1
|
Laine RA. The case for re-examining glycosylation inhibitors, mimetics, primers and glycosylation decoys as antivirals and anti-inflammatories in COVID19. Glycobiology 2020; 30:763-767. [PMID: 32829416 PMCID: PMC7499584 DOI: 10.1093/glycob/cwaa083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Affiliation(s)
- Roger A Laine
- Departments of Biological Sciences and Chemistry, Louisiana State University and A&M College, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Gantt S, Gachelet E, Carlsson J, Barcy S, Casper C, Lagunoff M. Nelfinavir impairs glycosylation of herpes simplex virus 1 envelope proteins and blocks virus maturation. Adv Virol 2015; 2015:687162. [PMID: 25709648 PMCID: PMC4325974 DOI: 10.1155/2015/687162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/23/2023] Open
Abstract
Nelfinavir (NFV) is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs). Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1) in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.
Collapse
Affiliation(s)
- Soren Gantt
- Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Eliora Gachelet
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Jacquelyn Carlsson
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Serge Barcy
- Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Corey Casper
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Van Breedam W, Pöhlmann S, Favoreel HW, de Groot RJ, Nauwynck HJ. Bitter-sweet symphony: glycan-lectin interactions in virus biology. FEMS Microbiol Rev 2014; 38:598-632. [PMID: 24188132 PMCID: PMC7190080 DOI: 10.1111/1574-6976.12052] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2013] [Revised: 09/27/2013] [Accepted: 10/14/2013] [Indexed: 01/01/2023] Open
Abstract
Glycans are carbohydrate modifications typically found on proteins or lipids, and can act as ligands for glycan-binding proteins called lectins. Glycans and lectins play crucial roles in the function of cells and organs, and in the immune system of animals and humans. Viral pathogens use glycans and lectins that are encoded by their own or the host genome for their replication and spread. Recent advances in glycobiological research indicate that glycans and lectins mediate key interactions at the virus-host interface, controlling viral spread and/or activation of the immune system. This review reflects on glycan-lectin interactions in the context of viral infection and antiviral immunity. A short introduction illustrates the nature of glycans and lectins, and conveys the basic principles of their interactions. Subsequently, examples are discussed highlighting specific glycan-lectin interactions and how they affect the progress of viral infections, either benefiting the host or the virus. Moreover, glycan and lectin variability and their potential biological consequences are discussed. Finally, the review outlines how recent advances in the glycan-lectin field might be transformed into promising new approaches to antiviral therapy.
Collapse
Affiliation(s)
- Wander Van Breedam
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
| | - Herman W. Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Raoul J. de Groot
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
The host specific NS3 glycosylation pattern reflects the virulence of Ibaraki virus in different hosts. Virus Res 2014; 181:6-10. [DOI: 10.1016/j.virusres.2013.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
5
|
Bagnarelli P, Clementi M. Serum-free growth of human hepatoma cells. A review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 34:85-94. [PMID: 3039807 DOI: 10.1007/bfb0000674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
|
6
|
Turcotte S, Letellier J, Lippé R. Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. J Virol 2005; 79:8847-60. [PMID: 15994778 PMCID: PMC1168770 DOI: 10.1128/jvi.79.14.8847-8860.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
Egress of herpes capsids from the nucleus to the plasma membrane is a complex multistep transport event that is poorly understood. The current model proposes an initial envelopment at the inner nuclear membrane of capsids newly assembled in the nucleus. The capsids are then released in cytosol by fusion with the outer nuclear membrane. They are finally reenveloped at a downstream organelle before traveling to the plasma membrane for their extracellular release. Although the trans-Golgi network (TGN) is often cited as a potential site of reenvelopment, other organelles have also been proposed, including the Golgi, endoplasmic reticulum-Golgi intermediate compartment, aggresomes, tegusomes, and early or late endosomes. To clarify this important issue, we followed herpes simplex virus type 1 egress by immunofluorescence under conditions that slowed intracellular transport and promoted the accumulation of the otherwise transient reenvelopment intermediate. The data show that the capsids transit by the TGN and point to this compartment as the main reenvelopment site, although a contribution by endosomes cannot formally be excluded. Given that viral glycoproteins are expected to accumulate where capsids acquire their envelope, we examined this prediction and found that all tested could indeed be detected at the TGN. Moreover, this accumulation occurred independently of capsid egress. Surprisingly, capsids were often found immediately adjacent to the viral glycoproteins at the TGN.
