1
|
Yu Z, Wang W, Yu C, He L, Ding K, Shang K, Chen S. Molecular Characterization of Feline Parvovirus from Domestic Cats in Henan Province, China from 2020 to 2022. Vet Sci 2024; 11:292. [PMID: 39057976 PMCID: PMC11281718 DOI: 10.3390/vetsci11070292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Carnivore protoparvovirus-1, feline parvovirus (FPV), and canine parvovirus (CPV) continue to spread in companion animals all over the world. As a result, FPV and CPV underwent host-to-host transfer in carnivorous wild-animal hosts. Here, a total of 82 fecal samples of suspected cat FPV infections were collected from Henan Province from 2020 to 2022. The previously published full-length sequence primers of VP2 and NS1 genes were used to amplify the targeted genes of these samples, and the complete gene sequences of 11 VP2 and 21 NS1 samples were obtained and analyzed. Analysis showed that the amino acid homology of the VP2 and NS1 genes of these isolates was 96.1-100% and 97.6-100%, respectively. The phylogenetic results showed that the VP2 and NS1 genes of the local isolates were mainly concentrated in the G1 subgroup, while the vaccine strains were distributed in the G3 subgroup. Finally, F81 cells were inoculated with the local endemic isolate Luoyang-01 (FPV-LY strain for short) for virus amplification, purification, and titer determination, and the pathogenesis of FPV-LY was detected. After five generations of blind transmission in F81 cells, cells infected with FPV-LY displayed characteristic morphological changes, including a round, threadlike, and wrinkled appearance, indicative of viral infection. The virus titer associated with this cytopathic effect (CPE) was measured at 1.5 × 106 TCID50/mL. Subsequent animal regression tests confirmed that the virus titer of the PFV-LY isolate remained at 1.5 × 106 TCID50/mL, indicating its highly pathogenic nature. Cats exposed to the virus exhibited typical clinical symptoms and pathological changes, ultimately succumbing to the infection. These results suggest that the gene mutation rate of FPV is increasing, resulting in a complex pattern of gene evolution in terms of host preference, geographical selection, and novel genetic variants. The data also indicate that continuous molecular epidemiological surveillance is required to understand the genetic diversity of FPV isolates.
Collapse
Affiliation(s)
- Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenjie Wang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Chuan Yu
- Pet & Human Health Engineering Technology Center, Luoyang Polytechnic, Luoyang 471900, China
| | - Lei He
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Shang
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Songbiao Chen
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China; (Z.Y.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
- The Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Chen S, Shang K, Chen J, Yu Z, Wei Y, He L, Ding K. Global distribution, cross-species transmission, and receptor binding of canine parvovirus-2: Risks and implications for humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172307. [PMID: 38599392 DOI: 10.1016/j.scitotenv.2024.172307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
For canine parvovirus -2 (CPV-2), a zoonotic virus capable of cross-species transmission in animals, the amino acid changes of capsid protein VP2 are key factors when binding to other species' transferrin receptors (TfR). CPV-2 variants can spread from felines and canines, for example, to Carnivora, Artiodactyla, and Pholidota species, and CPV-2c variants are essential to spread from Carnivora to Artiodactyla and Pholidota species in particular. In our study, a CPV-2a variant maintained a relatively stable trend, and the proportion of CPV-2c gradually rose from 1980 to 2021. The VP2 amino acid sequence analysis showed that five amino acid mutations at 426E/D, 305H/D, and 297S may be necessary for the virus to bind to different host receptors. Meanwhile, receptor-binding loop regions and amino acid sites 87 L, 93 N, 232I, and 305Y were associated with CPV-2 cross-species transmission. The homology of TfRs in different hosts infected with CPV-2 ranged from 77.2 % to 99.0 %, and from pig to feline, canine, and humans was 80.7 %, 80.4 %, and 77.2 %, respectively. The amino acid residues of TfRs involved in the viral binding in those hosts are highly conserved, which suggests that CPV-2 may be capable of pig-to-human transmission. Our analysis of the origin, evolutionary trend, cross-species transmission dynamics, and genetic characteristics of CPV-2 when binding to host receptors provides a theoretical basis for further research on CPV-2's mechanism of cross-species transmission and for establishing an early warning and monitoring mechanism for the possible threat of CPV-2 to animal-human public security.
Collapse
Affiliation(s)
- Songbiao Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China
| | - Ke Shang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Jian Chen
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Wei
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei He
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China.
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471003, China; The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450000, Henan, China.
| |
Collapse
|
3
|
Citarová A, Mojžišová J, Petroušková P, Pelegrinová A, Kostičák M, Korytár L, Prokeš M, Vojtek B, Ondrejková A, Drážovská M. Investigation of canine parvovirus occurrence in cats with clinical signs of feline panleukopenia in Slovakia - pilot study. J Vet Res 2024; 68:199-205. [PMID: 38947159 PMCID: PMC11210359 DOI: 10.2478/jvetres-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/28/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Feline panleukopenia is a contagious viral disease caused by the feline panleukopenia virus (FPV). A closely related pathogen is canine parvovirus (CPV), and amino acid substitutions in this virus allow it to acquire a feline host range. In feline hosts, the disease induced by CPV manifests with similar symptoms to those caused by FPV or milder ones, leading to its underdiagnosis. The aim of this study was to determine the presence of CPV type 2 (CPV-2) in cats with clinical symptoms of panleukopenia and to assess the use of commercial CPV antigen tests for the clinical diagnosis of FPV. Material and Methods Samples from 59 cats from central Slovakia were included in the study. Rectal swabs were collected and clinically tested for parvovirus infection using a commercial antigen test. Antigen-positive samples were confirmed by PCR targeting the viral VP2 gene. The sequences of the PCR products were established with the Sanger method. Results Of 59 samples, 23 were revealed to be positive for parvovirus infection by both antigen and PCR test (38.9%). Analysis with the National Center for Biotechnology Information BLASTn application showed 99.78-100% pairwise identity with FPV. The mortality rate of parvovirus-infected cats included in this study was 8.69% (2/23). Conclusion Although feline disease with CPV-2 was not confirmed, the CPV antigen test was able to detect FPV infection.
Collapse
Affiliation(s)
- Alexandra Citarová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Jana Mojžišová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Patrícia Petroušková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Andrea Pelegrinová
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Maroš Kostičák
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - L’uboš Korytár
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Marián Prokeš
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Boris Vojtek
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Anna Ondrejková
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| | - Monika Drážovská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Košice, 041 81Košice, Slovak Republic
| |
Collapse
|
4
|
Raja P, Mallika KS, Viva VY, Parthiban M, Sathish G, Vinitha V, Parthiban S, Raj GD. Complete genome sequence and phylogenetic analysis of feline panleukopenia virus from India. Virusdisease 2024; 35:34-40. [PMID: 38817404 PMCID: PMC11133262 DOI: 10.1007/s13337-023-00854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/13/2023] [Indexed: 06/01/2024] Open
Abstract
Parvoviruses are ubiquitous pathogens that cause fatal disease in cats. Feline panleukopenia virus (FPV) is a primitive virus reported first and canine parvovirus (CPV) evolved from FPV and was reported later. Both induce disease in cats and dogs with correlative signs. FPV in domestic cats is genetically diverse and some strains may differ from those used for vaccination. In this study, a virus of FPV strain, ABT/MVC/2022/FPV/001, was identified from a fecal sample of the suspected cat with severe haemorrhagic gastroenteritis. The phylogenetic analysis and complete genome sequence of the strain share 99.75% nucleotide identity with FPV variant MH559110 belonging to Tamil Nadu, India. The results also reveal similarities to strains isolated from Italy, Belgium, and China. The deduced amino acid sequence of isolated strain revealed specific amino acid substitution (Pro5Ala, Phe6Val, His7Gln, Asn9Asp, Lys16Arg, Lys19Arg, Asn52Lys, Gly58Trp, Thr66Ser, Lys67Arg, Leu70His, Asn373Asp and Ala390Thr) which differed from MH559110 and other strains. The complete genomic analysis revealed that the FPV strain circulating in India is evolving rapidly with unique antigenic variations between field FPV, CPV and vaccine strains which may be the major cause for vaccine failure in vaccinated cats. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00854-7.
Collapse
Affiliation(s)
- P. Raja
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - K. Sorna Mallika
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - V. Yuvachandran Viva
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - M. Parthiban
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - G. Sathish
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - V. Vinitha
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - S. Parthiban
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| | - G. Dhinakar Raj
- Department of Animal Biotechnology, Faculty of Basic Sciences, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600007 India
| |
Collapse
|
5
|
Hartmann SR, Charnesky AJ, Früh SP, López-Astacio RA, Weichert WS, DiNunno N, Cho SH, Bator CM, Parrish CR, Hafenstein SL. Cryo EM structures map a post vaccination polyclonal antibody response to canine parvovirus. Commun Biol 2023; 6:955. [PMID: 37726539 PMCID: PMC10509169 DOI: 10.1038/s42003-023-05319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Canine parvovirus (CPV) is an important pathogen that emerged by cross-species transmission to cause severe disease in dogs. To understand the host immune response to vaccination, sera from dogs immunized with parvovirus are obtained, the polyclonal antibodies are purified and used to solve the high resolution cryo EM structures of the polyclonal Fab-virus complexes. We use a custom software, Icosahedral Subparticle Extraction and Correlated Classification (ISECC) to perform subparticle analysis and reconstruct polyclonal Fab-virus complexes from two different dogs eight and twelve weeks post vaccination. In the resulting polyclonal Fab-virus complexes there are a total of five distinct Fabs identified. In both cases, any of the five antibodies identified would interfere with receptor binding. This polyclonal mapping approach identifies a specific, limited immune response to the live vaccine virus and allows us to investigate the binding of multiple different antibodies or ligands to virus capsids.
