1
|
Boegelein L, Schreiber P, Philipp A, Nusshag C, Essbauer S, Zeier M, Krautkrämer E. Replication kinetics of pathogenic Eurasian orthohantaviruses in human mesangial cells. Virol J 2024; 21:241. [PMID: 39354507 PMCID: PMC11446005 DOI: 10.1186/s12985-024-02517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Eurasian pathogenic orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury (AKI). The virulence of orthohantaviruses varies enormously and direct infection of different renal cell types contribute to pathogenesis. Glomerular mesangial cells play an essential role in the interplay between kidney cells and proper kidney function. Therefore, we analyzed the replication competence of different orthohantavirus species in primary mesangial cells and a mesangial cell line. METHODS We tested the suitability of the mesangial cell line CIHGM-1 (conditionally immortalized human glomerular mesangial cells) as cell culture model for orthohantavirus kidney infection by comparison with primary human renal mesangial cells (HRMCs). We analyzed infection with high pathogenic Hantaan virus (HTNV), moderate pathogenic Puumala virus (PUUV) and non-/low-pathogenic Tula virus (TULV). RESULTS Effective viral spread was observed for PUUV only, whereas infection with HTNV and TULV was abortive. However, in contrast to TULV, HTNV exhibits an initially high infection rate and declines afterwards. This replication pattern was observed in HRMCs and CIHGM-1 cells. Viability or adhesion was neither impaired for PUUV-infected CIHGM-1 nor HRMCs. A loss of migration capacity was observed in PUUV-infected CIHGM-1 cells, but not in HRMCs. CONCLUSIONS The identification of differences in the replication competence of pathogenic orthohantavirus strains in renal mesangial cells is of special interest and may provide useful insights in the virus-specific mechanisms of orthohantavirus induced AKI. The use of CIHGM-1 cells will facilitate the research in a relevant cell culture system.
Collapse
Affiliation(s)
- Lukas Boegelein
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Alexandra Philipp
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Sandra Essbauer
- Department Virology and Intracellular Agents, Bundeswehr Institute of Microbiology, German Centre for Infection Research, Munich Partner Site, D-80937, Munich, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, D-69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Zarate-Sanchez E, George SC, Moya ML, Robertson C. Vascular dysfunction in hemorrhagic viral fevers: opportunities for organotypic modeling. Biofabrication 2024; 16:032008. [PMID: 38749416 PMCID: PMC11151171 DOI: 10.1088/1758-5090/ad4c0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
The hemorrhagic fever viruses (HFVs) cause severe or fatal infections in humans. Named after their common symptom hemorrhage, these viruses induce significant vascular dysfunction by affecting endothelial cells, altering immunity, and disrupting the clotting system. Despite advances in treatments, such as cytokine blocking therapies, disease modifying treatment for this class of pathogen remains elusive. Improved understanding of the pathogenesis of these infections could provide new avenues to treatment. While animal models and traditional 2D cell cultures have contributed insight into the mechanisms by which these pathogens affect the vasculature, these models fall short in replicatingin vivohuman vascular dynamics. The emergence of microphysiological systems (MPSs) offers promising avenues for modeling these complex interactions. These MPS or 'organ-on-chip' models present opportunities to better mimic human vascular responses and thus aid in treatment development. In this review, we explore the impact of HFV on the vasculature by causing endothelial dysfunction, blood clotting irregularities, and immune dysregulation. We highlight how existing MPS have elucidated features of HFV pathogenesis as well as discuss existing knowledge gaps and the challenges in modeling these interactions using MPS. Understanding the intricate mechanisms of vascular dysfunction caused by HFV is crucial in developing therapies not only for these infections, but also for other vasculotropic conditions like sepsis.
Collapse
Affiliation(s)
- Evelyn Zarate-Sanchez
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States of America
| | - Monica L Moya
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
| | - Claire Robertson
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, United States of America
- UC Davis Comprehensive Cancer Center, Davis, CA, United States of America
| |
Collapse
|
3
|
Jeyachandran AV, Irudayam JI, Dubey S, Chakravarty N, Konda B, Shah A, Su B, Wang C, Cui Q, Williams KJ, Srikanth S, Shi Y, Deb A, Damoiseaux R, Stripp BR, Ramaiah A, Arumugaswami V. Comparative Analysis of Molecular Pathogenic Mechanisms and Antiviral Development Targeting Old and New World Hantaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552083. [PMID: 37577539 PMCID: PMC10418258 DOI: 10.1101/2023.08.04.552083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Hantaviruses - dichotomized into New World (i.e. Andes virus, ANDV; Sin Nombre virus, SNV) and Old-World viruses (i.e. Hantaan virus, HTNV) - are zoonotic viruses transmitted from rodents to humans. Currently, no FDA-approved vaccines against hantaviruses exist. Given the recent breakthrough to human-human transmission by the ANDV, an essential step is to establish an effective pandemic preparedness infrastructure to rapidly identify cell tropism, infective potential, and effective therapeutic agents through systematic investigation. Methods We established human cell model systems in lung (airway and distal lung epithelial cells), heart (pluripotent stem cell-derived (PSC-) cardiomyocytes), and brain (PSC-astrocytes) cell types and subsequently evaluated ANDV, HTNV and SNV tropisms. Transcriptomic, lipidomic and bioinformatic data analyses were performed to identify the molecular pathogenic mechanisms of viruses in different cell types. This cell-based infection system was utilized to establish a drug testing platform and pharmacogenomic comparisons. Results ANDV showed broad tropism for all cell types assessed. HTNV replication was predominantly observed in heart and brain cells. ANDV efficiently replicated in human and mouse 3D distal lung organoids. Transcriptomic analysis showed that ANDV infection resulted in pronounced inflammatory response and downregulation of cholesterol biosynthesis pathway in lung cells. Lipidomic profiling revealed that ANDV-infected cells showed reduced level of cholesterol esters and triglycerides. Further analysis of pathway-based molecular signatures showed that, compared to SNV and HTNV, ANDV infection caused drastic lung cell injury responses. A selective drug screening identified STING agonists, nucleoside analogues and plant-derived compounds that inhibited ANDV viral infection and rescued cellular metabolism. In line with experimental results, transcriptome data shows that the least number of total and unique differentially expressed genes were identified in urolithin B- and favipiravir-treated cells, confirming the higher efficiency of these two drugs in inhibiting ANDV, resulting in host cell ability to balance gene expression to establish proper cell functioning. Conclusions Overall, our study describes advanced human PSC-derived model systems and systems-level transcriptomics and lipidomic data to better understand Old and New World hantaviral tropism, as well as drug candidates that can be further assessed for potential rapid deployment in the event of a pandemic.
Collapse
Affiliation(s)
- Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Joseph Ignatius Irudayam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Swati Dubey
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Nikhil Chakravarty
- Department of Epidemiology, University of California, Los Angeles, CA, USA
| | - Bindu Konda
- Department of Medicine, Lung and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aayushi Shah
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Baolong Su
- Dept. of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, CA, USA
| | - Qi Cui
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, CA, USA
| | - Kevin J. Williams
- Dept. of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
- UCLA Lipidomics Lab, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, CA, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, CA, USA
| | - Barry R. Stripp
- Department of Medicine, Lung and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
4
|
Schreiber P, Friedrich AK, Gruber G, Nusshag C, Boegelein L, Essbauer S, Uhrig J, Zeier M, Krautkrämer E. Differences in the Susceptibility of Human Tubular Epithelial Cells for Infection with Orthohantaviruses. Viruses 2023; 15:1670. [PMID: 37632012 PMCID: PMC10459294 DOI: 10.3390/v15081670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases induced by infection with pathogenic orthohantaviruses are characterized by a pronounced organ-specific manifestation. Pathogenic Eurasian orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS) with often massive proteinuria. Therefore, the use of a relevant kidney cell culture would be favorable to analyze the underlying cellular mechanisms of orthohantavirus-induced acute kidney injury (AKI). We tested different human tubular epithelial cell lines for their suitability as an in vitro infection model. Permissiveness and replication kinetics of highly pathogenic Hantaan virus (HTNV) and non-/low-pathogenic Tula virus (TULV) were analyzed in tubular epithelial cell lines and compared to human primary tubular epithelial cells. Ana-lysis of the cell line HK-2 revealed the same results for viral replication, morphological and functional effects as observed for HTNV in primary cells. In contrast, the cell lines RPTEC/TERT1 and TH1 demonstrated only poor infection rates after inoculation with HTNV and are unusable as an infection model. While pathogenic HNTV infects primary tubular and HK-2 cells, non-/low-pathogenic TULV infects neither primary tubular cells nor the cell line HK-2. Our results show that permissiveness of renal cells varies between orthohantaviruses with differences in pathogenicity and that HK-2 cells demonstrate a suitable in vitro model to study viral tropism and pathogenesis of orthohantavirus-induced AKI.
Collapse
Affiliation(s)
- Pamela Schreiber
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | - Gefion Gruber
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Boegelein
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, D-80937 Munich, Germany
| | - Josephine Uhrig
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
5
|
Schlohsarczyk EK, Drewes S, Koteja P, Röhrs S, Ulrich RG, Teifke JP, Herden C. Tropism of Puumala orthohantavirus and Endoparasite Coinfection in the Bank Vole Reservoir. Viruses 2023; 15:v15030612. [PMID: 36992321 PMCID: PMC10058470 DOI: 10.3390/v15030612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
In Europe, most cases of human hantavirus disease are caused by Puumala orthohantavirus (PUUV) transmitted by bank voles (Clethrionomys glareolus, syn. Myodes glareolus), in which PUUV causes inconspicuous infection. Little is known about tropism and endoparasite coinfections in PUUV-infected reservoir and spillover-infected rodents. Here, we characterized PUUV tropism, pathological changes and endoparasite coinfections. The voles and some non-reservoir rodents were examined histologically, immunohistochemically, by in situ hybridization, indirect IgG enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. PUUV RNA and anti-PUUV antibodies were detected simultaneously in a large proportion of the bank voles, indicating persistent infection. Although PUUV RNA was not detected in non-reservoir rodents, the detection of PUUV-reactive antibodies suggests virus contact. No specific gross and histological findings were detected in the infected bank voles. A broad organ tropism of PUUV was observed: kidney and stomach were most frequently infected. Remarkably, PUUV was detected in cells lacking the typical secretory capacity, which may contribute to the maintenance of virus persistence. PUUV-infected wild bank voles were found to be frequently coinfected with Hepatozoon spp. and Sarcocystis (Frenkelia) spp., possibly causing immune modulation that may influence susceptibility to PUUV infection or vice versa. The results are a prerequisite for a deeper understanding of virus–host interactions in natural hantavirus reservoirs.