Collapse
Affiliation(s)
- Sophie Turcotte
- Department of Pathology and Cell Biology, University of Montreal, P.O. Box 6128, Succursale Centre-Ville Montreal, Quebec, Canada H3C 3J7
| | | | | |
Collapse
|
7
|
Foster TP, Rybachuk GV, Alvarez X, Borkhsenious O, Kousoulas KG. Overexpression of gK in gK-transformed cells collapses the Golgi apparatus into the endoplasmic reticulum inhibiting virion egress, glycoprotein transport, and virus-induced cell fusion. Virology 2003; 317:237-52. [PMID: 14698663 DOI: 10.1016/j.virol.2003.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2022]
Abstract
Intracellular transport and egress of alphaherpesviruses require the coordinate function of multiple proteins and glycoproteins. Recently, we showed that gK is expressed on infected cell surfaces and that gK cell-surface expression required the presence of the UL20 protein [J. Virol. 77 (2003), 499]. Overexpression of gK by gK-transformed cells blocked transport of enveloped virions from perinuclear spaces and inhibited virus-induced cell fusion caused by gK syncytial mutants [J. Virol. 69 (1995), 5401]. Therefore, we investigated whether altered synthesis and transport of gK was responsible for the observed gK-mediated interference phenomena. HSV-1 infection of the gK-transformed cell line Vero (gK9) caused a profound entrapment of gK in the endoplasmic reticulum and total inhibition of gK cell surface expression. In addition, gK drastically inhibited intracellular transport and maturation of gD and caused substantial defects in Golgi-dependent glycosylation of gB. Visualization of intracellular organelles via confocal microscopy revealed a profound collapse of the Golgi apparatus into the endoplasmic reticulum. These results were analogous to those observed in the presence of brefeldin A, a known Golgi disruptor. Therefore, virion entrapment within perinuclear spaces and inhibition of glycoprotein transport are due to gK-mediated collapse of the Golgi apparatus.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Herpes simplex virus (HSV) glycoprotein K (gK) is thought to be intimately involved in the process by which infected cells fuse because HSV syncytial mutations frequently alter the gK (UL53) gene. Previously, we characterized gK produced in cells infected with wild-type HSV or syncytial HSV mutants and found that the glycoprotein was localized to nuclear and endoplasmic reticulum membranes and did not reach the cell surface (L. Hutchinson, C. Roop, and D. C. Johnson, J. Virol. 69:4556-4563, 1995). In this study, we have characterized a mutant HSV type 1, denoted F-gK beta, in which a lacZ gene cassette was inserted into the gK coding sequences. Since gK was found to be essential for virus replication, F-gK beta was propagated on complementing cells which can express gK. F-gK beta produced normal plaques bounded by nonfused cells when plated on complementing cells, although syncytia were observed when the cells produced smaller amounts of gK. In contrast, F-gK beta produced only microscopic plaques on Vero cells and normal human fibroblasts (which do not express gK) and these plaques were reduced by 10(2) to 10(6) in number. Further, large numbers of nonenveloped capsids accumulated in the cytoplasm of F-gK beta-infected Vero cells, virus particles did not reach the cell surface, and the few enveloped particles that were produced exhibited a reduced capacity to enter cells and initiate an infection of complementing cells. Overexpression of gK in HSV-infected cells also caused defects in virus egress, although particles accumulated in the perinuclear space and large multilamellar membranous structures juxtaposed with the nuclear envelope were observed. Together, these results demonstrate that gK regulates or facilitates egress of HSV from cells. How this property is connected to cell fusion is not clear. In this regard, gK may alter cell surface transport of viral particles or other viral components directly involved in the fusion process.
