims to explore the impact of ADE in dengue vaccinations, with the goal of enhancing potential vaccination strategies in the fight against dengue.
Collapse
Affiliation(s)
- D G Aynekulu Mersha
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands.
| | - I van der Sterren
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - L P M van Leeuwen
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - T Langerak
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| | - M S Hakim
- Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - B Martina
- Artemis Bioservices and Athenavax B.V, Delft, the Netherlands
| | - S F L van Lelyveld
- Department of internal medicine, Spaarne Gasthuis, Haarlem/Hoofddorp, the Netherlands
| | - E C M van Gorp
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 40, PO Box Ee-1722, Rotterdam, 3015 GD, the Netherlands
| |
Collapse
|
8
|
Souan L, Abdel-Razeq H, Sughayer MA. Enhanced RBD-Specific Antibody Responses and SARS-CoV-2-Relevant T-Cell Activity in Healthcare Workers Following Booster Vaccination. Curr Issues Mol Biol 2024; 46:11124-11135. [PMID: 39451540 PMCID: PMC11506206 DOI: 10.3390/cimb46100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
COVID-19 continues to impact healthcare workers (HCWs), making it crucial to investigate vaccine response rates. This study examined HCWs' humoral and cellular immunological responses to COVID-19 booster dosages. We enrolled thirty-four vaccinated HCWs. Twelve received a booster. Post-immunization, the participants' anti-COVID-19 IgG antibodies and IFN-γ secretion were assessed. The median second immunization response time was 406.5 days. Eighteen of twenty-two (81.8%) experienced breakthrough infections after the second vaccination, whereas ten out of twelve individuals who received booster doses had breakthrough infections (83.3%). Six of thirty-four HCWs (17.6%) had no breakthrough infections. Booster-injection recipients had a median antibody titer of 19,592 AU/mL, compared to 7513.55 AU/mL. HCWs with breakthrough infections exhibited a median antibody titer of 13,271.9 AU/mL, compared to 7770.65 AU/mL for those without infections. Breakthrough-infection and booster-injection groups had a slightly higher median T-cell response to antigens 1, 2, and 3. SARS-CoV-2 antibody titer and T-cell responsiveness were positively associated. HCWs sustain cellular and humoral immunity for over 10 months. Irrespective of the type of vaccine, booster injections enhance these immune responses. The results of our research are consistent with previous studies, and a multicenter investigation could validate the findings.
Collapse
Affiliation(s)
- Lina Souan
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Hikmat Abdel-Razeq
- Department of Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Maher A. Sughayer
- Department of Pathology & Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| |
Collapse
|
9
|
Stepanova E, Isakova-Sivak I, Matyushenko V, Mezhenskaya D, Kudryavtsev I, Kostromitina A, Chistiakova A, Rak A, Bazhenova E, Prokopenko P, Kotomina T, Donina S, Novitskaya V, Sivak K, Karal-Ogly D, Rudenko L. Safety and Immunogenicity Study of a Bivalent Vaccine for Combined Prophylaxis of COVID-19 and Influenza in Non-Human Primates. Vaccines (Basel) 2024; 12:1099. [PMID: 39460266 PMCID: PMC11511058 DOI: 10.3390/vaccines12101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Influenza and SARS-CoV-2 viruses are two highly variable pathogens. We have developed a candidate bivalent live vaccine based on the strain of licensed A/Leningrad/17-based cold-adapted live attenuated influenza vaccine (LAIV) of H3N2 subtype, which expressed SARS-CoV-2 immunogenic T-cell epitopes. A cassette encoding fragments of S and N proteins of SARS-CoV-2 was inserted into the influenza NA gene using the P2A autocleavage site. In this study, we present the results of preclinical evaluation of the developed bivalent vaccine in a non-human primate model. METHODS Rhesus macaques (Macaca mulatta) (n = 3 per group) were immunized intranasally with 7.5 lg EID50 of the LAIV/CoV-2 bivalent vaccine, a control non-modified H3N2 LAIV or a placebo (chorioallantoic fluid) using a sprayer device, twice, with a 28-day interval. The blood samples were collected at days 0, 3, 28 and 35 for hematological and biochemical assessment. Safety was also assessed by monitoring body weight, body temperature and clinical signs of the disease. Immune responses to influenza virus were assessed both by determining serum antibody titers in hemagglutination inhibition assay, microneutralization assay and IgG ELISA. T-cell responses were measured both to influenza and SARS-CoV-2 antigens using ELISPOT and flow cytometry. Three weeks after the second immunization, animals were challenged with 105 PFU of Delta SARS-CoV-2. The body temperature, weight and challenge virus shedding were monitored for 5 days post-challenge. In addition, virus titers in various organs and histopathology were evaluated on day 6 after SARS-CoV-2 infection. RESULTS There was no toxic effect of the immunizations on the hematological and coagulation hemostasis of animals. No difference in the dynamics of the average weight and thermometry results were found between the groups of animals. Both LAIV and LAIV/CoV-2 variants poorly replicated in the upper respiratory tract of rhesus macaques. Nevertheless, despite this low level of virus shedding, influenza-specific serum IgG responses were detected in the group of monkeys immunized with the LAIV/CoV-2 bivalent but not in the LAIV group. Furthermore, T-cell responses to both influenza and SARS-CoV-2 viruses were detected in the LAIV/CoV-2 vaccine group only. The animals were generally resistant to SARS-CoV-2 challenge, with minimal virus shedding in the placebo and LAIV groups. Histopathological changes in vaccinated animals were decreased compared to the PBS group, suggesting a protective effect of the chimeric vaccine candidate. CONCLUSIONS The candidate bivalent vaccine was safe and immunogenic for non-human primates and warrants its further evaluation in clinical trials.
Collapse
Affiliation(s)
- Ekaterina Stepanova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Arina Kostromitina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Anna Chistiakova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Alexandra Rak
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Ekaterina Bazhenova
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Svetlana Donina
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Vlada Novitskaya
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, Saint-Petersburg 197376, Russia;
| | - Dzhina Karal-Ogly
- Center of Preclinical Research, Research Institute of Medical Primatology, Sochi 354376, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, Saint-Petersburg 197022, Russia; (I.I.-S.); (V.M.); (D.M.); (I.K.); (A.K.); (A.C.); (A.R.); (P.P.); (T.K.); (V.N.); (L.R.)
| |
Collapse
|
10
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
11
|
Dashti N, Golsaz-Shirazi F, Soltanghoraee H, Zarnani AH, Mohammadi M, Imani D, Jeddi-Tehrani M, Amiri MM, Shokri F. Preclinical assessment of a recombinant RBD-Fc fusion protein as SARS-CoV-2 candidate vaccine. Eur J Microbiol Immunol (Bp) 2024; 14:228-242. [PMID: 38753442 PMCID: PMC11393645 DOI: 10.1556/1886.2024.00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Background Waning immunity and emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), highlight the need for further research in vaccine development. Methods A recombinant fusion protein containing the receptor-binding domain (RBD) fused to the human IgG1 Fc (RBD-Fc) was produced in CHO-K1 cells. RBD-Fc was emulsified with four adjuvants to evaluate its immunogenicity. The RBD-specific humoral and cellular immune responses were assessed by ELISA. The virus neutralizing potency of the vaccine was investigated using four neutralization methods. Safety was studied in mice and rabbits, and Antibody-Dependent Enhancement (ADE) effects were investigated by flow cytometry. Results RBD-Fc emulsified in Alum induced a high titer of anti-RBD antibodies with remarkable efficacy in neutralizing both pseudotyped and live SARS-CoV-2 Delta variant. The neutralization potency dropped significantly in response to the Omicron variant. RBD-Fc induced both TH2 and particularly TH1 immune responses. Histopathologic examinations demonstrated no substantial pathologic changes in different organs. No changes in serum biochemical and hematologic parameters were observed. ADE effect was not observed following immunization with RBD-Fc. Conclusion RBD-Fc elicits highly robust neutralizing antibodies and cellular immune responses, with no adverse effects. Therefore, it could be considered a promising and safe subunit vaccine against SARS-CoV-2.
