1
|
Moss WJ, Griffin DE. What's going on with measles? J Virol 2024; 98:e0075824. [PMID: 39041786 PMCID: PMC11334507 DOI: 10.1128/jvi.00758-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Measles is a highly transmissible systemic viral infection associated with substantial mortality primarily due to secondary infections. Measles induces lifelong immunity to reinfection but loss of immunity to other pathogens. An attenuated live virus vaccine is highly effective, but lapses in delivery have resulted in increasing cases worldwide. Although the primary cause of failure to control measles is failure to vaccinate, waning vaccine-induced immunity and the possible emergence of more virulent virus strains may also contribute.
Collapse
Affiliation(s)
- William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Paul R, Kasahara K, Sasaki J, Pérez JF, Matsunaga R, Hashiguchi T, Kuroda D, Tsumoto K. Unveiling the affinity-stability relationship in anti-measles virus antibodies: a computational approach for hotspots prediction. Front Mol Biosci 2024; 10:1302737. [PMID: 38495738 PMCID: PMC10941800 DOI: 10.3389/fmolb.2023.1302737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 03/19/2024] Open
Abstract
Recent years have seen an uptick in the use of computational applications in antibody engineering. These tools have enhanced our ability to predict interactions with antigens and immunogenicity, facilitate humanization, and serve other critical functions. However, several studies highlight the concern of potential trade-offs between antibody affinity and stability in antibody engineering. In this study, we analyzed anti-measles virus antibodies as a case study, to examine the relationship between binding affinity and stability, upon identifying the binding hotspots. We leverage in silico tools like Rosetta and FoldX, along with molecular dynamics (MD) simulations, offering a cost-effective alternative to traditional in vitro mutagenesis. We introduced a pattern in identifying key residues in pairs, shedding light on hotspots identification. Experimental physicochemical analysis validated the predicted key residues by confirming significant decrease in binding affinity for the high-affinity antibodies to measles virus hemagglutinin. Through the nature of the identified pairs, which represented the relative hydropathy of amino acid side chain, a connection was proposed between affinity and stability. The findings of the study enhance our understanding of the interactions between antibody and measles virus hemagglutinin. Moreover, the implications of the observed correlation between binding affinity and stability extend beyond the field of anti-measles virus antibodies, thereby opening doors for advancements in antibody research.
Collapse
Affiliation(s)
- Rimpa Paul
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keisuke Kasahara
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jiei Sasaki
- Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Zemella A, Beer K, Ramm F, Wenzel D, Düx A, Merkel K, Calvignac-Spencer S, Stern D, Dorner MB, Dorner BG, Widulin N, Schnalke T, Walter C, Wolbert A, Schmid BG, Mankertz A, Santibanez S. Vaccine-induced neutralizing antibodies bind to the H protein of a historical measles virus. Int J Med Microbiol 2024; 314:151607. [PMID: 38367508 DOI: 10.1016/j.ijmm.2024.151607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Kerstin Beer
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Ariane Düx
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany
| | - Kevin Merkel
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sebastien Calvignac-Spencer
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany; Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Daniel Stern
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | | | | | - Cornelia Walter
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Anne Wolbert
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Bernhard G Schmid
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany.
| |
Collapse
|
4
|
Naseer F, Ahmad T, Kousar K, Kakar S, Gul R, Anjum S, Shareef U. Formulation for the Targeted Delivery of a Vaccine Strain of Oncolytic Measles Virus (OMV) in Hyaluronic Acid Coated Thiolated Chitosan as a Green Nanoformulation for the Treatment of Prostate Cancer: A Viro-Immunotherapeutic Approach. Int J Nanomedicine 2023; 18:185-205. [PMID: 36643861 PMCID: PMC9838128 DOI: 10.2147/ijn.s386560] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023] Open
Abstract
Background Oncolytic viruses are reported as dynamite against cancer treatment nowadays. Methodology In the present work, a live attenuated oral measles vaccine (OMV) strain was used to formulate a polymeric surface-functionalized ligand-based nanoformulation (NF). OMV (half dose: not less than 500 TCID units; 0.25 mL) was encapsulated in thiolated chitosan and outermost coating with hyaluronic acid by ionic gelation method characterizing parameters was performed. Results and Discussion CD44 high expression was confirmed in prostatic adenocarcinoma (PRAD) by GEPIA which extracted data of normal and cancer tissue from GTEx and TCGA. Bioinformatics tools confirmed the viral hemagglutinin capsid protein interaction with human Caspase-I, NLRP3, and TNF-α and viral fusion protein interaction with COX-II and Caspase-I after successful delivery of MV encapsulated in NFs due to high affinity of hyaluronic acid with CD44 on the surface of prostate cancer cells. Particle size = 275.6 mm, PDI = 0.372, and ±11.5 zeta potential were shown by zeta analysis, while the thiolated group in NFs was confirmed by FTIR and Raman analysis. SEM and XRD showed a spherical smooth surface and crystalline nature, respectively, while TEM confirmed virus encapsulation within nanoparticles, which makes it very useful in targeted virus delivery systems. The virus was released from NFs in a sustained but continuous release pattern till 48 h. The encapsulated virus titer was calculated as 2.34×107 TCID50/mL units, which showed syncytia formation on post-day infection 7. Multiplicities of infection 0.1, 0.5, 1, 3, 5, 10, 15, and 20 of HA-coated OMV-loaded NFs as compared to MV vaccine on PC3 was inoculated with IC50 of 5.1 and 3.52, respectively, and growth inhibition was seen after 72 h via MTT assay which showed apoptotic cancer cell death. Conclusion Active targeted, efficacious, and sustained delivery of formulated oncolytic MV is a potent moiety in cancer treatment at lower doses with safe potential for normal prostate cells.
