1
|
Liu L, Wang H, Liu L, Cheng F, Aisa HA, Li C, Meng S. Rupestonic Acid Derivative YZH-106 Promotes Lysosomal Degradation of HBV L- and M-HBsAg via Direct Interaction with PreS2 Domain. Viruses 2024; 16:1151. [PMID: 39066313 PMCID: PMC11281537 DOI: 10.3390/v16071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B surface antigen (HBsAg) is not only the biomarker of hepatitis B virus (HBV) infection and expression activity in hepatocytes, but it also contributes to viral specific T cell exhaustion and HBV persistent infection. Therefore, anti-HBV therapies targeting HBsAg to achieve HBsAg loss are key approaches for an HBV functional cure. In this study, we found that YZH-106, a rupestonic acid derivative, inhibited HBsAg secretion and viral replication. Further investigation demonstrated that YZH-106 promoted the lysosomal degradation of viral L- and M-HBs proteins. A mechanistic study using Biacore and docking analysis revealed that YZH-106 bound directly to the PreS2 domain of L- and M-HBsAg, thereby blocking their entry into the endoplasmic reticulum (ER) and promoting their degradation in cytoplasm. Our work thereby provides the basis for the design of a novel compound therapy to target HBsAg against HBV infection.
Collapse
Affiliation(s)
- Lanlan Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Haoyu Wang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lulu Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Fang Cheng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Changfei Li
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
| | - Songdong Meng
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (L.L.); (H.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Sartorius K, Sartorius B, Winkler C, Chuturgoon A, Shen TW, Zhao Y, An P. Serum microRNA Profiles and Pathways in Hepatitis B-Associated Hepatocellular Carcinoma: A South African Study. Int J Mol Sci 2024; 25:975. [PMID: 38256049 PMCID: PMC10815595 DOI: 10.3390/ijms25020975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) in Sub-Saharan Africa is projected to increase sharply by 2040 against a backdrop of limited diagnostic and therapeutic options. Two large South African-based case control studies have developed a serum-based miRNome for Hepatitis B-associated hepatocellular carcinoma (HBV-HCC), as well as identifying their gene targets and pathways. Using a combination of RNA sequencing, differential analysis and filters including a unique molecular index count (UMI) ≥ 10 and log fold change (LFC) range > 2: <-0.5 (p < 0.05), 91 dysregulated miRNAs were characterized including 30 that were upregulated and 61 were downregulated. KEGG analysis, a literature review and other bioinformatic tools identified the targeted genes and HBV-HCC pathways of the top 10 most dysregulated miRNAs. The results, which are based on differentiating miRNA expression of cases versus controls, also develop a serum-based miRNA diagnostic panel that indicates 95.9% sensitivity, 91.0% specificity and a Youden Index of 0.869. In conclusion, the results develop a comprehensive African HBV-HCC miRNome that potentially can contribute to RNA-based diagnostic and therapeutic options.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2001, South Africa
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL 32224, USA
| | - Benn Sartorius
- School of Public Health, University of Queensland, Brisbane, QLD 4102, Australia
| | - Cheryl Winkler
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| | - Anil Chuturgoon
- School of Laboratory Medicine and Molecular Sciences, University of Kwazulu-Natal, Durban 4041, South Africa;
| | - Tsai-Wei Shen
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Group, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Ping An
- Centre for Cancer Research, Basic Research Laboratory, National Cancer Institute, Frederick Natifol Laboratory for Cancer Research, National Institute of Health, Frederick, MD 21701, USA
| |
Collapse
|
3
|
Martínez VS, Rodriguez K, McCubbin T, Tong J, Mahler S, Shave E, Baker K, Munro TP, Marcellin E. Amino acid degradation pathway inhibitory by-products trigger apoptosis in CHO cells. Biotechnol J 2024; 19:e2300338. [PMID: 38375561 DOI: 10.1002/biot.202300338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 02/21/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used to produce complex biopharmaceuticals. Improving their productivity is necessary to fulfill the growing demand for such products. One way to enhance productivity is by cultivating cells at high densities, but inhibitory by-products, such as metabolite derivatives from amino acid degradation, can hinder achieving high cell densities. This research examines the impact of these inhibitory by-products on high-density cultures. We cultured X1 and X2 CHO cell lines in a small-scale semi-perfusion system and introduced a mix of inhibitory by-products on day 10. The X1 and X2 cell lines were chosen for their varied responses to the by-products; X2 was susceptible, while X1 survived. Proteomics revealed that the X2 cell line presented changes in the proteins linked to apoptosis regulation, cell building block synthesis, cell growth, DNA repair, and energy metabolism. We later used the AB cell line, an apoptosis-resistant cell line, to validate the results. AB behaved similar to X1 under stress. We confirmed the activation of apoptosis in X2 using a caspase assay. This research provides insights into the mechanisms of cell death triggered by inhibitory by-products and can guide the optimization of CHO cell culture for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Karen Rodriguez
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Timothy McCubbin
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| | - Junjie Tong
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Evan Shave
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Kym Baker
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Patheon, by Thermo Fisher Scientific, Woolloongabba, Queensland, Australia
| | - Trent P Munro
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- National Biologics Facility, The University of Queensland, St Lucia, Queensland, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation (CBI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Liang YJ, Chiou YW, Chiu APT, Shiao MS, Teng W, Lin CW, Cheng ML, Huang YH, Liang KH, Su CW, Lai CY, Chen CL, Wu JC. Antiviral therapy reduces hepatocellular carcinoma through suppressing hepatitis B virus replication may improve ER stress, mitochondrial and metabolic dysfunctions and decrease p62 in hybridized mice with single HBV transgene and miR-122. J Med Virol 2023; 95:e29325. [PMID: 38108211 DOI: 10.1002/jmv.29325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Hepatitis B virus (HBV) hijacks autophagy for its replication. Nucleos(t)ide analogs (NUCs) treatment suppressed HBV replication and reduced hepatocellular carcinoma (HCC) incidence. However, the use of NUCs in chronic hepatitis B (CHB) patients with normal or minimally elevated serum alanine aminotransferase (ALT) levels is still debated. Animal models are crucial for studying the unanswered issue and evaluating new therapies. MicroRNA-122 (miR-122), which regulates fatty acid and cholesterol metabolism, is downregulated during hepatitis and HCC progression. The reciprocal inhibition of miR-122 with HBV highlights its role in HCC development as a tumor suppressor. By crossbreeding HBV-transgenic mice with miR-122 knockout mice, we generated a hybrid mouse model with a high incidence of HCC up to 89% and normal ALT levels before HCC. The model exhibited early-onset hepatic steatosis, progressive liver fibrosis, and impaired late-phase autophagy. Metabolomics and microarray analysis identified metabolic signatures, including dysregulation of lipid metabolism, inflammation, genomic instability, the Warburg effect, reduced TCA cycle flux, energy deficiency, and impaired free radical scavenging. Antiviral treatment reduced HCC incidence in hybrid mice by approximately 30-35% compared to untreated mice. This effect was linked to the activation of ER stress-responsive transcription factor ATF4, clearance of autophagosome cargo p62, and suppression of the CHOP-mediated apoptosis pathway. In summary, this study suggests that despite minimal ALT elevation, HBV replication can lead to liver injury. Endoplasmic reticulum stress, reduced miR-122 levels, mitochondrial and metabolic dysfunctions, blocking protective autophagy resulting in p62 accumulation, apoptosis, fibrosis, and HCC. Antiviral may improve the above-mentioned pathogenesis through HBV suppression.
Collapse
Affiliation(s)
- Yuh-Jin Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yu-Wei Chiou
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Abby Pei-Ting Chiu
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Ming-Shi Shiao
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | - Wei Teng
- Department of Gastroenterology & Hepatology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC
| | - Chin-Wei Lin
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan, ROC
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, ROC
| | - Yen-Hua Huang
- Center for Systems and Synthetic Biology and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Kung-Hao Liang
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chien-Wei Su
- Department of Medicine, Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of General Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Division of Holistic and Multidisciplinary Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chi-Yu Lai
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chih-Li Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Jaw-Ching Wu
- Translational Research Division, Medical Research Department, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Zhang MH, Yuan YF, Liu LJ, Wei YX, Yin WY, Zheng LZY, Tang YY, Lv Z, Zhu F. Dysregulated microRNAs as a biomarker for diagnosis and prognosis of hepatitis B virus-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29:4706-4735. [PMID: 37664153 PMCID: PMC10473924 DOI: 10.3748/wjg.v29.i31.4706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with a high incidence and fatality rate worldwide. Hepatitis B virus (HBV) infection is one of the most important risk factors for its occurrence and development. Early detection of HBV-associated HCC (HBV-HCC) can improve clinical decision-making and patient outcomes. Biomarkers are extremely helpful, not only for early diagnosis, but also for the development of therapeutics. MicroRNAs (miRNAs), a subset of non-coding RNAs approximately 22 nucleotides in length, have increasingly attracted scientists' attention due to their potential utility as biomarkers for cancer detection and therapy. HBV profoundly impacts the expression of miRNAs potentially involved in the development of hepatocarcinogenesis. In this review, we summarize the current progress on the role of miRNAs in the diagnosis and treatment of HBV-HCC. From a molecular standpoint, we discuss the mechanism by which HBV regulates miRNAs and investigate the exact effect of miRNAs on the promotion of HCC. In the near future, miRNA-based diagnostic, prognostic, and therapeutic applications will make their way into the clinical routine.