Collapse
Affiliation(s)
- Navid Dashti
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Soltanghoraee
- 2Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- 3Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Mohammadi
- 4Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Danyal Imani
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- 5Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Mehdi Amiri
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- 1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Das A, Pathak S, Premkumar M, Sarpparajan CV, Balaji ER, Duttaroy AK, Banerjee A. A brief overview of SARS-CoV-2 infection and its management strategies: a recent update. Mol Cell Biochem 2024; 479:2195-2215. [PMID: 37742314 PMCID: PMC11371863 DOI: 10.1007/s11010-023-04848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/02/2023] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has become a global health crisis, inflicting substantial morbidity and mortality worldwide. A diverse range of symptoms, including fever, cough, dyspnea, and fatigue, characterizes COVID-19. A cytokine surge can exacerbate the disease's severity. This phenomenon involves an increased immune response, marked by the excessive release of inflammatory cytokines like IL-6, IL-8, TNF-α, and IFNγ, leading to tissue damage and organ dysfunction. Efforts to reduce the cytokine surge and its associated complications have garnered significant attention. Standardized management protocols have incorporated treatment strategies, with corticosteroids, chloroquine, and intravenous immunoglobulin taking the forefront. The recent therapeutic intervention has also assisted in novel strategies like repurposing existing medications and the utilization of in vitro drug screening methods to choose effective molecules against viral infections. Beyond acute management, the significance of comprehensive post-COVID-19 management strategies, like remedial measures including nutritional guidance, multidisciplinary care, and follow-up, has become increasingly evident. As the understanding of COVID-19 pathogenesis deepens, it is becoming increasingly evident that a tailored approach to therapy is imperative. This review focuses on effective treatment measures aimed at mitigating COVID-19 severity and highlights the significance of comprehensive COVID-19 management strategies that show promise in the battle against COVID-19.
Collapse
Affiliation(s)
- Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Madhavi Premkumar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Chitra Veena Sarpparajan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Esther Raichel Balaji
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
13
|
Shahbazi E, Moradi A, Mollasalehi H, Mohebbi SR. Unravelling the diagnostic methodologies for SARS-CoV-2; the Indispensable need for developing point-of-care testing. Talanta 2024; 275:126139. [PMID: 38696900 DOI: 10.1016/j.talanta.2024.126139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused COVID-19 pandemic that continues to be a global menace and since its emergence in the late 2019, SARS-CoV-2 has been vigorously spreading throughout the globe putting the whole world into a multidimensional calamity. The suitable diagnosis strategies are on the front line of the battle against preventing the spread of infections. Since the clinical manifestation of COVID-19 is shared between various diseases, detection of the unique impacts of the pathogen on the host along with the diagnosis of the virus itself should be addressed. Employing the most suitable approaches to specifically, sensitively and effectively recognize the infected cases may be a real game changer in controlling the outbreak and the crisis management. In that matter, point-of-care assays (POC) appears to be the potential option, due to sensitivity, specificity, affordable, and availability. Here we brief the most recent findings about the virus, its variants, and the conventional methods that have been used for its detection, along with the POC strategies that have been applied to the virus diagnosis and the developing technologies which can accelerate the diagnosis procedure yet maintain its efficiency.
Collapse
Affiliation(s)
- Erfan Shahbazi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Asma Moradi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hamidreza Mollasalehi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Izadi A, Nordenfelt P. Protective non-neutralizing SARS-CoV-2 monoclonal antibodies. Trends Immunol 2024; 45:609-624. [PMID: 39034185 DOI: 10.1016/j.it.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden; Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Marutani K, Murata K, Mizuno Y, Onoyama S, Hoshina T, Yamamura K, Furuno K, Sakai Y, Kishimoto J, Kusuhura K, Hara T. Respiratory viral infections and Kawasaki disease: A molecular epidemiological analysis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2024:S1684-1182(24)00112-9. [PMID: 39034166 DOI: 10.1016/j.jmii.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND/PURPOSE Recent large-scale epidemiological studies have revealed significant temporal associations between certain viral infections and the subsequent development of Kawasaki disease (KD). Despite these associations, definitive laboratory evidence linking acute or recent viral infections to KD cases remains elusive. The objective of this study is to employ a molecular epidemiological approach to investigate the temporal association between viral infections and the development of KD. METHODS We analyzed 2460 patients who underwent the FilmArray® Respiratory Panel test between April 2020 and September 2021. RESULTS Following the application of inclusion criteria, 2402 patients were categorized into KD (n = 148), respiratory tract infection (n = 1524), and control groups (n = 730). The KD group exhibited higher positive rates for respiratory syncytial virus (RSV), human rhinovirus/enterovirus (hRV/EV), parainfluenza virus (PIV) 3, and adenovirus (AdV) compared to the control group. Additionally, coinfections involving two or more viruses were significantly more prevalent in the KD group. Notably, RSV-positive, hRV/EV-positive, and PIV3-positive KD patients exhibited a one-month delay in peak occurrence compared to non-KD patients positive for corresponding viruses. In contrast, AdV-positive KD cases did not show a one-month delay in peak occurrence. Moreover, anti-RSV, anti-PIV3, and anti-AdV antibody-positive rates or antibody titers were higher in RSV-, PIV3-, and AdV-positive KD cases, respectively, compared to non-KD cases with the same viral infections. CONCLUSION Recent infection with RSV, PIV3, or AdV, occasionally in conjunction with other viruses, may contribute to the pathogenesis of KD as infrequent complications.
Collapse
Affiliation(s)
- Kentaro Marutani
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Kenji Murata
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Yumi Mizuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Sagano Onoyama
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Takayuki Hoshina
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Kenichiro Yamamura
- Department of Cardiology and Intensive Care, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Kenji Furuno
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Kusuhura
- Office of Clinical Education and Professional Development, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan
| | - Toshiro Hara
- Kawasaki Disease Center, Fukuoka Children's Hospital, 5-1-1, Kashiiteriha, Higashi-ku, Fukuoka, 813-0017, Japan.
| |
Collapse
|
16
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
17
|
Zhang Y, Zhai S, Huang H, Qin S, Sun M, Chen Y, Lan X, Li G, Huang Z, Wang D, Luo Y, Xiao W, Li H, He X, Chen M, Peng X, Song X. Efficient signal sequence of mRNA vaccines enhances the antigen expression to expand the immune protection against viral infection. J Nanobiotechnology 2024; 22:295. [PMID: 38807131 PMCID: PMC11134928 DOI: 10.1186/s12951-024-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
The signal sequence played a crucial role in the efficacy of mRNA vaccines against virus pandemic by influencing antigen translation. However, limited research had been conducted to compare and analyze the specific mechanisms involved. In this study, a novel approach was introduced by substituting the signal sequence of the mRNA antigen to enhance its immune response. Computational simulations demonstrated that various signal peptides differed in their binding capacities with the signal recognition particle (SRP) 54 M subunit, which positively correlated with antigen translation efficiency. Our data revealed that the signal sequences of tPA and IL-6-modified receptor binding domain (RBD) mRNA vaccines sequentially led to higher antigen expression and elicited more robust humoral and cellular immune protection against the SARS-CoV-2 compared to the original signal sequence. By highlighting the importance of the signal sequence, this research provided a foundational and safe approach for ongoing modifications in signal sequence-antigen design, aiming to optimize the efficacy of mRNA vaccines.
Collapse
Affiliation(s)
- Yupei Zhang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Songhui Zhai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hai Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Sun
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Lan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiying Huang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Denggang Wang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaoyao Luo
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xi He
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Xingchen Peng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
18
|
Qaqish A, Abbas MM, Alkhateeb M, Al-Tamimi M, Mustafa M, Al-Shudifat AE, Tarawneh S, Dawoud R, Mryyian A, Al-Ajaleen M. Anti_spike and anti_nucleocapsid IgG responses to SARS-CoV-2 in children of Jordan. Heliyon 2024; 10:e30631. [PMID: 38765100 PMCID: PMC11101777 DOI: 10.1016/j.heliyon.2024.e30631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
Background It is proven that children have significantly milder COVID-19 disease compared to adults. Various immunological characteristics influence this age-related difference in protection against COVID-19. Pediatric COVID-19 in Jordan is extremely under reported. Objectives The primary goal of this work is to identify the anti_S and anti_N antibody responses in a random group of children in Jordan and compare it to that of naturally infected-unvaccinated adults. Methods 151 unvaccinated children, 4 days to 18 years old, were screened for anti_S and anti_N antibodies. History of COVID-19 infection or exposure to infection and symptom severity were reported by parents on a special questionnaire. Results 78.9 % and 65.3 % of participants were seropositive for anti_S IgG and anti_N Abs, respectively. There was a remarkable association between age and anti_S IgG and anti_N IgG antibody titers, as children aged 12 years or older had increased anti_S IgG titers (mean = 19.3 BAU/mL) compared to younger groups (means of 10.15, 9.24, 7.91 BAU/mL for age groups 6-12, 1-6, less than 1 year, respectively). Gender did not show a statistically important role in anti_S and anti_N IgG seropositivity rates or titers. Children displayed significantly elevated anti_S titers (mean = 13.23 BAU/mL) compared to naturally infected adults (mean = 9.72 BAU/mL), in contrast, adults' anti_N titers (mean = 39.64 U/mL) were significantly higher compared to those of children (mean = 10.77 U/mL). Conclusions The current work provides evidence of distinctly robust and persistent humoral immunity displayed by high anti_S and anti_N IgG in children, even >12 months post-infection. Age was the only factor that had a significant statistical impact on anti_S and anti_N Ab levels among the pediatric group in this study. Children exhibited significantly higher anti_S titers than naturally infected adults. In contrast, adults' anti_N titers were significantly higher. Such information can assist direct pediatric SARS-CoV-2 immunization programs, with implications for creating age-targeted strategies for diagnostic and population protection measures.