Collapse
Affiliation(s)
- L Hutchinson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
9
|
O'Callaghan DJ, Colle CF, Flowers CC, Smith RH, Benoit JN, Bigger CA. Identification and initial characterization of the IR6 protein of equine herpesvirus 1. J Virol 1994; 68:5351-64. [PMID: 8057419 PMCID: PMC236935 DOI: 10.1128/jvi.68.9.5351-5364.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
The IR6 gene of equine herpesvirus 1 (EHV-1) is a novel gene that maps within each inverted repeat (IR), encodes a potential protein of 272 amino acids, and is expressed as a 1.2-kb RNA whose synthesis begins at very early times (1.5 h) after infection and continues throughout the infection cycle (C. A. Breeden, R. R. Yalamanchili, C.F. Colle, and D.J. O'Callaghan, Virology 191:649-660,1992). To identify the IR6 protein and ascertain its properties, we generated an IR6-specific polyclonal antiserum to a TrpE/IR6 fusion protein containing 129 amino acids (residues 134 to 262) of the IR6 protein. This antiserum immunoprecipitated a 33-kDa protein generated by in vitro translation of mRNA transcribed from a pGEM construct (IR6/pGEM-3Z) that contains the entire IR6 open reading frame. The anti-IR6 antibody also recognized an infected-cell protein of approximately 33 kDa that was expressed as early as 1 to 2 h postinfection and was synthesized throughout the infection cycle. A variety of biochemical analyses including radiolabeling the IR6 protein with oligosaccharide precursors, translation of IR6 mRNA in the presence of canine pancreatic microsomes, radiolabeling the IR6 protein in the presence of tunicamycin, and pulse-chase labeling experiments indicated that the two potential sites for N-linked glycosylation were not used and that the IR6 protein does not enter the secretory pathway. To address the possibility that the unique IR6 gene encodes a novel regulatory protein, we transiently transfected an IR6 expression construct into L-M fibroblasts alone or with an immediate-early gene expression construct along with a representative EHV-1 immediate-early, early, or late promoter-chloramphenicol acetyltransferase reporter construct. The results indicated that the IR6 protein does not affect the expression of these representative promoter constructs. Interestingly, the IR6 protein was shown to be phosphorylated and to associate with purified EHV-1 virions and nucleocapsids. Lastly, immunofluorescence and laser-scanning confocal microscopic analyses revealed that the IR6 protein is distributed throughout the cytoplasm at early times postinfection and that by 4 to 6 h it appears as "dash-shaped" structures that localize to the perinuclear region. At late times after infection (8 to 12 h), these structures assemble around the nucleus, and three-dimensional image analyses reveal that the IR6 protein forms a crown-like structure that surrounds the nucleus as a perinuclear network.
Collapse
Affiliation(s)
- D J O'Callaghan
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | | | |
Collapse
|
10
|
Structure and Function of Glycoprotein D of Herpes Simplex Virus. PATHOGENICITY OF HUMAN HERPESVIRUSES DUE TO SPECIFIC PATHOGENICITY GENES 1994. [DOI: 10.1007/978-3-642-85004-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
|
11
|
Shakin-Eshleman SH, Wunner WH, Spitalnik SL. Efficiency of N-linked core glycosylation at asparagine-319 of rabies virus glycoprotein is altered by deletions C-terminal to the glycosylation sequon. Biochemistry 1993; 32:9465-72. [PMID: 8369313 DOI: 10.1021/bi00087a026] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
In N-linked core glycosylation, the oligosaccharide Glc3Man9GlcNAc2 is transferred to the tripeptide sequon Asn-X-Ser/Thr. However, this process must be regulated by additional protein signals, since many sequons are either poorly glycosylated or not glycosylated at all. Since N-linked glycosylation can influence protein structure and function, understanding these signals is essential for the design and expression of recombinant glycoproteins. Core glycosylation usually occurs cotranslationally in the rough endoplasmic reticulum (RER) during translocation of nascent proteins. Since only regions of a protein immediately near to a sequon or N-terminal to it are thought to be in the RER when core glycosylation occurs, most models predict that regions C-terminal to the sequon do not influence this process. We tested whether regions C-terminal to a sequon can influence its core glycosylation. Full-length (505 amino acid) rabies virus glycoprotein (RGP) mutants, each containing only one of the three sequons normally present in RGP, were used for these studies. Using a cell-free system, the core glycosylation efficiency at each sequon was determined. Termination codons were then introduced into these mutants at defined sites to produce C-terminal truncations, and the effect of each of these truncations on the core glycosylation efficiency at each sequon was assessed. While deletion of the C-terminal transmembrane and cytoplasmic domains did not affect core glycosylation, more extensive C-terminal deletions did result in altered core glycosylation in a site-specific fashion. Specifically, C-terminal truncations resulting in proteins containing 386 or 344 amino acids decreased the efficiency of core glycosylation at Asn319. This demonstrates that core glycosylation efficiency can be influenced by the presence or absence of regions in a protein more than 68 amino acids C-terminal to a specific glycosylation site.