Collapse
Affiliation(s)
- Faiza Naseer
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Tahir Ahmad
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Kousain Kousar
- Industrial Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Salik Kakar
- Healthcare Biotechnology, Atta-ur-Rehman School of Applied Biosciences, National University of Science and Technology, Islamabad, Pakistan
| | - Rabia Gul
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Sadia Anjum
- Department of Biology, University of Hail, Hail, Saudia Arabia
| | - Usman Shareef
- Shifa College of Pharmaceutical Sciences, Shifa Tameer e Millat University, Islamabad, Pakistan
| |
Collapse
|
5
|
Adigweme I, Akpalu E, Yisa M, Donkor S, Jarju LB, Danso B, Mendy A, Jeffries D, Njie A, Bruce A, Royals M, Goodson JL, Prausnitz MR, McAllister D, Rota PA, Henry S, Clarke E. Study protocol for a phase 1/2, single-centre, double-blind, double-dummy, randomized, active-controlled, age de-escalation trial to assess the safety, tolerability and immunogenicity of a measles and rubella vaccine delivered by a microneedle patch in healthy adults (18 to 40 years), measles and rubella vaccine-primed toddlers (15 to 18 months) and measles and rubella vaccine-naïve infants (9 to 10 months) in The Gambia [Measles and Rubella Vaccine Microneedle Patch Phase 1/2 Age De-escalation Trial]. Trials 2022; 23:775. [PMID: 36104719 PMCID: PMC9472726 DOI: 10.1186/s13063-022-06493-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New strategies to increase measles and rubella vaccine coverage, particularly in low- and middle-income countries, are needed if elimination goals are to be achieved. With this regard, measles and rubella vaccine microneedle patches (MRV-MNP), in which the vaccine is embedded in dissolving microneedles, offer several potential advantages over subcutaneous delivery. These include ease of administration, increased thermostability, an absence of sharps waste, reduced overall costs and pain-free administration. This trial will provide the first clinical trial data on MRV-MNP use and the first clinical vaccine trial of MNP technology in children and infants. METHODS This is a phase 1/2, randomized, active-controlled, double-blind, double-dummy, age de-escalation trial. Based on the defined eligibility criteria for the trial, including screening laboratory investigations, 45 adults [18-40 years] followed by 120 toddlers [15-18 months] and 120 infants [9-10 months] will be enrolled in series. To allow double-blinding, participants will receive either the MRV-MNP and a placebo (0.9% sodium chloride) subcutaneous (SC) injection or a placebo MNP and the MRV by SC injection (MRV-SC). Local and systemic adverse event data will be collected for 14 days following study product administration. Safety laboratories will be repeated on day 7 and, in the adult cohort alone, on day 14. Unsolicited adverse events including serious adverse events will be collected until the final study visit for each participant on day 180. Measles and rubella serum neutralizing antibodies will be measured at baseline, on day 42 and on day 180. Cohort progression will be dependent on review of the unblinded safety data by an independent data monitoring committee. DISCUSSION This trial will provide the first clinical data on the use of a MNP to deliver the MRV and the first data on the use of MNPs in a paediatric population. It will guide future product development decisions for what may be a key technology for future measles and rubella elimination. TRIAL REGISTRATION Pan-African Clinical Trials Registry 202008836432905 . CLINICALTRIALS gov NCT04394689.
Collapse
Affiliation(s)
- Ikechukwu Adigweme
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Edem Akpalu
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Mohammed Yisa
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Simon Donkor
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Lamin B. Jarju
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Baba Danso
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Anthony Mendy
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - David Jeffries
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Abdoulie Njie
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Andrew Bruce
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Michael Royals
- Micron Biomedical, Inc, 311 Ferst Dr, NW, Suite L1309, Atlanta, GA 30332 USA
| | - James L. Goodson
- Accelerated Disease Control Branch, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Mark R. Prausnitz
- Micron Biomedical, Inc, 311 Ferst Dr, NW, Suite L1309, Atlanta, GA 30332 USA
| | - Devin McAllister
- Micron Biomedical, Inc, 311 Ferst Dr, NW, Suite L1309, Atlanta, GA 30332 USA
| | - Paul A. Rota
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Sebastien Henry
- Micron Biomedical, Inc, 311 Ferst Dr, NW, Suite L1309, Atlanta, GA 30332 USA
| | - Ed Clarke
- Vaccines and Immunity Theme, MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| |
Collapse
|
6
|
Rabaan AA, Mutair AA, Alhumaid S, Garout M, Alsubki RA, Alshahrani FS, Alfouzan WA, Alestad JH, Alsaleh AE, Al-Mozaini MA, Koritala T, Alotaibi S, Temsah MH, Akbar A, Ahmad R, Khalid Z, Muhammad J, Ahmed N. Updates on Measles Incidence and Eradication: Emphasis on the Immunological Aspects of Measles Infection. Medicina (B Aires) 2022; 58:medicina58050680. [PMID: 35630096 PMCID: PMC9147347 DOI: 10.3390/medicina58050680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Measles is an RNA virus infectious disease mainly seen in children. Despite the availability of an effective vaccine against measles, it remains a health issue in children. Although it is a self-limiting disease, it becomes severe in undernourished and immune-compromised individuals. Measles infection is associated with secondary infections by opportunistic bacteria due to the immunosuppressive effects of the measles virus. Recent reports highlight that measles infection erases the already existing immune memory of various pathogens. This review covers the incidence, pathogenesis, measles variants, clinical presentations, secondary infections, elimination of measles virus on a global scale, and especially the immune responses related to measles infection.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
- Correspondence: (A.A.R.); (N.A.)
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
| | - Fatimah S. Alshahrani
- Department of Internal Medicine, College of Medicine, King Saud University, Riyadh 11362, Saudi Arabia;
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, King Saud University Medical City, Riyadh 11451, Saudi Arabia
| | - Wadha A. Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Jeehan H. Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK;
- Microbiology Department, College of Medicine, Jabriya 46300, Kuwait
| | - Abdullah E. Alsaleh
- Core Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia;
| | - Maha A. Al-Mozaini
- Immunocompromised Host Research Section, Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia;
| | - Thoyaja Koritala
- Division of Hospital Internal Medicine, Mayo Clinic Health System, Mankato, MN 56001, USA;
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Mohamad-Hani Temsah
- Pediatric Department, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Rafiq Ahmad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Zainab Khalid
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Javed Muhammad
- Department of Microbiology, The University of Haripur, Haripur 22610, Pakistan; (R.A.); (Z.K.); (J.M.)
| | - Naveed Ahmed
- Department of Medical Microbiology & Parasitology, School of Medical Sciences, University Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
- Correspondence: (A.A.R.); (N.A.)
| |
Collapse
|
7
|
Muñoz-Alía MÁ, Nace RA, Zhang L, Russell SJ. Serotypic evolution of measles virus is constrained by multiple co-dominant B cell epitopes on its surface glycoproteins. Cell Rep Med 2021; 2:100225. [PMID: 33948566 PMCID: PMC8080110 DOI: 10.1016/j.xcrm.2021.100225] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 11/27/2022]
Abstract
After centuries of pestilence and decades of global vaccination, measles virus (MeV) genotypes capable of evading vaccine-induced immunity have not emerged. Here, by systematically building mutations into the hemagglutinin (H) glycoprotein of an attenuated measles virus strain and assaying for serum neutralization, we show that virus evolution is severely constrained by the existence of numerous co-dominant H glycoprotein antigenic sites, some critical for binding to the pathogenicity receptors SLAMF1 and nectin-4. We further demonstrate the existence in serum of protective neutralizing antibodies targeting co-dominant fusion (F) glycoprotein epitopes. Lack of a substantial reduction in serum neutralization of mutant measles viruses that retain even one of the co-dominant antigenic sites makes evolution of pathogenic measles viruses capable of escaping serum neutralization in vaccinated individuals extremely unlikely.