Collapse
Affiliation(s)
- Elfi K. Schlohsarczyk
- Institute of Veterinary Pathology, FB10—Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Stephan Drewes
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Paweł Koteja
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Susanne Röhrs
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Rainer G. Ulrich
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jens P. Teifke
- Institute of Veterinary Pathology, FB10—Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, FB10—Veterinary Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-6419938201
| |
Collapse
|
6
|
Menke L, Sperber HS, Aji AK, Chiantia S, Schwarzer R, Sieben C. Advances in fluorescence microscopy for orthohantavirus research. Microscopy (Oxf) 2023:6987530. [PMID: 36639937 DOI: 10.1093/jmicro/dfac075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Orthohantaviruses are important zoonotic pathogens responsible for a considerable disease burden globally. Partly due to our incomplete understanding of orthohantavirus replication, there is currently no effective antiviral treatment available. Recently, novel microscopy techniques and cutting-edge, automated image analysis algorithms have emerged, enabling to study cellular, subcellular and even molecular processes in unprecedented detail and depth. To date, fluorescence light microscopy allows us to visualize viral and cellular components and macromolecular complexes in live cells which in turn enables the study of specific steps of the viral replication cycle such as particle entry or protein trafficking at high temporal and spatial resolution. In this review, we highlight how fluorescence microscopy has provided new insights and improved our understanding of orthohantavirus biology. We discuss technical challenges such as studying live infected cells, give alternatives with recombinant protein expression and highlight future opportunities for example the application of super-resolution microscopy techniques, which has shown great potential in studies of different cellular processes and viral pathogens.
Collapse
Affiliation(s)
- Laura Menke
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hannah S Sperber
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Amit Koikkarah Aji
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Department of Physical Biochemistry, Potsdam, Germany
| | - Roland Schwarzer
- Institute for Translational HIV Research, University Hospital Essen, Essen, Germany
| | - Christian Sieben
- Nanoscale Infection Biology Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
7
|
Boshra H. An Overview of the Infectious Cycle of Bunyaviruses. Viruses 2022; 14:2139. [PMID: 36298693 PMCID: PMC9610998 DOI: 10.3390/v14102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Bunyaviruses represent the largest group of RNA viruses and are the causative agent of a variety of febrile and hemorrhagic illnesses. Originally characterized as a single serotype in Africa, the number of described bunyaviruses now exceeds over 500, with its presence detected around the world. These predominantly tri-segmented, single-stranded RNA viruses are transmitted primarily through arthropod and rodent vectors and can infect a wide variety of animals and plants. Although encoding for a small number of proteins, these viruses can inflict potentially fatal disease outcomes and have even developed strategies to suppress the innate antiviral immune mechanisms of the infected host. This short review will attempt to provide an overall description of the order Bunyavirales, describing the mechanisms behind their infection, replication, and their evasion of the host immune response. Furthermore, the historical context of these viruses will be presented, starting from their original discovery almost 80 years ago to the most recent research pertaining to viral replication and host immune response.
Collapse
Affiliation(s)
- Hani Boshra
- Global Urgent and Advanced Research and Development (GUARD), 911 Rue Principale, Batiscan, QC G0X 1A0, Canada
| |
Collapse
|
8
|
Nusshag C, Boegelein L, Schreiber P, Essbauer S, Osberghaus A, Zeier M, Krautkrämer E. Expression Profile of Human Renal Mesangial Cells Is Altered by Infection with Pathogenic Puumala Orthohantavirus. Viruses 2022; 14:v14040823. [PMID: 35458553 PMCID: PMC9025590 DOI: 10.3390/v14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Acute kidney injury (AKI) with proteinuria is a hallmark of infections with Eurasian orthohantaviruses. Different kidney cells are identified as target cells of hantaviruses. Mesangial cells may play a central role in the pathogenesis of AKI by regulation of inflammatory mediators and signaling cascades. Therefore, we examined the characteristics of hantavirus infection on human renal mesangial cells (HRMCs). Receptor expression and infection with pathogenic Puumala virus (PUUV) and low-pathogenic Tula virus (TULV) were explored. To analyze changes in protein expression in infected mesangial cells, we performed a proteome profiler assay analyzing 38 markers of kidney damage. We compared the proteome profile of in vitro-infected HRMCs with the profile detected in urine samples of 11 patients with acute hantavirus infection. We observed effective productive infection of HRMCs with pathogenic PUUV, but only poor abortive infection for low-pathogenic TULV. PUUV infection resulted in the deregulation of proteases, adhesion proteins, and cytokines associated with renal damage. The urinary proteome profile of hantavirus patients demonstrated also massive changes, which in part correspond to the alterations observed in the in vitro infection of HRMCs. The direct infection of mesangial cells may induce a local environment of signal mediators that contributes to AKI in hantavirus infection.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Lukas Boegelein
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Pamela Schreiber
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department Virology and Intracellular Agents, German Centre for Infection Research, Munich Partner Site, D-80937 Munich, Germany;
| | - Anja Osberghaus
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, D-69120 Heidelberg, Germany; (C.N.); (L.B.); (P.S.); (A.O.); (M.Z.)
- Correspondence:
| |
Collapse
|
9
|
Guardado-Calvo P, Rey FA. The Viral Class II Membrane Fusion Machinery: Divergent Evolution from an Ancestral Heterodimer. Viruses 2021; 13:v13122368. [PMID: 34960636 PMCID: PMC8706100 DOI: 10.3390/v13122368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
A key step during the entry of enveloped viruses into cells is the merger of viral and cell lipid bilayers. This process is driven by a dedicated membrane fusion protein (MFP) present at the virion surface, which undergoes a membrane–fusogenic conformational change triggered by interactions with the target cell. Viral MFPs have been extensively studied structurally, and are divided into three classes depending on their three-dimensional fold. Because MFPs of the same class are found in otherwise unrelated viruses, their intra-class structural homology indicates horizontal gene exchange. We focus this review on the class II fusion machinery, which is composed of two glycoproteins that associate as heterodimers. They fold together in the ER of infected cells such that the MFP adopts a conformation primed to react to specific clues only upon contact with a target cell, avoiding premature fusion in the producer cell. We show that, despite having diverged in their 3D fold during evolution much more than the actual MFP, the class II accompanying proteins (AP) also derive from a distant common ancestor, displaying an invariant core formed by a β-ribbon and a C-terminal immunoglobulin-like domain playing different functional roles—heterotypic interactions with the MFP, and homotypic AP/AP contacts to form spikes, respectively. Our analysis shows that class II APs are easily identifiable with modern structural prediction algorithms, providing useful information in devising immunogens for vaccine design.
Collapse
|
10
|
Ebada MA, Fayed N, Alkanj S, Allah AW. Enterovirus D-68 Molecular Virology, Epidemiology, and Treatment: an Update and Way Forward. Infect Disord Drug Targets 2021; 21:320-327. [PMID: 32669078 DOI: 10.2174/1871526520666200715101230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Enterovirus D68 (EV-D68) is a single-stranded positive-sense RNA virus, and it is one of the family members of Picornaviridae. Except for EV-D68, the entire family Picornaviridae has been illustrated in literature. EV-D68 was first discovered and isolated in California, USA, in 1962. EV-D68 has resulted in respiratory disorders' outbreaks among children worldwide, and it has been detected in cases of various neurological diseases such as acute flaccid myelitis (AFM). A recent study documented a higher number of EV-D68 cases associated with AFM in Europe in 2016 compared to the 2014 outbreak. EV-D68 is mainly diagnosed by quantitative PCR, and there is an affirmative strategy for EV-D68 detection by using pan-EV PCR on the untranslated region and/or the VP1 or VP2, followed by sequencing of the PCR products. Serological tests are limited due to cross-reactivity of the antigens between the different serotypes. Many antiviral drugs for EV-D68 have been evaluated and showed promising results. In our review, we discuss the current knowledge about EV-D68 and its role in the development of AFM.
Collapse
Affiliation(s)
| | - Notila Fayed
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Souad Alkanj
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
| | - Ahmed Wadaa Allah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
11
|
Guardado-Calvo P, Rey FA. The surface glycoproteins of hantaviruses. Curr Opin Virol 2021; 50:87-94. [PMID: 34418649 DOI: 10.1016/j.coviro.2021.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Hantaviruses are rodent-borne viruses distributed worldwide, transmitted through the air and with the ability to spread from person to person. They maintain a non-symptomatic persistent infection in their rodent hosts, but their spillover to humans produces a renal or pulmonary syndrome associated with high fatality rates. Hantavirus particles are lipid-enveloped and display a characteristic surface lattice built up of tetragonal spikes composed of two glycoproteins, Gn and Gc. The pleomorphism of these particles has hindered cryo-EM efforts to obtain detailed structural information and only by using a combination of X-ray crystallography and cryo-electron tomography it was possible to build an atomic model of the surface lattice. Here we review these structural efforts and the unanticipated evolutionary relations between hantaviruses and alphaviruses highlighted by these studies.