Collapse
|
12
|
Odenthal-Schnittler M, Tomavo S, Becker D, Dubremetz JF, Schwarz RT. Evidence for N-linked glycosylation in Toxoplasma gondii. Biochem J 1993; 291 ( Pt 3):713-21. [PMID: 8489499 PMCID: PMC1132427 DOI: 10.1042/bj2910713] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
In this paper we report experiments demonstrating the presence of N-linked oligosaccharide structures in Toxoplasma gondii tachyzoites, providing the first direct biochemical evidence that this sporozoan parasite is capable of synthesizing N-linked glycans. The tachyzoite surface glycoprotein gp23 was metabolically labelled with [3H]glucosamine and [3H]mannose. Gel-filtration chromatography on Bio-Gel P4 columns produced four radiolabelled N-linked glycopeptides which were sensitive to peptidase-N-glycanase F, but resistant to endoglycosidases H and F. Using chemical analysis and exoglycosidase digestions followed by Dionex-high-pH anion-exchange chromatography and size fractionation on Bio-Gel P4 we show that gp23 has N-linked glycans in the hybrid- or complex-type structure composed of N-acetylgalactosamine, N-acetylglucosamine and mannose and devoid of sialic acid and fucose residues. In addition, the sensitivity of glycopeptides from glycoprotein extracts to endoglycosidases H and F revealed the in vivo synthesis of oligomannose-type structures by T. gondii tachyzoites. We have extended these findings by demonstrating the ability of T. gondii microsomes to synthesize in vitro a glucosylated lipid-bound high-mannose structure (Glc3Man9GlcNAc2) that is assumed to be identical with the common precursor for N-glycosylation in eukaryotes.
Collapse
Affiliation(s)
- M Odenthal-Schnittler
- Zentum für Hygiene und Medizinische Mikrobiologie, Philipps-Universität Marburg, Germany
| | | | | | | | | |
Collapse
|
13
|
van Iwaarden J, van Strijp J, Visser H, Haagsman H, Verhoef J, van Golde L. Binding of surfactant protein A (SP-A) to herpes simplex virus type 1-infected cells is mediated by the carbohydrate moiety of SP-A. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74002-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022] Open
|
14
|
Whealy ME, Robbins AK, Tufaro F, Enquist LW. A cellular function is required for pseudorabies virus envelope glycoprotein processing and virus egress. J Virol 1992; 66:3803-10. [PMID: 1316483 PMCID: PMC241166 DOI: 10.1128/jvi.66.6.3803-3810.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
The mouse L-cell mutant gro29 is defective for egress of herpes simplex virus type 1 (HSV-1) virions and is significantly reduced in HSV-1 glycoprotein export (B. W. Banfield and F. Tufaro, J. Virol. 64:5716-5729, 1990). In this report, we demonstrate that pseudorabies virus (PRV), a distantly related alphaherpesvirus, shows a distinctive set of defects after infection of gro29 cells. Specifically, we identify defects in the rate and extent of viral glycoprotein export, infectious particle formation, plaque formation, and virus egress. The initial rate of viral glycoprotein synthesis was unaffected in gro29 cells, but the extent of export from the endoplasmic reticulum to the Golgi apparatus was impaired and export through the Golgi apparatus became essentially blocked late in infection. Moreover, by using a secreted variant of a viral membrane protein, we found that export from the Golgi apparatus out of the cell was also defective in gro29 cells. PRV does not form plaques on gro29 monolayers. A low level of infectious virus is formed and released early after infection, but further virus egress is blocked. Taken together, these observations suggest that the gro29 phenotype involves either multiple proteins or a single protein used at multiple steps in viral glycoprotein export and virus egress from cells. Moreover, this host cell protein is required by both HSV and PRV for efficient propagation in infected cells.
Collapse
Affiliation(s)
- M E Whealy
- Du Pont Merck Pharmaceutical Company, Viral Diseases Research, Wilmington, Delaware 19880-0328
| | | | | | | |
Collapse
|
15
|
N-linked glycosylation of rabies virus glycoprotein. Individual sequons differ in their glycosylation efficiencies and influence on cell surface expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50073-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
16
|
Sodora DL, Cohen GH, Muggeridge MI, Eisenberg RJ. Absence of asparagine-linked oligosaccharides from glycoprotein D of herpes simplex virus type 1 results in a structurally altered but biologically active protein. J Virol 1991; 65:4424-31. [PMID: 1649338 PMCID: PMC248882 DOI: 10.1128/jvi.65.8.4424-4431.