Collapse
Affiliation(s)
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine and Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Bianchi S, Canuti M, Ciceri G, Gori M, Colzani D, Dura M, Pennati BM, Baggieri M, Magurano F, Tanzi E, Amendola A. Molecular Epidemiology of B3 and D8 Measles Viruses through Hemagglutinin Phylogenetic History. Int J Mol Sci 2020; 21:ijms21124435. [PMID: 32580384 PMCID: PMC7352894 DOI: 10.3390/ijms21124435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/15/2023] Open
Abstract
Of the 24 known measles genotypes, only D8 and B3 are responsible for outbreaks in the last years in Europe, Asia, and America. In this study the H gene of 92 strains circulating between 2015 and 2019 in Lombardy, Northern Italy, and 1273 H sequences available in GenBank were analyzed in order to evaluate the genetic variability and to assess the conservation of the immunodominant sites. Overall, in Lombardy we observed the presence of four different B3 and three different D8 clusters, each one of them including sequences derived from viruses found in both vaccinated and unvaccinated subjects. Worldwide, the residue 400 within the H protein, a position located within the main immune epitope, is mutated in all circulating strains that belong to the two globally endemic genotypes, B3 and D8. Our data demonstrate the usefulness of measles virus (MV) H gene sequencing. Indeed, the monitoring the H protein epitopes of circulating strains could be included in the measles laboratory surveillance activities in order to improve and optimize strategies for measles control, as countries go towards elimination phase.
Collapse
Affiliation(s)
- Silvia Bianchi
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
| | - Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada;
| | - Giulia Ciceri
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
| | - Maria Gori
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
| | - Daniela Colzani
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
| | - Marco Dura
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
| | - Beatrice Marina Pennati
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
| | - Melissa Baggieri
- Department of Infectious Diseases, National Reference Laboratory for Measles and Rubella, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.B.); (F.M.)
| | - Fabio Magurano
- Department of Infectious Diseases, National Reference Laboratory for Measles and Rubella, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (M.B.); (F.M.)
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
- Coordinated Research Center “EpiSoMI”, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy
- Correspondence:
| | - Antonella Amendola
- Department of Biomedical Sciences for Health, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy; (S.B.); (G.C.); (M.G.); (D.C.); (M.D.); (B.M.P.); (A.A.)
- Coordinated Research Center “EpiSoMI”, University of Milan, via Carlo Pascal 36, 20133 Milan, Italy
| |
Collapse
|
9
|
Structural characteristics of measles virus entry. Curr Opin Virol 2020; 41:52-58. [PMID: 32413678 DOI: 10.1016/j.coviro.2020.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/30/2022]
Abstract
Measles virus, a member of the genus Morbillivirus, is highly contagious and still shows considerable mortality with over 100000 deaths annually, although efficient attenuated vaccines exist. Recent studies of measles virus haemagglutinin (MeV-H) and its receptor, including crystallographic and electron microscopic structural analyses combined with functional assays, have revealed how the MeV-H protein recognizes its cognate receptors, SLAM and Nectin-4, and how the glycan shield ensures effective vaccination. In addition, the crystal structure of the MeV-F protein indicated its similarity to those of other paramyxoviruses. Taking into account these data, several models of viral entry/membrane fusion of measles viruses and related paramyxoviruses have been proposed. Furthermore, anti-MeV-F inhibitors targeted to specific regions to inhibit MeV-F protein activation were reported, with potency for preventing MeV infection. The inhibitors targeted for entry events may potentially be applied to treatment of MeV-derived diseases, although escape mutations and drug profiles should be considered.
Collapse
|
10
|
Ferren M, Horvat B, Mathieu C. Measles Encephalitis: Towards New Therapeutics. Viruses 2019; 11:E1017. [PMID: 31684034 PMCID: PMC6893791 DOI: 10.3390/v11111017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Measles remains a major cause of morbidity and mortality worldwide among vaccine preventable diseases. Recent decline in vaccination coverage resulted in re-emergence of measles outbreaks. Measles virus (MeV) infection causes an acute systemic disease, associated in certain cases with central nervous system (CNS) infection leading to lethal neurological disease. Early following MeV infection some patients develop acute post-infectious measles encephalitis (APME), which is not associated with direct infection of the brain. MeV can also infect the CNS and cause sub-acute sclerosing panencephalitis (SSPE) in immunocompetent people or measles inclusion-body encephalitis (MIBE) in immunocompromised patients. To date, cellular and molecular mechanisms governing CNS invasion are still poorly understood. Moreover, the known MeV entry receptors are not expressed in the CNS and how MeV enters and spreads in the brain is not fully understood. Different antiviral treatments have been tested and validated in vitro, ex vivo and in vivo, mainly in small animal models. Most treatments have high efficacy at preventing infection but their effectiveness after CNS manifestations remains to be evaluated. This review describes MeV neural infection and current most advanced therapeutic approaches potentially applicable to treat MeV CNS infection.
Collapse
Affiliation(s)
- Marion Ferren
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| | - Cyrille Mathieu
- CIRI, International Center for Infectiology Research, INSERM U1111, University of Lyon, University Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, France.