Collapse
Affiliation(s)
- Samantha R Hartmann
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew J Charnesky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Simon P Früh
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A López-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Nadia DiNunno
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sung Hung Cho
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
6
|
Zhao S, Hu H, Lan J, Yang Z, Peng Q, Yan L, Luo L, Wu L, Lang Y, Yan Q. Characterization of a fatal feline panleukopenia virus derived from giant panda with broad cell tropism and zoonotic potential. Front Immunol 2023; 14:1237630. [PMID: 37662912 PMCID: PMC10469695 DOI: 10.3389/fimmu.2023.1237630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Represented by feline panleukopenia virus (FPV) and canine parvovirus (CPV), the species carnivore protoparvovirus 1 has a worldwide distribution through continuous ci13rculation in companion animals such as cats and dogs. Subsequently, both FPV and CPV had engaged in host-to-host transfer to other wild animal hosts of the order Carnivora. In the present study, we emphasized the significance of cross-species transmission of parvoviruses with the isolation and characterization of an FPV from giant panda displaying severe and fatal symptoms. The isolated virus, designated pFPV-sc, displayed similar morphology as FPV, while phylogenetic analysis indicated that the nucleotide sequence of pFPV-sc clades with Chinese FPV isolates. Despite pFPV-sc is seemingly an outcome of a spillover infection event from domestic cats to giant pandas, our study also provided serological evidence that FPV or other parvoviruses closely related to FPV could be already prevalent in giant pandas in 2011. Initiation of host transfer of pFPV-sc is likely with association to giant panda transferrin receptor (TfR), as TfR of giant panda shares high homology with feline TfR. Strikingly, our data also indicate that pFPV-sc can infect cell lines of other mammal species, including humans. To sum up, observations from this study shall promote future research of cross-host transmission and antiviral intervention of Carnivore protoparvovirus 1, and necessitate surveillance studies in thus far unacknowledged potential reservoirs.
Collapse
Affiliation(s)
- Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Huanyuan Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingchao Lan
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | | | - Qianling Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liheng Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Li Luo
- Chengdu Research Base of Giant Panda Breeding, Chengdu, China
| | - Lin Wu
- Sichuan Academy of Giant Panda, Chengdu, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Pan S, Jiao R, Xu X, Ji J, Guo G, Yao L, Kan Y, Xie Q, Bi Y. Molecular characterization and genetic diversity of parvoviruses prevalent in cats in Central and Eastern China from 2018 to 2022. Front Vet Sci 2023; 10:1218810. [PMID: 37601752 PMCID: PMC10434225 DOI: 10.3389/fvets.2023.1218810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Cats are a potential source of genetic diversity for parvoviruses. Herein, 134 samples were collected from cats with clinical gastroenteritis and analyzed for the presence of viral DNA via polymerase chain reaction, which revealed 48 positive samples. Identity analysis of VP2 nucleotide sequences indicated that these 48 strains, belonging to feline panleukopenia virus (FPV) and canine parvovirus type-2 (CPV-2; including new CPV-2a and CPV-2c genotypes), shared 94.59-99.94% nucleotide identity with the reference strains. The FPV strain F8 (isolated from Vietnam) appeared to be a recombinant of strains HB2003 and JS1901, whereas the Chinese CPV-2b strain BM-(11) isolated in 2011 was believed to be a recombinant of strains AH2008 and JS1901. In phylogenetic tree analysis based on VP2 nucleotide sequences, all obtained FPV strains and most reference FPV strains were clustered together, except strain BJ-22, which originated from monkeys. Further, two new CPV-2a strains (AH2005 and AH2008) were close to the newly reported Chinese CPV-2a strains but were distant from the other CPV-2a strains, namely CPV-339 (from the United States) and K022 (from South Korea). Additionally, the FPV and CPV-2 strains had high mutation rates in the antigenic regions of the VP2 protein. According to model prediction of the CPV-VP2 protein, these mutations may cause changes in the tertiary structure of VP2. The findings of this study can be used to improve the pre-evaluation of vaccination efficacy against diseases caused by FPV and CPV-2 in domestic cats and understand their genotypic transmission and mutation trends.
Collapse
Affiliation(s)
- Shunshun Pan
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Ruiqi Jiao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Xin Xu
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Jun Ji
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Ge Guo
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Yunchao Kan
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang, China
| | - Qingmei Xie
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingzuo Bi
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science and Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Xue H, Hu C, Ma H, Song Y, Zhu K, Fu J, Mu B, Gao X. Isolation of feline panleukopenia virus from Yanji of China and molecular epidemiology from 2021 to 2022. J Vet Sci 2023; 24:e29. [PMID: 37012037 PMCID: PMC10071280 DOI: 10.4142/jvs.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/16/2022] [Accepted: 11/23/2022] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Feline panleukopenia virus (FPV) is a widespread and highly infectious pathogen in cats with a high mortality rate. Although Yanji has a developed cat breeding industry, the variation of FPV locally is still unclear. OBJECTIVES This study aimed to isolate and investigate the epidemiology of FPV in Yanji between 2021 and 2022. METHODS A strain of FPV was isolated from F81 cells. Cats suspected of FPV infection (n = 80) between 2021 and 2022 from Yanji were enrolled in this study. The capsid protein 2 (VP2) of FPV was amplified. It was cloned into the pMD-19T vector and transformed into a competent Escherichia coli strain. The positive colonies were analyzed via VP2 Sanger sequencing. A phylogenetic analysis based on a VP2 coding sequence was performed to identify the genetic relationships between the strains. RESULTS An FPV strain named YBYJ-1 was successfully isolated. The virus diameter was approximately 20-24 nm, 50% tissue culture infectious dose = 1 × 10-4.94/mL, which caused cytopathic effect in F81 cells. The epidemiological survey from 2021 to 2022 showed that 27 of the 80 samples were FPV-positive. Additionally, three strains positive for CPV-2c were unexpectedly found. Phylogenetic analysis showed that most of the 27 FPV strains belonged to the same group, and no mutations were found in the critical amino acids. CONCLUSIONS A local FPV strain named YBYJ-1 was successfully isolated. There was no critical mutation in FPV in Yanji, but some cases with CPV-2c infected cats were identified.
Collapse
Affiliation(s)
- Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Chunyi Hu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Jingfeng Fu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Biying Mu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, Agriculture, College, Yanbian University, Yanji 133002, China
| |
Collapse
|
9
|
Tracing the Genetic Evolution of Canine Parvovirus Type 2 (CPV-2) in Thailand. Pathogens 2022; 11:pathogens11121460. [PMID: 36558793 PMCID: PMC9781796 DOI: 10.3390/pathogens11121460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Canine parvovirus type 2 (CPV-2) is responsible for hemorrhagic gastroenteritis in dogs worldwide. High genomic substitution rates in CPV-2 contribute to the progressive emergence of novel variants with increased ability to evade the host immune response. Three studies have analyzed the genomic mutations of CPV-2 variants in Thailand. These investigations were independently conducted at different timepoints. Thus, a retrospective integrated analysis of CPV-2 genomic mutations has not been fully performed. Our study aimed at evaluating the evolutionary changes in CPV-2 in Thailand from 2003 to 2019. Two hundred and sixty-eight Thai CPV-2 nucleotide sequences were used for multiple amino acid sequence alignment and phylogenetic analyses. From 2003 to 2010, CPV-2a and -2b were the only variants detected. CPV-2c, emerged in 2014, replacing CPV-2a and -2b, and has become a major variant in 2019. Phylogenetic analysis revealed that the proposed mutation pattern of VP2 amino acid residues could help distinguish Thai CPV-2 variants. This comprehensive examination provides insight into the genomic evolution of CPV-2 in Thailand since its first reporting in 2003, which may facilitate the surveillance of the potential genetic alteration of emergent CPV-2 variants.
Collapse
|
10
|
Abayli H, Aslan O, Tumer KC, Can-Sahna K, Tonbak S. Predominance and first complete genomic characterization of canine parvovirus 2b in Turkey. Arch Virol 2022; 167:1831-1840. [PMID: 35716267 PMCID: PMC9206223 DOI: 10.1007/s00705-022-05509-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/08/2022] [Indexed: 11/25/2022]
Abstract
Viral enteritis is a significant threat to domestic dogs. The two primary pathogens that cause viral enteritis in dogs are canine coronavirus (CCoV) and canine parvovirus (CPV). In this study, we investigated the occurrence of CPV-2, CCoV, and canine circovirus coinfection by characterizing circulating subtypes of CPV-2 in faecal samples from symptomatic dogs admitted to veterinary clinics located in Ankara, Elazığ, Kayseri, and Kocaeli provinces of Turkey, between 2019 and 2022. Virus detection by PCR and RT-PCR revealed that CPV-2 was present in 48 (77.4%) samples, and no other agents were detected. Based on the occurrence of the codon GAT at positions 1276 to 1278 (coding for aspartate at residue 426) of VP2, all CPV-2 isolates were confirmed to be of the CPV-2b subtype. The complete genome sequences of two CPV-2b isolates showed a high degree of similarity to and phylogenetic clustering with Australian and East Asian strains/isolates. The predominant CPV strain circulating in the three different regions of Turkey was found to be a CPV-2b strain containing the amino acid substitutions at Y324I and T440A, which commonly contribute to immune escape. This is the first report of complete genomic analysis of CPV-2 isolates circulating in symptomatic domestic dogs in Turkey. The evolution of CPV-2 has raised questions about the efficacy of current vaccination regimes and highlights the importance of monitoring the emergence and spread of new CPV-2 variants.