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Glycoprotein D (gD) of herpes simplex virus contains three utilized sites (Asn-X-Ser/Thr) for addition of asparagine-linked carbohydrates (N-CHO). Previously, we used oligonucleotide-directed mutagenesis to alter serine or threonine residues to alanine at each N-CHO addition site. Studies with monoclonal antibodies showed that a mutant protein lacking all three sites (now designated AAA) was structurally altered because of the amino acid change at residue 96 as well as the absence of the N-CHO. In this study, we constructed additional single mutations at site 1 (residues 94 and 96) and found that in most cases, the amino acid change itself adversely affected the conformation of gD. However, changing asparagine 94 to glutamine (Q) at site 1 had the least effect on gD. We constructed a second triple mutant, QAA, which lacked all three N-CHO signals. The antigenic conformation of QAA was similar to that of gD produced in the presence of tunicamycin (TM-gD). However, binding of MAbs to the AAA protein or to single mutants altered at site 1 was reduced compared with TM-gD. Wild-type gD and QAA proteins were equally susceptible to digestion by trypsin or Staphylococcus aureus V8 protease. In contrast, the AAA protein was more sensitive to trypsin but less sensitive to V8, again suggesting conformational alterations of the AAA protein. Despite what appeared to be large changes in structure, each mutant complemented the infectivity of a virus lacking gD (F-gD beta). We conclude that the N-CHO and amino acids at N-CHO site 1 play an important role in forming and/or maintaining gD structure, but none of the N-CHO are required for gD to function in the complementation assay.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
17
|
Sodora DL, Eisenberg RJ, Cohen GH. Characterization of a recombinant herpes simplex virus which expresses a glycoprotein D lacking asparagine-linked oligosaccharides. J Virol 1991; 65:4432-41. [PMID: 1649339 PMCID: PMC248883 DOI: 10.1128/jvi.65.8.4432-4441.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Glycoprotein D (gD) is an envelope component of herpes simplex virus essential for virus penetration. gD contains three sites for addition of asparagine-linked carbohydrates (N-CHO), all of which are utilized. Previously, we characterized mutant forms of herpes simplex virus type 1 gD (gD-1) lacking one or all three N-CHO addition sites. All of the mutants complemented the infectivity of a gD-minus virus, F-gD beta, to the same extent as wild-type gD. Here, we show that recombinant viruses containing mutations in the gD-1 gene which eliminate the three N-CHO signals are viable. Two such viruses, called F-gD(QAA)-1 and F-gD(QAA)-2, were independently isolated, and the three mutations in the gD gene in one of these viruses were verified by DNA sequencing. We also verified that the gD produced in cells infected by these viruses is devoid of N-CHO. Plaques formed by both mutants developed more slowly than those of the wild-type control virus, F-gD(WT), and were approximately one-half the size of the wild-type. One mutant, F-gD(QAA)-2, was selected for further study. The QAA mutant and wild-type gD proteins extracted from infected cells differed in structure, as determined by the binding of monoclonal antibodies to discontinuous epitopes. However, flow cytometry analysis showed that the amount and structure of gD found on infected cell surfaces was unaffected by the presence or absence of N-CHO. Other properties of F-gD(QAA)-2 were quite similar to those of F-gD(WT). These included (i) the kinetics of virus production as well as the intracellular and extracellular virus titers; (ii) the rate of virus entry into uninfected cells; (iii) the levels of gB, gC, gE, gH, and gI expressed by infected cells; and (iv) the turnover time of gD. Thus, the absence of N-CHO from gD-1 has some effect on its structure but very little effect on its function in virus infection in cell culture.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
18
|
Span AH, van Dam-Mieras MC, Mullers W, Endert J, Muller AD, Bruggeman CA. The effect of virus infection on the adherence of leukocytes or platelets to endothelial cells. Eur J Clin Invest 1991; 21:331-8. [PMID: 1653707 DOI: 10.1111/j.1365-2362.1991.tb01378.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
It has been reported that atherosclerotic lesions contain genomic material belonging to members of the herpes family. This suggests that latent viral infection may be one of the atherogenic triggers. In this study we show that early infection of endothelial cell monolayers with Herpes Simplex virus type 1 (HSV-1) or Cytomegalovirus (CMV) results in an increased monocyte (MC) and polymorphonuclear leukocyte (PMN) adherence, but not in an increased platelet adhesion. Further, is demonstrated that MC and PMN respond differently to virus infected endothelial cell monolayers: PMN adhesion to CMV infected cells is approximately 430% of the control adherence, while the MC adherence is increased to 160%. Also, a difference in virus acting is observed: the adherence of MC or PMN to HSV-1 infected endothelial cells is caused by a secreted adherence promoting factor, while the adherence of MC or PMN to CMV infected endothelial cells seems to be a cell-bound phenomenon. In addition, it was demonstrated that the augmentation of MC or PMN adherence to virus infected endothelial cells is sensitive to tunicamycin, suggesting that both virus infections induce the expression of glycoproteins on the endothelial cell membrane, which is responsible for the MC and PMN adhesion. Thus, HSV-1 and CMV infection of endothelium results in an increased adherence of leukocytes which is suggested, irrespective of the precise nature of the mechanism of virus induced atherosclerosis, to be the earliest event associated with endothelium cell damage.