| |
Collapse
|
11
|
Tadokoro T, Jahan ML, Ito Y, Tahara M, Chen S, Imai A, Sugimura N, Yoshida K, Saito M, Ose T, Hashiguchi T, Takeda M, Fukuhara H, Maenaka K. Biophysical characterization and single-chain Fv construction of a neutralizing antibody to measles virus. FEBS J 2019; 287:145-159. [PMID: 31287622 DOI: 10.1111/febs.14991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/01/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
The measles virus (MV) is a major cause of childhood morbidity and mortality worldwide. We previously established a mouse monoclonal antibody, 2F4, which shows high neutralizing titers against eight different genotypes of MV. However, the molecular basis for the neutralizing activity of the 2F4 antibody remains incompletely understood. Here, we have evaluated the binding characteristics of a Fab fragment of the 2F4 antibody. Using the MV infectious assay, we demonstrated that 2F4 Fab inhibits viral entry via either of two cellular receptors, SLAM and Nectin4. Surface plasmon resonance (SPR) analysis of recombinant proteins indicated that 2F4 Fab interacts with MV hemagglutinin (MV-H) with a KD value at the nm level. Furthermore, we designed a single-chain Fv fragment of 2F4 antibody as another potential biopharmaceutical to target measles. The stable 2F4 scFv was successfully prepared by the refolding method and shown to interact with MV-H at the μm level. Like 2F4 Fab, scFv inhibited receptor binding and viral entry. This indicates that 2F4 mAb uses the receptor-binding site and/or a neighboring region as an epitope with high affinity. These results provide insight into the neutralizing activity and potential therapeutic use of antibody fragments for MV infection.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Mst Lubna Jahan
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Yuri Ito
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Maino Tahara
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Surui Chen
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Atsutoshi Imai
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Sugimura
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Koki Yoshida
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Mizuki Saito
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Toyoyuki Ose
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
12
|
Structure-Guided Identification of a Nonhuman Morbillivirus with Zoonotic Potential. J Virol 2018; 92:JVI.01248-18. [PMID: 30232185 PMCID: PMC6232486 DOI: 10.1128/jvi.01248-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Morbilliviruses infect a broad range of mammalian hosts, including ruminants, carnivores, and humans. The recent eradication of rinderpest virus (RPV) and the active campaigns for eradication of the human-specific measles virus (MeV) have raised significant concerns that the remaining morbilliviruses may emerge in so-called vacated ecological niches. Seeking to assess the zoonotic potential of nonhuman morbilliviruses within human populations, we found that peste des petits ruminants virus (PPRV)-the small-ruminant morbillivirus-is restricted at the point of entry into human cells due to deficient interactions with human SLAMF1-the immune cell receptor for morbilliviruses. Using a structure-guided approach, we characterized a single amino acid change, mapping to the receptor-binding domain in the PPRV hemagglutinin (H) protein, which overcomes this restriction. The same mutation allowed escape from some cross-protective, human patient, anti-MeV antibodies, raising concerns that PPRV is a pathogen with zoonotic potential. Analysis of natural variation within human and ovine SLAMF1 also identified polymorphisms that could correlate with disease resistance. Finally, the mechanistic nature of the PPRV restriction was also investigated, identifying charge incompatibility and steric hindrance between PPRV H and human SLAMF1 proteins. Importantly, this research was performed entirely using surrogate virus entry assays, negating the requirement for in situ derivation of a human-tropic PPRV and illustrating alternative strategies for identifying gain-of-function mutations in viral pathogens.IMPORTANCE A significant proportion of viral pandemics occur following zoonotic transmission events, where animal-associated viruses jump species into human populations. In order to provide forewarnings of the emergence of these viruses, it is necessary to develop a better understanding of what determines virus host range, often at the genetic and structural levels. In this study, we demonstrated that the small-ruminant morbillivirus, a close relative of measles, is unable to use human receptors to enter cells; however, a change of a single amino acid in the virus is sufficient to overcome this restriction. This information will be important for monitoring this virus's evolution in the field. Of note, this study was undertaken in vitro, without generation of a fully infectious virus with this phenotype.
Collapse
|
13
|
Sato Y, Watanabe S, Fukuda Y, Hashiguchi T, Yanagi Y, Ohno S. Cell-to-Cell Measles Virus Spread between Human Neurons Is Dependent on Hemagglutinin and Hyperfusogenic Fusion Protein. J Virol 2018; 92:e02166-17. [PMID: 29298883 PMCID: PMC5827375 DOI: 10.1128/jvi.02166-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/21/2017] [Indexed: 12/30/2022] Open
Abstract
Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.
Collapse
Affiliation(s)
- Yuma Sato
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shumpei Watanabe
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Special Pathogens Laboratory, Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshinari Fukuda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Takao Hashiguchi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
14
|
Abstract
Measles is a highly contagious disease that results from infection with measles virus and is still responsible for more than 100 000 deaths every year, down from more than 2 million deaths annually before the introduction and widespread use of measles vaccine. Measles virus is transmitted by the respiratory route and illness begins with fever, cough, coryza, and conjunctivitis followed by a characteristic rash. Complications of measles affect most organ systems, with pneumonia accounting for most measles-associated morbidity and mortality. The management of patients with measles includes provision of vitamin A. Measles is best prevented through vaccination, and the major reductions in measles incidence and mortality have renewed interest in regional elimination and global eradication. However, urgent efforts are needed to increase stagnating global coverage with two doses of measles vaccine through advocacy, education, and the strengthening of routine immunisation systems. Use of combined measles-rubella vaccines provides an opportunity to eliminate rubella and congenital rubella syndrome. Ongoing research efforts, including the development of point-of-care diagnostics and microneedle patches, will facilitate progress towards measles elimination and eradication.
Collapse
Affiliation(s)
- William J Moss
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; W Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; International Vaccine Access Center, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Affiliation(s)
- Dalan Bailey
- Centre for Human Virology, Institute of Immunology & Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Muñoz-Alía MA, Casasnovas JM, Celma ML, Carabaña J, Liton PB, Fernandez-Muñoz R. Measles Virus Hemagglutinin epitopes immunogenic in natural infection and vaccination are targeted by broad or genotype-specific neutralizing monoclonal antibodies. Virus Res 2017; 236:30-43. [PMID: 28465158 DOI: 10.1016/j.virusres.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/27/2022]
Abstract
Measles virus (MV) remains a leading cause of vaccine-preventable deaths in children. Protection against MV is associated with neutralizing antibodies that preferentially recognize the viral hemagglutinin (MV-H), and to a lesser extent, the fusion protein (MV-F). Although MV is serologically monotypic, 24 genotypes have been identified. Here we report three neutralization epitopes conserved in the more prevalent circulating MV genotypes, two located in the MV-H receptor binding site (RBS) (antigenic site III) and a third in MV-H/MV-F interphase (antigenic site Ia) which are essential for MV multiplication. In contrast, two MV-H neutralization epitopes, showed a genotype-specific neutralization escape due to a single amino acid change, that we mapped in the "noose" antigenic site, or an enhanced neutralization epitope (antigenic site IIa). The monoclonal antibody (mAb) neutralization potency correlated with its binding affinity and was mainly driven by kinetic dissociation rate (koff). We developed an immunoassay for mAb binding to MV-H in its native hetero-oligomeric structure with MV-F on the surface of a MV productive steady-state persistently infected (p.i.) human cell lines, and a competitive-binding assay with serum from individuals with past infection by different MV genotypes. Binding assays revealed that a broad neutralization epitope, in RBS antigenic site, a genotype specific neutralization epitopes, in noose and IIa sites, were immunogenic in natural infection and vaccination and may elicit long-lasting humoral immunity that might contribute to explain MV immunogenic stability. These results support the design of improved measles vaccines, broad-spectrum prophylactic or therapeutic antibodies and MV-used in oncolytic therapies.