Collapse
Affiliation(s)
- Hasan Abayli
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey.
| | - Oznur Aslan
- Department of Internal Medicine, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Kenan Cağrı Tumer
- Department of Internal Medicine, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Kezban Can-Sahna
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| | - Sukru Tonbak
- Department of Virology, Faculty of Veterinary Medicine, Firat University, 23110, Elazig, Turkey
| |
Collapse
|
11
|
Molecular analysis of the full-length VP2 gene of Brazilian strains of canine parvovirus 2 shows genetic and structural variability between wild and vaccine strains. Virus Res 2022; 313:198746. [DOI: 10.1016/j.virusres.2022.198746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
|
12
|
Zhao J, Zhang H, Zhang L, Zhang Q, Zhou N, Du T, Zhao Q, Zhou EM, Du Y, Sun Y. Isolation and Genetic Characterization of Parvoviruses From Dogs, Cats, Minks, and Raccoon Dogs in the Eastern Region of Shandong Province, China. Front Microbiol 2022; 13:862352. [PMID: 35295295 PMCID: PMC8919035 DOI: 10.3389/fmicb.2022.862352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
The eastern region of Shandong province, China, is an intensive economic mink and raccoon dog breeding area. To investigate the molecular variations of parvovirus in cats, dogs, minks, and raccoon dogs from this region, feline panleukopenia virus (FPV), canine parvovirus 2 (CPV-2), mink enteritis virus (MEV), and raccoon dog parvovirus (RDPV) were separately isolated and characterized from the respective animals with gastroenteritis. PCR amplification showed that there were 15/18 (83.3%), 9/13 (69.2%), 8/11 (72.7%), and 3/7 (42.9%) samples from the diseased animals separately positive for FPV, CPV-2, MEV, and RDPV. Of these, a total of six FPV, six MEV, four CPV-2, and three RDPV strains were successfully isolated using F81 cells. Next, the near-complete genomes of 19 parvovirus isolates were amplified and analyzed. The viral particle 2 (VP2) sequence alignment showed that they shared 97.2–100% nucleotide similarity. Phylogenetic analysis showed that the five FPV isolates were in the same branch, and an FPV isolate was closely related with MEV and RDPV isolates obtained in this study. These suggested that cross-species infection occurred in the Shandong region between the FPV, MEV, and RDPV. For the four CPV-2 isolates, three were antigenic variant strains CPV-2a, and the other was antigenic variant strain CPV-2c. Additionally, the mutations that had emerged in the VP2 amino acids of CPV-2 also occurred in the VP2 from the FPV, MEV, and RDPV isolates. This study suggested that the continuous evolution of the parvovirus may be accelerated in areas with a high density of economic animal trading/breeding, and controlling parvovirus infection in these animals remains a challenge.
Collapse
Affiliation(s)
- Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Hao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Lu Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qiang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Ning Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Taofeng Du
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yongkun Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Yongkun Du,
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
- Yani Sun,
| |
Collapse
|
13
|
Amat JAR, Patton V, Chauché C, Goldfarb D, Crispell J, Gu Q, Coburn AM, Gonzalez G, Mair D, Tong L, Martinez-Sobrido L, Marshall JF, Marchesi F, Murcia PR. Long-term adaptation following influenza A virus host shifts results in increased within-host viral fitness due to higher replication rates, broader dissemination within the respiratory epithelium and reduced tissue damage. PLoS Pathog 2021; 17:e1010174. [PMID: 34919598 PMCID: PMC8735595 DOI: 10.1371/journal.ppat.1010174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness. As viruses are obligate intracellular pathogens, their ability to replicate and spread within their hosts is key for survival, even if it leads to severe disease or death of the host. Understanding the consequences of long-term virus adaptation after viral emergence is key for pandemic preparedness. H3N8 equine influenza virus (EIV) originated in birds and has circulated in horses since 1963, thus providing unique opportunities to study virus adaptation. We compared the replication kinetics of two EIVs of the same lineage but with different evolutionary histories: the earliest virus (EIV/63, isolated in 1963), and EIV/2003, which was isolated after 40 years of continuous circulation in horses. Experimental infections of cell lines (MDCK and E.Derm cells) and equine respiratory explants show that EIV evolved towards enhanced replication and cell-to-cell spread; but reduced tissue damage, confirming that viral fitness is adaptive and does not necessarily result in higher virulence.
Collapse
Affiliation(s)
- Julien A. R. Amat
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Veronica Patton
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joanna Crispell
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alice M. Coburn
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gaelle Gonzalez
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - John F. Marshall
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Nur-Farahiyah AN, Kumar K, Yasmin AR, Omar AR, Camalxaman SN. Isolation and Genetic Characterization of Canine Parvovirus in a Malayan Tiger. Front Vet Sci 2021; 8:660046. [PMID: 34414223 PMCID: PMC8369201 DOI: 10.3389/fvets.2021.660046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
Naïve Felidae in the wild may harbor infectious viruses of importance due to cross-species transmission between the domesticated animals or human–wildlife contact. However, limited information is available on virus shedding or viremia in the captive wild felids, especially in Malaysia. Four infectious viruses of cat, feline herpesvirus (FHV), feline calicivirus (FCV), canine distemper virus (CDV), and canine parvovirus (CPV), were screened in leopards, feral cats, and tigers in Malaysia based on virus isolation in Crandell-Rees feline kidney (CRFK) cells, PCR/RT-PCR, and whole-genome sequencing analysis of the positive isolate. From a total of 36 sera collected, 11 samples showed three consecutive cytopathic effects in the cell culture and were subjected to PCR using specific primers for FHV, FCV, CDV, and CPV. Only one sample from a Malayan tiger was detected positive for CPV. The entire viral genome of CPV (UPM-CPV15/P. tigris jacksoni; GenBank Accession number MW380384) was amplified using the Sanger sequencing approach. Genome sequencing of the isolate revealed 99.13, 98.65, and 98.40% close similarity to CPV-31, CPV-d Cornell #320, and CPV-15 strains, respectively, and classified as CPV-2a. Time-scaled Bayesian Maximum Clade Credibility tree for the non-structural (NS) genes of CPV showed a close relationship to the isolates CPV-CN SD6_2014 and KSU7-SD_2004 from China and USA, respectively, while the capsid gene showed the same ancestor as the FPV-BJ04 strain from China. The higher evolution rate of the capsid protein (CP) (VP 1 and VP2) [1.649 × 10−5 (95% HPD: 7.626 × 10−3 to 7.440 × 10−3)] as compared to the NS gene [1.203 × 10−4 (95% HPD: 6.663 × 10−3 to 6.593 × 10−3)] was observed in the CPV from this study, and fairly higher than other parvovirus species from the Protoparvovirus genus. Genome sequencing of the isolated CPV from a Malayan tiger in the present study provides valuable information about the genomic characteristics of captive wild felids, which may add information on the presence of CPV in species other than dogs.
Collapse
Affiliation(s)
- Ahmad Nadzri Nur-Farahiyah
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Siti Nazrina Camalxaman
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| |
Collapse
|
15
|
Tion MT, Shima FK, Ogbu KI, Omobowale TO, Amine AA, Nguetyo SA, Igoh FA, Oochi JO, Fotina HA, Saganuwan SA, Zon GA. Genetic diversity of canine parvovirus variants circulating in Nigeria. INFECTION GENETICS AND EVOLUTION 2021; 94:104996. [PMID: 34246800 DOI: 10.1016/j.meegid.2021.104996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Canine parvovirus (CPV) is a fast-evolving single-stranded DNA virus that causes severe and fatal gastrointestinal disease in dogs. Lately, several mutations affecting viral protein (VP) capsid resulting in highly pathogenic variants with distinctive immunological and clinicopathological characteristics abound. This study involved screening stools of 44 randomly selected clinical cases of canine gastroenteritis from 4 cities (Ibadan, Jos, Makurdi, and Zaria) in Nigeria for CPV antigen using an on-the-spot immunoassay test kit, as well as, molecular detection of viral nucleic acid by polymerase chain reaction. Subsequently, nucleic acid sequencing of 1195-bp amplicons encompassing the VP2 encoding region was done. The resultant 40 high-quality amino acid sequences obtained were analysed for the identification and grouping of the viruses into their discrete variants - CPV-2a, CPV-2b, or CPV-2c, using key amino acids substitutions - Asn, Asp, or Glu respectively at position 426 of the VP2 gene. One-third (11/40; 27.5%) of the analysed sequences were identified as CPV-2a and two-third (29/40; 72.5%) as CPV-2c. The original CPV and CPV-2b were not detected. Also, the "new CPV-2a variant" with mutation S297A identified had two additional mutations (Y324I and T440A) associated with selective pressure and vaccination failure in their sequences. Similarly, unique CPV-2c mutants carrying genetic markers (S297A, Y324I, and Q370R) that are highly related to CPVs of Asian origin were observed. These findings revealed a high level of divergence of existing CPVs in circulation; suggesting that CPV is rapidly evolving in Nigeria lately.
Collapse
Affiliation(s)
- Matthew Terzungwe Tion
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria; Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine.
| | - Felix Kundu Shima
- Department of Veterinary Medicine, University of Ibadan, Oyo State, Nigeria
| | - Kenneth Ikejiofor Ogbu
- Department of Animal Health, School of Animal Health, Production and Technology, Federal College of Animal Health and Production Technology, Vom, Plateau State, Nigeria
| | | | - Andrew Aondowase Amine
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | | | - Favour Ann Igoh
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Josiah Oochi Oochi
- College of Veterinary Medicine, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Hanna Anatoliyivna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine
| | | | - Gregory Anatoliiovych Zon
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 160 Herasima Kondratieva Street, Sumy 40021, Ukraine
| |
Collapse
|
16
|
Goetschius DJ, Hartmann SR, Organtini LJ, Callaway H, Huang K, Bator CM, Ashley RE, Makhov AM, Conway JF, Parrish CR, Hafenstein SL. High-resolution asymmetric structure of a Fab-virus complex reveals overlap with the receptor binding site. Proc Natl Acad Sci U S A 2021; 118:e2025452118. [PMID: 34074770 PMCID: PMC8201801 DOI: 10.1073/pnas.2025452118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Canine parvovirus is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Overlap on the surface of parvovirus capsids between the antigenic epitope and the receptor binding site has contributed to cross-species transmission, giving rise to closely related variants. It has been shown that Mab 14 strongly binds and neutralizes canine but not feline parvovirus, suggesting this antigenic site also controls species-specific receptor binding. To visualize the conformational epitope at high resolution, we solved the cryogenic electron microscopy (cryo-EM) structure of the Fab-virus complex. We also created custom software, Icosahedral Subparticle Extraction and Correlated Classification, to solve a Fab-virus complex with only a few Fab bound per capsid and visualize local structures of the Fab-bound and -unbound antigenic sites extracted from the same complex map. Our results identified the antigenic epitope that had significant overlap with the receptor binding site, and the structures revealed that binding of Fab induced conformational changes to the virus. We were also able to assign the order and position of attached Fabs to allow assessment of complementarity between the Fabs bound to different positions. This approach therefore provides a method for using cryo-EM to investigate complementarity of antibody binding.