Collapse
Affiliation(s)
- Ming-He Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Feng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li-Juan Liu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yu-Xin Wei
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wan-Yue Yin
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Lan-Zhuo-Yin Zheng
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ying-Ying Tang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhao Lv
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
6
|
Paluschinski M, Kordes C, Vucur M, Buettner V, Roderburg C, Xu HC, Shinte PV, Lang PA, Luedde T, Castoldi M. Differential Modulation of miR-122 Transcription by TGFβ1/BMP6: Implications for Nonresolving Inflammation and Hepatocarcinogenesis. Cells 2023; 12:1955. [PMID: 37566034 PMCID: PMC10416984 DOI: 10.3390/cells12151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Chronic inflammation is widely recognized as a significant factor that promotes and worsens the development of malignancies, including hepatocellular carcinoma. This study aimed to explore the potential role of microRNAs in inflammation-associated nonresolving hepatocarcinogenesis. By conducting a comprehensive analysis of altered microRNAs in animal models with liver cancer of various etiologies, we identified miR-122 as the most significantly downregulated microRNA in the liver of animals with inflammation-associated liver cancer. Although previous research has indicated the importance of miR-122 in maintaining hepatocyte function, its specific role as either the trigger or the consequence of underlying diseases remains unclear. Through extensive analysis of animals and in vitro models, we have successfully demonstrated that miR-122 transcription is differentially regulated by the immunoregulatory cytokines, by the transforming growth factor-beta 1 (TGFβ1), and the bone morphogenetic protein-6 (BMP6). Furthermore, we presented convincing evidence directly linking reduced miR-122 transcription to inflammation and in chronic liver diseases. The results of this study strongly suggest that prolonged activation of pro-inflammatory signaling pathways, leading to disruption of cytokine-mediated regulation of miR-122, may significantly contribute to the onset and exacerbation of chronic liver disease.
Collapse
Affiliation(s)
- Martha Paluschinski
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Claus Kordes
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Veronika Buettner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Haifeng C. Xu
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Prashant V. Shinte
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Philipp A. Lang
- Institute for Molecular Medicine II, Medical Faculty, Heinrich-Heine University Hospital, 40225 Dusseldorf, Germany; (H.C.X.); (P.V.S.); (P.A.L.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| | - Mirco Castoldi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, University Hospital, Heinrich Heine University Dusseldorf, 40225 Dusseldorf, Germany; (M.P.); (C.K.); (M.V.); (V.B.); (C.R.); (T.L.)
| |
Collapse
|
7
|
Zhou Q, Li L, Sha F, Lei Y, Tian X, Chen L, Chen Y, Liu H, Guo Y. PTTG1 Reprograms Asparagine Metabolism to Promote Hepatocellular Carcinoma Progression. Cancer Res 2023; 83:2372-2386. [PMID: 37159932 DOI: 10.1158/0008-5472.can-22-3561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and has a poor prognosis. Pituitary tumor transforming gene 1 (PTTG1) is highly expressed in HCC, suggesting it could play an important role in hepatocellular carcinogenesis. Here, we evaluated the impact of PTTG1 deficiency on HCC development using a diethylnitrosamine (DEN)-induced HCC mouse model and a hepatitis B virus (HBV) regulatory X protein (HBx)-induced spontaneous HCC mouse model. PTTG1 deficiency significantly suppressed DEN- and HBx-induced hepatocellular carcinogenesis. Mechanistically, PTTG1 promoted asparagine synthetase (ASNS) transcription by binding to its promoter, and asparagine (Asn) levels were correspondingly increased. The elevated levels of Asn subsequently activated the mTOR pathway to facilitate HCC progression. In addition, asparaginase treatment reversed the proliferation induced by PTTG1 overexpression. Furthermore, HBx promoted ASNS and Asn metabolism by upregulating PTTG1 expression. Overall, PTTG1 is involved in the reprogramming of Asn metabolism to promote HCC progression and may serve as a therapeutic and diagnostic target for HCC. SIGNIFICANCE PTTG1 is upregulated in hepatocellular carcinoma and increases asparagine production to stimulate mTOR activity and promote tumor progression.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Leijia Li
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Feifei Sha
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Yiming Lei
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Xuan Tian
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Lingjun Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Yan Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| | - Yunwei Guo
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Bahcivanci B, Shafiha R, Gkoutos GV, Acharjee A. Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma. Cancer Med 2023; 12:696-711. [PMID: 35715992 PMCID: PMC9844659 DOI: 10.1002/cam4.4941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Liver cancer is the fourth leading cause of cancer-related death globally which is estimated to reach more than 1 million deaths a year by 2030. Among liver cancer types, hepatocellular carcinoma (HCC) accounts for approximately 90% of the cases and is known to have a tumour promoting inflammation regardless of its underlying aetiology. However, current promising treatment approaches, such as immunotherapy, are partially effective for most of the patients due to the immunosuppressive nature of the tumour microenvironment (TME). Therefore, there is an urgent need to fully understand TME in HCC and discover new immune markers to eliminate resistance to immunotherapy. METHODS We analyse three microarray datasets, using unsupervised and supervised methods, in an effort to discover signature genes. First, univariate, and multivariate, feature selection methods, such as the Boruta algorithm, are applied. Subsequently, an optimisation procedure, which utilises random forest algorithm with three dataset pairs combinations, is performed. The resulting optimal gene sets are then combined and further subjected to network analysis and pathway enrichment analysis so as to obtain information related to their biological relevance. The microarray datasets were analysed via the MCP-counter, CIBERSORT, TIMER, EPIC, and quanTIseq deconvolution methods and an estimation of cell type abundances for each dataset sample were identified. The differences in the cell type abundances, between the adjacent and tumour sample groups, were then assessed using a Wilcoxon Rank Sum test (p-value < 0.05). RESULTS The optimal gene signature sets, derived from each of the data pairs combination, achieved AUC values ranging from 0.959 to 0.988 in external validation sets using Random Forest model. CLEC1B and PTTG1 genes are retrieved across each optimal set. Among the signature genes, PTTG1, AURKA, and UBE2C genes are found to be involved in the regulation of mitotic sister chromatid separation and anaphase-promoting complex (APC) dependent catabolic process (adjusted p-value < 0.001). Additionally, the application of deconvolution algorithms revealed significant changes in cell type abundances of Regulatory T (Treg) cells, M0 and M1 macrophages, and T CD8+ cells between adjacent and tumour samples. CONCLUSION We identified ECM1 gene as a potential immune-related marker acting through immune cell migration and macrophage polarisation. Our results indicate that macrophages, such as M0 macrophage and M1 macrophage cells, undergo significant changes in HCC TME. Moreover, our immune deconvolution approach revealed significant infiltration of Treg cells and M0 macrophages, and a significant decrease in T CD8+ cells and M1 macrophages in tumour samples.
Collapse
Affiliation(s)
- Basak Bahcivanci
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational BiologyUniversity of BirminghamBirminghamUK
| | - Roshan Shafiha
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational BiologyUniversity of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational BiologyUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
- NIHR Experimental Cancer Medicine CentreBirminghamUK
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational BiologyUniversity of BirminghamBirminghamUK
- Institute of Translational MedicineUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
- NIHR Surgical Reconstruction and Microbiology Research CentreUniversity Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| |
Collapse
|
9
|
Insight into LncRNA- and CircRNA-Mediated CeRNAs: Regulatory Network and Implications in Nasopharyngeal Carcinoma—A Narrative Literature Review. Cancers (Basel) 2022; 14:cancers14194564. [PMID: 36230487 PMCID: PMC9559536 DOI: 10.3390/cancers14194564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a kind of head-and-neck malignant tumor, and distant metastasis treatment resistance is the leading cause of patient death. In-depth understanding of NPC progression and treatment failure remains to be explored. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are noncoding RNAs that play key regulatory role in shaping tumor cell activities. Recent studies have revealed that lncRNA and circRNA function as competitive endogenous RNAs (ceRNAs) by regulating the posttranscriptional expression of genes as miRNA baits. The imbalanced ceRNA networks derived from lncRNA/circRNA-miRNA-mRNA interaction are widely found to contribute to NPC development. Herein, we summarize typical examples of lncRNA/circRNA-associated ceRNAs in recent years, which involved the potential molecular mechanisms in the regulation of proliferation, apoptosis, treatment resistance and metastasis of NPC, and discuss their potential clinical significance in the prognosis and treatment of NPC. Interpreting the involvement of ceRNAs networks will provide new insight into the pathogenesis and treatment strategies of NPC. However, ceRNA regulatory mechanism has some limitations currently. Screening the most effective ceRNA targets and the clinical application of ceRNA still has many challenges.