Collapse
Affiliation(s)
| | | | | | - Juan Carabaña
- Virology Unit, Ramón y Cajal Hospital, Madrid, Spain
| | | | | |
Collapse
|
17
|
Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies. Viruses 2017; 9:v9010011. [PMID: 28106841 PMCID: PMC5294980 DOI: 10.3390/v9010011] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
Measles is a highly contagious, vaccine preventable disease. Measles results in a systemic illness which causes profound immunosuppression often leading to severe complications. In 2010, the World Health Assembly declared that measles can and should be eradicated. Measles has been eliminated in the Region of the Americas, and the remaining five regions of the World Health Organization (WHO) have adopted measles elimination goals. Significant progress has been made through increased global coverage of first and second doses of measles-containing vaccine, leading to a decrease in global incidence of measles, and through improved case based surveillance supported by the WHO Global Measles and Rubella Laboratory Network. Improved vaccine delivery methods will likely play an important role in achieving measles elimination goals as these delivery methods circumvent many of the logistic issues associated with subcutaneous injection. This review highlights the status of global measles epidemiology, novel measles vaccination strategies, and describes the pathway toward measles elimination.
Collapse
|
18
|
Tahara M, Takeda M. [Measles Virus]. Uirusu 2017; 67:3-16. [PMID: 29593149 DOI: 10.2222/jsv.67.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Measles virus (MeV) is exceptionally contagious and still a major cause of death in child.However, recently significant progress towards the elimination of measles has been made through increased vaccination coverage of measles-containing vaccines. The hemagglutinin (H) protein of MeV interacts with a cellular receptor, and this interaction is the first step of infection. MeV uses two different receptors, signaling lymphocyte activation molecule (SLAM) and nectin-4 expressed on immune cells and epithelial cells, respectively. The interactions of MeV with these receptors nicely explain the immune suppressive and high contagious properties of MeV. Binding of the H protein to a receptor triggers conformational changes in the fusion (F) protein, inducing fusion between viral and host plasma membranes for entry. The stalk region of the H protein plays a key role in the F protein-triggering. Recent studies of the H protein epitopes have revealed that the receptor binding site of the H protein constitutes a major neutralizing epitope. The interaction with two proteinaceous receptors probably imposes strong functional constraints on this epitope for amino acid changes. This would be a reason why measles vaccines, which are derived from MV strains isolated more than 60 years ago, are still highly effective against all MV strains currently circulating.
Collapse
Affiliation(s)
- Maino Tahara
- Department of Virology III, National Institute of Infectious Diseases
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases
| |
Collapse
|
19
|
Logan N, Dundon WG, Diallo A, Baron MD, James Nyarobi M, Cleaveland S, Keyyu J, Fyumagwa R, Hosie MJ, Willett BJ. Enhanced immunosurveillance for animal morbilliviruses using vesicular stomatitis virus (VSV) pseudotypes. Vaccine 2016; 34:5736-5743. [PMID: 27742221 PMCID: PMC5084683 DOI: 10.1016/j.vaccine.2016.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/24/2022]
Abstract
The measurement of virus-specific neutralising antibodies represents the “gold-standard” for diagnostic serology. For animal morbilliviruses, such as peste des petits ruminants (PPRV) or rinderpest virus (RPV), live virus-based neutralisation tests require high-level biocontainment to prevent the accidental escape of the infectious agents. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of neutralising antibodies against animal morbilliviruses. By expressing the haemagglutinin (H) and fusion (F) proteins of PPRV on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Serological responses against the four distinct lineages of PPRV could be measured simultaneously and cross-neutralising responses against other morbilliviruses compared. Using this approach, we observed that titres of neutralising antibodies induced by vaccination with live attenuated PPRV were lower than those induced by wild type virus infection and the level of cross-lineage neutralisation varied between vaccinates. By comparing neutralising responses from animals infected with either PPRV or RPV, we found that responses were highest against the homologous virus, indicating that retrospective analyses of serum samples could be used to confirm the nature of the original pathogen to which an animal had been exposed. Accordingly, when screening sera from domestic livestock and wild ruminants in Tanzania, we detected evidence of cross-species infection with PPRV, canine distemper virus (CDV) and a RPV-related bovine morbillivirus, suggesting that exposure to animal morbilliviruses may be more widespread than indicated previously using existing diagnostic techniques.
Collapse
Affiliation(s)
- Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK.
| | - William G Dundon
- Animal Production and Health Laboratory, International Atomic Energy Agency, Seibersdorf, Austria.
| | - Adama Diallo
- Animal Production and Health Laboratory, International Atomic Energy Agency, Seibersdorf, Austria.
| | - Michael D Baron
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK.
| | - M James Nyarobi
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Julius Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania.
| | - Robert Fyumagwa
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK.
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, UK.
| |
Collapse
|
20
|
Hahné SJM, Nic Lochlainn LM, van Burgel ND, Kerkhof J, Sane J, Yap KB, van Binnendijk RS. Measles Outbreak Among Previously Immunized Healthcare Workers, the Netherlands, 2014. J Infect Dis 2016; 214:1980-1986. [PMID: 27923955 DOI: 10.1093/infdis/jiw480] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND We investigated a measles outbreak among healthcare workers (HCWs) by assessing laboratory characteristics, measles vaccine effectiveness, and serological correlates for protection. METHODS Cases were laboratory-confirmed measles in HCWs from hospital X during weeks 12-20 of 2014. We assessed cases' severity and infectiousness by using a questionnaire. We tested cases' sera for measles immunoglobulin M, immunoglobulin G, avidity, and plaque reduction neutralization (PRN). Throat swabs and oral fluid samples were tested by quantitative polymerase chain reaction. We calculated attack rates (ARs) by vaccination status and estimated measles vaccine effectiveness as 1 - [ARvaccinated/ARunvaccinated]. RESULTS Eight HCWs were notified as measles cases; 6 were vaccinated with measles vaccine twice, 1 was vaccinated once, and 1 was unvaccinated. All 6 twice-vaccinated cases had high avidity and PRN titers. None reported severe measles or onward transmission. Two of 4 investigated twice-vaccinated cases had pre-illness PRN titers of >120 mIU/mL. Among 106 potentially exposed HCWs, the estimated effectiveness of 2 doses of measles vaccine was 52% (95% confidence interval [CI], -207%-93%). CONCLUSIONS Measles occurred in 6 twice-vaccinated HCWs, despite 2 having adequate pre-exposure neutralizing antibodies. None of the twice-vaccinated cases had severe measles, and none had onward transmission, consistent with laboratory findings suggesting a secondary immune response. Improving 2-dose MMR coverage among HCWs would have likely reduced the size of this outbreak.