Collapse
Affiliation(s)
| | - Félix A Rey
- Institut Pasteur, Structural Virology Unit, and CNRS UMR 3569, Paris, France
| |
Collapse
|
12
|
Hägele S, Nusshag C, Müller A, Baumann A, Zeier M, Krautkrämer E. Cells of the human respiratory tract support the replication of pathogenic Old World orthohantavirus Puumala. Virol J 2021; 18:169. [PMID: 34404450 PMCID: PMC8369447 DOI: 10.1186/s12985-021-01636-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Transmission of all known pathogenic orthohantaviruses (family Hantaviridae) usually occurs via inhalation of aerosols contaminated with viral particles derived from infected rodents and organ manifestation of infections is characterized by lung and kidney involvement. Orthohantaviruses found in Eurasia cause hemorrhagic fever with renal syndrome (HFRS) and New World orthohantaviruses cause hantavirus cardiopulmonary syndrome (HCPS). However, cases of infection with Old World orthohantaviruses with severe pulmonary manifestations have also been observed. Therefore, human airway cells may represent initial targets for orthohantavirus infection and may also play a role in the pathogenesis of infections with Eurasian orthohantaviruses. METHODS We analyzed the permissiveness of primary endothelial cells of the human pulmonary microvasculature and of primary human epithelial cells derived from bronchi, bronchioles and alveoli for Old World orthohantavirus Puumala virus (PUUV) in vitro. In addition, we examined the expression of orthohantaviral receptors in these cell types. To minimize donor-specific effects, cells from two different donors were tested for each cell type. RESULTS Productive infection with PUUV was observed for endothelial cells of the microvasculature and for the three tested epithelial cell types derived from different sites of the respiratory tract. Interestingly, infection and particle release were also detected in bronchial and bronchiolar epithelial cells although expression of the orthohantaviral receptor integrin β3 was not detectable in these cell types. In addition, replication kinetics and viral release demonstrate enormous donor-specific variations. CONCLUSIONS The human respiratory epithelium is among the first targets of orthohantaviral infection and may contribute to virus replication, dissemination and pathogenesis of HFRS-causing orthohantaviruses. Differences in initial pulmonary infection due to donor-specific factors may play a role in the observed broad variance of severity and symptoms of orthohantavirus disease in patients. The absence of detectable levels of integrin αVβ3 surface expression on bronchial and small airway epithelial cells indicates an alternate mode of orthohantaviral entry in these cells that is independent from integrin β3.
Collapse
Affiliation(s)
- Stefan Hägele
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexander Müller
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Alexandra Baumann
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Meier K, Thorkelsson SR, Quemin ERJ, Rosenthal M. Hantavirus Replication Cycle-An Updated Structural Virology Perspective. Viruses 2021; 13:1561. [PMID: 34452426 PMCID: PMC8402763 DOI: 10.3390/v13081561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hantaviruses infect a wide range of hosts including insectivores and rodents and can also cause zoonotic infections in humans, which can lead to severe disease with possible fatal outcomes. Hantavirus outbreaks are usually linked to the population dynamics of the host animals and their habitats being in close proximity to humans, which is becoming increasingly important in a globalized world. Currently there is neither an approved vaccine nor a specific and effective antiviral treatment available for use in humans. Hantaviruses belong to the order Bunyavirales with a tri-segmented negative-sense RNA genome. They encode only five viral proteins and replicate and transcribe their genome in the cytoplasm of infected cells. However, many details of the viral amplification cycle are still unknown. In recent years, structural biology methods such as cryo-electron tomography, cryo-electron microscopy, and crystallography have contributed essentially to our understanding of virus entry by membrane fusion as well as genome encapsidation by the nucleoprotein. In this review, we provide an update on the hantavirus replication cycle with a special focus on structural virology aspects.
Collapse
Affiliation(s)
- Kristina Meier
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Sigurdur R. Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Emmanuelle R. J. Quemin
- Centre for Structural Systems Biology, Leibniz Institute for Experimental Virology, University of Hamburg, 22607 Hamburg, Germany;
| | - Maria Rosenthal
- Department of Virology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
| |
Collapse
|
14
|
Dieterle ME, Solà-Riera C, Ye C, Goodfellow SM, Mittler E, Kasikci E, Bradfute SB, Klingström J, Jangra RK, Chandran K. Genetic depletion studies inform receptor usage by virulent hantaviruses in human endothelial cells. eLife 2021; 10:e69708. [PMID: 34232859 PMCID: PMC8263056 DOI: 10.7554/elife.69708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hantaviruses are RNA viruses with known epidemic threat and potential for emergence. Several rodent-borne hantaviruses cause zoonoses accompanied by severe illness and death. However, assessments of zoonotic risk and the development of countermeasures are challenged by our limited knowledge of the molecular mechanisms of hantavirus infection, including the identities of cell entry receptors and their roles in influencing viral host range and virulence. Despite the long-standing presumption that β3/β1-containing integrins are the major hantavirus entry receptors, rigorous genetic loss-of-function evidence supporting their requirement, and that of decay-accelerating factor (DAF), is lacking. Here, we used CRISPR/Cas9 engineering to knockout candidate hantavirus receptors, singly and in combination, in a human endothelial cell line that recapitulates the properties of primary microvascular endothelial cells, the major targets of viral infection in humans. The loss of β3 integrin, β1 integrin, and/or DAF had little or no effect on entry by a large panel of hantaviruses. By contrast, loss of protocadherin-1, a recently identified entry receptor for some hantaviruses, substantially reduced hantavirus entry and infection. We conclude that major host molecules necessary for endothelial cell entry by PCDH1-independent hantaviruses remain to be discovered.
Collapse
Affiliation(s)
- Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Carles Solà-Riera
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Chunyan Ye
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Samuel M Goodfellow
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Ezgi Kasikci
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Steven B Bradfute
- University of New Mexico Health Science Center, Center for Global Health, Department of Internal MedicineAlbuquerqueUnited States
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska InstitutetStockholmSweden
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
15
|
Hulswit RJG, Paesen GC, Bowden TA, Shi X. Recent Advances in Bunyavirus Glycoprotein Research: Precursor Processing, Receptor Binding and Structure. Viruses 2021; 13:353. [PMID: 33672327 PMCID: PMC7926653 DOI: 10.3390/v13020353] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 01/04/2023] Open
Abstract
The Bunyavirales order accommodates related viruses (bunyaviruses) with segmented, linear, single-stranded, negative- or ambi-sense RNA genomes. Their glycoproteins form capsomeric projections or spikes on the virion surface and play a crucial role in virus entry, assembly, morphogenesis. Bunyavirus glycoproteins are encoded by a single RNA segment as a polyprotein precursor that is co- and post-translationally cleaved by host cell enzymes to yield two mature glycoproteins, Gn and Gc (or GP1 and GP2 in arenaviruses). These glycoproteins undergo extensive N-linked glycosylation and despite their cleavage, remain associated to the virion to form an integral transmembrane glycoprotein complex. This review summarizes recent advances in our understanding of the molecular biology of bunyavirus glycoproteins, including their processing, structure, and known interactions with host factors that facilitate cell entry.
Collapse
Affiliation(s)
- Ruben J. G. Hulswit
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (R.J.G.H.); (G.C.P.)
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
16
|
Dernstedt A, Leidig J, Holm A, Kerkman PF, Mjösberg J, Ahlm C, Henriksson J, Hultdin M, Forsell MNE. Regulation of Decay Accelerating Factor Primes Human Germinal Center B Cells for Phagocytosis. Front Immunol 2021; 11:599647. [PMID: 33469456 PMCID: PMC7813799 DOI: 10.3389/fimmu.2020.599647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
Germinal centers (GC) are sites for extensive B cell proliferation and homeostasis is maintained by programmed cell death. The complement regulatory protein Decay Accelerating Factor (DAF) blocks complement deposition on host cells and therefore also phagocytosis of cells. Here, we show that B cells downregulate DAF upon BCR engagement and that T cell-dependent stimuli preferentially led to activation of DAFlo B cells. Consistent with this, a majority of light and dark zone GC B cells were DAFlo and susceptible to complement-dependent phagocytosis, as compared with DAFhi GC B cells. We could also show that the DAFhi GC B cell subset had increased expression of the plasma cell marker Blimp-1. DAF expression was also modulated during B cell hematopoiesis in the human bone marrow. Collectively, our results reveal a novel role of DAF to pre-prime activated human B cells for phagocytosis prior to apoptosis.
Collapse
Affiliation(s)
- Andy Dernstedt
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Jana Leidig
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Anna Holm
- Department of Clinical Sciences, Division of Otorhinolaryngology, Umeå University, Umeå, Sweden
| | - Priscilla F Kerkman
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Johan Henriksson
- Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Mattias N E Forsell
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Noack D, Goeijenbier M, Reusken CBEM, Koopmans MPG, Rockx BHG. Orthohantavirus Pathogenesis and Cell Tropism. Front Cell Infect Microbiol 2020; 10:399. [PMID: 32903721 PMCID: PMC7438779 DOI: 10.3389/fcimb.2020.00399] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Orthohantaviruses are zoonotic viruses that are naturally maintained by persistent infection in specific reservoir species. Although these viruses mainly circulate among rodents worldwide, spill-over infection to humans occurs. Orthohantavirus infection in humans can result in two distinct clinical outcomes: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). While both syndromes develop following respiratory transmission and are associated with multi-organ failure and high mortality rates, little is known about the mechanisms that result in these distinct clinical outcomes. Therefore, it is important to identify which cell types and tissues play a role in the differential development of pathogenesis in humans. Here, we review current knowledge on cell tropism and its role in pathogenesis during orthohantavirus infection in humans and reservoir rodents. Orthohantaviruses predominantly infect microvascular endothelial cells (ECs) of a variety of organs (lungs, heart, kidney, liver, and spleen) in humans. However, in this review we demonstrate that other cell types (e.g., macrophages, dendritic cells, and tubular epithelium) are infected as well and may play a role in the early steps in pathogenesis. A key driver for pathogenesis is increased vascular permeability, which can be direct effect of viral infection in ECs or result of an imbalanced immune response in an attempt to clear the virus. Future studies should focus on the role of identifying how infection of organ-specific endothelial cells as well as other cell types contribute to pathogenesis.