Collapse
Affiliation(s)
- Arwa Qaqish
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Cellular Therapy and Applied Genomics, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Manal Mohammad Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohammad Alkhateeb
- Department of Internal Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mohammad Al-Tamimi
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Minas Mustafa
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Abdel-Ellah Al-Shudifat
- Department of Internal and Family Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Shahd Tarawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Rand Dawoud
- Institute for Family Health, King Hussein Foundation, Amman, Jordan
| | - Amel Mryyian
- Department of Pediatrics, King Hussein Cancer Center (KHCC), Amman, Jordan
| | - Mu'ath Al-Ajaleen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
19
|
Thomas S, Smatti MK, Alsulaiti H, Zedan HT, Eid AH, Hssain AA, Abu Raddad LJ, Gentilcore G, Ouhtit A, Althani AA, Nasrallah GK, Grivel JC, Yassine HM. Antibody-dependent enhancement (ADE) of SARS-CoV-2 in patients exposed to MERS-CoV and SARS-CoV-2 antigens. J Med Virol 2024; 96:e29628. [PMID: 38682568 DOI: 10.1002/jmv.29628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/15/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.
Collapse
Affiliation(s)
- Swapna Thomas
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
| | - Haya Alsulaiti
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Hadeel T Zedan
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- College of Medicine-QU Health, Qatar University, Doha, Qatar
| | - Ali A Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Laith J Abu Raddad
- Infectious Disease Epidemiology Group, Department of Population Health Sciences, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Allal Ouhtit
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Asmaa A Althani
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | | | - Hadi M Yassine
- Biomedical Research Center, Research Complex, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Gao R, Feng C, Sheng Z, Li F, Wang D. Research progress in Fc-effector functions against SARS-CoV-2. J Med Virol 2024; 96:e29638. [PMID: 38682662 DOI: 10.1002/jmv.29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.
Collapse
Affiliation(s)
- Rongyuan Gao
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Chenchen Feng
- Department of Biology and Microbiology, South Dakota State University, Brookings, South Dakota, USA
| | - Zizhang Sheng
- Zuckerman Mind Brian Behavior Institute, Columbia University, New York, New York, USA
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Bartels M, Sala Solé E, Sauerschnig LM, Rijkers GT. Back to the Future: Immune Protection or Enhancement of Future Coronaviruses. Microorganisms 2024; 12:617. [PMID: 38543668 PMCID: PMC10975256 DOI: 10.3390/microorganisms12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 11/12/2024] Open
Abstract
Before the emergence of SARS-CoV-1, MERS-CoV, and most recently, SARS-CoV-2, four other coronaviruses (the alpha coronaviruses NL63 and 229E and the beta coronaviruses OC43 and HKU1) had already been circulating in the human population. These circulating coronaviruses all cause mild respiratory illness during the winter seasons, and most people are already infected in early life. Could antibodies and/or T cells, especially against the beta coronaviruses, have offered some form of protection against (severe) COVID-19 caused by infection with SARS-CoV-2? Related is the question of whether survivors of SARS-CoV-1 or MERS-CoV would be relatively protected against SARS-CoV-2. More importantly, would humoral and cellular immunological memory generated during the SARS-CoV-2 pandemic, either by infection or vaccination, offer protection against future coronaviruses? Or rather than protection, could antibody-dependent enhancement have taken place, a mechanism by which circulating corona antibodies enhance the severity of COVID-19? Another related phenomenon, the original antigenic sin, would also predict that the effectiveness of the immune response to future coronaviruses would be impaired because of the reactivation of memory against irrelevant epitopes. The currently available evidence indicates that latter scenarios are highly unlikely and that especially cytotoxic memory T cells directed against conserved epitopes of human coronaviruses could at least offer partial protection against future coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Ger T. Rijkers
- Science and Engineering Department, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.B.); (E.S.S.); (L.M.S.)
| |
Collapse
|
22
|
Chen H, Xiong X, Huang Y, Huang B, Luo X, Ke Q, Wu P, Wang S. SARS-CoV-2 Neutralization by Cell Membrane-Coated Antifouling Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:909-917. [PMID: 38273679 DOI: 10.1021/acsabm.3c00936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The global outbreak of the COVID-19 pandemic has indisputably wreaked havoc on societies worldwide, compelling the scientific community to seek urgently needed therapeutic agents with low-cost and low-side effect profiles. Numerous approaches have been investigated in the quest to prevent or treat COVID-19, but many of them exhibit unwelcome side effects, such as dysfunctional viral immune responses and inflammation. Herein, we present the preparation of solid natural human pulmonary alveolar epithelial cell (ATII) membrane-coated PLGA NPs (PLGA NPs@ATII-M), which demonstrate remarkable affinity and competitiveness to neutralize the SARS-CoV-2 S1 protein-coated NPs (SCMMA NPs-S1), which are employed as a surrogate for coronavirus particles. In addition, we first considered the antifouling properties of these types of NPs, and we found that this membrane-coated NP formulation boasts excellent antifouling capabilities, which serve to protect their neutralization properties out of shielding by protein coronas in blood circulation. Moreover, this formulation is easily prepared and stored with a low-cost profile and exhibits good specificity, high targeting efficiency, and potentially side effect avoiding, thus making it a highly promising candidate for COVID-19 treatment.
Collapse
Affiliation(s)
- Hao Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xilin Xiong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuan Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Bo Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xinxin Luo
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Qi Ke
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Pengyu Wu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Suxiao Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
23
|
Kesika P, Thangaleela S, Sisubalan N, Radha A, Sivamaruthi BS, Chaiyasut C. The Role of the Nuclear Factor-Kappa B (NF-κB) Pathway in SARS-CoV-2 Infection. Pathogens 2024; 13:164. [PMID: 38392902 PMCID: PMC10892479 DOI: 10.3390/pathogens13020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
COVID-19 is a global health threat caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with a significant increase in morbidity and mortality. The present review discusses nuclear factor-kappa B (NF-κB) activation and its potential therapeutical role in treating COVID-19. COVID-19 pathogenesis, the major NF-κB pathways, and the involvement of NF-κB in SARS-CoV-2 have been detailed. Specifically, NF-κB activation and its impact on managing COVID-19 has been discussed. As a central player in the immune and inflammatory responses, modulating NF-κB activation could offer a strategic avenue for managing SARS-CoV-2 infection. Understanding the NF-κB pathway's role could aid in developing treatments against SARS-CoV-2. Further investigations into the intricacies of NF-κB activation are required to reveal effective therapeutic strategies for managing and combating the SARS-CoV-2 infection and COVID-19.
Collapse
Affiliation(s)
- Periyanaina Kesika
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Subramanian Thangaleela
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (N.S.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arumugam Radha
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Yu B, Drelich A, Hsu J, Tat V, Peng BH, Wei Q, Wang J, Wang H, Wages J, Mendelsohn AR, Larrick JW, Tseng CT. Protective Efficacy of Novel Engineered Human ACE2-Fc Fusion Protein Against Pan-SARS-CoV-2 Infection In Vitro and in Vivo. J Med Chem 2023; 66:16646-16657. [PMID: 38100534 DOI: 10.1021/acs.jmedchem.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Enduring occurrence of severe COVID-19 for unvaccinated, aged, or immunocompromised individuals remains an urgent need. Soluble human angiotensin-converting enzyme 2 (ACE2) has been used as a decoy receptor to inhibit SARS-CoV-2 infection, which is limited by moderate affinity. We describe an engineered, high-affinity ACE2 that is consistently effective in tissue cultures in neutralizing all strains tested, including Delta and Omicron. We also found that treatment of AC70 hACE2 transgenic mice with hACE2-Fc receptor decoys effectively reduced viral infection, attenuated tissue histopathology, and delayed the onset of morbidity and mortality caused by SARS-CoV-2 infection. We believe that using this ACE2-Fc protein would be less likely to promote the escape mutants of SARS-CoV-2 as frequently as did those neutralizing antibody therapies. Together, our results emphasize the suitability of our newly engineered hACE2-Fc fusion protein for further development as a potent antiviral agent against Pan-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bo Yu
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Aleksandra Drelich
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jason Hsu
- Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Vivian Tat
- Pathology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Bi-Hung Peng
- Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Qisheng Wei
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Jianming Wang
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Hong Wang
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - John Wages
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | | | - James W Larrick
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Chien-Te Tseng
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Pathology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
25
|
Yang X. Passive antibody therapy in emerging infectious diseases. Front Med 2023; 17:1117-1134. [PMID: 38040914 DOI: 10.1007/s11684-023-1021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 12/03/2023]
Abstract
The epidemic of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome Coronavirus 2 and its variants of concern (VOCs) has been ongoing for over 3 years. Antibody therapies encompassing convalescent plasma, hyperimmunoglobulin, and neutralizing monoclonal antibodies (mAbs) applied in passive immunotherapy have yielded positive outcomes and played a crucial role in the early COVID-19 treatment. In this review, the development path, action mechanism, clinical research results, challenges, and safety profile associated with the use of COVID-19 convalescent plasma, hyperimmunoglobulin, and mAbs were summarized. In addition, the prospects of applying antibody therapy against VOCs was assessed, offering insights into the coping strategies for facing new infectious disease outbreaks.