Collapse
Affiliation(s)
- Susan J M Hahné
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Laura M Nic Lochlainn
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven.,European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Jeroen Kerkhof
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Jussi Sane
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven.,European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Kioe Bing Yap
- Municipal Health Service Haaglanden, the Hague, The Netherlands
| | - Rob S van Binnendijk
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| |
Collapse
|
21
|
Measles Virus Hemagglutinin Protein Epitopes: The Basis of Antigenic Stability. Viruses 2016; 8:v8080216. [PMID: 27490564 PMCID: PMC4997578 DOI: 10.3390/v8080216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
Globally eliminating measles using available vaccines is biologically feasible because the measles virus (MV) hemagglutinin (H) protein is antigenically stable. The H protein is responsible for receptor binding, and is the main target of neutralizing antibodies. The immunodominant epitope, known as the hemagglutinating and noose epitope, is located near the receptor-binding site (RBS). The RBS also contains an immunodominant epitope. Loss of receptor binding correlates with an escape from the neutralization by antibodies that target the epitope at RBS. Another neutralizing epitope is located near RBS and is shielded by an N-linked sugar in certain genotype strains. However, human sera from vaccinees and measles patients neutralized all MV strains with similar efficiencies, regardless of the N-linked sugar modification or mutations at these epitopes. Two other major epitopes exist at a distance from RBS. One has an unstructured flexible domain with a linear neutralizing epitope. When MV-H forms a tetramer (dimer of dimers), these epitopes may form the dimer-dimer interface, and one of the two epitopes may also interact with the F protein. The neutralization mechanisms of antibodies that recognize these epitopes may involve inhibiting the H-F interaction or blocking the fusion cascade after MV-H binds to its receptors.
Collapse
|
22
|
Abstract
Measles is an infectious disease in humans caused by the measles virus (MeV). Before the introduction of an effective measles vaccine, virtually everyone experienced measles during childhood. Symptoms of measles include fever and maculopapular skin rash accompanied by cough, coryza and/or conjunctivitis. MeV causes immunosuppression, and severe sequelae of measles include pneumonia, gastroenteritis, blindness, measles inclusion body encephalitis and subacute sclerosing panencephalitis. Case confirmation depends on clinical presentation and results of laboratory tests, including the detection of anti-MeV IgM antibodies and/or viral RNA. All current measles vaccines contain a live attenuated strain of MeV, and great progress has been made to increase global vaccination coverage to drive down the incidence of measles. However, endemic transmission continues in many parts of the world. Measles remains a considerable cause of childhood mortality worldwide, with estimates that >100,000 fatal cases occur each year. Case fatality ratio estimates vary from <0.01% in industrialized countries to >5% in developing countries. All six WHO regions have set goals to eliminate endemic transmission of MeV by achieving and maintaining high levels of vaccination coverage accompanied by a sensitive surveillance system. Because of the availability of a highly effective and relatively inexpensive vaccine, the monotypic nature of the virus and the lack of an animal reservoir, measles is considered a candidate for eradication.
Collapse
|
23
|
Holzmann H, Hengel H, Tenbusch M, Doerr HW. Eradication of measles: remaining challenges. Med Microbiol Immunol 2016; 205:201-8. [PMID: 26935826 PMCID: PMC4866980 DOI: 10.1007/s00430-016-0451-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
Measles virus (MeV) is an aerosol-borne and one of the most contagious pathogenic viruses known. Almost every MeV infection becomes clinically manifest and can lead to serious and even fatal complications, especially under conditions of malnutrition in developing countries, where still 115,000 to 160,000 patients die from measles every year. There is no specific antiviral treatment. In addition, MeV infections cause long-lasting memory B and T cell impairment, predisposing people susceptible to opportunistic infections for years. A rare, but fatal long-term consequence of measles is subacute sclerosing panencephalitis. Fifteen years ago (2001), WHO has launched a programme to eliminate measles by a worldwide vaccination strategy. This is promising, because MeV is a human-specific morbillivirus (i.e. without relevant animal reservoir), safe and potent vaccine viruses are sufficiently produced since decades for common application, and millions of vaccine doses have been used globally without any indications of safety and efficacy issues. Though the prevalence of wild-type MeV infection has decreased by >90 % in Europe, measles is still not eliminated and has even re-emerged with recurrent outbreaks in developed countries, in which effective vaccination programmes had been installed for decades. Here, we discuss the crucial factors for a worldwide elimination of MeV: (1) efficacy of current vaccines, (2) the extremely high contagiosity of MeV demanding a >95 % vaccination rate based on two doses to avoid primary vaccine failure as well as the installation of catch-up vaccination programmes to fill immunity gaps and to achieve herd immunity, (3) the implications of sporadic cases of secondary vaccine failure, (4) organisation, acceptance and drawbacks of modern vaccination campaigns, (5) waning public attention to measles, but increasing concerns from vaccine-associated adverse reactions in societies with high socio-economic standards and (6) clinical, epidemiological and virological surveillance by the use of modern laboratory diagnostics and reporting systems. By consequent implementation of carefully designed epidemiologic and prophylactic measures, it should be possible to eradicate MeV globally out of mankind, as the closely related morbillivirus of rinderpest could be successfully eliminated out of the cattle on a global scale.
Collapse
Affiliation(s)
| | - Hartmut Hengel
- />Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matthias Tenbusch
- />Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - H. W. Doerr
- />Institute for Medical Virology, Goethe-University Hospital Frankfurt, Frankfurt/M., Germany
| |
Collapse
|
24
|
Beaty SM, Lee B. Constraints on the Genetic and Antigenic Variability of Measles Virus. Viruses 2016; 8:109. [PMID: 27110809 PMCID: PMC4848602 DOI: 10.3390/v8040109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/06/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
Abstract
Antigenic drift and genetic variation are significantly constrained in measles virus (MeV). Genetic stability of MeV is exceptionally high, both in the lab and in the field, and few regions of the genome allow for rapid genetic change. The regions of the genome that are more tolerant of mutations (i.e., the untranslated regions and certain domains within the N, C, V, P, and M proteins) indicate genetic plasticity or structural flexibility in the encoded proteins. Our analysis reveals that strong constraints in the envelope proteins (F and H) allow for a single serotype despite known antigenic differences among its 24 genotypes. This review describes some of the many variables that limit the evolutionary rate of MeV. The high genomic stability of MeV appears to be a shared property of the Paramyxovirinae, suggesting a common mechanism that biologically restricts the rate of mutation.
Collapse
Affiliation(s)
- Shannon M Beaty
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
25
|
Abstract
Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat.