Collapse
Affiliation(s)
- Danny Noack
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Chantal B E M Reusken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Barry H G Rockx
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
18
|
Abstract
Hantaviruses are pathogens that sometimes pass from animals to humans, and they are found in parts of Europe, Asia, and North and South America. When human infection occurs, these viruses can cause kidney or lung failure, and as many as 40% of infected people die. Currently, there are no vaccines or therapeutics for hantavirus-related diseases available. A first step in developing prevention measures is determining what type of immune response is protective. Increasingly it has become clear that the induction of a type of response called a neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on what features on the surface of hantaviruses are recognized by the immune system. Here, we review the current state of knowledge of this information, which is critical for the design of effective therapeutics and vaccines. Hantaviruses are zoonotic pathogens found in parts of Europe, Asia, South America, and North America, which can cause renal and respiratory failure with fatality rates up to 40%. There are currently no FDA-approved vaccines or therapeutics for hantavirus-related diseases; however, it is evident that a robust neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on the neutralizing epitopes that exist on the hantavirus antigenic glycoproteins, Gn and Gc, and sites important for the design of effective therapeutics and vaccines. We provide a thorough summary of the hantavirus field from an immunological perspective. In particular, we discuss our current structural knowledge of antigenic proteins Gn and Gc, identification of B cell neutralizing epitopes, previously isolated monoclonal antibodies and their cross-reactivity between different hantavirus strains, and current developments toward vaccines and therapeutics. We conclude with some outstanding questions in the field and emphasize the need for additional studies of the human antibody response to hantavirus infection. IMPORTANCE Hantaviruses are pathogens that sometimes pass from animals to humans, and they are found in parts of Europe, Asia, and North and South America. When human infection occurs, these viruses can cause kidney or lung failure, and as many as 40% of infected people die. Currently, there are no vaccines or therapeutics for hantavirus-related diseases available. A first step in developing prevention measures is determining what type of immune response is protective. Increasingly it has become clear that the induction of a type of response called a neutralizing antibody response is critical for protection from severe disease. Although virologists first described this family of viruses in the 1950s, there is limited information on what features on the surface of hantaviruses are recognized by the immune system. Here, we review the current state of knowledge of this information, which is critical for the design of effective therapeutics and vaccines.
Collapse
|
19
|
Raftery MJ, Lalwani P, Lütteke N, Kobak L, Giese T, Ulrich RG, Radosa L, Krüger DH, Schönrich G. Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Front Cell Infect Microbiol 2020; 10:281. [PMID: 32596167 PMCID: PMC7304325 DOI: 10.3389/fcimb.2020.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Members of different virus families including Hantaviridae cause viral hemorrhagic fevers (VHFs). The decisive determinants of hantavirus-associated pathogenicity are still enigmatic. Pathogenic hantavirus species, such as Puumala virus (PUUV), Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), and Sin Nombre virus (SNV), are associated with significant case fatality rates. In contrast, Tula virus (TULV) only sporadically causes mild disease in immunocompetent humans and Prospect Hill virus (PHV) so far has not been associated with any symptoms. They are thus defined here as low pathogenic/apathogenic hantavirus species. We found that productive infection of cells of the mononuclear phagocyte system (MPS), such as monocytes and dendritic cells (DCs), correlated well with the pathogenicity of hantavirus species tested. HTNV (intermediate case fatality rates) replicated more efficiently than PUUV (low case fatality rates) in myeloid cells, whereas low pathogenic/apathogenic hantavirus species did not produce any detectable virus titers. Analysis of PHPUV, a reassortant hantavirus derived from a pathogenic (PUUV) and an apathogenic (PHV) hantavirus species, indicated that the viral glycoproteins are not decisive for replication in MPS cells. Moreover, blocking acidification of endosomes with chloroquine decreased the number of TULV genomes in myeloid cells suggesting a post-entry block for low pathogenic/apathogenic hantavirus species in myeloid cells. Intriguingly, pathogenic but not low pathogenic/apathogenic hantavirus species induced conversion of monocytes into inflammatory DCs. The proinflammatory programming of MPS cells by pathogenic hantavirus species required integrin signaling and viral replication. Our findings indicate that the capacity to replicate in MPS cells is a prominent feature of hantaviral pathogenicity.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Pritesh Lalwani
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nina Lütteke
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lidija Kobak
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Lukas Radosa
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Detlev H Krüger
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
20
|
Development of small-molecule inhibitors against hantaviruses. Microbes Infect 2020; 22:272-277. [PMID: 32445882 DOI: 10.1016/j.micinf.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Hantavirus (HV), a pathogen of animal infectious diseases that poses a threat to humans, has attracted extensive attention. Clinically, HV can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), between which HFRS is mostly in Eurasia, and HPS is mostly in the Americas. This paper reviews the research progress of small-molecule inhibitors of HV.
Collapse
|
21
|
Mayor J, Torriani G, Rothenberger S, Engler O. T-cell immunoglobulin and mucin (TIM) contributes to the infection of human airway epithelial cells by pseudotype viruses containing Hantaan virus glycoproteins. Virology 2020; 543:54-62. [PMID: 32056847 DOI: 10.1016/j.virol.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/24/2022]
Abstract
Hantaviruses are rodent-borne hemorrhagic fever viruses leading to serious diseases. Viral attachment and entry represent the first steps in virus transmission and are promising targets for antiviral therapeutic intervention. Here we investigated receptor use in human airway epithelium of the Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV). Using a biocontained recombinant vesicular stomatitis virus pseudotype platform, we provide first evidence for a role of the cellular phosphatidylserine (PS) receptors of the T-cell immunoglobulin and mucin (TIM) protein family in HTNV and ANDV infection. In line with previous studies, HTNV, but not ANDV, was able to use glycosaminoglycan heparan sulfate and αvβ3 integrin as co-receptors. In sum, our studies demonstrate for the first time that hantaviruses make use of apoptotic mimicry for infection of human airway epithelium, which may explain why these viruses can easily break the species barrier.
Collapse
Affiliation(s)
- Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland
| | - Giulia Torriani
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011, Lausanne, Switzerland; Spiez Laboratory, CH-3700, Spiez, Switzerland.
| | | |
Collapse
|
22
|
Ebola Virus Uptake into Polarized Cells from the Apical Surface. Viruses 2019; 11:v11121117. [PMID: 31810353 PMCID: PMC6949903 DOI: 10.3390/v11121117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) causes severe hemorrhagic fever with high mortality rates. EBOV can infect many types of cells. During severe EBOV infection, polarized epithelial and endothelial cells are damaged, which promotes vascular instability and dysregulation. However, the mechanism causing these symptoms is largely unknown. Here, we studied virus infection in polarized Vero C1008 cells grown on semipermeable Transwell by using EGFP-labeled Ebola virus-like particles (VLPs). Our results showed that Ebola VLPs preferred to enter polarized Vero cells from the apical cell surface. Furthermore, we showed that the EBOV receptors TIM-1 and Axl were distributed apically, which could be responsible for mediating efficient apical viral entry. Macropinocytosis and intracellular receptor Niemann–Pick type C1 (NPC1) had no polarized distribution, although they played roles in virus entry. This study provides a new view of EBOV uptake and cell polarization, which facilitates a further understanding of EBOV infection and pathogenesis.
Collapse
|
23
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
24
|
Sun J, Hu XY, Yu XF. Current Understanding of Human Enterovirus D68. Viruses 2019; 11:v11060490. [PMID: 31146373 PMCID: PMC6631698 DOI: 10.3390/v11060490] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Human enterovirus D68 (EV-D68), a member of the species Enterovirus D of the Picornaviridae family, was first isolated in 1962 in the United States. EV-D68 infection was only infrequently reported until an outbreak occurred in 2014 in the US; since then, it has continued to increase worldwide. EV-D68 infection leads to severe respiratory illness and has recently been reported to be linked to the development of the neurogenic disease known as acute flaccid myelitis (AFM), mostly in children, seriously endangering public health. Hitherto, treatment options for EV-D68 infections were limited to supportive care, and as yet there are no approved, specific antiviral drugs or vaccines. Research on EV-D68 has mainly focused on its epidemiology, and its virologic characteristics and pathogenesis still need to be further explored. Here, we provide an overview of current research on EV-D68, including the genotypes and genetic characteristics of recent epidemics, the mechanism of infection and virus-host interactions, and its relationship to acute flaccid myelitis (AFM), in order to broaden our understanding of the biological features of EV-D68 and provide a basis for the development of effective antiviral agents.
Collapse
Affiliation(s)
- Jing Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| | - Xiao-Yi Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China.
| |
Collapse
|
25
|
Müller A, Baumann A, Essbauer S, Radosa L, Krüger DH, Witkowski PT, Zeier M, Krautkrämer E. Analysis of the integrin β 3 receptor for pathogenic orthohantaviruses in rodent host species. Virus Res 2019; 267:36-40. [PMID: 31054291 DOI: 10.1016/j.virusres.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 01/19/2023]
Abstract
Host reservoir specificity of pathogens is complex and may depend on receptor variability. For pathogenic orthohantaviruses, integrin β3 had been previously identified as entry receptor and the presence of aspartic acid residue at position 39 (D39) in human integrin β3 was described to be a prerequisite for infection of primate cells with Hantaan virus (HTNV). However, the role of integrin β3 in orthohantavirus infection of host animals is not completely understood. Therefore, we analyzed the nucleotide sequence of the integrin β3 gene of Myodes glareolus and Apodemus agrarius, the hosts of Puumala virus (PUUV) and HTNV, respectively. Sequence analysis in tissue samples demonstrated that the amino acid residue D39 is not present in integrin β3 of these natural orthohantavirus hosts. Furthermore, we analyzed the transcription and protein expression levels of integrin β3 in the renal cell line BVK168 generated from the PUUV host, bank vole. Transcription level of integrin β3 was 100-fold lower in BVK168 cells than in Vero E6 cells and integrin β3 expression was not detectable in BVK168 cells. However, despite the absence of amino acid residue D39 and no detectable integrin β3 expression, BVK168 cells are susceptible to infection with both PUUV and HTNV. These results indicate that the mechanism of orthohantaviral entry in rodent species does not correspond to the requirements that were described for the entry in primate cells in vitro.