Collapse
Affiliation(s)
- A H Span
- Department of Medical Microbiology, University of Limburg, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Cheung P, Banfield BW, Tufaro F. Brefeldin A arrests the maturation and egress of herpes simplex virus particles during infection. J Virol 1991; 65:1893-904. [PMID: 1848309 PMCID: PMC240005 DOI: 10.1128/jvi.65.4.1893-1904.1991] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus (HSV) requires the host cell secretory apparatus for transport and processing of membrane glycoproteins during the course of virus assembly. Brefeldin A (BFA) has been reported to induce retrograde movement of molecules from the Golgi to the endoplasmic reticulum and to cause disassembly of the Golgi complex. We examined the effects of BFA on propagation of HSV type 1. Release of virions into the extracellular medium was blocked by as little as 0.3 microgram of BFA per ml when present from 2 h postinfection. Characterization of infected cells revealed that BFA inhibited infectious viral particle formation without affecting nucleocapsid formation. Electron microscopic analyses of BFA-treated and untreated cells (as in control cells) demonstrated that viral particles were enveloped at the inner nuclear membrane in BFA-treated cells and accumulated aberrantly in this region. Most of the progeny virus particles observed in the cytoplasm of control cells, but not that of BFA-treated cells, were enveloped and contained within membrane vesicles, whereas many unenveloped nucleocapsids were detected in the cytoplasm of BFA-treated cells. This suggests that BFA prevents the transport of enveloped particles from the perinuclear space to the cytoplasmic vesicles. These findings indicate that BFA-induced retrograde movement of molecules from the Golgi complex to the endoplasmic reticulum early in infection arrests the ability of host cells to support maturation and egress of enveloped viral particles. Furthermore, we demonstrate that the effects of BFA on HSV propagation are not fully reversible, indicating that maturation and egress of HSV type 1 particles relies on a series of events which cannot be easily reconstituted after the block to secretion is relieved.
Collapse
Affiliation(s)
- P Cheung
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
20
|
Whealy ME, Card JP, Meade RP, Robbins AK, Enquist LW. Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J Virol 1991; 65:1066-81. [PMID: 1847436 PMCID: PMC239872 DOI: 10.1128/jvi.65.3.1066-1081.1991] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
In this work we used brefeldin A (BFA), a specific inhibitor of export to the Golgi apparatus, to study pseudorabies virus viral glycoprotein processing and virus egress. BFA had little effect on initial synthesis and cotranslational modification of viral glycoproteins in the endoplasmic reticulum (ER), but it disrupted subsequent glycoprotein maturation and export. Additionally, single-step growth experiments demonstrated that after the addition of BFA, accumulation of infectious virus stopped abruptly. BFA interruption of virus egress was reversible. Electron microscopic analysis of infected cells demonstrated BFA-induced disappearance of the Golgi apparatus accompanied by a dramatic accumulation of enveloped virions between the inner and outer nuclear membranes and also in the ER. Large numbers of envelope-free capsids were also present in the cytoplasm of all samples. In control samples, these capsids were preferentially associated with the forming face of Golgi bodies and acquired a membrane envelope derived from the trans-cisternae. Our results are consistent with a multistep pathway for envelopment of pseudorabies virus that involves initial acquisition of a membrane by budding of capsids through the inner leaf of the nuclear envelope followed by deenvelopment and release of these capsids from the ER into the cytoplasm in proximity to the trans-Golgi. The released capsids then acquire a bilaminar double envelope containing mature viral glycoproteins at the trans-Golgi. The resulting double-membraned virus is transported to the plasma membrane, where membrane fusion releases a mature, enveloped virus particle from the cell.