Collapse
Affiliation(s)
- Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, 430207, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, 430207, China.
- China National Biotec Group Company Limited, Beijing, 100029, China.
| |
Collapse
|
26
|
Wang N, Wang Z, Ma M, Jia X, Liu H, Qian M, Lu S, Xiang Y, Wei Z, Zheng L. Expression of codon-optimized PDCoV-RBD protein in baculovirus expression system and immunogenicity evaluation in mice. Int J Biol Macromol 2023; 252:126113. [PMID: 37541479 DOI: 10.1016/j.ijbiomac.2023.126113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a global epidemic enteropathogenic coronavirus that mainly infects piglets, and causes huge losses to the pig industry. However, there are still no commercial vaccines available for PDCoV prevention and controlment. Receptor-binding domain (RBD) is located at the S1 subunit of PDCoV and is the major target for developing viral inhibitor and vaccine. In this study, the characteristics of the RBD were analyzed by bioinformatic tools, and codon optimization was performed to efficiently express the PDCoV-RBD protein in the insect baculovirus expression system. The purified PDCoV-RBD protein was obtained and fully emulsified with CPG2395 adjuvant, aqueous adjuvant and Al(OH)3 adjuvant, respectively, to develop vaccines. The humoral and cellular immune responses were assessed on mice. The results showed that both the RBD/CPG2395 and RBD/aqueous adjuvant could induce stronger immune responses in mice than that of RBD/Al(OH)3. In addition, the PDCoV challenge infection was conducted and the RBD/CPG2395 could provide better protection against PDCoV in mice. Our study showed that the RBD protein has good antigenicity and can be used as a protective antigen, which provided a basis for the development of the PDCoV vaccine.
Collapse
Affiliation(s)
- Nianxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zi Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengyao Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinhao Jia
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Hang Liu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengwei Qian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Sijia Lu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuqiang Xiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Lanlan Zheng
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
27
|
Cross RW, Wiethoff CM, Brown-Augsburger P, Berens S, Blackbourne J, Liu L, Wu X, Tetreault J, Dodd C, Sina R, Witcher DR, Newcomb D, Frost D, Wilcox A, Borisevich V, Agans KN, Woolsey C, Prasad AN, Deer DJ, Geisbert JB, Dobias NS, Fenton KA, Strifler B, Ebert P, Higgs R, Beall A, Chanda S, Riva L, Yin X, Geisbert TW. The Therapeutic Monoclonal Antibody Bamlanivimab Does Not Enhance SARS-CoV-2 Infection by FcR-Mediated Mechanisms. Pathogens 2023; 12:1408. [PMID: 38133292 PMCID: PMC10746090 DOI: 10.3390/pathogens12121408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
As part of the non-clinical safety package characterizing bamlanivimab (SARS-CoV-2 neutralizing monoclonal antibody), the risk profile for antibody-dependent enhancement of infection (ADE) was evaluated in vitro and in an African green monkey (AGM) model of COVID-19. In vitro ADE assays in primary human macrophage, Raji, or THP-1 cells were used to evaluate enhancement of viral infection. Bamlanivimab binding to C1q, FcR, and cell-based effector activity was also assessed. In AGMs, the impact of bamlanivimab pretreatment on viral loads and clinical and histological pathology was assessed to evaluate enhanced SARS-CoV-2 replication or pathology. Bamlanivimab did not increase viral replication in vitro, despite a demonstrated effector function. In vivo, no significant differences were found among the AGM groups for weight, temperature, or food intake. Treatment with bamlanivimab reduced viral loads in nasal and oral swabs and BAL fluid relative to control groups. Viral antigen was not detected in lung tissue from animals treated with the highest dose of bamlanivimab. Bamlanivimab did not induce ADE of SARS-CoV-2 infection in vitro or in an AGM model of infection at any dose evaluated. The findings suggest that high-affinity monoclonal antibodies pose a low risk of mediating ADE in patients and support their safety profile as a treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | - Shawn Berens
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Jamie Blackbourne
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Ling Liu
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Xiaohua Wu
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | | | - Carter Dodd
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Ramtin Sina
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | | | - Deanna Newcomb
- Charles River Laboratories, Inc., Reno, NV 89511, USA; (D.N.); (A.W.)
| | - Denzil Frost
- Charles River Laboratories, Inc., Reno, NV 89511, USA; (D.N.); (A.W.)
| | - Angela Wilcox
- Charles River Laboratories, Inc., Reno, NV 89511, USA; (D.N.); (A.W.)
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N. Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abhishek N. Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daniel J. Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalie S. Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karla A. Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Beth Strifler
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Philip Ebert
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Richard Higgs
- Eli Lilly and Company, Indianapolis, IN 46285, USA; (P.B.-A.); (S.B.)
| | - Anne Beall
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sumit Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA (A.N.P.)
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
28
|
Geng Q, Wan Y, Hsueh FC, Shang J, Ye G, Bu F, Herbst M, Wilkens R, Liu B, Li F. Lys417 acts as a molecular switch that regulates the conformation of SARS-CoV-2 spike protein. eLife 2023; 12:e74060. [PMID: 37991488 PMCID: PMC10695562 DOI: 10.7554/elife.74060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/21/2023] [Indexed: 11/23/2023] Open
Abstract
SARS-CoV-2 spike protein plays a key role in mediating viral entry and inducing host immune responses. It can adopt either an open or closed conformation based on the position of its receptor-binding domain (RBD). It is yet unclear what causes these conformational changes or how they influence the spike's functions. Here, we show that Lys417 in the RBD plays dual roles in the spike's structure: it stabilizes the closed conformation of the trimeric spike by mediating inter-spike-subunit interactions; it also directly interacts with ACE2 receptor. Hence, a K417V mutation has opposing effects on the spike's function: it opens up the spike for better ACE2 binding while weakening the RBD's direct binding to ACE2. The net outcomes of this mutation are to allow the spike to bind ACE2 with higher probability and mediate viral entry more efficiently, but become more exposed to neutralizing antibodies. Given that residue 417 has been a viral mutational hotspot, SARS-CoV-2 may have been evolving to strike a balance between infection potency and immune evasion, contributing to its pandemic spread.
Collapse
Affiliation(s)
- Qibin Geng
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Yushun Wan
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Fu-Chun Hsueh
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Jian Shang
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Rowan Wilkens
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| | - Bin Liu
- Hormel Institute, University of MinnesotaAustinUnited States
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical SchoolMinneapolisUnited States
- Center for Coronavirus Research, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
29
|
Abstract
Neutralizing antibodies (nAbs) are being increasingly used as passive antiviral reagents in prophylactic and therapeutic modalities and to guide viral vaccine design. In vivo, nAbs can mediate antiviral functions through several mechanisms, including neutralization, which is defined by in vitro assays in which nAbs block viral entry to target cells, and antibody effector functions, which are defined by in vitro assays that evaluate nAbs against viruses and infected cells in the presence of effector systems. Interpreting in vivo results in terms of these in vitro assays is challenging but important in choosing optimal passive antibody and vaccine strategies. Here, I review findings from many different viruses and conclude that, although some generalizations are possible, deciphering the relative contributions of different antiviral mechanisms to the in vivo efficacy of antibodies currently requires consideration of individual antibody-virus interactions.