Collapse
|
10
|
Rarani FZ, Rashidi B, Jafari Najaf Abadi MH, Hamblin MR, Reza Hashemian SM, Mirzaei H. Cytokines and microRNAs in SARS-CoV-2: What do we know? MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:219-242. [PMID: 35782361 PMCID: PMC9233348 DOI: 10.1016/j.omtn.2022.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic constitutes a global health emergency. Currently, there are no completely effective therapeutic medications for the management of this outbreak. The cytokine storm is a hyperinflammatory medical condition due to excessive and uncontrolled release of pro-inflammatory cytokines in patients suffering from severe COVID-19, leading to the development of acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome (MODS) and even mortality. Understanding the pathophysiology of COVID-19 can be helpful for the treatment of patients. Evidence suggests that the levels of tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1 and IL-6 are dramatically different between mild and severe patients, so they may be important contributors to the cytokine storm. Several serum markers can be predictors for the cytokine storm. This review discusses the cytokines involved in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, focusing on interferons (IFNs) and ILs, and whether they can be used in COVID-19 treatment. Moreover, we highlight several microRNAs that are involved in these cytokines and their role in the cytokine storm caused by COVID-19.
Collapse
Affiliation(s)
- Fahimeh Zamani Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
11
|
Li HC, Yang CH, Lo SY. Long noncoding RNAs in hepatitis B virus replication and oncogenesis. World J Gastroenterol 2022; 28:2823-2842. [PMID: 35978877 PMCID: PMC9280728 DOI: 10.3748/wjg.v28.i25.2823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Several diverse long noncoding RNAs (lncRNAs) have been identified to be involved in hepatitis B virus (HBV) replication and oncogenesis, especially those dysregulated in HBV-related hepatocellular carcinoma (HCC). Most of these dysregulated lncRNAs are modulated by the HBV X protein. The regulatory mechanisms of some lncRNAs in HBV replication and oncogenesis have been characterized. Genetic polymorphisms of several lncRNAs affecting HBV replication or oncogenesis have also been studied. The prognosis of HCC remains poor. It is important to identify novel tumor markers for early diagnosis and find more therapeutic targets for effective treatments of HCC. Some dysregulated lncRNAs in HBV-related HCC may become biomarkers for early diagnosis and/or the therapeutic targets of HCC. This mini-review summarizes these findings briefly, focusing on recent developments.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
| |
Collapse
|
12
|
Chun KH. Molecular Targets and Signaling Pathways of microRNA-122 in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:1380. [PMID: 35890276 PMCID: PMC9316959 DOI: 10.3390/pharmaceutics14071380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading global causes of cancer mortality. MicroRNAs (miRNAs) are small interfering RNAs that alleviate the levels of protein expression by suppressing translation, inducing mRNA cleavage, and promoting mRNA degradation. miR-122 is the most abundant miRNA in the liver and is responsible for several liver-specific functions, including metabolism, cellular growth and differentiation, and hepatitis virus replication. Recent studies have shown that aberrant regulation of miR-122 is a key factor contributing to the development of HCC. In this review, the signaling pathways and the molecular targets of miR-122 involved in the progression of HCC have been summarized, and the importance of miR-122 in therapy has been discussed.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Korea
| |
Collapse
|
13
|
Pituitary Tumor-Transforming Gene 1/Delta like Non-Canonical Notch Ligand 1 Signaling in Chronic Liver Diseases. Int J Mol Sci 2022; 23:ijms23136897. [PMID: 35805898 PMCID: PMC9267054 DOI: 10.3390/ijms23136897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
The management of chronic liver diseases (CLDs) remains a challenge, and identifying effective treatments is a major unmet medical need. In the current review we focus on the pituitary tumor transforming gene (PTTG1)/delta like non-canonical notch ligand 1 (DLK1) axis as a potential therapeutic target to attenuate the progression of these pathological conditions. PTTG1 is a proto-oncogene involved in proliferation and metabolism. PTTG1 expression has been related to inflammation, angiogenesis, and fibrogenesis in cancer and experimental fibrosis. On the other hand, DLK1 has been identified as one of the most abundantly expressed PTTG1 targets in adipose tissue and has shown to contribute to hepatic fibrosis by promoting the activation of hepatic stellate cells. Here, we extensively analyze the increasing amount of information pointing to the PTTG1/DLK1 signaling pathway as an important player in the regulation of these disturbances. These data prompted us to hypothesize that activation of the PTTG1/DLK1 axis is a key factor upregulating the tissue remodeling mechanisms characteristic of CLDs. Therefore, disruption of this signaling pathway could be useful in the therapeutic management of CLDs.
Collapse
|
14
|
Liu S, Deng R, Zhou B, Liang X, Liu Z, Peng J, Chen J, Zhou Y, Guo Y, Chen Y, Li W, Shen S, Lu X, Zhao S, Liao X, Liang H, Lan Y, Hou J, Fan R, Sun J. Association of serum hepatitis B virus RNA with hepatocellular carcinoma risk in chronic hepatitis B patients under nucleos(t)ide analogues therapy. J Infect Dis 2021; 226:881-890. [PMID: 34931674 DOI: 10.1093/infdis/jiab597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Whether serum hepatitis B virus (HBV) RNA associates with hepatocellular carcinoma (HCC) development in chronic hepatitis B (CHB) patients has not been fully elucidated. METHODS We enrolled 2974 patients receiving nucleos(t)ide analogues (NAs) from a prospective, observational CHB cohort to investigate the effect of serum HBV RNA, measured at study entry (baseline), on HCC development, using Cox regression analyses. RESULTS During median follow-up of 4.4 years, 90 patients developed HCC. Patients with detectable baseline HBV RNA (n=2072) exhibited significantly higher HCC risk than those with undetectable level (5-year HCC incidence estimated by Kaplan-Meier method: 4.1% versus 1.8%, P=0.007; adjusted hazard ratio [aHR]=2.21, P=0.005). HBV RNA levels of 609-99,999 and ≥100,000 copies/ml were associated with incrementally increasing HCC risk (aHR=2.15 and 3.05, respectively; P for trend=0.003), compared to undetectable level (<609 copies/ml). Moreover, patients with single-detectable either HBV DNA or RNA and double-detectable DNA and RNA had 1.57- and 4.02-fold higher HCC risk respectively, than those with double undetectable DNA and RNA (P for trend=0.001). CONCLUSION High-level HBV RNA is associated with increased HCC risk in NAs-treated patients. Achieving undetectable HBV RNA may contribute to better clinical outcomes, indicating it could be a valuable endpoint of anti-HBV treatment.
Collapse
Affiliation(s)
- Shi Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhihong Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinjun Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuanping Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yabing Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yongpeng Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wanying Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xingyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Siru Zhao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xingmei Liao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hongyan Liang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Lan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
15
|
Riazalhosseini B, Mohamed R, Devi Apalasamy Y, Mohamed Z. Association of deleted in liver cancer-1 gene polymorphism with increased risk of chronicity of disease among Malaysian patients with hepatitis B infection. Pharmacogenet Genomics 2021; 31:185-190. [PMID: 34320605 DOI: 10.1097/fpc.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study is to examine the association between genetic variations in deleted in liver cancer 1 (DLC1) gene with progression of the hepatitis B virus (HBV) infection. METHODS A total of 623 subjects were included in this study, of whom, 423 were chronic hepatitis B (CHB) patients without liver cirrhosis or hepatocellular carcinoma (HCC), 103 CHB with either liver cirrhosis ± HCC and 97 individuals who had resolved HBV. Two single-nucleotide polymorphisms rs3739298 and rs532841 of DLC1 gene were genotyped using the Sequenom MassARRAY platform. RESULTS Our results indicated significant differences between the chronic HBV and resolved HBV groups in genotype and allele frequencies of DLC1-rs3739298 [odds ratio (OR) = 2.23; 95% confidence interval (CI): 1.24-3.99; P = 0.007] and (OR = 1.54; 95% CI: 1.07-2.22; P = 0.021), respectively. Moreover, haplotype analysis revealed significant associations between chronicity of HBV with TG and GA haplotypes (P = 0.041 and P = 0.042), respectively. CONCLUSION A significant association exists between the rs3739298 variant and susceptibility to CHB infection.