Collapse
Affiliation(s)
- M D Baron
- The Pirbright Institute, Surrey, United Kingdom.
| | - A Diallo
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - R Lancelot
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| | - G Libeau
- CIRAD, UMR Contrôle des maladies animales exotiques et émergentes (CMAEE), Montpellier, France; INRA, UMR CMAEE 1309, Montpellier, France
| |
Collapse
|
26
|
Logan N, McMonagle E, Drew AA, Takahashi E, McDonald M, Baron MD, Gilbert M, Cleaveland S, Haydon DT, Hosie MJ, Willett BJ. Efficient generation of vesicular stomatitis virus (VSV)-pseudotypes bearing morbilliviral glycoproteins and their use in quantifying virus neutralising antibodies. Vaccine 2015; 34:814-22. [PMID: 26706278 PMCID: PMC4742518 DOI: 10.1016/j.vaccine.2015.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/20/2015] [Accepted: 12/06/2015] [Indexed: 12/18/2022]
Abstract
Morbillivirus neutralising antibodies are traditionally measured using either plaque reduction neutralisation tests (PRNTs) or live virus microneutralisation tests (micro-NTs). While both test formats provide a reliable assessment of the strength and specificity of the humoral response, they are restricted by the limited number of viral strains that can be studied and often present significant biological safety concerns to the operator. In this study, we describe the adaptation of a replication-defective vesicular stomatitis virus (VSVΔG) based pseudotyping system for the measurement of morbillivirus neutralising antibodies. By expressing the haemagglutinin (H) and fusion (F) proteins of canine distemper virus (CDV) on VSVΔG pseudotypes bearing a luciferase marker gene, neutralising antibody titres could be measured rapidly and with high sensitivity. Further, by exchanging the glycoprotein expression construct, responses against distinct viral strains or species may be measured. Using this technique, we demonstrate cross neutralisation between CDV and peste des petits ruminants virus (PPRV). As an example of the value of the technique, we demonstrate that UK dogs vary in the breadth of immunity induced by CDV vaccination; in some dogs the neutralising response is CDV-specific while, in others, the neutralising response extends to the ruminant morbillivirus PPRV. This technique will facilitate a comprehensive comparison of cross-neutralisation to be conducted across the morbilliviruses.
Collapse
Affiliation(s)
- Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Elizabeth McMonagle
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Angharad A Drew
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Emi Takahashi
- Royal Veterinary College, University of London, London NW1 0TU, United Kingdom.
| | - Michael McDonald
- Veterinary Diagnostic Services, University of Glasgow, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Michael D Baron
- The Pirbright Institute, Pirbright, Surrey GU24 0NF, United Kingdom.
| | - Martin Gilbert
- Wildlife Conservation Society, Bronx, NY, USA; Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Sarah Cleaveland
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Daniel T Haydon
- Boyd Orr Centre for Population and Ecosystem Health, Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Garscube Estate, Glasgow G61 1QH, United Kingdom.
| |
Collapse
|
27
|
Harvala H, Wiman Å, Wallensten A, Zakikhany K, Englund H, Brytting M. Role of Sequencing the Measles Virus Hemagglutinin Gene and Hypervariable Region in the Measles Outbreak Investigations in Sweden During 2013–2014. J Infect Dis 2015; 213:592-9. [DOI: 10.1093/infdis/jiv434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/24/2015] [Indexed: 01/22/2023] Open
|
28
|
Kimura H, Saitoh M, Kobayashi M, Ishii H, Saraya T, Kurai D, Tsukagoshi H, Shirabe K, Nishina A, Kozawa K, Kuroda M, Takeuchi F, Sekizuka T, Minakami H, Ryo A, Takeda M. Molecular evolution of haemagglutinin (H) gene in measles virus. Sci Rep 2015; 5:11648. [PMID: 26130388 PMCID: PMC4486977 DOI: 10.1038/srep11648] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/27/2015] [Indexed: 11/30/2022] Open
Abstract
We studied the molecular evolution of the haemagglutinin (H) gene (full length) in all genotypes (24 genotypes, 297 strains) of measles virus (MeV). The gene’s evolutionary timescale was estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also analysed positive selection sites. The MCMC tree indicated that the MeV H gene diverged from the rinderpest virus (same genus) about 250 years ago and that 24 MeV genotypes formed 3 lineages dating back to a 1915 ancestor (95% highest posterior density [HPD] 1882–1941) with relatively rapid evolution (mean rate: 9.02 × 10−4 substitutions/site/year). The 3 lineages diverged in 1915 (lineage 1, 95% HPD 1882–1941), 1954 (lineage 2, 95% HPD 1937–1969), and 1940 (lineage 3, 95% HPD 1927–1952). These 24 genotypes may have diverged and emerged between the 1940s and 1990s. Selective pressure analysis identified many negative selection sites on the H protein but only a few positive selection sites, suggesting strongly operated structural and/or functional constraint of changes on the H protein. Based on the molecular evolution of H gene, an ancestor MeV of the 24 genotypes emerged about 100 years ago and the structure of H protein has been well conserved.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan.,Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Mika Saitoh
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Miho Kobayashi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University, School of Medicine, Mitaka-shi, Tokyo 181-0004, Japan
| | - Takeshi Saraya
- Department of Respiratory Medicine, Kyorin University, School of Medicine, Mitaka-shi, Tokyo 181-0004, Japan
| | - Daisuke Kurai
- Department of Respiratory Medicine, Kyorin University, School of Medicine, Mitaka-shi, Tokyo 181-0004, Japan
| | - Hiroyuki Tsukagoshi
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Komei Shirabe
- Yamaguchi Prefectural Institute of Public Health and Environment, Yamaguchi-shi, Yamaguchi 753-0821, Japan
| | - Atsuyoshi Nishina
- College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo 101-8308, Japan
| | - Kunihisa Kozawa
- Gunma Prefectural Institute of Public Health and Environmental Sciences, Maebashi-shi, Gunma 371-0052, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hisanori Minakami
- Department of Obstetrics, Hokkaido University Graduate School of Medicine, Sapporo-shi, Hokkaido 060-8638, Japan
| | - Akihide Ryo
- Department of Molecular Biodefence Research, Yokohama City University Graduate School of Medicine, Yokohama-shi, Kanagawa 236-0004, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
29
|
Zhang X, Wallace OL, Domi A, Wright KJ, Driscoll J, Anzala O, Sanders EJ, Kamali A, Karita E, Allen S, Fast P, Gilmour J, Price MA, Parks CL. Canine distemper virus neutralization activity is low in human serum and it is sensitive to an amino acid substitution in the hemagglutinin protein. Virology 2015; 482:218-24. [PMID: 25880113 DOI: 10.1016/j.virol.2015.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/04/2015] [Accepted: 03/17/2015] [Indexed: 02/02/2023]
Abstract
Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions, which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Xinsheng Zhang
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY, USA.