Collapse
Affiliation(s)
- Dennis R Burton
- Department of Immunology and Microbiology, Consortium for HIV/AIDS Vaccine Development, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
30
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
31
|
Martinez DR, Schäfer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Soderblom EJ, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against Merbecovirus and Sarbecovirus challenge in mice. Cell Rep 2023; 42:113248. [PMID: 37858337 PMCID: PMC10842144 DOI: 10.1016/j.celrep.2023.113248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/30/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
The emergence of three highly pathogenic human coronaviruses-severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003, Middle Eastern respiratory syndrome (MERS)-CoV in 2012, and SARS-CoV-2 in 2019-underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines protect against severe COVID-19, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor-binding domains (RBDs), which elicited live-virus neutralizing antibody responses. The trivalent RBD scNP elicited serum neutralizing antibodies against bat zoonotic Wuhan Institute of Virology-1 (WIV-1)-CoV, SARS-CoV, SARS-CoV-2 BA.1, SARS-CoV-2 XBB.1.5, and MERS-CoV live viruses. The monovalent SARS-CoV-2 RBD scNP vaccine only protected against Sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both Merbecovirus and Sarbecovirus challenge in highly pathogenic and lethal mouse models. This study demonstrates proof of concept for a single pan-sarbecovirus/pan-merbecovirus vaccine that protects against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA; Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tyler D Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
32
|
Li Y, Xu L, Jiao D, Zheng Z, Chen Z, Jing Y, Li Z, Ma Z, Feng Y, Guo X, Wang Y, He Y, Zheng H, Xiao S. Genomic similarity and antibody-dependent enhancement of immune serum potentially affect the protective efficacy of commercial MLV vaccines against NADC30-like PRRSV. Virol Sin 2023; 38:813-826. [PMID: 37660949 PMCID: PMC10590703 DOI: 10.1016/j.virs.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lele Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Dian Jiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zifang Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Zhihao Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yang Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiqian Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yingtong Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xuyang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yumiao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Shuqi Xiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
33
|
Rotulo GA, Palma P. Understanding COVID-19 in children: immune determinants and post-infection conditions. Pediatr Res 2023; 94:434-442. [PMID: 36879079 PMCID: PMC9987407 DOI: 10.1038/s41390-023-02549-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Coronavirus disease 2019 in children presents with milder clinical manifestations than in adults. On the other hand, the presence of a wide range of inflammatory manifestations, including multisystem inflammatory syndrome in children (MIS-C), in the period after infection suggests a particular susceptibility of some children toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Both protective factors that prevent evolution to severe forms and risk factors for post-infectious conditions are likely to be found in age-related differences in the immune system. The prompt innate response with type I IFN production and the generation of neutralizing antibodies play a crucial role in containing the infection. The greater number of naive and regulatory cells in children helps to avoid the cytokine storm while the causes of the intense inflammatory response in MIS-C need to be elucidated. This review aims to analyze the main results of the recent literature assessing immune response to SARS-CoV-2 over the pediatric age group. We summarized such observations by dividing them into innate and acquired immunity, then reporting how altered immune responses can determine post-infectious conditions. IMPACT: The main immune markers of acute SARS-CoV-2 infection in children are summarized in this review. This paper reports a broad overview of age-related differences in the immune response to SARS-CoV-2 and emerging post-infection conditions. A summary of currently available therapies for the pediatric age group is provided.
Collapse
Affiliation(s)
- Gioacchino Andrea Rotulo
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", 00185, Rome, Italy.
| |
Collapse
|
34
|
Ziganshina MM, Shilova NV, Khalturina EO, Dolgushina NV, V Borisevich S, Yarotskaya EL, Bovin NV, Sukhikh GT. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses 2023; 15:1584. [PMID: 37515270 PMCID: PMC10384250 DOI: 10.3390/v15071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody-dependent enhancement (ADE) is a phenomenon where virus-specific antibodies paradoxically cause enhanced viral replication and/or excessive immune responses, leading to infection exacerbation, tissue damage, and multiple organ failure. ADE has been observed in many viral infections and is supposed to complicate the course of COVID-19. However, the evidence is insufficient. Since no specific laboratory markers have been described, the prediction and confirmation of ADE are very challenging. The only possible predictor is the presence of already existing (after previous infection) antibodies that can bind to viral epitopes and promote the disease enhancement. At the same time, the virus-specific antibodies are also a part of immune response against a pathogen. These opposite effects of antibodies make ADE research controversial. The assignment of immunoglobulins to ADE-associated or virus neutralizing is based on their affinity, avidity, and content in blood. However, these criteria are not clearly defined. Another debatable issue (rather terminological, but no less important) is that in most publications about ADE, all immunoglobulins produced by the immune system against pathogens are qualified as pre-existing antibodies, thus ignoring the conventional use of this term for natural antibodies produced without any stimulation by pathogens. Anti-glycan antibodies (AGA) make up a significant part of the natural immunoglobulins pool, and there is some evidence of their antiviral effect, particularly in COVID-19. AGA have been shown to be involved in ADE in bacterial infections, but their role in the development of ADE in viral infections has not been studied. This review focuses on pros and cons for AGA as an ADE trigger. We also present the results of our pilot studies, suggesting that AGAs, which bind to complex epitopes (glycan plus something else in tight proximity), may be involved in the development of the ADE phenomenon.
Collapse
Affiliation(s)
- Marina M Ziganshina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nadezhda V Shilova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Eugenia O Khalturina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Natalya V Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | | | - Ekaterina L Yarotskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health of the Russian Federation, Oparina Street 4, 117997 Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
35
|
Sawant J, Patil A, Kurle S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines (Basel) 2023; 11:1240. [PMID: 37515055 PMCID: PMC10384352 DOI: 10.3390/vaccines11071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Antibody Dependent Enhancement (ADE) of an infection has been of interest in the investigation of many viruses. It is associated with the severity of the infection. ADE is mediated by non-neutralizing antibodies, antibodies at sub-neutralizing concentrations, or cross-reactive non-neutralizing antibodies. Treatments like plasma therapy, B cell immunizations, and antibody therapies may trigger ADE. It is seen as an impediment to vaccine development as well. In viruses including the Dengue virus (DENV), severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, human immunodeficiency virus (HIV), Ebola virus, Zika virus, and influenza virus, the likely mechanisms of ADE are postulated and described. ADE improves the likelihood of productively infecting cells that are expressing the complement receptor or the Fc receptor (FcR) rather than the viral receptors. ADE occurs when the FcR, particularly the Fc gamma receptor, and/or complement system, particularly Complement 1q (C1q), allow the entry of the virus-antibody complex into the cell. Moreover, ADE alters the innate immune pathways to escape from lysis, promoting viral replication inside the cell that produces viral particles. This review discusses the involvement of FcR and the downstream immunomodulatory pathways in ADE, the complement system, and innate antiviral signaling pathways modification in ADE and its impact on facilitating viral replication. Additionally, we have outlined the modes of ADE in the cases of different viruses reported until now.
Collapse
Affiliation(s)
- Jyoti Sawant
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Ajit Patil
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| | - Swarali Kurle
- HIV Drug Resistance Laboratory, ICMR-National AIDS Research Institute, Pune 411026, India
| |
Collapse
|
36
|
Matveev A, Pyankov O, Khlusevich Y, Tyazhelkova O, Emelyanova L, Timofeeva A, Shipovalov A, Chechushkov A, Zaitseva N, Kudrov G, Yusubalieva G, Yussubaliyeva S, Zhukova O, Baklaushev V, Sedykh S, Lifshits G, Tikunov A, Tikunova N. Antibodies Capable of Enhancing SARS-CoV-2 Infection Can Circulate in Patients with Severe COVID-19. Int J Mol Sci 2023; 24:10799. [PMID: 37445984 DOI: 10.3390/ijms241310799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Antibody-dependent enhancement (ADE) has been shown previously for SARS-CoV-1, MERS-CoV, and SARS-CoV-2 infection in vitro. In this study, the first monoclonal antibody (mAb) that causes ADE in a SARS-CoV-2 in vivo model was identified. mAb RS2 against the SARS-CoV-2 S-protein was developed using hybridoma technology. mAb RS2 demonstrated sub-nanomolar affinity and ability to neutralize SARS-CoV-2 infection in vitro with IC50 360 ng/mL. In an animal model of SARS-CoV-2 infection, the dose-dependent protective efficacy of mAb RS2 was revealed. However, in post-exposure prophylaxis, the administration of mAb RS2 led to an increase in the viral load in the respiratory tract of animals. Three groups of blood plasma were examined for antibodies competing with mAb RS2: (1) plasmas from vaccinated donors without COVID-19; (2) plasmas from volunteers with mild symptoms of COVID-19; (3) plasmas from patients with severe COVID-19. It was demonstrated that antibodies competing with mAb RS2 were significantly more often recorded in sera from volunteers with severe COVID-19. The results demonstrated for the first time that in animals, SARS-CoV-2 can induce antibody/antibodies that can elicit ADE. Moreover, in the sera of patients with severe COVID-19, there are antibodies competing for the binding of an epitope that is recognized by the ADE-eliciting mAb.