Collapse
Affiliation(s)
| | | | - Yamunah Devi Apalasamy
- Social Wellbeing Research Centre, Faculty of Economics and Administration, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
16
|
Zhang J, Liu X, Zhou W, Lu S, Wu C, Wu Z, Liu R, Li X, Wu J, Liu Y, Guo S, Jia S, Zhang X, Wang M. Identification of Key Genes Associated With the Process of Hepatitis B Inflammation and Cancer Transformation by Integrated Bioinformatics Analysis. Front Genet 2021; 12:654517. [PMID: 34539726 PMCID: PMC8440810 DOI: 10.3389/fgene.2021.654517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer. Methods Two groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes. Results We identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate. Conclusion The findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Miaomiao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Zhu M, Liang Z, Pan J, Zhang X, Xue R, Cao G, Hu X, Gong C. Hepatocellular carcinoma progression mediated by hepatitis B virus-encoded circRNA HBV_circ_1 through interaction with CDK1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:668-682. [PMID: 34589285 PMCID: PMC8463320 DOI: 10.1016/j.omtn.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) produces circular RNA (circRNA), whose functions have not yet been clearly elucidated. In this study, a novel circRNA HBV_circ_1 produced by HBV was identified in HBV-positive HepG2.2.15 cells and HBV-related hepatocellular carcinoma (HCC) tissue (HCCT). Microarray analysis of 68 HCCT samples showed that HBV_circ_1 abundance was significantly higher than that in paracancerous tissues. In addition, survival rate of HBV_circ_1-positive patients was significantly lower compared with HBV_circ_1-negative patients. Transient expression indicated that HBV_circ_1 enhanced cell proliferation, migration, and invasion and inhibited apoptosis in vitro. Furthermore, ectopical HBV_circ_1 expression increased tumor size in vivo. HBV_circ_1 was confirmed to interact with cyclin-dependent kinase 1 (CDK1) to regulate cell proliferation. These results suggest that HCC progression may be promoted by interaction of HBV_circ_1 with CDK1. Our data not only showed a novel clue to understand carcinogenesis and progress of HBV-related HCC but also provided a new target for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
18
|
Ghosh S, Chakraborty A, Banerjee S. Persistence of Hepatitis B Virus Infection: A Multi-Faceted Player for Hepatocarcinogenesis. Front Microbiol 2021; 12:678537. [PMID: 34526974 PMCID: PMC8435854 DOI: 10.3389/fmicb.2021.678537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection has a multi-dimensional effect on the host, which not only alters the dynamics of immune response but also persists in the hepatocytes to predispose oncogenic factors. The virus exists in multiple forms of which the nuclear localized covalently closed circular DNA (cccDNA) is the most stable and the primary reason for viral persistence even after clearance of surface antigen and viral DNA. The second reason is the existence of pregenomic RNA (pgRNA) containing virion particles. On the other hand, the integration of the viral genome in the host chromosome also leads to persistent production of viral proteins along with the chromosomal instabilities. The interferon treatment or administration of nucleot(s)ide analogs leads to reduction in the viral DNA load, but the pgRNA and surface antigen clearance are a slow process and complete loss of serological HBsAg is rare. The prolonged exposure of immune cells to the viral antigens, particularly HBs antigen, in the blood circulation results in T-cell exhaustion, which disrupts immune clearance of the virus and virus-infected cells. In addition, it predisposes immune-tolerant microenvironment, which facilitates the tumor progression. Thus cccDNA, pgRNA, and HBsAg along with the viral DNA could be the therapeutic targets in the early disease stages that may improve the quality of life of chronic hepatitis B patients by impeding the progression of the disease toward hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
19
|
Pelizzaro F, Cardin R, Sartori A, Imondi A, Penzo B, Aliberti C, Ponzoni A, Vitale A, Cillo U, Farinati F. Circulating MicroRNA-21 and MicroRNA-122 as Prognostic Biomarkers in Hepatocellular Carcinoma Patients Treated with Transarterial Chemoembolization. Biomedicines 2021; 9:890. [PMID: 34440094 PMCID: PMC8389644 DOI: 10.3390/biomedicines9080890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been proposed as biomarkers in hepatocellular carcinoma (HCC). We aim at evaluating miR-21 and miR-122 in HCC patients treated with drug-eluting beads transarterial chemoembolization (DEB-TACE) as prognostic biomarkers and investigating their correlation with hypoxia inducible factor-1α (HIF-1α) serum levels. METHODS In this retrospective study, 12 healthy subjects, 28 cirrhotics, and 54 HCC patients (tested before and four weeks after DEB-TACE) were included. Whole blood miR-21 and miR-122 levels were measured by quantitative real time (qRT)-PCR, while serum HIF-1α was assessed by an enzyme-linked immunosorbent assay (ELISA) test. RESULTS The highest level of miR-21 was found in cirrhotics, while HCC patients had the highest level of miR-122 (which was even higher in "viral" HCC, p = 0.006). miR-21 ratio (after/before DEB-TACE) and miR-122 below their respective cut-offs identified patients with longer progression-free survival (p = 0.0002 and p = 0.02, respectively). The combined assessment of alpha-fetoprotein and miR-21 ratio, both independent prognostic predictors, identified early progressors among patients with complete or partial radiological response. miR-21 levels positively correlated with HIF-1α before (p = 0.045) and after DEB-TACE (p = 0.035). CONCLUSIONS miR-21 ratio and miR-122 are useful prognostic markers after DEB-TACE. miR-21 correlates with HIF-1α and probably has a role in modulating angiogenesis in HCC.
Collapse
Affiliation(s)
- Filippo Pelizzaro
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (R.C.); (A.S.); (A.I.); (B.P.)
| | - Romilda Cardin
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (R.C.); (A.S.); (A.I.); (B.P.)
| | - Anna Sartori
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (R.C.); (A.S.); (A.I.); (B.P.)
| | - Angela Imondi
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (R.C.); (A.S.); (A.I.); (B.P.)
| | - Barbara Penzo
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (R.C.); (A.S.); (A.I.); (B.P.)
| | - Camillo Aliberti
- Radiology Unit, Azienda Ospedale-Università di Padova, 35128 Padova, Italy; (C.A.); (A.P.)
- Diagnostic Imaging Department, Pederzoli Hospital, Peschiera del Garda, 37019 Verona, Italy
| | - Alberto Ponzoni
- Radiology Unit, Azienda Ospedale-Università di Padova, 35128 Padova, Italy; (C.A.); (A.P.)
| | - Alessandro Vitale
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (A.V.); (U.C.)
| | - Umberto Cillo
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (A.V.); (U.C.)
| | - Fabio Farinati
- Gastroenterology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (F.P.); (R.C.); (A.S.); (A.I.); (B.P.)
| |
Collapse
|
20
|
Sartorius K, An P, Winkler C, Chuturgoon A, Li X, Makarova J, Kramvis A. The Epigenetic Modulation of Cancer and Immune Pathways in Hepatitis B Virus-Associated Hepatocellular Carcinoma: The Influence of HBx and miRNA Dysregulation. Front Immunol 2021; 12:661204. [PMID: 33995383 PMCID: PMC8117219 DOI: 10.3389/fimmu.2021.661204] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) pathogenesis is fueled by persistent HBV infection that stealthily maintains a delicate balance between viral replication and evasion of the host immune system. HBV is remarkably adept at using a combination of both its own, as well as host machinery to ensure its own replication and survival. A key tool in its arsenal, is the HBx protein which can manipulate the epigenetic landscape to decrease its own viral load and enhance persistence, as well as manage host genome epigenetic responses to the presence of viral infection. The HBx protein can initiate epigenetic modifications to dysregulate miRNA expression which, in turn, can regulate downstream epigenetic changes in HBV-HCC pathogenesis. We attempt to link the HBx and miRNA induced epigenetic modulations that influence both the HBV and host genome expression in HBV-HCC pathogenesis. In particular, the review investigates the interplay between CHB infection, the silencing role of miRNA, epigenetic change, immune system expression and HBV-HCC pathogenesis. The review demonstrates exactly how HBx-dysregulated miRNA in HBV-HCC pathogenesis influence and are influenced by epigenetic changes to modulate both viral and host genome expression. In particular, the review identifies a specific subset of HBx induced epigenetic miRNA pathways in HBV-HCC pathogenesis demonstrating the complex interplay between HBV infection, epigenetic change, disease and immune response. The wide-ranging influence of epigenetic change and miRNA modulation offers considerable potential as a therapeutic option in HBV-HCC.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa.,Department of Surgery, University of KwaZulu-Natal Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Cheryl Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Xiaodong Li
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Julia Makarova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia.,Higher School of Economics University, Moscow, Russia
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
21
|
Sun HY, Su YL, Li PH, He JY, Chen HJ, Wang G, Wang SW, Huang XH, Huang YH, Qin QW. The Roles of Epinephelus coioides miR-122 in SGIV Infection and Replication. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:294-307. [PMID: 33570690 PMCID: PMC8032594 DOI: 10.1007/s10126-021-10023-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In mammals, mature miR-122 is 22 nucleotides long and can be involved in regulating a variety of physiological and biological pathways. In this study, the expression profile and effects of grouper Epinephelus coioides miR-122 response to Singapore grouper iridovirus (SGIV) infection were investigated. The sequences of mature microRNAs (miRNAs) from different organisms are highly conserved, and miR-122 from E. coioides exhibits high similarity to that from mammals and other fish. The expression of miR-122 was up-regulated during SGIV infection. Up-regulation of miR-122 could significantly enhance the cytopathic effects (CPE) induced by SGIV, the transcription levels of viral genes (MCP, VP19, LITAF and ICP18), and viral replication; reduce the expression of inflammatory factors (TNF-a, IL-6, and IL-8), and the activity of AP-1 and NF-κB, and miR-122 can bind the target gene p38α MAPK to regulate the SGIV-induced cell apoptosis and the protease activity of caspase-3. The results indicated that SGIV infection can up-regulate the expression of E. coioides miR-122, and up-regulation of miR-122 can affect the activation of inflammatory factors, the activity of AP-1 and NF-κB, and cell apoptosis to regulate viral replication and proliferation.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Jia-Yang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - He-Jia Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Gang Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Shao-Wen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Xiao-Hong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - You-Hua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China.