Collapse
Affiliation(s)
- M E Whealy
- E. I. duPont de Nemours, Central Research and Development, Wilmington, Delaware 19880-0328
| | | | | | | | | |
Collapse
|
21
|
Campadelli-Fiume G, Farabegoli F, Di Gaeta S, Roizman B. Origin of unenveloped capsids in the cytoplasm of cells infected with herpes simplex virus 1. J Virol 1991; 65:1589-95. [PMID: 1847476 PMCID: PMC239943 DOI: 10.1128/jvi.65.3.1589-1595.1991] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
In cells infected with herpes simplex viruses the capsids acquire an envelope at the nuclear membrane and are usually found in the cytoplasm in structures bound by membranes. Infected cells also accumulate unenveloped capsids alone or juxtaposed to cytoplasmic membranes. The juxtaposed capsids have been variously interpreted as either undergoing terminal deenvelopment resulting from fusion of the envelope with the membrane of the cytoplasmic vesicles or undergoing sequential envelopment and deenvelopment as capsids transit the cytoplasm into the extracellular space. Recent reports have shown that (i) wild-type virus attaches to but does not penetrate cells expressing glycoprotein D (G. Campadelli-Fiume, M. Arsenakis, F. Farabegoli, and B. Roizman, J. Virol. 62:159-167, 1988) and that (ii) a mutation in glycoprotein D enables the mutant virus to productively infect cells expressing the wild-type glycoprotein (G. Campadelli-Fiume, S. Qi, E. Avitabile, L. Foa-Tomasi, R. Brandimarti, and B. Roizman, J. Virol. 64:6070-6079, 1990). If the unenveloped capsids in the cytoplasm result from fusion of the cytoplasmic membranes with the envelopes of viruses transiting the cytoplasm, cells infected with virus carrying the mutation in glycoprotein D should contain many more unenveloped capsids in the cytoplasm inasmuch as there would be little or no restriction in the fusion of the envelope with cytoplasmic membranes. Comparison of thin sections of baby hamster kidney cells infected with wild-type and mutant viruses indicated that this was the case. Moreover, in contrast to the wild-type parent, the mutant virus was not released efficiently from infected cells. The conclusion that the unenveloped capsids are arrested forms of deenveloped capsids is supported by the observation that the unenveloped capsids were unstable in that they exhibited partially extruded DNA.
Collapse
|
22
|
Affiliation(s)
- R F Pettersson
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| |
Collapse
|
23
|
Pereira L, Qadri I, Navarro D, Gimeno C. Antigenic and structural properties of mutants in herpes simplex virus 1 glycoprotein B. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 278:165-82. [PMID: 1705078 DOI: 10.1007/978-1-4684-5853-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Affiliation(s)
- L Pereira
- Department of Stomatology, School of Dentistry, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
24
|
Abstract
Glycoprotein 14 (gp14) of equine herpesvirus type 1 (EHV-1), the homolog of herpes simplex virus (HSV) glycoprotein B (gB), was investigated employing a panel of monoclonal antibodies to ascertain the regulatory class, rate of synthesis, and type of glycosylation of this polypeptide. Application of immunoprecipitation, Western blot, and SDS-PAGE analysis in conjunction with the use of metabolic inhibitors (cycloheximide, antinomycin D, phosphonoacetic acid, tunicamycin, and monensin), and time-course and pulse-chase experiments revealed the following information: (1) Three gp14-related polypeptides with molecular weights of 138 kilodaltons (K), 77-75K, and 55-53K are present in EHV-1-infected cell extracts. (2) All three species are synthesized in the presence of the DNA synthesis inhibitor phosphonoacetic acid although their synthesis is enhanced by DNA replication, indicative of a beta-gamma class molecule. (3) The 138K species is synthesized first as a precursor of the smaller species of gp14, the 77-75K and 55-53K forms. (4) Use of glycosylation inhibitors and digestion of immunoprecipitated gp14 with endoglycosidases indicate that the primary translation product is a 118K molecule which is cotranslationally glycosylated to the 138K form by the addition of high mannose oligosaccharides. (5) The 77-75K species contains both high mannose and hybrid oligosaccharides while the 55-53K form of gp14 contains some complex oligosaccharides. (6) In the absence of a reducing agent, the 138K polypeptide and a large 145K species are observed in both infected cell extracts and purified virions. Thus, EHV-1 gp14 appears to be synthesized as a large precursor molecule of 138K and is proteolytically cleaved to two smaller forms, 77-75K and 55-53K, which are linked by a disulfide bond(s) to form a 145K complex. This model of gp14 synthesis and maturation is similar to those proposed for a number of HSV gB equivalents found in the Alphaherpesvirnae.