Collapse
Affiliation(s)
- Andrey Matveev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Oleg Pyankov
- State Research Center of Virology and Biotechnology "VECTOR", Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Yana Khlusevich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Olga Tyazhelkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyudmila Emelyanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey Shipovalov
- State Research Center of Virology and Biotechnology "VECTOR", Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Anton Chechushkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia Zaitseva
- Laboratory of Molecular Epidemiology and Biodiversity of Viruses, Research Institute of Virology, Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia
| | - Gleb Kudrov
- State Research Center of Virology and Biotechnology "VECTOR", Rospotrebnadzor, 630559 Koltsovo, Russia
| | - Gaukhar Yusubalieva
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, FMBA of Russia, 117513 Moscow, Russia
| | - Saule Yussubaliyeva
- Department of General Medical Practice with the Course of Evidence-Based Medicine, Astana Medical University, Nur-Sultan 010000, Kazakhstan
| | - Oxana Zhukova
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir Baklaushev
- Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey Sedykh
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Galina Lifshits
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Artem Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nina Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
37
|
Singh RS, Singh A, Masih GD, Batra G, Sharma AR, Joshi R, Prakash A, Suroy B, Sarma P, Prajapat M, Kaur H, Bhattacharyya A, Upadhyay S, Medhi B. A comprehensive insight on the challenges for COVID-19 vaccine: A lesson learnt from other viral vaccines. Heliyon 2023; 9:e16813. [PMID: 37303517 PMCID: PMC10245239 DOI: 10.1016/j.heliyon.2023.e16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
The aim of this study is to comprehensively analyze previous viral vaccine programs and identify potential challenges and effective measures for the COVID-19 vaccine program. Previous viral vaccine programs, such as those for HIV, Zika, Influenza, Ebola, Dengue, SARS, and MERS, were evaluated. Paramount challenges were identified, including quasi-species, cross-reactivity, duration of immunity, revaccination, mutation, immunosenescence, and adverse events related to viral vaccines. Although a large population has been vaccinated, mutations in SARS-CoV-2 and adverse events related to vaccines pose significant challenges. Previous vaccine programs have taught us that predicting the final outcome of the current vaccine program for COVID-19 cannot be determined at a given state. Long-term follow-up studies are essential. Validated preclinical studies, long-term follow-up studies, alternative therapeutic approaches, and alternative vaccines are necessary.
Collapse
Affiliation(s)
- Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gladson David Masih
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gitika Batra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Raj Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rupa Joshi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Benjamin Suroy
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector-32, Chandigarh, 160030, India
| | - Sujata Upadhyay
- Department of Physiology, Dr. Harvansh Singh Judge Institute of Dental Sciences & Hospital, Panjab University, Chandigarh, 160014, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
38
|
La Torre F, Taddio A, Conti C, Cattalini M. Multi-Inflammatory Syndrome in Children (MIS-C) in 2023: Is It Time to Forget about It? CHILDREN (BASEL, SWITZERLAND) 2023; 10:980. [PMID: 37371212 PMCID: PMC10297102 DOI: 10.3390/children10060980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is defined as a clinically serious condition requiring hospitalization involving fever, multi-system organ dysfunction, and an increase in inflammatory biomarkers. The syndrome was originally described as a post-infectious complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which usually causes COVID-19. During the COVID-19 pandemic, not only did the virus undergo mutations but vaccines against SARS-CoV-2 were also developed. Both these conditions led to a decrease in the incidence of MIS-C. This narrative review summarizes the recent updates for MIS-C, particularly regarding the change in incidence, the link between the SARS-CoV-2 vaccine and MIS-C, and new updates of MIS-C treatments.
Collapse
Affiliation(s)
- Francesco La Torre
- Pediatric Rheumatology Center, Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, 70121 Bari, Italy
| | - Andrea Taddio
- Institute of Child and Maternal Health–IRCCS “Burlo Garofolo”, University of Trieste, 34127 Trieste, Italy
| | - Chiara Conti
- Pediatrics Clinic, Department of Experimental and Clinical Sciences, University of Brescia, 25121 Brescia, Italy
| | - Marco Cattalini
- Pediatrics Clinic, Department of Experimental and Clinical Sciences, University of Brescia, 25121 Brescia, Italy
| |
Collapse
|
39
|
Kaewchim K, Glab-ampai K, Mahasongkram K, Saenlom T, Thepsawat W, Chulanetra M, Choowongkomon K, Sookrung N, Chaicumpa W. Neutralizing and Enhancing Epitopes of the SARS-CoV-2 Receptor-Binding Domain (RBD) Identified by Nanobodies. Viruses 2023; 15:1252. [PMID: 37376552 PMCID: PMC10301551 DOI: 10.3390/v15061252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79-98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus's infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350-354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first time, we report SARS-CoV-2 RBD-enhancing epitopes, i.e., a linear VH103 epitope at RBD residues 359NCVADVSVLYNSAPFFTFKCYG380, and the VH105 epitope, most likely conformational and formed by residues in three RBD regions that are spatially juxtaposed upon the protein folding. Data obtained in this way are useful for the rational design of subunit SARS-CoV-2 vaccines that should be devoid of enhancing epitopes. VH114 and VH278 should be tested further for clinical use against COVID-19.
Collapse
Affiliation(s)
- Kanasap Kaewchim
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand;
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Kittirat Glab-ampai
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Kodchakorn Mahasongkram
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Thanatsaran Saenlom
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Watayagorn Thepsawat
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Monrat Chulanetra
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Bangkok 10900, Thailand;
| | - Nitat Sookrung
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Bangkok 10700, Thailand; (K.G.-a.); (K.M.); (T.S.); (W.T.); (M.C.); (N.S.)