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Keila Torres
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile; Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
23
|
Zhang BY, Chai DP, Wu YH, Qiu LP, Zhang YY, Ye ZH, Yu XP. Potential Drug Targets Against Hepatitis B Virus Based on Both Virus and Host Factors. Curr Drug Targets 2020; 20:1636-1651. [PMID: 31362671 DOI: 10.2174/1389450120666190729115646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis B is a very harmful and epidemic disease caused by hepatitis B virus (HBV). Although an effective anti-HBV vaccine is available, chronic infection poses still a huge health burden in the whole world. The present anti-HBV drugs including nucleoside analogues and interferonalpha have their limitations without exception. There is no effective drug and therapeutic method that can really and truly cure hepatitis B so far. The variability of HBV genome results in that a significant number of patients develop drug resistance during the long-term use of anti-HBV drugs. Hence, it is urgently needed to discover novel targets and develop new drugs against hepatitis B. OBJECTIVE The review aims to provide the theory support for designing of the anti-HBV innovative drugs by offering a summary of the current situation of antiviral potential targets. RESULTS AND CONCLUSION Since HBV is obligate intracellular parasite, and as such it depends on host cellular components and functions to replicate itself. The targeting both virus and host might be a novel therapeutic option for hepatitis B. Accordingly, we analyse the advances in the study of the potential drug targets for anti-HBV infection, focusing on targeting virus genome, on targeting host cellular functions and on targeting virus-host proteins interactions, respectively. Meanwhile, the immune targets against chronic hepatitis B are also emphasized. In short, the review provides a summary of antiviral therapeutic strategies to target virus factors, host factors and immune factors for future designing of the innovative drug against HBV infection.
Collapse
Affiliation(s)
- Bing-Yi Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Ping Chai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yi-Hang Wu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yong-Yong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zi-Hong Ye
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
24
|
Han N, Yan L, Wang X, Sun X, Huang F, Tang H. An updated literature review: how HBV X protein regulates the propagation of the HBV. Future Virol 2020. [DOI: 10.2217/fvl-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic HBV infection constitutes a burden on human beings and is closely associated with hepatocellular carcinoma. The propagation of the HBV is determined by many factors, and the HBV X protein (HBx) could have a significant influence on this. HBx is a regulatory protein that can directly or indirectly interact with many cellular proteins to affect both the propagation of the HBV and the activity of the host cells. In this review, we summarized the possible mechanisms by which HBx regulates HBV replication at transcriptional and post-transcriptional levels in various experimental systems.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xueer Wang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
25
|
Xu J, An P, Winkler CA, Yu Y. Dysregulated microRNAs in Hepatitis B Virus-Related Hepatocellular Carcinoma: Potential as Biomarkers and Therapeutic Targets. Front Oncol 2020; 10:1271. [PMID: 32850386 PMCID: PMC7399632 DOI: 10.3389/fonc.2020.01271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that can function as gene regulators and are involved in tumorigenesis. We review the commonly dysregulated miRNAs in liver tumor tissues and plasma/serum of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients. The frequently reported up-regulated miRNAs in liver tumor tissues include miR-18a, miR-21, miR-221, miR-222, and miR-224, whereas down-regulated miRNAs include miR-26a, miR-101, miR-122, miR-125b, miR-145, miR-199a, miR-199b, miR-200a, and miR-223. For a subset of these miRNAs (up-regulated miR-222 and miR-224, down-regulated miR-26a and miR-125b), the pattern of dysregulated circulating miRNAs in plasma/serum is mirrored in tumor tissue based on multiple independent studies. Dysregulated miRNAs target oncogenes or tumor suppressor genes involved in hepatocarcinogenesis. Normalization of dysregulated miRNAs by up- or down-regulation has been shown to inhibit HCC cell proliferation or sensitize liver cancer cells to chemotherapeutic treatment. miRNAs hold as yet unrealized potential as biomarkers for early detection of HCC and as precision therapeutic targets, but further studies in diverse populations and across all stages of HCC are needed.
Collapse
Affiliation(s)
- Jinghang Xu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Cheryl A. Winkler
- Basic Research Laboratory, Molecular Genetic Epidemiology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Yanyan Yu
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
26
|
Sartorius K, Swadling L, An P, Makarova J, Winkler C, Chuturgoon A, Kramvis A. The Multiple Roles of Hepatitis B Virus X Protein (HBx) Dysregulated MicroRNA in Hepatitis B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) and Immune Pathways. Viruses 2020; 12:v12070746. [PMID: 32664401 PMCID: PMC7412373 DOI: 10.3390/v12070746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Currently, the treatment of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) [HBV-HCC] relies on blunt tools that are unable to offer effective therapy for later stage pathogenesis. The potential of miRNA to treat HBV-HCC offer a more targeted approach to managing this lethal carcinoma; however, the complexity of miRNA as an ancillary regulator of the immune system remains poorly understood. This review examines the overlapping roles of HBx-dysregulated miRNA in HBV-HCC and immune pathways and seeks to demonstrate that specific miRNA response in immune cells is not independent of their expression in hepatocytes. This interplay between the two pathways may provide us with the possibility of using candidate miRNA to manipulate this interaction as a potential therapeutic option.
Collapse
Affiliation(s)
- Kurt Sartorius
- Faculty of Commerce, Law and Management, University of the Witwatersrand, Johannesburg 2050, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
- UKZN Gastrointestinal Cancer Research Centre, Durban 4041, South Africa
- Correspondence:
| | - Leo Swadling
- Division of Infection and Immunity, University College London, London WC1E6BT, UK;
| | - Ping An
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Julia Makarova
- National Research University Higher School of Economics, Faculty of Biology and Biotechnology, 10100 Moscow, Russia;
| | - Cheryl Winkler
- Basic Research Laboratory, Centre for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc. Frederick Nat. Lab. for Cancer Research, Frederick, MD 20878, USA; (P.A.); (C.W.)
| | - Anil Chuturgoon
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
| |
Collapse
|
27
|
Liu L, Hou J, Xu Y, Qin L, Liu W, Zhang H, Li Y, Chen M, Deng M, Zhao B, Hu J, Zheng H, Li C, Meng S. PD-L1 upregulation by IFN-α/γ-mediated Stat1 suppresses anti-HBV T cell response. PLoS One 2020; 15:e0228302. [PMID: 32628668 PMCID: PMC7337294 DOI: 10.1371/journal.pone.0228302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) has been recently shown to be a major obstacle to antiviral immunity by binding to its receptor programmed death 1 (PD-1) on specific IFN-γ producing T cells in chronic hepatitis B. Currently, IFN-α is widely used to treat hepatitis B virus (HBV) infection, but its antiviral effect vary greatly and the mechanism is not totally clear. We found that IFN-α/γ induced a marked increase of PD-L1 expression in hepatocytes. Signal and activators of transcription (Stat1) was then identified as a major transcription factor involved in IFN-α/γ-mediated PD-L1 elevation both in vitro and in mice. Blockage of the PD-L1/PD-1 interaction by a specific mAb greatly enhanced HBV-specific T cell activity by the gp96 adjuvanted therapeutic vaccine, and promoted HBV clearance in HBV transgenic mice. Our results demonstrate the IFN-α/γ-Stat1-PD-L1 axis plays an important role in mediating T cell hyporesponsiveness and inactivating liver-infiltrating T cells in the hepatic microenvironment. These data raise further potential interest in enhancing the anti-HBV efficacy of IFN-α and therapeutic vaccines.
Collapse
Affiliation(s)
- LanLan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiu Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| |
Collapse
|
28
|
Ochi M, Otsuka M, Maruyama R, Koike K. HBx increases EGFR expression by inhibiting miR129-5p function. Biochem Biophys Res Commun 2020; 529:198-203. [PMID: 32703411 DOI: 10.1016/j.bbrc.2020.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Despite the efficient suppression of hepatitis B virus (HBV) replication by nucelos(t)ide analogs, HBV RNA expression usually continues even during nucleots(t)ide analog therapy because episomal covalently closed circular DNA (ccDNA), which is the template for HBV RNA transcription, cannot be eliminated. Here, we found that the common sequences of all HBV RNAs and that encoding the X protein (HBx) have similarities with the sequences of a host cellular microRNA (miRNA), miR129-5p. HBx inhibits miR129-5p function, resulting in increased expression of ZBTB20, a target gene of miR129-5p. ZBTB20 activates transcription and increases cell-surface epidermal growth factor receptor (EGFR) levels, promoting the cell growth rate, and this effect was reversed through ZBTB20 knockdown. mir129-5p levels in Ago2-containing complexes were reduced by expression of HBx, suggesting that the viral RNA sequestered miR129-5p from Ago2-containing complexes. These results indicate the possibility that HBV RNA may maintain pathogenicity even through nucleos(t)ide analog therapy.