Collapse
Affiliation(s)
- Daniel J Goetschius
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Samantha R Hartmann
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Lindsey J Organtini
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Heather Callaway
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Kai Huang
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Carol M Bator
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Robert E Ashley
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| | - Alexander M Makhov
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Susan L Hafenstein
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802;
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
- Department of Medicine, Penn State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033
| |
Collapse
|
17
|
Ndiana LA, Odaibo GN, Olaleye DO. Molecular characterization of canine parvovirus from domestic dogs in Nigeria: Introduction and spread of a CPV-2c mutant and replacement of older CPV-2a by the "new CPV-2a" strain. Virusdisease 2021; 32:361-368. [PMID: 34350320 DOI: 10.1007/s13337-021-00689-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/10/2021] [Indexed: 11/26/2022] Open
Abstract
Canine parvovirus (CPV) is a contagious and highly pathogenic virus of dogs. After its first report in 1978, the CPV original type (CPV-2) was rapidly and totally replaced by three antigenic variants named CPV-2a, CPV-2b and CPV-2c that circulate in various countries at different frequencies and recently reported in Nigeria. This study describes the molecular characterization of 28 CPV strains in dogs presenting with gastroenteritis in veterinary clinics at Lagos and Ibadan, Nigeria. The results show the predominance (92.8%) of CPV-2a, while CPV-2c was found only in two samples. Phylogenetic analyses revealed that the CPV Nigerian strains were closely related to Asian strains and 26 CPV-2a out of 28 CPV sequences fell into 2 different subclades consistent with predicted amino acid mutations at position 267, 321, 324 and 440. Lys321Asn was evident in all the Nigerian strains whilst Phe267Tyr and Tyr324Ile were observed in 96.4% of the sequences, respectively. Thr440Ala occurred in 89.3% of sequences from this study. The new CPV-2a was predominant and appears to have replaced other CPV-2a strains in South-western Nigeria whilst the CPV-2c strain which is identical to the isolate recently reported in Northern Nigeria, may have been introduced in this country at the time of this study. Monitoring virus epidemiology is important to better understand the dynamics of CPV evolution and the eventual need to change or improve existing vaccination strategies.
Collapse
Affiliation(s)
- L A Ndiana
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Veterinary Microbiology, College of Veterinary Medicine, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - G N Odaibo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Olaleye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Molecular Epidemiological Survey of Canine Parvovirus Circulating in China from 2014 to 2019. PATHOGENS (BASEL, SWITZERLAND) 2021; 10:pathogens10050588. [PMID: 34064982 PMCID: PMC8150379 DOI: 10.3390/pathogens10050588] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022]
Abstract
The global distribution of canine parvovirus (CPV-2) derived from a closely related carnivore parvovirus poses a considerable threat to the dog population. The virus is continuously undergoing genetic evolution, giving rise to several variants. To investigate the prevalence of Chinese CPV-2 strains in recent years, a total of 30 CPV-2 strains were collected from 2018 to 2021 and the VP2 gene was sequenced and analyzed. Two variants, new CPV-2a (297Ala, 426Asn) and CPV-2c (426Glu), were identified. In contrast to previous reports, the CPV-2c variant has gained an epidemiological advantage over the new CPV-2a variant in China. To compensate for the relatively small sample size, 683 Chinese CPV-2 strains identified between 2014 and 2019 were retrieved from the GenBank database and previous publications, and analyses of these strains further supported our findings, which should be considered since the CPV-2c variant has been frequently associated with immune failure in adult dogs. VP2 protein sequence analysis revealed several amino acid substitutions, including Ala5Gly, Pro13Ser, Phe267Tyr, Tyr324Ile, Gln370Arg, Thr440Ala, and Lys570Arg. Phylogenetic analysis of full-length VP2 gene indicated a close relationship between Chinese strains and other Asian strains, suggesting mutual transmission between Asian countries. Furthermore, intercontinental transmission is a cause for concern. Surprisingly, two feline panleukopenia virus (FPV) strains with the Ile101Thr mutation in the VP2 protein were identified in canine fecal samples; FPV has been considered incapable of infecting dogs. This study clarified the epidemic characteristics of Chinese CPV-2 strains detected between 2014 and 2019, offering a reference for epidemic control. In addition, the detection of FPV in canine samples may provide information for future studies on the evolution of carnivore parvoviruses.
Collapse
|
19
|
Detection and molecular epidemiology of canine parvovirus type 2 (CPV-2) circulating in Jilin Province, Northeast China. Comp Immunol Microbiol Infect Dis 2020; 74:101602. [PMID: 33296799 DOI: 10.1016/j.cimid.2020.101602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/31/2022]
Abstract
Canine parvovirus (CPV) is highly contagious and can cause haemorrhagic enteritis and myocarditis in dogs. To understand the current epidemic situation of CPV in Jilin Province, China, a total of 44 fecal or intestinal tissue samples of pet dogs suspected of being infected with CPV from February 2018 to November 2019 in Changchun and Liaoyuan City, Jilin Province were collected.All of the 44 collected samples were tested positive to CPV-2 by a PCR assay. The sequencing and analyzing of complete VP2 genes showed that CPV-2c was the most prevalent variant (n = 31;70.4 %), followed by new-CPV-2a (n = 8;18.2 %), new-CPV-2b (n = 4; 9.1 %) and CPV-2 (n = 1; 2.3 %). Phylogenetic analysis revealed that the 31 CPV-2c strains in our study are closely related to local CPV-2c isolates in cluster I. The VP2 protein of the acquired CPV 2c strains all possessed the substitutions Ala5Gly, Phe267Tyr, Tyr324Ile, and Gln370Arg only one with a novel Arg481Lys mutation. These findings demonstrate that CPV-2c was the most prominent type of CPV circulating in Jilin in 2018-2019, clustered in a separate group that is far from the vaccine strains and suggest that further and extensive epidemiological investigation among pet dogs are warranted to provide information for usage and research of current vaccines.
Collapse
|
20
|
Genetic Characterisation and Local Genotypes of Canine Parvovirus Strains Collected from Pet Dogs in Central and Eastern China During 2018-2019. J Vet Res 2020; 64:477-486. [PMID: 33367135 PMCID: PMC7734690 DOI: 10.2478/jvetres-2020-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Introduction Canine parvovirus type-2 (CPV-2) causes acute infectious diseases in puppies, which show high morbidity and mortality. Better effect of vaccination against these diseases could be achieved with deeper knowledge of CPV-2 genotype dissemination and mutation history. This study investigated CPV-2–positive samples collected recently over a wide region of China. Material and Methods A total of 118 faecal samples from dogs identified as CPV-positive were collected from veterinary clinics in central and eastern China. Overall, 16 strains collected from Anhui, 29 from Henan, and 16 from Zhejiang Province were sequenced to determine the genotypic composition of CPV-2 and mutational complexity of CPV-VP2. Results The CPV-2a, CPV-2b, and CPV-2c genotypes were detected in Anhui and Henan Provinces, while CPV-2c alone was detected in Zhejiang Province. Sequence analysis of all strains showed 98.5%–99.8%, 98.3%–99.9%, and 98.7%–99.8% identity among the 16 Anhui, 29 Henan, and 16 Zhejiang strains, respectively. Strains collected from Anhui and Henan Provinces showed lower identity (97.0%), suggesting greater genetic divergence in central China. The mutation rates of Henan and Anhui strains were lower than that of Zhejiang strains. Major amino acid mutations occurred at sites 5, 370, 426, and 440. Epitope and entropy analyses implied these sites’ likely conformance to the principles of mutation tendency, complexity, and diversity. Conclusion The findings for the evolutionary structure of CPV-2 strains collected from three provinces in central and eastern China advance trend monitoring of the genetic variation in canine parvovirus and point to its implications in the development of novel vaccines.
Collapse
|
21
|
Wünschmann A, Lopez-Astacio R, Armién AG, Reed L, Parrish CR. Parvovirus-induced encephalitis in a juvenile raccoon. J Vet Diagn Invest 2020; 33:140-143. [PMID: 33100176 DOI: 10.1177/1040638720967381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A juvenile raccoon was euthanized because of severe neurologic signs. At postmortem examination, no significant gross lesions were present. Histologic evaluation demonstrated nonsuppurative encephalitis in thalamus, brainstem, and hippocampus, cerebellar Purkinje cell loss, as well as poliomyelitis and demyelination of the spinal cord. Parvovirus antigen-specific immunohistochemistry revealed immunopositive neurons in the brainstem, cerebral cortex, and hippocampus. A few Purkinje cells were also immunopositive. DNA extracted from formalin-fixed, paraffin-embedded brain tissue (thalamus, hippocampus, cerebral cortex) yielded a positive signal using PCR targeting both feline and canine parvovirus. Sequencing analyses from a fragment of the NS1 gene and a portion of the VP2 gene confirmed the presence of DNA of a recent canine parvovirus variant (CPV-2a-like virus) in the cerebellum. Our case provides evidence that a recent canine parvovirus (CPV) strain (Carnivore protoparvovirus 1) can infect cerebral and diencephalic neurons and cause encephalitis in an otherwise healthy raccoon. Parvovirus-induced encephalitis is a differential diagnosis of rabies and canine distemper in raccoons with neurologic signs.