Collapse
Affiliation(s)
- Alexander Müller
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Alexandra Baumann
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, Department of Virology & Rickettsiology, Munich, Germany
| | - Lukáš Radosa
- Institute of Medical Virology, Charité Medical School, Berlin, Germany
| | - Detlev H Krüger
- Institute of Medical Virology, Charité Medical School, Berlin, Germany
| | - Peter T Witkowski
- Institute of Medical Virology, Charité Medical School, Berlin, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
26
|
Torriani G, Mayor J, Zimmer G, Kunz S, Rothenberger S, Engler O. Macropinocytosis contributes to hantavirus entry into human airway epithelial cells. Virology 2019; 531:57-68. [PMID: 30852272 DOI: 10.1016/j.virol.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023]
Abstract
Hantaviruses are emerging rodent-borne negative-strand RNA viruses associated with severe human diseases. Zoonotic transmission occurs via aerosols of contaminated rodent excreta and cells of the human respiratory epithelium represent likely early targets. Here we investigated cellular factors involved in entry of the pathogenic Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV) into human respiratory epithelial cells. Screening of a kinase inhibitor library using a biocontained recombinant vesicular stomatitis virus pseudotype platform revealed differential requirement for host kinases for HTNV and ANDV entry and provided first hints for an involvement of macropinocytosis. Examination of a selected panel of well-defined inhibitors of endocytosis confirmed that both HTNV and ANDV enter human respiratory epithelial cells via a pathway that critically depends on sodium proton exchangers and actin, hallmarks of macropinocytosis. However, HTNV and ANDV differed in their individual requirements for regulatory factors of macropinocytosis, indicating virus-specific differences.
Collapse
Affiliation(s)
- Giulia Torriani
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland
| | - Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland; Spiez Laboratory, CH-3700 Spiez, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), CH-3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland.
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland; Spiez Laboratory, CH-3700 Spiez, Switzerland.
| | | |
Collapse
|
27
|
Martínez-Valdebenito C, Angulo J, Le Corre N, Marco C, Vial C, Miquel JF, Cerda J, Mertz G, Vial P, Lopez-Lastra M, Ferrés M. A Single-Nucleotide Polymorphism of α Vβ₃ Integrin Is Associated with the Andes Virus Infection Susceptibility. Viruses 2019; 11:v11020169. [PMID: 30791508 PMCID: PMC6409546 DOI: 10.3390/v11020169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/06/2023] Open
Abstract
The AndesOrthohantavirus (ANDV), which causes the hantavirus cardiopulmonary syndrome, enters cells via integrins, and a change from leucine to proline at residue 33 in the PSI domain (L33P), impairs ANDV recognition. We assessed the association between this human polymorphism and ANDV infection. We defined susceptible and protective genotypes as “TT” (coding leucine) and “CC” (coding proline), respectively. TT was present at a rate of 89.2% (66/74) among the first cohort of ANDV cases and at 60% (63/105) among exposed close-household contacts, who remained uninfected (p < 0.05). The protective genotype (CC) was absent in all 85 ANDV cases, in both cohorts, and was present at 11.4% of the exposed close-household contacts who remained uninfected. Logistic regression modeling for risk of infection had an OR of 6.2–12.6 (p < 0.05) in the presence of TT and well-known ANDV risk activities. Moreover, an OR of 7.3 was obtained when the TT condition was analyzed for two groups exposed to the same environmental risk. Host genetic background was found to have an important role in ANDV infection susceptibility, in the studied population.
Collapse
Affiliation(s)
- Constanza Martínez-Valdebenito
- Departamento de Enfermedades Infecciosas e Inmunologia Pediatricas, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia (IMII), Santiago 8330024, Chile.
| | - Nicole Le Corre
- Departamento de Enfermedades Infecciosas e Inmunologia Pediatricas, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Claudia Marco
- Departamento de Enfermedades Infecciosas e Inmunologia Pediatricas, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Cecilia Vial
- Facultad de Medicina, Center for Genetics and Genomics, Clínica Alemana Universidad del Desarrollo, Santiago 7650568, Chile.
| | - Juan Francisco Miquel
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Jaime Cerda
- Facultad de Medicina Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Gregory Mertz
- University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Pablo Vial
- Departamento de Pediatria, Facultad de Medicina, Clínica Alemana Santiago, Universidad del Desarrollo, Santiago 7650568, Chile.
| | - Marcelo Lopez-Lastra
- Departamento de Enfermedades Infecciosas e Inmunologia Pediatricas, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia (IMII), Santiago 8330024, Chile.
| | - Marcela Ferrés
- Departamento de Enfermedades Infecciosas e Inmunologia Pediatricas, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
28
|
Hägele S, Müller A, Nusshag C, Reiser J, Zeier M, Krautkrämer E. Virus- and cell type-specific effects in orthohantavirus infection. Virus Res 2018; 260:102-113. [PMID: 30508604 DOI: 10.1016/j.virusres.2018.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
Orthohantaviruses Hantaan (HTNV) and Puumala (PUUV) virus cause hemorrhagic fever with renal syndrome (HFRS), that is characterized by acute renal failure with often massive proteinuria and by morphological changes of the tubular and glomerular apparatus. Orthohantaviral N protein is found in renal cells and plays a key role in replication. However, the replication in human renal cells is not well characterized. Therefore, we examined the orthohantaviral infection in different human renal cells. Differences in localization of N protein, release of particles, and modulation of the actin cytoskeleton between both virus species are observed in human renal cells. A substantial portion of HTNV N protein demonstrates a filamentous pattern in addition to the typical punctate pattern. Release of HTNV depends on an intact actin and microtubule cytoskeleton. In contrast, PUUV N protein is generally localized in a punctate pattern and release of PUUV does not require an intact actin cytoskeleton. Infection of podocytes results in cytoskeletal rearrangements that are more pronounced for HTNV. Analyzing Vero E6 cells revealed differences compared to human renal cells. The pattern of N proteins is strictly punctate, release does not depend on an intact actin cytoskeleton and cytoskeletal rearrangements are not present. No virus-specific variations between HTNV and PUUV are observed in Vero E6 cells. Using human renal cells as cell culture model for orthohantavirus infection demonstrates virus-specific differences and orthohantavirus-induced cytoskeletal rearrangements that are not observed in Vero E6 cells. Therefore, the choice of an appropriate cell culture system is a prerequisite to study orthohantavirus pathogenicity.
Collapse
Affiliation(s)
- Stefan Hägele
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Alexander Müller
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Medical Center, Chicago, IL, USA
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Protocadherin-1 is essential for cell entry by New World hantaviruses. Nature 2018; 563:559-563. [PMID: 30464266 DOI: 10.1038/s41586-018-0702-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 09/20/2018] [Indexed: 01/26/2023]
Abstract
The zoonotic transmission of hantaviruses from their rodent hosts to humans in North and South America is associated with a severe and frequently fatal respiratory disease, hantavirus pulmonary syndrome (HPS)1,2. No specific antiviral treatments for HPS are available, and no molecular determinants of in vivo susceptibility to hantavirus infection and HPS are known. Here we identify the human asthma-associated gene protocadherin-1 (PCDH1)3-6 as an essential determinant of entry and infection in pulmonary endothelial cells by two hantaviruses that cause HPS, Andes virus (ANDV) and Sin Nombre virus (SNV). In vitro, we show that the surface glycoproteins of ANDV and SNV directly recognize the outermost extracellular repeat domain of PCDH1-a member of the cadherin superfamily7,8-to exploit PCDH1 for entry. In vivo, genetic ablation of PCDH1 renders Syrian golden hamsters highly resistant to a usually lethal ANDV challenge. Targeting PCDH1 could provide strategies to reduce infection and disease caused by New World hantaviruses.
Collapse
|
30
|
Klempa B. Reassortment events in the evolution of hantaviruses. Virus Genes 2018; 54:638-646. [PMID: 30047031 PMCID: PMC6153690 DOI: 10.1007/s11262-018-1590-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Hantaviruses (order Bunyavirales, family Hantaviridae), known as important zoonotic human pathogens, possess the capacity to exchange genome segments via genetic reassortment due to their tri-segmented genome. Although not as frequent as in the arthropod-borne bunyaviruses, reports indicating reassortment events in the evolution of hantaviruses have been recently accumulating. The intra- and inter-lineage reassortment between closely related variants has been repeatedly reported for several hantaviruses including the rodent-borne human pathogens such as Sin Nombre virus, Puumala virus, Dobrava-Belgrade virus, or Hantaan virus as well as for the more recently recognized shrew-borne hantaviruses, Imjin and Seewis. Reassortment between more distantly related viruses was rarely found but seems to play a beneficial role in the process of crossing the host species barriers. Besides the findings based on phylogenetic studies of naturally occurring strains, hantavirus reassortants were generated also in in vitro studies. Interestingly, only reassortants with exchanged M segments could be generated suggesting that a high degree of genetic compatibility is required for the S and L segments while the exchange of M segment is better tolerated or is particularly beneficial. Altogether, the numerous reports on hantavirus reassortment, summarized in this review, clearly demonstrate that reassortment events play a significant role in hantavirus evolution and contributed to the currently recognized hantavirus diversity.
Collapse
Affiliation(s)
- Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia. .,Institute of Virology, Charité University Hospital, Helmut-Ruska-Haus, Berlin, Germany.
| |
Collapse
|
31
|
Buranda T, Gineste C, Wu Y, Bondu V, Perez D, Lake KR, Edwards BS, Sklar LA. A High-Throughput Flow Cytometry Screen Identifies Molecules That Inhibit Hantavirus Cell Entry. SLAS DISCOVERY 2018; 23:634-645. [PMID: 29608398 DOI: 10.1177/2472555218766623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS), which infects more than 200,000 people worldwide. Sin Nombre virus (SNV) and Andes virus (ANDV) cause the most severe form of HCPS, with case fatality ratios of 30%-40%. There are no specific therapies or vaccines for SNV. Using high-throughput flow cytometry, we screened the Prestwick Chemical Library for small-molecule inhibitors of the binding interaction between UV-inactivated and fluorescently labeled SNVR18 particles, and decay-accelerating factor (DAF) expressed on Tanoue B cells. Eight confirmed hit compounds from the primary screen were investigated further in secondary screens that included infection inhibition, cytotoxicity, and probe interference. Antimycin emerged as a bona fide hit compound that inhibited cellular infection of the major HCPS (SNV)- and HCPS (Hantaan)-causing viruses. Confirming our assay's ability to detect active compounds, orthogonal testing of the hit compound showed that antimycin binds directly to the virus particle and blocks recapitulation of physiologic integrin activation caused by SNV binding to the integrin PSI domain.