Collapse
Affiliation(s)
- Masanori Ochi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
29
|
Fei X, Zhang P, Pan Y, Liu Y. MicroRNA-98-5p Inhibits Tumorigenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma by Targeting NF-κB-Inducing Kinase. Yonsei Med J 2020; 61:460-470. [PMID: 32469170 PMCID: PMC7256008 DOI: 10.3349/ymj.2020.61.6.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE MicroRNAs play key regulatory roles in the tumorigenesis of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). This study aimed to explore the regulatory effects of microRNA-98-5p (miR-98-5p) on the proliferation, migration, invasion, and apoptosis of HBV-HCC cells, as well as the underlying mechanisms involving nuclear factor-κB-inducing kinase (NIK). MATERIALS AND METHODS The expressions of miR-98-5p and NIK in HBV-HCC tissues and cells, and the level of HBV DNA in HBV-HCC cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of HBV-HCC cells were analyzed by cell counting kit-8, wound healing, transwell, and flow cytometry assay, respectively. The targeting relationship between miR-98-5p and NIK was predicted by StarBase3.0 and verified by dual-luciferase reporter assay. HBV-HCC xenograft tumor model was constructed in mice to observe the tumor growth in vivo. RESULTS The expression of miR-98-5p was declined in HBV-HCC tissues and cells. Overexpression of miR-98-5p markedly reduced the level of HBV DNA; inhibited the proliferation, migration, and invasion; and promoted the apoptosis of HBV-HCC cells. NIK was a target of miR-98-5p. Overexpression of miR-98-5p markedly decreased the protein expression of NIK in MHCC97H-HBV cells. NIK reversed the tumor-suppressing effect of miR-98-5p on HBV-HCC cells. Furthermore, overexpression of miR-98-5p significantly inhibited the xenograft tumor growth and decreased the expression of NIK in mice. CONCLUSION MiR-98-5p inhibits the secretion of HBV, proliferation, migration, and invasion of HBV-HCC cells by targeting NIK.
Collapse
Affiliation(s)
- Xiukun Fei
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Peipei Zhang
- Department of Liver Disease, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, China
| | - Yu Pan
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China.
| |
Collapse
|
30
|
The Regulatory Role of MicroRNA in Hepatitis-B Virus-Associated Hepatocellular Carcinoma (HBV-HCC) Pathogenesis. Cells 2019; 8:cells8121504. [PMID: 31771261 PMCID: PMC6953055 DOI: 10.3390/cells8121504] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
The incidence and mortality of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) is an intractable public health problem in developing countries that is compounded by limited early detection and therapeutic options. Despite the early promise of utilizing the regulatory role of miRNA in liver cancer, this field remains largely in the work-in-progress phase. This exploratory review paper adopts a broad focus in order to collate evidence of the regulatory role of miRNA in each stage of the HBV-HCC continuum. This includes the regulatory role of miRNA in early HBV infection, chronic inflammation, fibrosis/cirrhosis, and the onset of HCC. The paper specifically investigates HBV dysregulated miRNA that influence the expression of the host/HBV genome in HBV-HCC pathogenesis and fully acknowledges that this does not cover the full spectrum of dysregulated miRNA. The sheer number of dysregulated miRNA in each phase support a hypothesis that future therapeutic interventions will need to consider incorporating multiple miRNA panels.
Collapse
|
31
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Li A, Wu J, Zhai A, Qian J, Wang X, Qaria MA, Zhang Q, Li Y, Fang Y, Kao W, Song W, Zhang Z, Zhang F. HBV triggers APOBEC2 expression through miR‑122 regulation and affects the proliferation of liver cancer cells. Int J Oncol 2019; 55:1137-1148. [PMID: 31485598 DOI: 10.3892/ijo.2019.4870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/15/2019] [Indexed: 11/05/2022] Open
Abstract
Hepatitis B virus (HBV) infection is responsible for 50% of liver cancer cases globally; this disease is one of the leading causes of cancer‑associated mortality. One reported mechanism underlying the development of liver cancer is the mutation of tumor suppressor genes induced by the overexpression of apolipoprotein B mRNA‑editing enzyme catalytic subunit 2 (APOBEC2) in hepatocytes. In addition, it has been observed that HBV inhibited microRNA (miR)‑122 expression in hepatocytes; however, the molecular mechanisms involved in liver cancer development remain unknown and further investigations are required. In the present study, the mechanistic roles of HBV infection in modulating the expression of miR‑122 and APOBEC2, and the development of liver cancer, were investigated. Reverse transcription‑quantitative PCR and western blot analyses revealed that APOBEC2 expression was markedly upregulated following HBV infection. Of note, the expression profile of APOBEC2 in the Huh7 and HepG2 liver cancer cell lines opposed that of miR‑122; this miR is the most abundant miRNA in the liver and has been associated with hepatocarcinogenesis. Mechanistically, it was demonstrated via a dual‑luciferase assay that miR‑122 could specifically bind to the 3'‑untranslated region (3'UTR) of APOBEC2 mRNA, inhibiting its expression. Collectively, the findings of the present study may provide insight into the mechanistic role of HBV infection in modulating the expression of miR‑122, which targets the 3'UTR of APOBEC2 mRNA, subsequently inducing liver carcinogenesis.
Collapse
Affiliation(s)
- Aimei Li
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Wu
- Hangzhou Key Laboratory of Inflammation and Immunoregulation, Department of Basic Medical Science, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310000, P.R. China
| | - Aixia Zhai
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jun Qian
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xinyang Wang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Majjid A Qaria
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Qingmeng Zhang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yujun Li
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yong Fang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wenping Kao
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Wuqi Song
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Wu Lien‑Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
33
|
Tan X, Zhang S, Gao H, He W, Xu M, Wu Q, Ni X, Jiang H. Hypermethylation of the PTTG1IP promoter leads to low expression in early-stage non-small cell lung cancer. Oncol Lett 2019; 18:1278-1286. [PMID: 31423188 PMCID: PMC6607221 DOI: 10.3892/ol.2019.10400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 04/15/2019] [Indexed: 12/25/2022] Open
Abstract
Despite the clinical requirement for early diagnosis, the early events in lung cancer and their mechanisms are not fully understood. Pituitary tumor transforming gene 1 binding factor (PTTG1IP) is a tumor-associated gene; however, to the best of our knowledge, its association with lung cancer has not been reported. The present study analyzed PTTG1IP expression in early-stage non-small cell lung cancer (NSCLC) samples and investigated its epigenetic regulatory mechanisms. The results revealed that the mRNA level of PTTG1IP in NSCLC tissues was significantly downregulated by 43% compared with that in adjacent tissues. In addition, overexpression of this gene significantly inhibited cell proliferation. According to data from The Cancer Genome Atlas, a significant negative correlation was identified between the PTTG1IP gene methylation level and expression level in lung adenocarcinoma and lung squamous cell carcinoma cases. Reduced representation bisulfite sequencing (RRBS) analysis of six paired early-stage NSCLC tissue samples indicated that the CpG island shore of the PTTG1IP promoter is hypermethylated in lung cancer tissues, which was further validated in 12 paired early-stage NSCLC samples via bisulfite amplicon sequencing. Following treatment with 5-aza-2′-deoxycytidine to reduce DNA methylation in the promoter region, the PTTG1IP mRNA level increased, indicating that the PTTG1IP promoter DNA methylation level negatively regulates PTTG1IP transcription. In conclusion, in early-stage NSCLC, the PTTG1IP gene is regulated by DNA methylation in its promoter region, which may participate in the development and progression of lung cancer.
Collapse
Affiliation(s)
- Xiaoming Tan
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| | - Sufen Zhang
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Huifang Gao
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Wanhong He
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Minjie Xu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Qihan Wu
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Xiaohua Ni
- NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, Fudan University, Shanghai 200032, P.R. China
| | - Handong Jiang
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, P.R. China
| |
Collapse
|
34
|
Liu Q, Liu N, Shangguan Q, Zhang F, Chai W, Tong X, Zhao X, Li Z, Qi D, Ye X. LncRNA SAMD12-AS1 promotes cell proliferation and inhibits apoptosis by interacting with NPM1. Sci Rep 2019; 9:11593. [PMID: 31406141 PMCID: PMC6691116 DOI: 10.1038/s41598-019-48116-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis B virus infection is a major risk factor for hepatocellular carcinoma. HBV infection affects lncRNA expression in infected cells, but the detailed mechanism and biological significance are not yet clear. In this study, we focused on exploring the function of the HBV-upregulated lncRNA SAMD12-AS1 in cell proliferation. We found that there is a higher level of SAMD12-AS1 expression in tumors than in adjacent nontumorous liver tissues. We showed that ectopic expression of SAMD12-AS1 promotes cell growth and blocks apoptosis, while knockdown of SAMD12-AS1 inhibits cell proliferation and enhances etoposide-induced apoptosis. Using RNA immunoprecipitation and mass spectrometry, we determined that SAMD12-AS1 interacts with NPM1 and confirmed that SAMD12-AS1(1-350) is required for the interaction with NPM1. As it is known that NPM1 interacts with the E3 ligase HDM2 and reduces HDM2-mediated p53 degradation, we examined whether SAMD12-AS1 can affect p53 stability. Overexpression of SAMD12-AS1 caused a reduction in p53 protein levels by shortening its half-life. Conversely, knockdown of SAMD12-AS1 prolonged the half-life of p53. We further demonstrated that SAMD12-AS1 increased the interaction of HDM2 and p53 and enhanced p53 ubiquitination. Our findings reveal that HBV-upregulated SAMD12-AS1 regulates cell proliferation and apoptosis via the NPM1-HDM2-p53 axis.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, 650504, Kunming, China
| | - Ningning Liu
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Qilin Shangguan
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjia Chai
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Tong
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Xin Zhao
- 302 Hospital of PLA, Beijing, 100039, China
| | - Zhiwei Li
- 302 Hospital of PLA, Beijing, 100039, China
| | - Dandan Qi
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
| | - Xin Ye
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Rana MA, Ijaz B, Daud M, Tariq S, Nadeem T, Husnain T. Interplay of Wnt β-catenin pathway and miRNAs in HBV pathogenesis leading to HCC. Clin Res Hepatol Gastroenterol 2019; 43:373-386. [PMID: 30377095 DOI: 10.1016/j.clinre.2018.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023]
Abstract
The prevalence of Hepatocellular carcinoma (HCC) has been identified world-wide. Plethora of factors including chronic infection of HBV/HCV has been characterized for the development of HCC. Although the onset and progression of HCC has been linked with awry of various signaling pathways but precise mechanism, still lies under the multitude layers of curiosity. HBV is spreading with insane speed throughout the world and has been found a main culprit in HCC development after regulating the several cellular pathways including Wnt/β-catenin, Raf/MAPK, Akt and affecting cell multiplication to genomic instability. The role of Wnt/FZD/β-catenin signaling pathway is centralized in liver functions and its anomalous activation leads to HCC development. β-catenin mainly plays a pivotal role in canonical pathway of the system. Altered mainly overexpression of β-catenin along its nuclear localization tunes the aberrations in liver functions and set disease progression. In the development of HCC, modulation of Wnt/FZD/β-catenin signaling pathway by HBV has been established. As HBV infects the cell it affects the miRNAs, the master regulators of cell. Previous studies showed the connection between HBV and cellular miRNAs. In the present review, we unveiled how HBV is deciphering the cellular miRNAs like miR-26a, miR-15a, miR-16-1, miR-148a, miR-132, miR-122, miR-34a, miR-21, miR-29a, miR-222 and miR-199a/b-3p to modulate the Wnt/FZD/β-catenin signaling pathway and develop HCC. These HBV mediated miRNAs may prove future therapeutic options to treat HBV-Wnt/FZD/β-catenin associated HCC.