Collapse
Affiliation(s)
- Arno Wünschmann
- Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN
| | - Robert Lopez-Astacio
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Aníbal G Armién
- Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN.,California Animal Health and Food Safety Lab, Davis, CA
| | - Leslie Reed
- Wildlife Rehabilitation Center of Minnesota, Roseville, MN
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
22
|
Wünschmann A, Lopez-Astacio R, Armien AG, Parrish CR. Cerebellar hypoplasia and dysplasia in a juvenile raccoon with parvoviral infection. J Vet Diagn Invest 2020; 32:463-466. [PMID: 32404029 DOI: 10.1177/1040638720912229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A juvenile raccoon (Procyon lotor) was submitted dead to the Minnesota Veterinary Diagnostic Laboratory for rabies testing without history. The animal had marked hypoplasia of the cerebellum. Histology demonstrated that most folia lacked granule cells and had randomly misplaced Purkinje cells. Immunohistochemistry revealed the presence of parvoviral antigen in a few neurons and cell processes. PCR targeting feline and canine parvovirus yielded a positive signal. Sequencing analyses from a fragment of the nonstructural protein 1 (NS1) gene and a portion of the viral capsid protein 2 (VP2) gene confirmed the presence of DNA of a recent canine parvovirus variant (CPV-2a-like virus) in the cerebellum. Our study provides evidence that (canine) parvovirus may be associated with cerebellar hypoplasia and dysplasia in raccoons, similar to the disease that occurs naturally and has been reproduced experimentally by feline parvoviral infection of pregnant cats, with subsequent intrauterine or neonatal infections of the offspring.
Collapse
Affiliation(s)
- Arno Wünschmann
- Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Wünschmann, Armien).,Baker Institute of Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Lopez-Astacio, Parrish)
| | - Robert Lopez-Astacio
- Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Wünschmann, Armien).,Baker Institute of Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Lopez-Astacio, Parrish)
| | - Anibal G Armien
- Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Wünschmann, Armien).,Baker Institute of Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Lopez-Astacio, Parrish)
| | - Colin R Parrish
- Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (Wünschmann, Armien).,Baker Institute of Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY (Lopez-Astacio, Parrish)
| |
Collapse
|
23
|
Nguyen Manh T, Piewbang C, Rungsipipat A, Techangamsuwan S. Molecular and phylogenetic analysis of Vietnamese canine parvovirus 2C originated from dogs reveals a new Asia-IV clade. Transbound Emerg Dis 2020; 68:1445-1453. [PMID: 32854156 DOI: 10.1111/tbed.13811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
Canine parvovirus type 2 (CPV-2) is a small, single-stranded DNA virus causing fatal haemorrhagic enteritis in dogs. Currently, CPV-2 is classified into CPV-2a, CPV-2b and CPV-2c based on genetic variation in the VP2 gene. The CPV-2c variant has become ubiquitous worldwide and gained attention for monitoring parvoviral evolution. In this study, we characterized the full-length genome sequences of CPV-2c strains obtained from 59 dogs in Vietnam. Molecular analysis revealed that Vietnamese CPV-2c shared a common evolutionary pattern with the Asian CPV-2 clade, which is marked by genetic signature patterns in the structural and nonstructural proteins. In addition, these Vietnamese CPV-2c strains exhibited unique Thr112Ile and Ile447Met mutations in the VP1 and VP2 sequence, respectively. Interestingly, phylogenetic analysis indicated that the mutations of amino acid residues in both the structural and nonstructural genes have contributed to the emergence of a new clade, designated here as the Asia-IV clade. The substitution rates, estimated from a dataset containing 199 sequences over the last 42 years, confirmed that CPV-2 showed a high rate of nucleotide substitution, at about 2.49 × 10-4 nucleotide substitutions per site per year (nt/s/y), with VP1/2 and NS1/2 estimates of 3.06 × 10-4 and 3.16 × 10-4 nt/s/y, respectively. Even though no evidence of genetic recombination in these Vietnamese CPV-2c strains was established, potential positive selection sites were observed in both the structural and nonstructural genes, suggesting the viral evolutionary process has occurred in both the structural and nonstructural proteins. Genetic and evolutionary analysis of the full-length genome sequence is necessary to gain evolutionary insight of CPV-2.
Collapse
Affiliation(s)
- Tuong Nguyen Manh
- International Graduate Program in Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anudep Rungsipipat
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Group, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
24
|
Kwan E, Carrai M, Lanave G, Hill J, Parry K, Kelman M, Meers J, Decaro N, Beatty JA, Martella V, Barrs VR. Analysis of canine parvoviruses circulating in Australia reveals predominance of variant 2b and identifies feline parvovirus-like mutations in the capsid proteins. Transbound Emerg Dis 2020; 68:656-666. [PMID: 32657506 DOI: 10.1111/tbed.13727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Canine parvovirus (CPV) is a major enteric pathogen of dogs worldwide that emerged in the late 1970s from a feline parvovirus (FPV)-like ancestral virus. Shortly after its emergence, variant CPVs acquired amino acid (aa) mutations in key capsid residues, associated with biological and/or antigenic changes. This study aimed to identify and analyse CPV variants and their capsid mutations amongst Australian dogs, to gain insights into the evolution of CPV in Australia and to investigate relationships between the disease and vaccination status of dogs from which viruses were detected. CPV VP2 sequences were amplified from 79 faecal samples collected from dogs with parvoviral enteritis at 20 veterinary practices in five Australian states. The median age at diagnosis was 4 months (range 1-96 months). Only 3.7% of dogs with vaccination histories had completed recommended vaccination schedules, while 49% were incompletely vaccinated and 47.2% were unvaccinated. For the first time, CPV-2b has emerged as the dominant antigenic CPV variant circulating in dogs with parvoviral enteritis in Australia, comprising 54.4% of viruses, while CPV-2a and CPV-2 comprised 43.1% and 2.5%, respectively. The antigenic variant CPV-2c was not identified. Analysis of translated VP2 sequences revealed a vast repertoire of amino acid (aa) mutations. Several Australian CPV strains displayed signatures in the VP2 protein typical of Asian CPVs, suggesting possible introduction of CPV strains from Asia, and/or CPV circulation between Asia and Australia. Canine parvoviruses were identified containing aa residues typical of FPV at key capsid (VP2) positions, representing reverse mutations or residual mutations retained from CPV-2 during adaptation from an FPV-like ancestor, suggesting that evolutionary intermediates between CPV-2 and FPV are circulating in the field. Similarly, intermediates between CPV-2a-like viruses and CPV-2 were also identified. These findings help inform a better understanding of the evolution of CPV in dogs.
Collapse
Affiliation(s)
- Emily Kwan
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Maura Carrai
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | | | | | - Mark Kelman
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia
| | - Joanne Meers
- School of Veterinary Science, The University of Queensland, Saint Lucia, QLD, Australia
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Julia A Beatty
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano (Bari), Italy
| | - Vanessa R Barrs
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, Australia.,Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
25
|
Leal É, Liang R, Liu Q, Villanova F, Shi L, Liang L, Li J, Witkin SS, Cui S. Regional adaptations and parallel mutations in Feline panleukopenia virus strains from China revealed by nearly-full length genome analysis. PLoS One 2020; 15:e0227705. [PMID: 31945103 PMCID: PMC6964837 DOI: 10.1371/journal.pone.0227705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/25/2019] [Indexed: 01/15/2023] Open
Abstract
Protoparvoviruses, widespread among cats and wild animals, are responsible for leukopenia. Feline panleukopenia virus (FPLV) in domestic cats is genetically diverse and some strains may differ from those used for vaccination. The presence of FPLV in two domestic cats from Hebei Province in China was identified by polymerase chain reaction. Samples from these animals were used to isolate FPLV strains in CRFK cells for genome sequencing. Phylogenetic analysis was performed to compare our isolates with available sequences of FPLV, mink parvovirus (MEV) and canine parvovirus (CPV). The isolated strains were closely related to strains of FPLV/MEV isolated in the 1960s. Our analysis also revealed that the evolutionary history of FPLV and MEV is characterized by local adaptations in the Vp2 gene. Thus, it is likely that new FPLV strains are emerging to evade the anti-FPLV immune response.