| |
Collapse
|
40
|
Martinez DR, Schafer A, Gavitt TD, Mallory ML, Lee E, Catanzaro NJ, Chen H, Gully K, Scobey T, Korategere P, Brown A, Smith L, Parks R, Barr M, Newman A, Bowman C, Powers JM, Mansouri K, Edwards RJ, Baric RS, Haynes BF, Saunders KO. Vaccine-mediated protection against merbecovirus and sarbecovirus challenge in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.540829. [PMID: 37293083 PMCID: PMC10245799 DOI: 10.1101/2023.05.22.540829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The emergence of three distinct highly pathogenic human coronaviruses - SARS-CoV in 2003, MERS-CoV in 2012, and SARS-CoV-2 in 2019 - underlines the need to develop broadly active vaccines against the Merbecovirus and Sarbecovirus betacoronavirus subgenera. While SARS-CoV-2 vaccines are highly protective against severe COVID-19 disease, they do not protect against other sarbecoviruses or merbecoviruses. Here, we vaccinate mice with a trivalent sortase-conjugate nanoparticle (scNP) vaccine containing the SARS-CoV-2, RsSHC014, and MERS-CoV receptor binding domains (RBDs), which elicited live-virus neutralizing antibody responses and broad protection. Specifically, a monovalent SARS-CoV-2 RBD scNP vaccine only protected against sarbecovirus challenge, whereas the trivalent RBD scNP vaccine protected against both merbecovirus and sarbecovirus challenge in highly pathogenic and lethal mouse models. Moreover, the trivalent RBD scNP elicited serum neutralizing antibodies against SARS-CoV, MERS-CoV and SARS-CoV-2 BA.1 live viruses. Our findings show that a trivalent RBD nanoparticle vaccine displaying merbecovirus and sarbecovirus immunogens elicits immunity that broadly protects mice against disease. This study demonstrates proof-of-concept for a single pan-betacoronavirus vaccine to protect against three highly pathogenic human coronaviruses spanning two betacoronavirus subgenera.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Schafer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tyler D. Gavitt
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Esther Lee
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kendra Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pooja Korategere
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alecia Brown
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lena Smith
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Amanda Newman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Cindy Bowman
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - John M. Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
41
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
42
|
Iannizzi C, Chai KL, Piechotta V, Valk SJ, Kimber C, Monsef I, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Jindal A, Cryns N, Estcourt LJ, Kreuzberger N, Skoetz N. Convalescent plasma for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2023; 5:CD013600. [PMID: 37162745 PMCID: PMC10171886 DOI: 10.1002/14651858.cd013600.pub6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Convalescent plasma may reduce mortality in patients with viral respiratory diseases, and is being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding benefits and risks of this intervention is required. OBJECTIVES To assess the effectiveness and safety of convalescent plasma transfusion in the treatment of people with COVID-19; and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS To identify completed and ongoing studies, we searched the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, and the Epistemonikos COVID-19 L*OVE Platform. We searched monthly until 03 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating convalescent plasma for COVID-19, irrespective of disease severity, age, gender or ethnicity. We excluded studies that included populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)), as well as studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies we used RoB 2. We used the GRADE approach to rate the certainty of evidence for the following outcomes: all-cause mortality at up to day 28, worsening and improvement of clinical status (for individuals with moderate to severe disease), hospital admission or death, COVID-19 symptoms resolution (for individuals with mild disease), quality of life, grade 3 or 4 adverse events, and serious adverse events. MAIN RESULTS In this fourth review update version, we included 33 RCTs with 24,861 participants, of whom 11,432 received convalescent plasma. Of these, nine studies are single-centre studies and 24 are multi-centre studies. Fourteen studies took place in America, eight in Europe, three in South-East Asia, two in Africa, two in western Pacific and three in eastern Mediterranean regions and one in multiple regions. We identified a further 49 ongoing studies evaluating convalescent plasma, and 33 studies reporting as being completed. Individuals with a confirmed diagnosis of COVID-19 and moderate to severe disease 29 RCTs investigated the use of convalescent plasma for 22,728 participants with moderate to severe disease. 23 RCTs with 22,020 participants compared convalescent plasma to placebo or standard care alone, five compared to standard plasma and one compared to human immunoglobulin. We evaluate subgroups on detection of antibodies detection, symptom onset, country income groups and several co-morbidities in the full text. Convalescent plasma versus placebo or standard care alone Convalescent plasma does not reduce all-cause mortality at up to day 28 (risk ratio (RR) 0.98, 95% confidence interval (CI) 0.92 to 1.03; 220 per 1000; 21 RCTs, 19,021 participants; high-certainty evidence). It has little to no impact on need for invasive mechanical ventilation, or death (RR 1.03, 95% CI 0.97 to 1.11; 296 per 1000; 6 RCTs, 14,477 participants; high-certainty evidence) and has no impact on whether participants are discharged from hospital (RR 1.00, 95% CI 0.97 to 1.02; 665 per 1000; 6 RCTs, 12,721 participants; high-certainty evidence). Convalescent plasma may have little to no impact on quality of life (MD 1.00, 95% CI -2.14 to 4.14; 1 RCT, 483 participants; low-certainty evidence). Convalescent plasma may have little to no impact on the risk of grades 3 and 4 adverse events (RR 1.17, 95% CI 0.96 to 1.42; 212 per 1000; 6 RCTs, 2392 participants; low-certainty evidence). It has probably little to no effect on the risk of serious adverse events (RR 1.14, 95% CI 0.91 to 1.44; 135 per 1000; 6 RCTs, 3901 participants; moderate-certainty evidence). Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces or increases all-cause mortality at up to day 28 (RR 0.73, 95% CI 0.45 to 1.19; 129 per 1000; 4 RCTs, 484 participants; very low-certainty evidence). We are uncertain whether convalescent plasma reduces or increases the need for invasive mechanical ventilation, or death (RR 5.59, 95% CI 0.29 to 108.38; 311 per 1000; 1 study, 34 participants; very low-certainty evidence) and whether it reduces or increases the risk of serious adverse events (RR 0.80, 95% CI 0.55 to 1.15; 236 per 1000; 3 RCTs, 327 participants; very low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus human immunoglobulin Convalescent plasma may have little to no effect on all-cause mortality at up to day 28 (RR 1.07, 95% CI 0.76 to 1.50; 464 per 1000; 1 study, 190 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Individuals with a confirmed diagnosis of SARS-CoV-2 infection and mild disease We identified two RCTs reporting on 536 participants, comparing convalescent plasma to placebo or standard care alone, and two RCTs reporting on 1597 participants with mild disease, comparing convalescent plasma to standard plasma. Convalescent plasma versus placebo or standard care alone We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (odds ratio (OR) 0.36, 95% CI 0.09 to 1.46; 8 per 1000; 2 RCTs, 536 participants; very low-certainty evidence). It may have little to no effect on admission to hospital or death within 28 days (RR 1.05, 95% CI 0.60 to 1.84; 117 per 1000; 1 RCT, 376 participants; low-certainty evidence), on time to COVID-19 symptom resolution (hazard ratio (HR) 1.05, 95% CI 0.85 to 1.30; 483 per 1000; 1 RCT, 376 participants; low-certainty evidence), on the risk of grades 3 and 4 adverse events (RR 1.29, 95% CI 0.75 to 2.19; 144 per 1000; 1 RCT, 376 participants; low-certainty evidence) and the risk of serious adverse events (RR 1.14, 95% CI 0.66 to 1.94; 133 per 1000; 1 RCT, 376 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. Convalescent plasma versus standard plasma We are uncertain whether convalescent plasma reduces all-cause mortality at up to day 28 (OR 0.30, 95% CI 0.05 to 1.75; 2 per 1000; 2 RCTs, 1597 participants; very low-certainty evidence). It probably reduces admission to hospital or death within 28 days (RR 0.49, 95% CI 0.31 to 0.75; 36 per 1000; 2 RCTs, 1595 participants; moderate-certainty evidence). Convalescent plasma may have little to no effect on initial symptom resolution at up to day 28 (RR 1.12, 95% CI 0.98 to 1.27; 1 RCT, 416 participants; low-certainty evidence). We did not identify any study reporting other key outcomes. This is a living systematic review. We search monthly for new evidence and update the review when we identify relevant new evidence. AUTHORS' CONCLUSIONS For the comparison of convalescent plasma versus placebo or standard care alone, our certainty in the evidence that convalescent plasma for individuals with moderate to severe disease does not reduce mortality and has little to no impact on clinical improvement or worsening is high. It probably has little to no effect on SAEs. For individuals with mild disease, we have very-low to low certainty evidence for most primary outcomes and moderate certainty for hospital admission or death. There are 49 ongoing studies, and 33 studies reported as complete in a trials registry. Publication of ongoing studies might resolve some of the uncertainties around convalescent plasma therapy for people with asymptomatic or mild disease.
Collapse
Affiliation(s)
- Claire Iannizzi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Aikaj Jindal
- Department of Transfusion Medicine, SPS Hospitals, Ludhiana (Punjab), India
| | - Nora Cryns
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nicole Skoetz
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
43
|
Ceja-Gálvez HR, Renteria-Flores FI, Nicoletti F, Hernández-Bello J, Macedo-Ojeda G, Muñoz-Valle JF. Severe COVID-19: Drugs and Clinical Trials. J Clin Med 2023; 12:2893. [PMID: 37109231 PMCID: PMC10142549 DOI: 10.3390/jcm12082893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including "Convalescent plasma therapy in COVID-19" or "Viral polymerase inhibitors" and "COVID-19" in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables-such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate-in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Collapse
Affiliation(s)
- Hazael Ramiro Ceja-Gálvez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Gabriela Macedo-Ojeda
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
44
|
Chang CC, Algaissi A, Lai CC, Chang CK, Lin JS, Wang YS, Chang BH, Chang YC, Chen WT, Fan YQ, Peng BH, Chao CY, Tzeng SR, Liang PH, Sung WC, Hu AYC, Chang SC, Chang MF. Subunit vaccines with a saponin-based adjuvant boost humoral and cellular immunity to MERS coronavirus. Vaccine 2023; 41:3337-3346. [PMID: 37085450 PMCID: PMC10083212 DOI: 10.1016/j.vaccine.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have constituted a public health issue with drastic mortality higher than 34%, necessitating the development of an effective vaccine. During MERS-CoV infection, the trimeric spike protein on the viral envelope is primarily responsible for attachment to host cellular receptor, dipeptidyl peptidase 4 (DPP4). With the goal of generating a protein-based prophylactic, we designed a subunit vaccine comprising the recombinant S1 protein with a trimerization motif (S1-Fd) and examined its immunogenicity and protective immune responses in combination with various adjuvants. We found that sera from immunized wild-type and human DPP4 transgenic mice contained S1-specific antibodies that can neutralize MERS-CoV infection in susceptible cells. Vaccination with S1-Fd protein in combination with a saponin-based QS-21 adjuvant provided long-term humoral as well as cellular immunity in mice. Our findings highlight the significance of the trimeric S1 protein in the development of MERS-CoV vaccines and offer a suitable adjuvant, QS-21, to induce robust and prolonged memory T cell response.