Collapse
Affiliation(s)
- Muhammad Adeel Rana
- Department of microbiology, Quaid-i-Azam University, Islamabad, Pakistan; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan.
| | - Muhammad Daud
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Sommyya Tariq
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore Pakistan
| |
Collapse
|
36
|
Mahmoudian-Sani MR, Asgharzade S, Alghasi A, Saeedi-Boroujeni A, Adnani Sadati SJ, Moradi MT. MicroRNA-122 in patients with hepatitis B and hepatitis B virus-associated hepatocellular carcinoma. J Gastrointest Oncol 2019; 10:789-796. [PMID: 31392060 DOI: 10.21037/jgo.2019.02.14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is known as a serious problem in the domain of public health and approximately 350 million people across the world are affected with this infectious disease. As well, microRNAs are recognized as a type of small non-coding RNAs that can be widely used as a diagnostic biomarker and prognosis method of special diseases. In this respect, microRNA-122 or miR-122 can play a significant role in the pathogenesis of several hepatic diseases. Given the importance of microRNA-122 in the liver as well as its pathology, this study focused on the potential functions of microRNA-122 in pathogenesis, diagnosis, and treatment of HBV infection. In this regard, the findings of previous studies had indicated that expression of microRNA-122 in patients with HBV infection could be significantly deregulated. The results of this study were consistent with the idea that diagnosis and treatment of this infectious disease using microRNA-122 could be an efficient method.
Collapse
Affiliation(s)
- Mohammad Reza Mahmoudian-Sani
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Arash Alghasi
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Seyed Jafar Adnani Sadati
- Department of Microbiology & Immunology, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
37
|
Chen S, Yang L, Pan A, Duan S, Li M, Li P, Huang J, Gao X, Huang X, Lin Y. Inhibitory Effect on the Hepatitis B Cells through the Regulation of miR-122-MAP3K2 signal pathway. AN ACAD BRAS CIENC 2019; 91:e20180941. [PMID: 31141015 DOI: 10.1590/0001-3765201920180941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the inhibitory effect of regulation of miR-122-MAP3K2 signal pathway on the hepatitis B cells. We detected the content of MAP3K2 from patients with HBV blood serum samples and analyzed the correlation between content of MAP3K2 and copies of HBV-DNA. Wound healing and Transwell assays were used to detect the function of cells from control group (wild type) and observer group (overexpresses miR-122). Secretion levels of HBsAg and MAP3K2 in the supernatant and level of MAP3K2 in cells were detected by ELISA and western blot, respectively. The results showed that there was a positive correlation between the copies of HBV-DNA and MAP3K2 in serum. In the assays involving detection of the number of HBV-DNA copies, the supernatant levels of HBsAg and MAP3K2, and the level of MAP3K2 in the cells, the rate of increase of these indicators significantly slowed as culture time. In conclusion, overexpression of miR-122 could inhibit the migration of hepatoblastoma cells; however, following transfection with miR-122, DNA synthesis and the secretion of HBsAg were inhibited. Overexpression of miR-122 can also downregulate MAP3K2. Consequently, we concluded that regulating the miR-122-MAP3K2 signaling pathway exerts an inhibitory effect in hepatitis B cells.
Collapse
Affiliation(s)
- Songlin Chen
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Lei Yang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Aiping Pan
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Siliang Duan
- Medical College of Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, People's Republic of China
| | - Mingfen Li
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Ping Li
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Jingjing Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Xingxin Gao
- First Affiliated Hospital of Guangxi Medical University, Nanning 530023, Guangxi, People's Republic of China
| | - Xiaoqi Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Yinghui Lin
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| |
Collapse
|
38
|
Wu Y, Wen J, Xiao W, Zhang B. Pregenomic RNA: How to assist the management of chronic hepatitis B? Rev Med Virol 2019; 29:e2051. [PMID: 31074177 DOI: 10.1002/rmv.2051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Pregenomic RNA (pgRNA) is an emerging serological marker for chronic hepatitis B virus (HBV) infection. While pgRNA is principally the template for viral proteins and viral DNAs, additional novel functions for the serum pgRNA have recently been described. These results extend for pgRNA a regulatory function in the viral life cycle and potentially a role in pathogenesis. Here, we review the diverse roles of pgRNA in HBV replication and pathogenesis, emphasizing how the unique structure of this RNA is key to its various functions. We focus in particular on the role of HBV pgRNA in guiding antiviral therapy including nucleot(s)ide analog interruption and role as a marker of cure with new curative therapies. We also briefly allude to the emerging niche for new direct-acting or indirect-acting antivirals targeting pgRNA.
Collapse
Affiliation(s)
- Yongbin Wu
- Department of Laboratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jian Wen
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Weiwei Xiao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
39
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019. [PMID: 30889843 DOI: 10.3390/ijms] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
40
|
Molecular Mechanisms Driving Progression of Liver Cirrhosis towards Hepatocellular Carcinoma in Chronic Hepatitis B and C Infections: A Review. Int J Mol Sci 2019; 20:ijms20061358. [PMID: 30889843 PMCID: PMC6470669 DOI: 10.3390/ijms20061358] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/23/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with hepatocellular carcinoma (HCC), a major type of primary liver cancer, also have liver cirrhosis, the severity of which hampers effective treatment for HCC despite recent progress in the efficacy of anticancer drugs for advanced stages of HCC. Here, we review recent knowledge concerning the molecular mechanisms of liver cirrhosis and its progression to HCC from genetic and epigenomic points of view. Because ~70% of patients with HCC have hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection, we focused on HBV- and HCV-associated HCC. The literature suggests that genetic and epigenetic factors, such as microRNAs, play a role in liver cirrhosis and its progression to HCC, and that HBV- and HCV-encoded proteins appear to be involved in hepatocarcinogenesis. Further studies are needed to elucidate the mechanisms, including immune checkpoints and molecular targets of kinase inhibitors, associated with liver cirrhosis and its progression to HCC.
Collapse
|
41
|
Nakamura M, Chiba T, Kanayama K, Kanzaki H, Saito T, Kusakabe Y, Kato N. Epigenetic dysregulation in hepatocellular carcinoma: an up-to-date review. Hepatol Res 2019; 49:3-13. [PMID: 30238570 DOI: 10.1111/hepr.13250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022]
Abstract
Due to the advances made in research based on next generation sequencers, it is now possible to detect and analyze epigenetic abnormalities associated with cancer. DNA methylation, various histone modifications, chromatin remodeling, and non-coding RNA-associated gene silencing are considered to be transcriptional regulatory mechanisms associated with gene expression changes. The breakdown of this precise regulatory system is involved in the transition to cancer. The important role of epigenetic regulation can be observed from the high rate of genetic mutations and abnormal gene expression leading to a breakdown in epigenetic gene expression regulation seen in hepatocellular carcinoma (HCC). Based on an understanding of epigenomic abnormalities associated with pathological conditions, these findings will lead the way to diagnosis and treatment. In particular, in addition to the fact that there are few choices in terms of extant drug therapies aimed at HCC, there are limits to their antitumor effects. The clinical application of epigenetic therapeutic agents for HCC has only just begun, and future developments are expected.