| | - Olivia L Wallace
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Arban Domi
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Kevin J Wright
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Jonathan Driscoll
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative (KAVI)-Institute of Clinical Research, Nairobi, Kenya
| | - Eduard J Sanders
- Centre for Geographic Medicine Research, Kenya Medical Research Institute (KEMRI), Kilifi, Kenya & Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, UK
| | - Anatoli Kamali
- MRC/UVRI Uganda Virus Research Unit on AIDS, Masaka and Entebbe, Uganda
| | | | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Pat Fast
- Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY, USA
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, UK
| | - Matt A Price
- Department of Medical Affairs, International AIDS Vaccine Initiative, NY, NY, USA; Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Christopher L Parks
- AIDS Vaccine Design and Development Laboratory, International AIDS Vaccine Initiative (IAVI), Brooklyn, NY, USA; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY, USA
| |
Collapse
|
30
|
Antibody neutralization of retargeted measles viruses. Virology 2014; 454-455:237-46. [PMID: 24725950 DOI: 10.1016/j.virol.2014.01.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/04/2013] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
The measles virus (MV) vaccine lineage is a promising oncolytic but prior exposure to the measles vaccine or wild-type MV strains limits treatment utility due to the presence of anti-measles antibodies. MV entry can be redirected by displaying a polypeptide ligand on the Hemagglutinin (H) C-terminus. We hypothesized that retargeted MV would escape neutralization by monoclonal antibodies (mAbs) recognizing the H receptor-binding surface and be less susceptible to neutralization by human antisera. Using chimeric H proteins, with and without mutations that ablate MV receptor binding, we show that retargeted MVs escape mAbs that target the H receptor-binding surface by virtue of mutations that ablate infection via SLAM and CD46. However, C-terminally displayed domains do not mediate virus entry in the presence of human antibodies that bind to the underlying H domain. In conclusion, utility of retargeted oncolytic measles viruses does not extend to evasion of human serum neutralization.
Collapse
|
31
|
Xu S, Zhang Y, Zhu Z, Liu C, Mao N, Ji Y, Wang H, Jiang X, Li C, Tang W, Feng D, Wang C, Zheng L, Lei Y, Ling H, Zhao C, Ma Y, He J, Wang Y, Li P, Guan R, Zhou S, Zhou J, Wang S, Zhang H, Zheng H, Liu L, Ma H, Guan J, Lu P, Feng Y, Zhang Y, Zhou S, Xiong Y, Ba Z, Chen H, Yang X, Bo F, Ma Y, Liang Y, Lei Y, Gu S, Liu W, Chen M, Featherstone D, Jee Y, Bellini WJ, Rota PA, Xu W. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009. PLoS One 2013; 8:e73374. [PMID: 24073194 PMCID: PMC3779233 DOI: 10.1371/journal.pone.0073374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. PRINCIPAL FINDINGS Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3) substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. CONCLUSIONS Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.
Collapse
Affiliation(s)
- Songtao Xu
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Chunyu Liu
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Naiying Mao
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Huiling Wang
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Xiaohong Jiang
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Chongshan Li
- Shanghai Center for Disease Control and Prevention, Shanghai City, China
| | - Wei Tang
- Shanghai Center for Disease Control and Prevention, Shanghai City, China
| | - Daxing Feng
- Henan Center for Disease Control and Prevention, Zhengzhou City, Henan Province, China
| | - Changyin Wang
- Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, China
| | - Lei Zheng
- Shanxi Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Yue Lei
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Hua Ling
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Chunfang Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Yan Ma
- Hainan Center for Disease Control and Prevention, Haikou City, Hainan Province, China
| | - Jilan He
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China
| | - Yan Wang
- Liaoning Center for Disease Control and Prevention, Shenyang City, Liaoning Province, China
| | - Ping Li
- Shaanxi Center for Disease Control and Prevention, Xian City, Shannxi Province, China
| | - Ronghui Guan
- Shaanxi Center for Disease Control and Prevention, Xian City, Shannxi Province, China
| | - Shujie Zhou
- Anhui Center for Disease Control and Prevention, Hefei City, Anhui Province, China
| | - Jianhui Zhou
- Jilin Center for Disease Control and Prevention, Changchun City, Jilin Province, China
| | - Shuang Wang
- Jilin Center for Disease Control and Prevention, Changchun City, Jilin Province, China
| | - Hong Zhang
- Hunan Center for Disease Control and Prevention, Changsha City, Hunan Province, China
| | - Huanying Zheng
- Guangdong Center for Disease Control and Prevention, Guangzhou City, Guangzhou Province, China
| | - Leng Liu
- Guangdong Center for Disease Control and Prevention, Guangzhou City, Guangzhou Province, China
| | - Hemuti Ma
- Xinjiang Center for Disease Control and Prevention, Urumchi City, Xinjiang Province, China
| | - Jing Guan
- Xinjiang Center for Disease Control and Prevention, Urumchi City, Xinjiang Province, China
| | - Peishan Lu
- Jiangsu Center for Disease Control and Prevention, Nanjing City, Jiangsu Province, China
| | - Yan Feng
- Zhejiang Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Yanjun Zhang
- Zhejiang Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Shunde Zhou
- Jiangxi Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, China
| | - Ying Xiong
- Jiangxi Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, China
| | - Zhuoma Ba
- Qinghai Center for Disease Control and Prevention, Xining City, Qinghai Province, China
| | - Hui Chen
- Ningxia Center for Disease Control and Prevention, Yinchuan City, Ningxia Province, China
| | - Xiuhui Yang
- Fujian Center for Disease Control and Prevention, Fuzhou City, Fujian Province, China
| | - Fang Bo
- Heilongjiang Center for Disease Control and Prevention, Harbin City, Heilongjiang Province, China
| | - Yujie Ma
- Heilongjiang Center for Disease Control and Prevention, Harbin City, Heilongjiang Province, China
| | - Yong Liang
- Hebei Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, China
| | - Yake Lei
- Hubei Center for Disease Control and Prevention, Wuhan City, Hubei Province, China
| | - Suyi Gu
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Province, China
| | - Wei Liu
- Guangxi Center for Disease Control and Prevention, Nanning City, Guangxi Province, China
| | - Meng Chen
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - David Featherstone
- Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Youngmee Jee
- Expanded Programme on Immunization, Western Pacific Regional Office, World Health Organization, Manila, Philippines
| | - William J. Bellini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wenbo Xu
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|