Collapse
Affiliation(s)
- Chi-Chieh Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Disease, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; College of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Kai Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Jr-Shiuan Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yi-Shiang Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Bo-Hau Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yu-Chiuan Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Wei-Ting Chen
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Yong-Qing Fan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Bi-Hung Peng
- Department of Neurosciences, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Chih-Yu Chao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Shiou-Ru Tzeng
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Shin C Chang
- Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
45
|
Kolb P, Giese S, Voll RE, Hengel H, Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol 2023; 212:185-191. [PMID: 35871171 PMCID: PMC9308473 DOI: 10.1007/s00430-022-00743-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Infection with the pandemic human coronavirus SARS-CoV-2 elicits a respiratory tract disease, termed Coronavirus disease 2019 (COVID-19). While a variable degree of disease-associated symptoms may emerge, severe COVID-19 is commonly associated with respiratory complications such as acute respiratory distress syndrome (ARDS), the necessity for mechanical ventilation or even extracorporeal membrane oxygenation (ECMO). Amongst others, disease outcome depends on age and pre-existing conditions like cardiovascular diseases, metabolic disorders but also age and biological sex. Intriguingly, increasing experimental and clinical evidence suggests that an exacerbated inflammatory response and in particular IgG immune complexes (ICs), significantly contribute to severe and prolonged COVID-19 disease progression. Vast amounts of deposited, unresolved ICs in tissue are capable to initiate an exaggerated Fc gamma receptor (FcγR) mediated signalling cascade which eventually results in common IC-associated organ diseases such as vasculitis, glomerulonephritis and arthritis, comorbidities that have been frequently reported for COVID-19. Moreover and independent of deposited ICs, very recent work identified soluble ICs (sIC) to be also present in the circulation of a majority of severely ill patients, where their systemic abundance correlated with disease severity. Thus, detection of circulating sICs in patients represents a potential marker for critical COVID-19 disease progression. Their detection early after clinical deterioration might become an indicator for the requirement of prompt anti-inflammatory treatment. Here, we review the role of ICs in COVID-19 progression, their possible origins and potential intervention strategies.
Collapse
Affiliation(s)
- Philipp Kolb
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Sebastian Giese
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard Edmund Voll
- Faculty of Medicine, Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Pell B, Brozak S, Phan T, Wu F, Kuang Y. The emergence of a virus variant: dynamics of a competition model with cross-immunity time-delay validated by wastewater surveillance data for COVID-19. J Math Biol 2023; 86:63. [PMID: 36988621 PMCID: PMC10054223 DOI: 10.1007/s00285-023-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/28/2022] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
We consider the dynamics of a virus spreading through a population that produces a mutant strain with the ability to infect individuals that were infected with the established strain. Temporary cross-immunity is included using a time delay, but is found to be a harmless delay. We provide some sufficient conditions that guarantee local and global asymptotic stability of the disease-free equilibrium and the two boundary equilibria when the two strains outcompete one another. It is shown that, due to the immune evasion of the emerging strain, the reproduction number of the emerging strain must be significantly lower than that of the established strain for the local stability of the established-strain-only boundary equilibrium. To analyze the unique coexistence equilibrium we apply a quasi steady-state argument to reduce the full model to a two-dimensional one that exhibits a global asymptotically stable established-strain-only equilibrium or global asymptotically stable coexistence equilibrium. Our results indicate that the basic reproduction numbers of both strains govern the overall dynamics, but in nontrivial ways due to the inclusion of cross-immunity. The model is applied to study the emergence of the SARS-CoV-2 Delta variant in the presence of the Alpha variant using wastewater surveillance data from the Deer Island Treatment Plant in Massachusetts, USA.
Collapse
Affiliation(s)
- Bruce Pell
- Mathematics and Computer Science Department, Lawrence Technological University, 21000 W. 10 Mile Rd, Southfield, MI, 48075, USA.
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ, 85287-1804, USA
| | - Tin Phan
- Theoretical Biology and Biophysics Group, Houston, Los Alamos, NM, 87545, USA
| | - Fuqing Wu
- Texas Epidemic Public Health Institute, Houston, TX, 77030, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, 901 S. Palm Walk, Tempe, AZ, 85287-1804, USA
| |
Collapse
|
47
|
Luo N, Li M, Xu M, Shi C, Shi X, Ni R, Chen Y, Zheng L, Tu Y, Hu D, Yu C, Li Q, Lu Y. Research Progress of Fever with Thrombocytopenia Syndrome. INTENSIVE CARE RESEARCH 2023; 3:1-10. [PMID: 37360310 PMCID: PMC10033304 DOI: 10.1007/s44231-023-00035-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a new infectious disease first discovered in Ta-pieh Mountains in central China in 2009. It is caused by a novel bunyavirus infection (SFTSV). Since the first discovery of SFTSV, there have been case reports and epidemiological studies on SFTS in several East Asian countries, such as South Korea, Japan, Vietnam and so on. With the rising incidence of SFTS and the rapid spread of the novel bunyavirus around the world, it is clear that the virus has a pandemic potential and may pose a threat to global public health in the future. Early studies have suggested that ticks are an important medium for the transmission of SFTSV to humans; in recent years, it has been reported that there is also human-to-human transmission. In endemic areas, potential hosts include a variety of livestock and wildlife. When people are infected with SFTV, the main clinical manifestations are high fever, thrombocytopenia, leukocytopenia, gastrointestinal symptoms, liver and kidney function damage, and even MODS, with a mortality rate of about 10-30%. This article reviews the latest progress of novel bunyavirus, including virus transmission vector, virus genotypic diversity and epidemiology, pathogenesis, clinical manifestation and treatment.
Collapse
Affiliation(s)
- Ning Luo
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Mengdie Li
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Ming Xu
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Chuanchuan Shi
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Xinge Shi
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Rong Ni
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Yu Chen
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Liang Zheng
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Yuling Tu
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Dan Hu
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Chunlin Yu
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Qingying Li
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| | - Yibin Lu
- General ICU, Xinyang Central Hospital, Xinyang Key Laboratory of Critical Care Medicine, Xinyang, 464000 Henan China
| |
Collapse
|
48
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
49
|
Osaka T, Yamamoto Y, Soma T, Yanagisawa N, Nagata S. Cross-Reactivity of Antibodies in Intravenous Immunoglobulin Preparation for Protection against SARS-CoV-2. Microorganisms 2023; 11:microorganisms11020471. [PMID: 36838436 PMCID: PMC9959286 DOI: 10.3390/microorganisms11020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Severe cases of COVID-19 continue to put pressure on medical operations by prolonging hospitalization, occupying intensive care beds, and forcing medical personnel to undergo harsh labor. The eradication of SARS-CoV-2 through vaccine development has yet to be achieved, mainly due to the appearance of multiple mutant-incorporating strains. The present study explored the utility of human intravenous immunoglobulin (IVIG) preparations in suppressing the aggravation of any COVID-19 infection using a SARS-CoV-2 pseudovirus assay. Our study revealed the existence of IgG antibodies in human IVIG preparations, which recognized the spike protein of SARS-CoV-2. Remarkably, the pretreatment of ACE2/TMPRSS2-expressing host cells (HEK293T cells) with IVIG preparations (10 mg/mL) inhibited approximately 40% entry of SARS-CoV-2 pseudovirus even at extremely low concentrations of IgG (0.16-1.25 mg/mL). In contrast, the antibody-dependent enhancement of viral entry was confirmed when SARS-CoV-2 pseudovirus was treated with some products at an IgG concentration of 10 mg/mL. Our data suggest that IVIG may contribute to therapy for COVID-19, including for cases caused by SARS-CoV-2 variants, since IVIG binds not only to the spike proteins of the virus, but also to human ACE2/TMPRSS2. An even better preventive effect can be expected with blood collected after the start of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Toshifumi Osaka
- Department of Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Yoko Yamamoto
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., Osaka 563-0011, Japan
| | - Naoko Yanagisawa
- Department of Microbiology and Immunology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: ; Tel.: +81-3-3353-8111 (ext. 37560)
| |
Collapse
|
50
|
Kordyukova LV, Moiseenko AV, Serebryakova MV, Shuklina MA, Sergeeva MV, Lioznov DA, Shanko AV. Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine. Viruses 2023; 15:v15020480. [PMID: 36851694 PMCID: PMC9961907 DOI: 10.3390/v15020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by β-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the β-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while β-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of β-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| | - Andrey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina A. Shuklina
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Maria V. Sergeeva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Dmitry A. Lioznov
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Andrei V. Shanko
- R&D Department, FORT LLC, 119435 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| |
Collapse
|