Collapse
Affiliation(s)
- Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
42
|
Qi D, Guan J, Wu E. Virus infection-induced host mRNA degradation and potential application of live cell imaging. ACTA ACUST UNITED AC 2018; 5:143-147. [PMID: 32289070 PMCID: PMC7104030 DOI: 10.1016/j.jrid.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Accepted: 12/05/2018] [Indexed: 12/01/2022]
Abstract
Viruses exist wherever there is life. They can cause allergy, immune response, inflammation, and even fatal diseases directly or indirectly. Accumulating evidence shows that host RNA undergoes rapid degradation during virus infection. Herein, we focus on several possible mechanisms of infection-induced host RNA turnover, which seems to be a common strategy for both prokaryotic and eukaryotic viruses during the very early stage of infection and a potential application of live cell imaging on its visualization.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Jitian Guan
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX 78508, USA
- Neuroscience Institute, Baylor Scott & White Health, Temple, TX 76502, USA
- Department of Surgery, Texas A & M University College of Medicine, Temple, TX 76504, USA
- Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, TX 77843, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
43
|
Sagnelli E, Potenza N, Onorato L, Sagnelli C, Coppola N, Russo A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J Hepatol 2018; 10:558-570. [PMID: 30310534 PMCID: PMC6177563 DOI: 10.4254/wjh.v10.i9.558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level by affecting both the stability and translation of complementary mRNAs. Several studies have shown that miRNAs are important regulators in the conflicting efforts between the virus (to manipulate the host for its successful propagation) and the host (to inhibit the virus), culminating in either the elimination of the virus or its persistence. An increasing number of studies report a role of miRNAs in hepatitis B virus (HBV) replication and pathogenesis. In fact, HBV is able to modulate different host miRNAs, particularly through the transcriptional transactivator HBx protein and, conversely, different cellular miRNAs can regulate HBV gene expression and replication by a direct binding to HBV transcripts or indirectly targeting host factors. The present review will discuss the role of miRNAs in the pathogenesis of HBV-related diseases and their role as a biomarker in the management of patients with HBV-related disease and as therapeutic targets.
Collapse
Affiliation(s)
- Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Nicoletta Potenza
- DISTABIF, University of Campania “Luigi Vanvitelli”, Naples 80100, Italy
| | - Lorenzo Onorato
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples 80135, Italy
| | - Aniello Russo
- DISTABIF, University of Campania “Luigi Vanvitelli”, Naples 80100, Italy
| |
Collapse
|
44
|
CD8 + T-Cell Response-Associated Evolution of Hepatitis B Virus Core Protein and Disease Progress. J Virol 2018; 92:JVI.02120-17. [PMID: 29950410 DOI: 10.1128/jvi.02120-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/05/2018] [Indexed: 12/13/2022] Open
Abstract
Under the immune pressure of cytotoxic T cells (CTLs), hepatitis B virus (HBV) evolves to accumulate mutations more likely within epitopes to evade immune detection. However, little is known about the specific patterns of the immune pressure-associated HBV mutation of T-cell epitopes and their link to disease progression. Here, we observed a correlation of the accumulated variants on HBV core protein (HBc) with the disease severity of HBV infection. Further analysis indicated that these substitutions were mostly located within CD8+ T-cell epitopes of HBc protein, which were systematically screened and identified in an unbiased manner in our study. From individual peptide level to the human leukocyte antigen I (HLA-I)-restricted population level, we elucidated that the mutations in these well-defined HLA-I-restricted T-cell epitopes significantly decreased antiviral activity-specific CTLs and were positively associated with clinical parameters and disease progression in HBV-infected patients. The molecular pattern for viral epitope variations based on the sequencing of 105 HBV virus genomes indicated that the C-terminal portion (Pc), especially the Pc-1 and Pc-2 positions, have the highest mutation rates. Further structural analysis of HLA-A*02 complexed to diverse CD8+ T-cell epitopes revealed that the highly variable C-terminal bulged peak of M-shaped HBc-derived epitopes are solvent exposed, and most of the CDR3βs of the T-cell receptor hover over them. These data shed light on the molecular and immunological mechanisms of T-cell immunity-associated viral evolution in hepatitis B progression, which is beneficial for designing immunotherapies and vaccines.IMPORTANCE The specific patterns of sequence polymorphisms of T-cell epitopes and the immune mechanisms of the HBV epitope mutation-linked disease progression are largely unclear. In this study, we systematically evaluated the contribution of CD8+ T cells to the disease progress-associated evolution of HBV. By evaluation of patient T-cell responses based on the peptide repertoire, we comprehensively characterized the association of clinical parameters in chronic hepatitis B with the antiviral T-cell response-associated mutations of the viruses from the single-epitope level to the overall HLA-I-restricted peptide levels. Furthermore, we investigated the molecular basis of the HLA-A2-restricted peptide immune escape and found that the solvent-exposed C-terminal portion of the epitopes is highly variable under CDR3β recognition. Our work may provide a comprehensive evaluation of viral mutations impacted by the host CTL response in HBV disease progression in the context of the full repertoire of HBc-derived epitopes.
Collapse
|
45
|
Müller-Coan BG, Caetano BFR, Pagano JS, Elgui de Oliveira D. Cancer Progression Goes Viral: The Role of Oncoviruses in Aggressiveness of Malignancies. Trends Cancer 2018; 4:485-498. [DOI: 10.1016/j.trecan.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
46
|
An Y, Gao S, Zhao WC, Qiu BA, Xia NX, Zhang PJ, Fan ZP. Novel serum microRNAs panel on the diagnostic and prognostic implications of hepatocellular carcinoma. World J Gastroenterol 2018; 24:2596-2604. [PMID: 29962816 PMCID: PMC6021775 DOI: 10.3748/wjg.v24.i24.2596] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/26/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To determine a panel of serum microRNAs (miRNAs) that could be used as novel biomarkers for diagnosis of hepatocellular carcinoma (HCC).
METHODS We initially screened 9 out of 754 serum miRNAs by TaqMan Low Density Array in two pooled samples respectively from 35 HCC and 35 normal controls, and then validated individually by RT-qPCR in another 114 patients and 114 controls arranged in two phases. The changes of the selected miRNAs after operation and their prognostic value were examined.
RESULTS miR-375, miR-10a, miR-122 and miR-423 were found to be significantly higher in HCC than in controls (P < 0.0001), and the area under the receiver-operating-characteristic curve for the 4-miRNA panel was 0.995 (95%CI: 0.985-1). All the four miRNAs were significantly reduced after surgical removal of the tumors (P < 0.0001), while still higher than normal controls (at least P < 0.05)
CONCLUSION The four serum miRNAs (miR-375, miR-10a, miR-122 and miR-423) could potentially serve as novel biomarkers for the diagnostic and prognostic of HCC.
Collapse
Affiliation(s)
- Yang An
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Song Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wen-Chao Zhao
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Bao-An Qiu
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Nian-Xin Xia
- Department of Hepato-Biliary-Pancreatic Surgey, Navy General Hospital of Chinese People’s Liberation Army, Beijing 100048, China
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhen-Ping Fan
- The Liver Disease Center for Cadre Medical Care, Beijing 302 Military Hospital, Beijing 100039, China
| |
Collapse
|
47
|
Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA. World J Gastroenterol 2018; 24:2261-2268. [PMID: 29881235 PMCID: PMC5989240 DOI: 10.3748/wjg.v24.i21.2261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
48
|
Sekiba K, Otsuka M, Ohno M, Kishikawa T, Yamagami M, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K. DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 2018; 9:20953-20964. [PMID: 29765512 PMCID: PMC5940377 DOI: 10.18632/oncotarget.25104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis B virus (HBV) infection, which is a major health concern worldwide, can lead to liver cirrhosis and hepatocellular carcinoma. Although current nucleos(t)ide analogs efficiently inhibit viral reverse transcription and viral DNA load clinically, episomal viral covalently closed circular DNA (cccDNA) minichromosomes and transcripts from cccDNA continue to be expressed over the long term. We hypothesized that, under these conditions, viral transcripts may have biological functions involved in pathogenesis. Here, we show that the host protein DExH-box helicase 9 (DXH9) is associated with viral RNAs. We also show that viral-derived circular RNA is produced during HBV replication, and the amount is increased by knockdown of the DHX9 protein, which, in turn, results in decreased viral protein levels but does not affect the levels of HBV DNA. These phenomena were observed in the HBV-producing cell culture model and HBV mini-circle model mimicking HBV cccDNA, as well as in human primary hepatocytes infected with HBV. Based on these results, we conclude that, in HBV infection, the RNA binding factor DHX9 is a novel regulator of viral circular RNA and viral protein levels.
Collapse
Affiliation(s)
- Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mari Yamagami
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tatsunori Suzuki
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Rei Ishibashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Eri Tanaka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
49
|
The Role of miRNAs in Virus-Mediated Oncogenesis. Int J Mol Sci 2018; 19:ijms19041217. [PMID: 29673190 PMCID: PMC5979478 DOI: 10.3390/ijms19041217] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
To date, viruses are reported to be responsible for more than 15% of all tumors worldwide. The oncogenesis could be influenced directly by the activity of viral oncoproteins or by the chronic infection or inflammation. The group of human oncoviruses includes Epstein–Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), human herpesvirus 8 (HHV-8) or polyomaviruses, and transregulating retroviruses such as HIV or HTLV-1. Most of these viruses express short noncoding RNAs called miRNAs to regulate their own gene expression or to influence host gene expression and thus contribute to the carcinogenic processes. In this review, we will focus on oncogenic viruses and summarize the role of both types of miRNAs, viral as well as host’s, in the oncogenesis.
Collapse
|
50
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|