Collapse
Affiliation(s)
- Tione Buranda
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,2 Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Catherine Gineste
- 3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yang Wu
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018
| | - Virginie Bondu
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018
| | - Dominique Perez
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Kaylin R Lake
- 5 Department of Biochemistry, University of New Mexico, Albuquerque, NM, USA
| | - Bruce S Edwards
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Larry A Sklar
- 1 Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA, and in revised form Feb 15, 2018. Accepted for publication Mar 1, 2018.,3 University of New Mexico Center for Molecular Discovery, University of New Mexico School of Medicine, Albuquerque, NM, USA.,4 Department of Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
32
|
Mammarenaviral Infection Is Dependent on Directional Exposure to and Release from Polarized Intestinal Epithelia. Viruses 2018; 10:v10020075. [PMID: 29439402 PMCID: PMC5850382 DOI: 10.3390/v10020075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Mammarenavirusesare single-stranded RNA viruses with a bisegmented ambisense genome. Ingestion has been shown as a natural route of transmission for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). Due to the mechanism of transmission, epithelial tissues are among the first host cells to come in contact with the viruses, and as such they potentially play a role in spread of virus to naïve hosts. The role of the intestinal epithelia during arenavirus infection remains to be uncharacterized. We have utilized a well-established cell culture model, Caco-2, to investigate the role of intestinal epithelia during intragastric infection. We found that LCMV-Armstrong, LCMV-WE, and Mopeia (MOPV) release infectious progeny via similar patterns. However, the reassortant virus, ML-29, containing the L segment of MOPV and S segment of LASV, exhibits a unique pattern of viral release relative to LCMV and MOPV. Furthermore, we have determined attachment efficacy to Caco-2 cells is potentially responsible for observed replication kinetics of these viruses in a polarized Caco-2 cell model. Collectively, our data shows that viral dissemination and interaction with intestinal epithelia may be host, tissue, and viral specific.
Collapse
|
33
|
Jiang DB, Zhang JP, Cheng LF, Zhang GW, Li Y, Li ZC, Lu ZH, Zhang ZX, Lu YC, Zheng LH, Zhang FL, Yang K. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy. Antiviral Res 2018; 150:174-182. [PMID: 29273568 DOI: 10.1016/j.antiviral.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/22/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be due to the advantage afforded by lysosomal targeting after exogenous antigen processing initiation and major histocompatibility complex (MHC) class II antigen presentation trafficking. MHC II-restricted antigen recognition effectively primes HTNV-specific CD4+ T-cells, leading to the promotion of significant immune responses and immunological memory. An epitope-spreading phenomenon was observed, which mirrors the previous result from the Gn study, in which the dominant IFN-γ-responsive hot-spot epitopes were shared between HLA-II and H2d. Importantly, the pan-epitope reaction to Gc indicated that Gc should be with potential for use in further hantavirus DNA vaccine investigations.
Collapse
Affiliation(s)
- Dong-Bo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jin-Peng Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Guan-Wen Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Chao Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zhen-Hua Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Xin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lian-He Zheng
- Department of Orthopedics, Tangdu Hospital, Xi'an, China.
| | - Fang-Lin Zhang
- Department of Microbiology, Fourth Military Medical University, Xi'an, China.
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
34
|
Structural Transitions of the Conserved and Metastable Hantaviral Glycoprotein Envelope. J Virol 2017; 91:JVI.00378-17. [PMID: 28835498 PMCID: PMC5640846 DOI: 10.1128/jvi.00378-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023] Open
Abstract
Hantaviruses are zoonotic pathogens that cause severe hemorrhagic fever and pulmonary syndrome. The outer membrane of the hantavirus envelope displays a lattice of two glycoproteins, Gn and Gc, which orchestrate host cell recognition and entry. Here, we describe the crystal structure of the Gn glycoprotein ectodomain from the Asiatic Hantaan virus (HTNV), the most prevalent pathogenic hantavirus. Structural overlay analysis reveals that the HTNV Gn fold is highly similar to the Gn of Puumala virus (PUUV), a genetically and geographically distinct and less pathogenic hantavirus found predominantly in northeastern Europe, confirming that the hantaviral Gn fold is architecturally conserved across hantavirus clades. Interestingly, HTNV Gn crystallized at acidic pH, in a compact tetrameric configuration distinct from the organization at neutral pH. Analysis of the Gn, both in solution and in the context of the virion, confirms the pH-sensitive oligomeric nature of the glycoprotein, indicating that the hantaviral Gn undergoes structural transitions during host cell entry. These data allow us to present a structural model for how acidification during endocytic uptake of the virus triggers the dissociation of the metastable Gn-Gc lattice to enable insertion of the Gc-resident hydrophobic fusion loops into the host cell membrane. Together, these data reveal the dynamic plasticity of the structurally conserved hantaviral surface. IMPORTANCE Although outbreaks of Korean hemorrhagic fever were first recognized during the Korean War (1950 to 1953), it was not until 1978 that they were found to be caused by Hantaan virus (HTNV), the most prevalent pathogenic hantavirus. Here, we describe the crystal structure of HTNV envelope glycoprotein Gn, an integral component of the Gn-Gc glycoprotein spike complex responsible for host cell entry. HTNV Gn is structurally conserved with the Gn of a genetically and geographically distal hantavirus, Puumala virus, indicating that the observed α/β fold is well preserved across the Hantaviridae family. The combination of our crystal structure with solution state analysis of recombinant protein and electron cryo-microscopy of acidified hantavirus allows us to propose a model for endosome-induced reorganization of the hantaviral glycoprotein lattice. This provides a molecular-level rationale for the exposure of the hydrophobic fusion loops on the Gc, a process required for fusion of viral and cellular membranes.
Collapse
|
35
|
Witkowski PT, Perley CC, Brocato RL, Hooper JW, Jürgensen C, Schulzke JD, Krüger DH, Bücker R. Gastrointestinal Tract As Entry Route for Hantavirus Infection. Front Microbiol 2017; 8:1721. [PMID: 28943870 PMCID: PMC5596106 DOI: 10.3389/fmicb.2017.01721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Hantaviruses are zoonotic agents that cause hemorrhagic fevers and are thought to be transmitted to humans by exposure to aerosolized excreta of infected rodents. Puumala virus (PUUV) is the predominant endemic hantavirus in Europe. A large proportion of PUUV-infected patients suffer from gastrointestinal symptoms of unclear origin. In this study we demonstrate that PUUV infection can occur via the alimentary tract. Methods: We investigated susceptibility of the human small intestinal epithelium for PUUV infection and analyzed the resistance of virions to gastric juice. As model for intestinal virus translocation we performed infection experiments with human intestinal Caco-2 monolayers. In animal experiments we infected Syrian hamsters with PUUV via the intragastric route and tested seroconversion and protective immunity against subsequent Andes virus challenge. Results: PUUV retained infectivity in gastric juice at pH >3. The virus invaded Caco-2 monolayers in association with endosomal antigen EEA1, followed by virus replication and loss of epithelial barrier function with basolateral virus occurrence. Cellular disturbance and depletion of the tight junction protein ZO-1 appeared after prolonged infection, leading to paracellular leakage (leak flux diarrhea). Moreover, animal experiments led to dose-dependent seroconversion and protection against lethal Andes virus challenge. Conclusions: We provide evidence that hantavirus can infect the organism via the alimentary tract and suggest a novel aspect of hantavirus infection and pathogenesis. Significance: Hantaviruses are zoonotic pathogens causing severe hemorrhagic fevers worldwide. They are transmitted to humans by small mammals. To date, these viruses were thought to infect exclusively through the airborne route by inhalation of aerosols from infectious animal droppings or by rodent bites. In our work we could show that the alimentary tract is an alternative path of infection for hantaviruses, meaning a new association of virus and disease. These findings have impact on current textbook knowledge and bring many implications for hantavirus epidemiology and outbreak prevention measures.
Collapse
Affiliation(s)
- Peter T Witkowski
- Institute of Virology, Charité - Universitätsmedizin BerlinBerlin, Germany
| | - Casey C Perley
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFort Detrick, MD, United States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFort Detrick, MD, United States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFort Detrick, MD, United States
| | - Christian Jürgensen
- Division of Hepatology and Gastroenterology, Charité - Universitätsmedizin BerlinBerlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité - Universitätsmedizin BerlinBerlin, Germany
| | - Detlev H Krüger
- Institute of Virology, Charité - Universitätsmedizin BerlinBerlin, Germany
| | - Roland Bücker
- Institute of Clinical Physiology, Charité - Universitätsmedizin BerlinBerlin, Germany
| |
Collapse
|
36
|
Bondu V, Wu C, Cao W, Simons PC, Gillette J, Zhu J, Erb L, Zhang XF, Buranda T. Low-affinity binding in cis to P2Y 2R mediates force-dependent integrin activation during hantavirus infection. Mol Biol Cell 2017; 28:2887-2903. [PMID: 28835374 PMCID: PMC5638590 DOI: 10.1091/mbc.e17-01-0082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Atomic force microscopy is used to establish that low-affinity integrins bind in cis to P2Y2R. Integrin activation is initiated by a membrane-normal switchblade motion triggered by integrin priming after the virus binds to the integrin PSI domain. Tensile force between the P2Y2R and unbending integrin stimulates outside-in signaling. Pathogenic hantaviruses bind to the plexin-semaphorin-integrin (PSI) domain of inactive, β3 integrins. Previous studies have implicated a cognate cis interaction between the bent conformation β5/β3 integrins and an arginine-glycine-aspartic acid (RGD) sequence in the first extracellular loop of P2Y2R. With single-molecule atomic force microscopy, we show a specific interaction between an atomic force microscopy tip decorated with recombinant αIIbβ3 integrins and (RGD)P2Y2R expressed on cell membranes. Mutation of the RGD sequence to RGE in the P2Y2R removes this interaction. Binding of inactivated and fluorescently labeled Sin Nombre virus (SNV) to the integrin PSI domain stimulates higher affinity for (RGD)P2Y2R on cells, as measured by an increase in the unbinding force. In CHO cells, stably expressing αIIbβ3 integrins, virus engagement at the integrin PSI domain, recapitulates physiologic activation of the integrin as indicated by staining with the activation-specific mAB PAC1. The data also show that blocking of the Gα13 protein from binding to the cytoplasmic domain of the β3 integrin prevents outside-in signaling and infection. We propose that the cis interaction with P2Y2R provides allosteric resistance to the membrane-normal motion associated with the switchblade model of integrin activation, where the development of tensile force yields physiological integrin activation.