Collapse
Affiliation(s)
- Élcio Leal
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Federal University of Pará, Belém, Pará, Brazil
- * E-mail: (JL); (SC); (EL)
| | - Ruiying Liang
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Qi Liu
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | | | - Lijun Shi
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- * E-mail: (JL); (SC); (EL)
| | - Steven S. Witkin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States of America
- Institute of Tropical Medicine, Sao Paulo, Brazil
| | - Shangjin Cui
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
- Beijing Observation Station for Veterinary Drug and Veterinary Biotechnology, Ministry of Agriculture, Beijing, China
- * E-mail: (JL); (SC); (EL)
| |
Collapse
|
26
|
Limited Intrahost Diversity and Background Evolution Accompany 40 Years of Canine Parvovirus Host Adaptation and Spread. J Virol 2019; 94:JVI.01162-19. [PMID: 31619551 DOI: 10.1128/jvi.01162-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
Canine parvovirus (CPV) is a highly successful pathogen that has sustained pandemic circulation in dogs for more than 40 years. Here, integrating full-genome and deep-sequencing analyses, structural information, and in vitro experimentation, we describe the macro- and microscale features that accompany CPV's evolutionary success. Despite 40 years of viral evolution, all CPV variants are more than ∼99% identical in nucleotide sequence, with only a limited number (<40) of substitutions becoming fixed or widespread during this time. Notably, most substitutions in the major capsid protein (VP2) gene are nonsynonymous, altering amino acid residues that fall within, or adjacent to, the overlapping receptor footprint or antigenic regions, suggesting that natural selection has channeled much of CPV evolution. Among the limited number of variable sites, CPV genomes exhibit complex patterns of variation that include parallel evolution, reversion, and recombination, compromising phylogenetic inference. At the intrahost level, deep sequencing of viral DNA in original clinical samples from dogs and other host species sampled between 1978 and 2018 revealed few subconsensus single nucleotide variants (SNVs) above ∼0.5%, and experimental passages demonstrate that substantial preexisting genetic variation is not necessarily required for rapid host receptor-driven adaptation. Together, these findings suggest that although CPV is capable of rapid host adaptation, a relatively low mutation rate, pleiotropy, and/or a lack of selective challenges since its initial emergence have inhibited the long-term accumulation of genetic diversity. Hence, continuously high levels of inter- and intrahost diversity are not necessarily required for virus host adaptation.IMPORTANCE Rapid mutation rates and correspondingly high levels of intra- and interhost diversity are often cited as key features of viruses with the capacity for emergence and sustained transmission in a new host species. However, most of this information comes from studies of RNA viruses, with relatively little known about evolutionary processes in viruses with single-stranded DNA (ssDNA) genomes. Here, we provide a unique model of virus evolution, integrating both long-term global-scale and short-term intrahost evolutionary processes of an ssDNA virus that emerged to cause a pandemic in a new host animal. Our analysis reveals that successful host jumping and sustained transmission does not necessarily depend on a high level of intrahost diversity nor result in the continued accumulation of high levels of long-term evolution change. These findings indicate that all aspects of the biology and ecology of a virus are relevant when considering their adaptability.
Collapse
|
27
|
Evidence of CPV2c introgression into Croatia and novel insights into phylogeny and cell tropism. Sci Rep 2019; 9:16909. [PMID: 31729462 PMCID: PMC6858334 DOI: 10.1038/s41598-019-53422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/28/2019] [Indexed: 12/16/2022] Open
Abstract
Canine parvovirus type 2 (CPV2) emerged for the first time in 1978 and evolved into two antigenic variants CPV2a and CPV2b and the third new antigenic variant CPV2c reported in 2000 in Italy. During 2014 unexplained outbreaks of gastroenteritis were observed in kennels where an extensive vaccination program was ongoing and where vaccinated animals showed pathologic lesions consistent with typical parvovirosis. The aim of this study was to investigate whether CPV2 could have played a role in the emergence of these cases and to evaluate genetic or pathological specificities of the virus and the disease. Using PCR and phylogenetic analysis we showed that the CPV2c variant is circulating in Croatia and is in close relationships with isolates from North and South America. Histopathological lesions and cell tropism that are known for CPV2 we are reporting the identification of the virus in glial cells and ovaries. It seems that evolution of CPV and CPV2a-c and adaptation to dogs are two independent events. Croatian isolates had specific and some unique amino acid mutations under positive selection. The effect of the alterations on the immunoglobulin binding cannot be excluded.
Collapse
|
28
|
Abstract
Canine parvovirus (CPV) is an important pathogen causing severe diseases in dogs, including acute hemorrhagic enteritis, myocarditis, and cerebellar disease. Cross-species transmission of CPV occurs as a result of mutations on the viral capsid surface that alter the species-specific binding to the host receptor, transferrin receptor type-1 (TfR). The interaction between CPV and TfR has been extensively studied, and previous analyses have suggested that the CPV-TfR complex is asymmetric. To enhance the understanding of the underlying molecular mechanisms, we determined the CPV-TfR interaction using cryo-electron microscopy to solve the icosahedral (3.0-Å resolution) and asymmetric (5.0-Å resolution) complex structures. Structural analyses revealed conformational variations of the TfR molecules relative to the binding site, which translated into dynamic molecular interactions between CPV and TfR. The precise footprint of the receptor on the virus capsid was identified, along with the identity of the amino acid residues in the virus-receptor interface. Our "rock-and-roll" model provides an explanation for previous findings and gives insights into species jumping and the variation in host ranges associated with new pandemics in dogs.
Collapse
|
29
|
Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. J Virol 2019. [PMID: 30996096 DOI: 10.1128/jvi.02220–18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Collapse
|
30
|
Carnivore Parvovirus Ecology in the Serengeti Ecosystem: Vaccine Strains Circulating and New Host Species Identified. J Virol 2019; 93:JVI.02220-18. [PMID: 30996096 DOI: 10.1128/jvi.02220-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Carnivore parvoviruses infect wild and domestic carnivores, and cross-species transmission is believed to occur. However, viral dynamics are not well understood, nor are the consequences for wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multihost system such as the Serengeti ecosystem and identify potential threats for wildlife conservation, we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separate routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP) and, second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized; new host-virus associations involving wild dogs, jackals, and hyenas were discovered; and our results suggest that mutations in the fragment of the vp2 gene were not required for infection of different carnivore species. In domestic dogs, 6 sequences belonged to the CPV-2a strain, while 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally.IMPORTANCE Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. This study furthers the understanding of carnivore parvovirus epidemiology, suggesting that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP), with new host species identified, and that canine parvoviruses are present in the dog population living around the SNP. Little evidence of transmission of canine parvoviruses into wild carnivore species was found; however, the detection of vaccine-derived virus (described here for the first time to be circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region.
Collapse
|
31
|
Complex and Dynamic Interactions between Parvovirus Capsids, Transferrin Receptors, and Antibodies Control Cell Infection and Host Range. J Virol 2018; 92:JVI.00460-18. [PMID: 29695427 DOI: 10.1128/jvi.00460-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/17/2018] [Indexed: 01/18/2023] Open
Abstract
Antibody and receptor binding are key virus-host interactions that control host range and determine the success of infection. Canine and feline parvovirus capsids bind the transferrin receptor type 1 (TfR) to enter host cells, and specific structural interactions appear necessary to prepare the stable capsids for infection. Here, we define the details of binding, competition, and occupancy of wild-type and mutant parvovirus capsids with purified receptors and antibodies. TfR-capsid binding interactions depended on the TfR species and varied widely, with no direct relationship between binding affinity and infection. Capsids bound feline, raccoon, and black-backed jackal TfRs at high affinity but barely bound canine TfRs, which mediated infection efficiently. TfRs from different species also occupied capsids to different levels, with an estimated 1 to 2 feline TfRs but 12 black-backed jackal TfRs binding each capsid. Multiple alanine substitutions within loop 1 on the capsid surface reduced TfR binding but substitutions within loop 3 did not, suggesting that loop 1 directly engaged the TfR and loop 3 sterically affected that interaction. Binding and competition between different TfRs and/or antibodies showed complex relationships. Both antibodies 14 and E competed capsids off TfRs, but antibody E could also compete capsids off itself and antibody 14, likely by inducing capsid structural changes. In some cases, the initial TfR or antibody binding event affected subsequent TfR binding, suggesting that capsid structure changes occur after TfR or antibody binding and may impact infection. This shows that precise, host-specific TfR-capsid interactions, beyond simple attachment, are important for successful infection.IMPORTANCE Host receptor binding is a key step during viral infection and may control both infection and host range. In addition to binding, some viruses require specific interactions with host receptors in order to infect, and anti-capsid antibodies can potentially disrupt these interactions, leading to neutralization. Here, we examine the interactions between parvovirus capsids, the receptors from different hosts, and anti-capsid antibodies. We show that interactions between parvovirus capsids and host-specific TfRs vary in both affinity and in the numbers of receptors bound, with complex effects on infection. In addition, antibodies binding to two sites on the capsids had different effects on TfR-capsid binding. These experiments confirm that receptor and antibody binding to parvovirus capsids are complex processes, and the infection outcome is not determined simply by the affinity of attachment.
Collapse
|
32
|
Franzo G, Tucciarone CM, Cecchinato M, Drigo M. Canine parvovirus type 2 (CPV-2) and Feline panleukopenia virus (FPV) codon bias analysis reveals a progressive adaptation to the new niche after the host jump. Mol Phylogenet Evol 2017; 114:82-92. [PMID: 28603036 DOI: 10.1016/j.ympev.2017.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/01/2017] [Accepted: 05/21/2017] [Indexed: 10/19/2022]
Abstract
Based on virus dependence from host cell machinery, their codon usage is expected to show a strong relation with the host one. Even if this association has been stated, especially for bacteria viruses, the linkage is considered to be less consistent for more complex organisms and a codon bias adaptation after host jump has never been proven. Canine parvovirus type 2 (CPV-2) was selected as a model because it represents a well characterized case of host jump, originating from Feline panleukopenia virus (FPV). The current study demonstrates that the adaptation to specific tissue and host codon bias affected CPV-2 evolution. Remarkably, FPV and CPV-2 showed a higher closeness toward the codon bias of the tissues they display the higher tropism for. Moreover, after the host jump, a clear and significant trend was evidenced toward a reduction in the distance between CPV-2 and the dog codon bias over time. This evidence was not confirmed for FPV, suggesting that an equilibrium has been reached during the prolonged virus-host co-evolution. Additionally, the presence of an intermediate pattern displayed by some strains infecting wild species suggests that these could have facilitated the host switch also by acting on codon bias.
Collapse
|
33
|
Fei-Fei D, Yong-Feng Z, Jian-Li W, Xue-Hua W, Kai C, Chuan-Yi L, Shou-Yu G, Jiang S, Zhi-Jing X. Molecular characterization of feline panleukopenia virus isolated from mink and its pathogenesis in mink. Vet Microbiol 2017. [PMID: 28622870 DOI: 10.1016/j.vetmic.2017.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Six feline panleukopenia viruses (FPV) were detected in the intestinal samples from the 176 mink collected in China during 2015 to 2016, named MEV-SD1, MEV-SD2, MEV-SD3, MEV-SD4, MEV-SD5 and MEV-SD6. The VP2 genes of the isolates shared 98.9%-100% identity with the reference sequences. The substitution of residue V300A in VP2 protein differentiates the isolates from the reference MEVs, and A300 is a characteristic of FPV. Furthermore, phylogenetic analysis of VP2 genes indicated that the six isolates were clustered into the same branch of all the reference FPVs. The NS1 genes of the isolates shared 98.2%-100% identity with the reference sequences. The NS1 genes of the six isolates and the three reference FPVs formed one unique evolutionary branch. To clarify the pathogenicity of the isolates, animal experiments were performed on healthy mink, using MEV-SD1. As a result, the morbidity of the inoculated animals was 100% and the mortality was as high as 38.9%. It was implied that the FPV infection caused a high morbidity and mortality in mink and the inoculation dose had an effect on pathogenicity of MEV-SD1 in mink.
Collapse
Affiliation(s)
- Diao Fei-Fei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhao Yong-Feng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wang Jian-Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Wei Xue-Hua
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Cui Kai
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Liu Chuan-Yi
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guo Shou-Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xie Zhi-Jing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, Shandong, 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
34
|
Zhou P, Zeng W, Zhang X, Li S. The genetic evolution of canine parvovirus - A new perspective. PLoS One 2017; 12:e0175035. [PMID: 28362831 PMCID: PMC5376324 DOI: 10.1371/journal.pone.0175035] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 02/03/2023] Open
Abstract
To trace the evolution process of CPV-2, all of the VP2 gene sequences of CPV-2 and FPV (from 1978 to 2015) from GenBank were analyzed in this study. Then, several new ideas regarding CPV-2 evolution were presented. First, the VP2 amino acid 555 and 375 positions of CPV-2 were first ruled out as a universal mutation site in CPV-2a and amino acid 101 position of FPV feature I or T instead of only I in existing rule. Second, the recently confusing nomenclature of CPV-2 variants was substituted with a optional nomenclature that would serve future CPV-2 research. Third, After check the global distribution of variants, CPV-2a is the predominant variant in Asia and CPV-2c is the predominant variant in Europe and Latin America. Fourth, a series of CPV-2-like strains were identified and deduced to evolve from modified live vaccine strains. Finally, three single VP2 mutation (F267Y, Y324I, and T440A) strains were caught concern. Furthermore, these three new VP2 mutation strains may be responsible for vaccine failure, and the strains with VP2 440A may become the novel CPV sub-variant. In conclusion, a summary of all VP2 sequences provides a new perspective regarding CPV-2 evolution and the correlative biological studies needs to be further performed.
Collapse
Affiliation(s)
- Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
| | - Weijie Zeng
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xin Zhang
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Tianhe District, Guangzhou, Guangdong Province, People’s Republic of China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, Guangdong Province, People’s Republic of China
- Guangdong Engineering and Technological Research Center for Pets, Guangzhou, Guangdong Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
35
|
Fan W, Sun Z, Shen T, Xu D, Huang K, Zhou J, Song S, Yan L. Analysis of Evolutionary Processes of Species Jump in Waterfowl Parvovirus. Front Microbiol 2017; 8:421. [PMID: 28352261 PMCID: PMC5349109 DOI: 10.3389/fmicb.2017.00421] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/28/2023] Open
Abstract
Waterfowl parvoviruses are classified into goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) according to their antigenic features and host preferences. A novel duck parvovirus (NDPV), identified as a new variant of GPV, is currently infecting ducks, thus causing considerable economic loss. This study analyzed the molecular evolution and population dynamics of the emerging parvovirus capsid gene to investigate the evolutionary processes concerning the host shift of NDPV. Two important amino acids changes (Asn-489 and Asn-650) were identified in NDPV, which may be responsible for host shift of NDPV. Phylogenetic analysis indicated that the currently circulating NDPV originated from the GPV lineage. The Bayesian Markov chain Monte Carlo tree indicated that the NDPV diverged from GPV approximately 20 years ago. Evolutionary rate analyses demonstrated that GPV evolved with 7.674 × 10-4 substitutions/site/year, and the data for MDPV was 5.237 × 10-4 substitutions/site/year, whereas the substitution rate in NDPV branch was 2.25 × 10-3 substitutions/site/year. Meanwhile, viral population dynamics analysis revealed that the GPV major clade, including NDPV, grew exponentially at a rate of 1.717 year-1. Selection pressure analysis showed that most sites are subject to strong purifying selection and no positively selected sites were found in NDPV. The unique immune-epitopes in waterfowl parvovirus were also estimated, which may be helpful for the prediction of antibody binding sites against NDPV in ducks.
Collapse
Affiliation(s)
- Wentao Fan
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zhaoyu Sun
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Tongtong Shen
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Danning Xu
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes Guangzhou, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jiyong Zhou
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Liping Yan
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
36
|
Evidence of canine parvovirus transmission to a civet cat ( Paradoxurus musangus) in Singapore. One Health 2016; 2:122-125. [PMID: 28616485 PMCID: PMC5441366 DOI: 10.1016/j.onehlt.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 11/27/2022] Open
Abstract
Cross-species transmission can often lead to deleterious effects in incidental hosts. Parvoviruses have a wide host range and primarily infect members of the order Carnivora. Here we describe juvenile common palm civet cats (Paradoxurus musangus) that were brought to the Singapore zoo and fell ill while quarantined. The tissues of two individual civets that died tested PCR-positive for parvovirus infection. Phylogenetic analysis revealed this parvovirus strain falls in a basal position to a clade of CPV that have infected dogs in China and Uruguay, suggesting cross-species transmission from domestic to wild animals. Our analysis further identified these viruses as genotype CPV-2a that is enzootic in carnivores. The ubiquity of virus infection in multiple tissues suggests this virus is pathogenic to civet cats. Here we document the cross-species transmission from domestic dogs and cats to wild civet populations, highlighting the vulnerability of wildlife to infectious agents in companion animals.
Collapse
|
37
|
Wang J, Lin P, Zhao H, Cheng Y, Jiang Z, Zhu H, Wu H, Cheng S. Continuing evolution of canine parvovirus in China: Isolation of novel variants with an Ala5Gly mutation in the VP2 protein. INFECTION GENETICS AND EVOLUTION 2016; 38:73-78. [DOI: 10.1016/j.meegid.2015.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 12/27/2022]
|
38
|
Computational and Functional Analysis of the Virus-Receptor Interface Reveals Host Range Trade-Offs in New World Arenaviruses. J Virol 2015; 89:11643-53. [PMID: 26355089 DOI: 10.1128/jvi.01408-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Animal viruses frequently cause zoonotic disease in humans. As these viruses are highly diverse, evaluating the threat that they pose remains a major challenge, and efficient approaches are needed to rapidly predict virus-host compatibility. Here, we develop a combined computational and experimental approach to assess the compatibility of New World arenaviruses, endemic in rodents, with the host TfR1 entry receptors of different potential new host species. Using signatures of positive selection, we identify a small motif on rodent TfR1 that conveys species specificity to the entry of viruses into cells. However, we show that mutations in this region affect the entry of each arenavirus differently. For example, a human single nucleotide polymorphism (SNP) in this region, L212V, makes human TfR1 a weaker receptor for one arenavirus, Machupo virus, but a stronger receptor for two other arenaviruses, Junin and Sabia viruses. Collectively, these findings set the stage for potential evolutionary trade-offs, where natural selection for resistance to one virus may make humans or rodents susceptible to other arenavirus species. Given the complexity of this host-virus interplay, we propose a computational method to predict these interactions, based on homology modeling and computational docking of the virus-receptor protein-protein interaction. We demonstrate the utility of this model for Machupo virus, for which a suitable cocrystal structural template exists. Our model effectively predicts whether the TfR1 receptors of different species will be functional receptors for Machupo virus entry. Approaches such at this could provide a first step toward computationally predicting the "host jumping" potential of a virus into a new host species. IMPORTANCE We demonstrate how evolutionary trade-offs may exist in the dynamic evolutionary interplay between viruses and their hosts, where natural selection for resistance to one virus could make humans or rodents susceptible to other virus species. We present an algorithm that predicts which species have cell surface receptors that make them susceptible to Machupo virus, based on computational docking of protein structures. Few molecular models exist for predicting the risk of spillover of a particular animal virus into humans or new animal populations. Our results suggest that a combination of evolutionary analysis, structural modeling, and experimental verification may provide an efficient approach for screening and assessing the potential spillover risks of viruses circulating in animal populations.
Collapse
|
39
|
Global displacement of canine parvovirus by a host-adapted variant: structural comparison between pandemic viruses with distinct host ranges. J Virol 2014; 89:1909-12. [PMID: 25410876 DOI: 10.1128/jvi.02611-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Canine parvovirus type 2 (CPV-2) emerged in 1978 and spread worldwide within 2 years. Subsequently, CPV-2 was completely replaced by the variant CPV-2a, which is characterized by four specific capsid (VP2) mutations. The X-ray crystal structure of the CPV-2a capsid shows that each mutation confers small local changes. The loss of a hydrogen bond and introduction of a glycine residue likely introduce flexibility to sites that control interactions with the host receptor, antibodies, and sialic acids.