Collapse
Affiliation(s)
- Virginie Bondu
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Chenyu Wu
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Wenpeng Cao
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Peter C Simons
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jennifer Gillette
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Jieqing Zhu
- Blood Research Institute, Bloodcenter of Wisconsin, Milwaukee, WI 53226
| | - Laurie Erb
- Department of Biochemistry, 540F Bond Life Sciences Center, Columbia, MO 65211
| | - X Frank Zhang
- Department of Mechanical Engineering and Mechanics and Department of Bioengineering, Lehigh University, Bethlehem, PA 18015
| | - Tione Buranda
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM 87131 .,Center for Infectious Diseases and Immunity, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
37
|
Abstract
The Bunyavirales Order encompasses nine families of enveloped viruses containing a single-stranded negative-sense RNA genome divided into three segments. The small (S) and large (L) segments encode proteins participating in genome replication in the infected cell cytoplasm. The middle (M) segment encodes the viral glycoproteins Gn and Gc, which are derived from a precursor polyprotein by host cell proteases. Entry studies are available only for a few viruses in the Order, and in each case they were shown to enter cells via receptor-mediated endocytosis. The acidic endosomal pH triggers the fusion of the viral envelope with the membrane of an endosome. Structural studies on two members of this Order, the phleboviruses and the hantaviruses, have shown that the membrane fusion protein Gc displays a class II fusion protein fold and is homologous to its counterparts in flaviviruses and alphaviruses, which are positive-sense, single-stranded RNA viruses. We analyze here recent data on the structure and function of the structure of the phlebovirus Gc and hantavirus Gn and Gc glycoproteins, and extrapolate common features identified in the amino acid sequences to understand also the structure and function of their counterparts in other families of the Bunyavirales Order. Our analysis also identified clear structural homology between the hantavirus Gn and alphavirus E2 glycoproteins, which make a heterodimer with the corresponding fusion proteins Gc and E1, respectively, revealing that not only the fusion protein has been conserved across viral families.
Collapse
Affiliation(s)
- Pablo Guardado-Calvo
- Institut Pasteur, Unité de Virologie Structurale, Paris Cedex 15, France; CNRS UMR 3569 Virologie, Paris Cedex 15, France
| | - Félix A Rey
- Institut Pasteur, Unité de Virologie Structurale, Paris Cedex 15, France; CNRS UMR 3569 Virologie, Paris Cedex 15, France.
| |
Collapse
|
38
|
Mizuno M, Suzuki Y, Ito Y. Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology. Clin Exp Nephrol 2017; 22:3-14. [DOI: 10.1007/s10157-017-1405-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
|
39
|
ICAM-5/Telencephalin Is a Functional Entry Receptor for Enterovirus D68. Cell Host Microbe 2016; 20:631-641. [PMID: 27923705 DOI: 10.1016/j.chom.2016.09.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/05/2016] [Accepted: 09/21/2016] [Indexed: 01/26/2023]
Abstract
Enterovirus D68 (EV-D68) is a member of the Picornaviridae family. Although EV-D68-associated infection was once considered rare, it has been increasing in recent years. EV-D68 infection is most frequently associated with respiratory illness. However, it has also been implicated in a polio-like neurological disorder, acute flaccid myelitis. Although sialic acid has been implicated in EV-D68 entry, the existence of a protein receptor has yet to be clarified. Here we identify neuron-specific intercellular adhesion molecule 5 (ICAM-5/telencephalin) as a cellular receptor for sialic acid-dependent and -independent EV-D68 viruses. EV-D68 bound specifically and efficiently to ICAM-5, and replication of EV-D68 in diverse cell types was inhibited by soluble ICAM-5 fragments. ICAM-5 silencing attenuated EV-D68 replication in permissive cells, and ICAM-5 expression in non-permissive cells allowed EV-D68 replication. The discovery of a neuron-specific adhesion molecule as an EV-D68 receptor has important implications for EV-D68 pathogenesis and may facilitate the development of novel intervention strategies.
Collapse
|
40
|
Chiang CF, Flint M, Lin JMS, Spiropoulou CF. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells. PLoS One 2016; 11:e0164768. [PMID: 27780263 PMCID: PMC5079659 DOI: 10.1371/journal.pone.0164768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/30/2016] [Indexed: 12/04/2022] Open
Abstract
Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner.
Collapse
Affiliation(s)
- Cheng-Feng Chiang
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Mike Flint
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jin-Mann S. Lin
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
41
|
Ermonval M, Baychelier F, Tordo N. What Do We Know about How Hantaviruses Interact with Their Different Hosts? Viruses 2016; 8:v8080223. [PMID: 27529272 PMCID: PMC4997585 DOI: 10.3390/v8080223] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 11/26/2022] Open
Abstract
Hantaviruses, like other members of the Bunyaviridae family, are emerging viruses that are able to cause hemorrhagic fevers. Occasional transmission to humans is due to inhalation of contaminated aerosolized excreta from infected rodents. Hantaviruses are asymptomatic in their rodent or insectivore natural hosts with which they have co-evolved for millions of years. In contrast, hantaviruses cause different pathologies in humans with varying mortality rates, depending on the hantavirus species and its geographic origin. Cases of hemorrhagic fever with renal syndrome (HFRS) have been reported in Europe and Asia, while hantavirus cardiopulmonary syndromes (HCPS) are observed in the Americas. In some cases, diseases caused by Old World hantaviruses exhibit HCPS-like symptoms. Although the etiologic agents of HFRS were identified in the early 1980s, the way hantaviruses interact with their different hosts still remains elusive. What are the entry receptors? How do hantaviruses propagate in the organism and how do they cope with the immune system? This review summarizes recent data documenting interactions established by pathogenic and nonpathogenic hantaviruses with their natural or human hosts that could highlight their different outcomes.
Collapse
Affiliation(s)
- Myriam Ermonval
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Florence Baychelier
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| | - Noël Tordo
- Unité des Stratégies Antivirales, Département de Virologie, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
42
|
Barriga GP, Villalón-Letelier F, Márquez CL, Bignon EA, Acuña R, Ross BH, Monasterio O, Mardones GA, Vidal SE, Tischler ND. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc. PLoS Negl Trop Dis 2016; 10:e0004799. [PMID: 27414047 PMCID: PMC4945073 DOI: 10.1371/journal.pntd.0004799] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses. The infection of cells by enveloped viruses involves the fusion of membranes between viruses and cells. This process is mediated by viral fusion proteins that have been grouped into at least three structural classes. Membrane-enveloped hantaviruses are worldwide spread pathogens that can cause human disease with mortality rates reaching up to 50%, however, neither a therapeutic drug nor preventive measures are currently available. Here we show that the entrance of Andes hantavirus into target cells can be blocked by fragments derived from the Gc fusion protein that are analogous to inhibitory fragments of class II fusion proteins. The Gc fragments acted directly over the viral fusion process, preventing its late stages. Together, our data demonstrate that the hantavirus Gc protein shares not only structural, but also mechanistic similarity with class II fusion proteins, suggesting its evolution from a common or related ancestral fusion protein. Furthermore, the results outline novel approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Gonzalo P. Barriga
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | | | - Chantal L. Márquez
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Eduardo A. Bignon
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Rodrigo Acuña
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Breyan H. Ross
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Gonzalo A. Mardones
- Laboratory of Structural Cell Biology, Department of Physiology, and Center for Interdisciplinary Studies of the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Simon E. Vidal
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
| | - Nicole D. Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Santiago, Chile
- * E-mail:
| |
Collapse
|
43
|
Pavliga SN, Kompanets GG, Tsygankov VY. The Experimental Research (In Vitro) of Carrageenans and Fucoidans to Decrease Activity of Hantavirus. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:120-4. [PMID: 26943130 DOI: 10.1007/s12560-016-9233-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The effect of carrageenans and fucoidans on the activity of Hantavirus is studied. It has been found that among carrageenans a significant antiviral effect is exerted by the ι-type, which decreases the viral titer by 2.5 log focus forming units per mL; among fucoidans, by a preparation from Laminaria cichorioides, which reduces the number of infected cells from 27.0 to 5.3 after pretreatment of both the macrophage culture and Hantavirus. The antiviral effect of fucoidan from Laminaria japonica is shown to grow in direct proportion to the increase of dose of the preparation.
Collapse
Affiliation(s)
- Stanislav N Pavliga
- School of Natural Sciences, Far Eastern Federal University (FEFU), Vladivostok, Russia
| | - Galina G Kompanets
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Vasiliy Yu Tsygankov
- School of Natural Sciences, Far Eastern Federal University (FEFU), Vladivostok, Russia.
- School of Biomedicine, Far Eastern Federal University (FEFU), 8 Sukhanova str., 690000, Vladivostok, Russia.
| |
Collapse
|
44
|
Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early Bunyavirus-Host Cell Interactions. Viruses 2016; 8:v8050143. [PMID: 27213430 PMCID: PMC4885098 DOI: 10.3390/v8050143] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/15/2016] [Indexed: 12/12/2022] Open
Abstract
The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion.