Collapse
|
40
|
Zinn E, Vandenberghe LH. Adeno-associated virus: fit to serve. Curr Opin Virol 2014; 8:90-7. [PMID: 25128609 PMCID: PMC4195847 DOI: 10.1016/j.coviro.2014.07.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022]
Abstract
Adeno-associated virus (AAV) is a helper-dependent parvovirus which has not been linked with human disease. This aspect, in combination with its broad cell and tissue tropism, and limited viral host response has made it an attractive vector system for gene therapy. The viral protein capsid, the primary interface with the host, is the main determinant for these phenotypes, is highly variable, and is most subject to pressures during replication. Here, we explore the evolutionary path of AAV and other parvoviruses in respect to these phenotypes, as well as directed evolution and engineering strategies that have exploited the lessons learned from natural selection in order to address remaining limitations of AAV as a therapeutic gene transfer platform.
Collapse
Affiliation(s)
- Eric Zinn
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, United States
| | - Luk H Vandenberghe
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
41
|
Zhang W, Li L, Deng X, Kapusinszky B, Delwart E. What is for dinner? Viral metagenomics of US store bought beef, pork, and chicken. Virology 2014; 468-470:303-310. [PMID: 25217712 PMCID: PMC4252299 DOI: 10.1016/j.virol.2014.08.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022]
Abstract
We describe here the metagenomics-derived viral sequences detected in beef, pork, and chicken purchased from stores in San Francisco. In beef we detected four previously reported viruses (two parvoviruses belonging to different genera, an anellovirus, and one circovirus-like virus) and one novel bovine polyomavirus species (BPyV2-SF) whose closest relatives infect primates. Detection of porcine hokovirus in beef indicated that this parvovirus can infect both ungulate species. In pork we detected four known parvoviruses from three genera, an anellovirus, and pig circovirus 2. Chicken meat contained numerous gyrovirus sequences including those of chicken anemia virus and of a novel gyrovirus species (GyV7-SF). Our results provide an initial characterization of some of the viruses commonly found in US store-bought meats which included a diverse group of parvoviruses and viral families with small circular DNA genomes. Whether any of these viruses can infect humans will require testing human sera for specific antibodies. Eukaryotic viral genomes in store-bought beef, pork, and chicken are identified. A novel bovine polyomavirus genome, closest to a group of viruses from primates, is sequenced. Porcine hokovirus is detected in beef samples. A small circovirus-like circular DNA genome in beef is genetically characterized. Several species of gyrovirus including a novel species are detected in chicken meat.
Collapse
Affiliation(s)
- Wen Zhang
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Microbiology, School of Medicine, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA 94118, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94118, USA.
| |
Collapse
|
42
|
CpG distribution and methylation pattern in porcine parvovirus. PLoS One 2013; 8:e85986. [PMID: 24392033 PMCID: PMC3877397 DOI: 10.1371/journal.pone.0085986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can't methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome.
Collapse
|
43
|
Affiliation(s)
- Cadhla Firth
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032; ,
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032; ,
| |
Collapse
|
44
|
Demogines A, Abraham J, Choe H, Farzan M, Sawyer SL. Dual host-virus arms races shape an essential housekeeping protein. PLoS Biol 2013; 11:e1001571. [PMID: 23723737 PMCID: PMC3665890 DOI: 10.1371/journal.pbio.1001571] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/17/2013] [Indexed: 02/07/2023] Open
Abstract
Relentless selective pressures exerted by viruses trigger arms race dynamics that shape the evolution of even critical host genes like those involved in iron homeostasis. Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses. Genetic differences between mammalian species dictate the patterns of viral infection observed in nature. They also define how viruses must evolve in order to infect new mammalian hosts, giving rise to new and sometimes pandemic diseases. Because viruses must enter cells before they can replicate, new diseases often emerge when existing viruses evolve the ability to bind to the cell-surface receptor of a new species. At the same time, host cell receptors also evolve to counteract virus attacks. This back-and-forth evolution between virus and host can lead to an arms race that shapes the sequences of the proteins involved. In wild rodent populations, the retrovirus MMTV and New World arenaviruses both exploit Transferrin Receptor 1 (TfR1) to enter the cells of their hosts. Here we show that the physical interactions between these viruses and TfR1 have triggered evolutionary arms race dynamics that have directly modified the sequence of TfR1 and at least one of the viruses involved. Computational evolutionary analysis allowed us to identify specific residues in TfR1 that define patterns of viral infection in nature. The approach presented here can theoretically be applied to the study of any virus, through analysis of host genes known to be key to controlling viral infection. As such, this approach can expand our understanding of how viruses emerge from wildlife reservoirs, and how they drive the evolution of host genes.
Collapse
Affiliation(s)
- Ann Demogines
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Jonathan Abraham
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyeryun Choe
- Department of Medicine, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael Farzan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sara L. Sawyer
- Department of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Guo L, Yang SL, Chen SJ, Zhang Z, Wang C, Hou R, Ren Y, Wen X, Cao S, Guo W, Hao Z, Quan Z, Zhang M, Yan QG. Identification of canine parvovirus with the Q370R point mutation in the VP2 gene from a giant panda (Ailuropoda melanoleuca). Virol J 2013; 10:163. [PMID: 23706032 PMCID: PMC3680276 DOI: 10.1186/1743-422x-10-163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/22/2013] [Indexed: 01/31/2023] Open
Abstract
Background In this study, we sequenced and phylogenetic analyses of the VP2 genes from twelve canine parvovirus (CPV) strains obtained from eleven domestic dogs and a giant panda (Ailuropoda melanoleuca) in China. A novel canine parvovirus (CPV) was detected from the giant panda in China. Results Nucleotide and phylogenetic analysis of the capsid protein VP2 gene classified the CPV as a new CPV-2a type. Substitution of Gln for Arg at the conserved 370 residue in CPV presents an unusual variation in the new CPV-2a amino acid sequence of the giant panda and is further evidence for the continuing evolution of the virus. Conclusions These findings extend the knowledge on CPV molecular epidemiology of particular relevance to wild carnivores.
Collapse
Affiliation(s)
- Ling Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Park M, Loverdo C, Schreiber SJ, Lloyd-Smith JO. Multiple scales of selection influence the evolutionary emergence of novel pathogens. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120333. [PMID: 23382433 DOI: 10.1098/rstb.2012.0333] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
When pathogens encounter a novel environment, such as a new host species or treatment with an antimicrobial drug, their fitness may be reduced so that adaptation is necessary to avoid extinction. Evolutionary emergence is the process by which new pathogen strains arise in response to such selective pressures. Theoretical studies over the last decade have clarified some determinants of emergence risk, but have neglected the influence of fitness on evolutionary rates and have not accounted for the multiple scales at which pathogens must compete successfully. We present a cross-scale theory for evolutionary emergence, which embeds a mechanistic model of within-host selection into a stochastic model for emergence at the population scale. We explore how fitness landscapes at within-host and between-host scales can interact to influence the probability that a pathogen lineage will emerge successfully. Results show that positive correlations between fitnesses across scales can greatly facilitate emergence, while cross-scale conflicts in selection can lead to evolutionary dead ends. The local genotype space of the initial strain of a pathogen can have disproportionate influence on emergence probability. Our cross-scale model represents a step towards integrating laboratory experiments with field surveillance data to create a rational framework to assess emergence risk.
Collapse
Affiliation(s)
- Miran Park
- Department of Ecology and Evolutionary Biology, University of California, 610 Charles E. Young Dr. South, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus ("FPV-like") or canine parvovirus ("CPV-like"). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species.
Collapse
|
48
|
Wang J, Cheng S, Yi L, Cheng Y, Yang S, Xu H, Zhao H, Yan X, Wu H. Evidence for natural recombination between mink enteritis virus and canine parvovirus. Virol J 2012; 9:252. [PMID: 23110843 PMCID: PMC3495801 DOI: 10.1186/1743-422x-9-252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/18/2012] [Indexed: 11/10/2022] Open
Abstract
A virus was isolated from mink showing clinical and pathological signs of enteritis in China. This virus, designated MEV/LN-10, was identified as mink enteritis virus (MEV) based on its cytopathic effect in the feline F81 cell line, the hemagglutination (HA) and hemagglutination inhibition (HI) assay, electron microscopy (EM) and animal infection experiments. The complete viral genome was cloned and sequenced. Phylogenetic and recombination analyses on the complete MEV/LN-10 genome showed evidence of recombination between MEV and canine parvovirus (CPV). The genome was composed of the NS1 gene originating from CPV while the VP1 gene was of MEV origin. This is the first demonstration of recombination between a CPV and MEV in nature. Our findings not only provide valuable evidence indicating that recombination is an important genetic mechanism contributing to the variation and evolution of MEV, but also that heterogeneous recombination can occur in the feline parvovirus subspecies.
Collapse
Affiliation(s)
- Jianke Wang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, 4899 Juye Street, Changchun, 130112, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wargo AR, Kurath G. Viral fitness: definitions, measurement, and current insights. Curr Opin Virol 2012; 2:538-45. [PMID: 22986085 PMCID: PMC7102723 DOI: 10.1016/j.coviro.2012.07.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/24/2012] [Indexed: 11/03/2022]
Abstract
Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.
Collapse
Affiliation(s)
- Andrew R Wargo
- US Geological Survey, Western Fisheries Research Center, 6505 NE 65th Street, Seattle, WA 98115, USA
| | | |
Collapse
|
50
|
Sawyer SL, Elde NC. A cross-species view on viruses. Curr Opin Virol 2012; 2:561-8. [PMID: 22835485 DOI: 10.1016/j.coviro.2012.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/08/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022]
Abstract
We describe the creative ways that virologists are leveraging experimental cross-species infections to study the interactions between viruses and hosts. While viruses are usually well adapted to their hosts, cross-species approaches involve pairing viruses with species that they do not naturally infect. These cross-species infections pit viruses against animals, cell lines, or even single genes from foreign species. We highlight examples where cross-species infections have yielded insights into mechanisms of host innate immunity, viral countermeasures, and the evolutionary interplay between viruses and hosts.
Collapse
Affiliation(s)
- Sara L Sawyer
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|