Collapse
Affiliation(s)
- Amelina Albornoz
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile.
| | - Anja B Hoffmann
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Pierre-Yves Lozach
- CellNetworks-Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Nicole D Tischler
- Molecular Virology Laboratory, Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile.
| |
Collapse
|
45
|
Witkowski PT, Bourquain D, Bankov K, Auste B, Dabrowski PW, Nitsche A, Krüger DH, Schaade L. Infection of human airway epithelial cells by different subtypes of Dobrava-Belgrade virus reveals gene expression patterns corresponding to their virulence potential. Virology 2016; 493:189-201. [PMID: 27058765 DOI: 10.1016/j.virol.2016.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Abstract
Dobrava-Belgrade virus (DOBV) is a pathogen causing hemorrhagic fever with renal syndrome in Europe. Virulence and case fatality rate are associated with virus genotype; however the reasons for these differences are not well understood. In this work we present virus-specific effects on the gene expression profiles of human lung epithelial cells (A549) infected with different genotypes of DOBV (Dobrava, Kurkino, and Sochi), as well as the low-virulent Tula virus (TULV). The data was collected by whole-genome gene expression microarrays and confirmed by quantitative real-time PCR. Despite their close genetic relationship, the expression profiles induced by infection with different hantaviruses are significantly varying. Major differences were observed in regulation of immune response genes, which were especially induced by highly virulent DOBV genotypes Dobrava and Sochi in contrast to less virulent DOBV-Kurkino and TULV. This work gives first insights into the differences of virus - host interactions of DOBV on genotype level.
Collapse
Affiliation(s)
- Peter T Witkowski
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Charitéplatz 1, 10117 Berlin, Germany.
| | | | - Katrin Bankov
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| | - Brita Auste
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | - Detlev H Krüger
- Institute of Virology, Helmut-Ruska-Haus, Charité Medical School, Charitéplatz 1, 10117 Berlin, Germany
| | - Lars Schaade
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
46
|
Cortes LK, Vainauskas S, Dai N, McClung CM, Shah M, Benner JS, Corrêa IR, VerBerkmoes NC, Taron CH. Proteomic identification of mammalian cell surface derived glycosylphosphatidylinositol-anchored proteins through selective glycan enrichment. Proteomics 2015; 14:2471-84. [PMID: 25262930 PMCID: PMC4260145 DOI: 10.1002/pmic.201400148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/16/2014] [Accepted: 09/23/2014] [Indexed: 11/09/2022]
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are an important class of glycoproteins that are tethered to the surface of mammalian cells via the lipid GPI. GPI-APs have been implicated in many important cellular functions including cell adhesion, cell signaling, and immune regulation. Proteomic identification of mammalian GPI-APs en masse has been limited technically by poor sensitivity for these low abundance proteins and the use of methods that destroy cell integrity. Here, we present methodology that permits identification of GPI-APs liberated directly from the surface of intact mammalian cells through exploitation of their appended glycans to enrich for these proteins ahead of LC-MS/MS analyses. We validate our approach in HeLa cells, identifying a greater number of GPI-APs from intact cells than has been previously identified from isolated HeLa membranes and a lipid raft preparation. We further apply our approach to define the cohort of endogenous GPI-APs that populate the distinct apical and basolateral membrane surfaces of polarized epithelial cell monolayers. Our approach provides a new method to achieve greater sensitivity in the identification of low abundance GPI-APs from the surface of live cells and the nondestructive nature of the method provides new opportunities for the temporal or spatial analysis of cellular GPI-AP expression and dynamics.
Collapse
|
47
|
Wycoff K, Maclean J, Belle A, Yu L, Tran Y, Roy C, Hayden F. Anti-infective immunoadhesins from plants. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1078-93. [PMID: 26242703 PMCID: PMC4749143 DOI: 10.1111/pbi.12441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/24/2015] [Accepted: 06/27/2015] [Indexed: 05/22/2023]
Abstract
Immunoadhesins are recombinant proteins that combine the ligand-binding region of a receptor or adhesion molecule with immunoglobulin constant domains. All FDA-approved immunoadhesins are designed to modulate the interaction of a human receptor with its normal ligand, such as Etanercept (Enbrel(®) ), which interferes with the binding of tumour necrosis factor (TNF) to the TNF-alpha receptor and is used to treat inflammatory diseases such as rheumatoid arthritis. Like antibodies, immunoadhesins have long circulating half-lives, are readily purified by affinity-based methods and have the avidity advantages conferred by bivalency. Immunoadhesins that incorporate normal cellular receptors for viruses or bacterial toxins hold great, but as yet unrealized, potential for treating infectious disease. As decoy receptors, immunoadhesins have potential advantages over pathogen-targeted monoclonal antibodies. Planet Biotechnology has specialized in developing anti-infective immunoadhesins using plant expression systems. An immunoadhesin incorporating the cellular receptor for anthrax toxin, CMG2, potently blocks toxin activity in vitro and protects animals against inhalational anthrax. An immunoadhesin based on the receptor for human rhinovirus, ICAM-1, potently blocks infection of human cells by one of the major causes of the common cold. An immunoadhesin targeting the MERS coronavirus is in an early stage of development. We describe here the unique challenges involved in designing and developing immunoadhesins targeting infectious diseases in the hope of inspiring further research into this promising class of drugs.
Collapse
Affiliation(s)
| | | | | | - Lloyd Yu
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Y Tran
- Planet Biotechnology Inc., Hayward, CA, USA
| | - Chad Roy
- Tulane National Primate Research Center, Covington, LA, USA
| | - Frederick Hayden
- University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
48
|
Mumps Virus Is Released from the Apical Surface of Polarized Epithelial Cells, and the Release Is Facilitated by a Rab11-Mediated Transport System. J Virol 2015; 89:12026-34. [PMID: 26378159 DOI: 10.1128/jvi.02048-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/13/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Mumps virus (MuV) is an airborne virus that causes a systemic infection in patients. In vivo, the epithelium is a major replication site of MuV, and thus, the mode of MuV infection of epithelial cells is a subject of interest. Our data in the present study showed that MuV entered polarized epithelial cells via both the apical and basolateral surfaces, while progeny viruses were predominantly released from the apical surface. In polarized cells, intracellular transport of viral ribonucleoprotein (vRNP) complexes was dependent on Rab11-positive endosomes, and vRNP complexes were transported to the apical membrane. Expression of a dominant negative form of Rab11 (Rab11S25N) reduced the progeny virus release in polarized cells but not in nonpolarized cells. Although in this way these effects were correlated with cell polarity, Rab11S25N did not modulate the direction of virus release from the apical surface. Therefore, our data suggested that Rab11 is not a regulator of selective apical release of MuV, although it acts as an activator of virus release from polarized epithelial cells. In addition, our data and previous studies on Sendai virus, respiratory syncytial virus, and measles virus suggested that selective apical release from epithelial cells is used by many paramyxoviruses, even though they cause either a systemic infection or a local respiratory infection. IMPORTANCE Mumps virus (MuV) is the etiological agent of mumps and causes a systemic infection. However, the precise mechanism by which MuV breaks through the epithelial barriers and achieves a systemic infection remains unclear. In the present study, we show that the entry of MuV is bipolar, while the release is predominantly from the apical surface in polarized epithelial cells. In addition, the release of progeny virus was facilitated by a Rab11-positive recycling endosome and microtubule network. Our data provide important insights into the mechanism of transmission and pathogenesis of MuV.
Collapse
|
49
|
Abstract
Blood group antigens represent polymorphic traits inherited among individuals and populations. At present, there are 34 recognized human blood groups and hundreds of individual blood group antigens and alleles. Differences in blood group antigen expression can increase or decrease host susceptibility to many infections. Blood groups can play a direct role in infection by serving as receptors and/or coreceptors for microorganisms, parasites, and viruses. In addition, many blood group antigens facilitate intracellular uptake, signal transduction, or adhesion through the organization of membrane microdomains. Several blood groups can modify the innate immune response to infection. Several distinct phenotypes associated with increased host resistance to malaria are overrepresented in populations living in areas where malaria is endemic, as a result of evolutionary pressures. Microorganisms can also stimulate antibodies against blood group antigens, including ABO, T, and Kell. Finally, there is a symbiotic relationship between blood group expression and maturation of the gastrointestinal microbiome.
Collapse
Affiliation(s)
- Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Haploid Genetic Screen Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane Fusion. mBio 2015; 6:e00801. [PMID: 26126854 PMCID: PMC4488941 DOI: 10.1128/mbio.00801-15] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) in the Old World and a highly fatal hantavirus cardiopulmonary syndrome (HCPS) in the New World. No vaccines or antiviral therapies are currently available to prevent or treat hantavirus disease, and gaps in our understanding of how hantaviruses enter cells challenge the search for therapeutics. We performed a haploid genetic screen in human cells to identify host factors required for entry by Andes virus, a highly virulent New World hantavirus. We found that multiple genes involved in cholesterol sensing, regulation, and biosynthesis, including key components of the sterol response element-binding protein (SREBP) pathway, are critical for Andes virus entry. Genetic or pharmacological disruption of the membrane-bound transcription factor peptidase/site-1 protease (MBTPS1/S1P), an SREBP control element, dramatically reduced infection by virulent hantaviruses of both the Old World and New World clades but not by rhabdoviruses or alphaviruses, indicating that this pathway is broadly, but selectively, required by hantaviruses. These results could be fully explained as arising from the modest depletion of cellular membrane cholesterol that accompanied S1P disruption. Mechanistic studies of cells and with protein-free liposomes suggested that high levels of cholesterol are specifically needed for hantavirus membrane fusion. Taken together, our results indicate that the profound dependence on target membrane cholesterol is a fundamental, and unusual, biophysical property of hantavirus glycoprotein-membrane interactions during entry. IMPORTANCE Although hantaviruses cause important human diseases worldwide, no specific antiviral treatments are available. One of the major obstacles to the development of new therapies is a lack of understanding of how hantaviruses hijack our own host factors to enter cells. Here, we identified multiple cellular genes that control the levels of cholesterol in cellular membranes to be important for hantavirus entry. Our findings suggest that high concentrations of cholesterol in cellular membranes are required at a specific step in the entry process-fusion between viral and cellular membranes-that allows escape of the hantavirus genome into the host cell cytoplasm to initiate infection. Our findings uncover a fundamental feature of the hantavirus infection mechanism and point to cholesterol-lowering drugs as a potential new treatment of hantaviral infections.
Collapse
|