Collapse
Affiliation(s)
- D C Sullivan
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130-3932
| | | | | |
Collapse
|
25
|
Sodora DL, Cohen GH, Eisenberg RJ. Influence of asparagine-linked oligosaccharides on antigenicity, processing, and cell surface expression of herpes simplex virus type 1 glycoprotein D. J Virol 1989; 63:5184-93. [PMID: 2555549 PMCID: PMC251182 DOI: 10.1128/jvi.63.12.5184-5193.1989] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Glycoprotein D (gD) is an envelope component of herpes simplex virus types 1 and 2. gD-1 contains three sites for the addition of N-linked carbohydrate (N-CHO), all of which are used. Three mutants were constructed by site-directed mutagenesis, each of which altered one N-CHO addition site from Asn-X-Thr/Ser to Asn-X-Ala. A fourth mutant was altered at all three sites. The mutant genes were inserted into an expression vector, and the expressed protein was analyzed in transiently transfected COS-1 cells. The mutant protein lacking N-CHO at site 1 (Asn-94) had a reduced affinity for monoclonal antibodies (MAbs) to discontinuous epitopes, suggesting that the conformation of the protein had been altered. However, the protein was processed and transported to the cell surface. The absence of N-CHO at site 2 (Asn-121) had no apparent effect on processing or transport of gD-1 but resulted in reduced binding of two MAbs previously shown to be in group VI. Binding of other MAbs to discontinuous epitopes (including other group VI MAbs) was not affected. The absence of N-CHO at site 3 (Asn-262) had no effect on processing, transport, or conformation of the gD-1 protein. The absence of N-CHO from site 1 or from all three sites resulted in the formation of high-molecular-weight aggregates or complexes and a reduction in MAb binding. However, these proteins were modified by the addition of O-glycans and transported to the cell surface. We conclude that the absence of the first or all N-linked carbohydrates alters the native conformation of gD-1 but does not prevent its transport to the cell surface.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6003
| | | | | |
Collapse
|
26
|
Abstract
We previously identified the antibody-binding site of a monoclonal antibody (mAb 79.0) on varicella-zoster virus (VZV) glycoprotein I (gpI) and showed that this monoclonal antibody binds to both VZV gpI and gpIV (Vafai et al., J. Virol. 62, 2544, 1988). In this study, a synthetic peptide comprising the mAb 79.0 binding site (designated el) was prepared and anti-peptide antibodies (RAnti-el) were raised in rabbit. RAnti-el recognized the primary translation products encoded by VZV genes 67 (gpIV) and 68 (gpI). To further localize the binding site of RAnti-el on VZV gpIV, the gpIV gene cloned in pGEM transcription vector was cleaved at different locations to generate four truncated DNA fragments. RNA was transcribed from each truncated gpIV fragment, translated in vitro and immunoprecipitated with RAnti-el. The results indicated that RAnti-el binds an antigenic determinant within the first 153 amino acid residues on the primary translation product of VZV gpIV. In addition, RAnti-el recognized the high-mannose intermediate but not the mature from of gpI in the infected cells or the translation products of gpIV glycosylated in vitro in the presence of canine microsomal membrane. These results: (a) confirmed the existence of a shared antigenic determinant on both VZV gpI and gpIV; and (b) indicated that the addition of terminal sugar modification may influence the conformation of gpI and gpIV with respect to the antigenic determinant recognized by RAnti-el.
Collapse
Affiliation(s)
- A Vafai
- Department of Neurology, University of Colorado School of Medicine, Denver, CO 80262
| | | | | |
Collapse
|
27
|
Stenberg RM, Depto AS, Fortney J, Nelson JA. Regulated expression of early and late RNAs and proteins from the human cytomegalovirus immediate-early gene region. J Virol 1989; 63:2699-708. [PMID: 2542583 PMCID: PMC250760 DOI: 10.1128/jvi.63.6.2699-2708.1989] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Expression of RNA and protein from the human cytomegalovirus immediate-early (IE) gene region (map units 0.732 to 0.751) was analyzed at early and late times after infection. The level of RNA present at late times (48 to 72 h after infection) was significantly higher than that present at IE times (5 h after infection). The profile of IE RNA in the cytoplasm of infected cells was different from that previously reported on polysomes (R. M. Stenberg, P. R. Witte, and M. F. Stinski, J. Virol. 56:665-675, 1985). The data indicate that the 1.95-kilobase (kb) major IE region 1 mRNA, which codes for the 72-kilodalton (kDa) protein, and the 1.7-kb IE region 2 (IE2) spliced mRNA, which codes for the IE2 55-kDa protein, may be preferentially associated with polysomes. However, the IE2 2.2-kb unspliced mRNA, which codes for an 86-kDa protein, may be preferentially excluded. This RNA was abundant in the cytoplasm under IE conditions but was not present on polysomes in significant quantities. This indicates that IE gene products may be involved in translational control of cytomegalovirus RNA. At late times, new transcription takes place within region 2. A 1.5-kb RNA is transcribed from a late promoter in region 2 that apparently does not function in cells infected with DNA-negative mutant ts66. These results demonstrate that the IE gene region is transcribed throughout infection and that multiple levels of regulation exist.
Collapse
Affiliation(s)
- R M Stenberg
- Department of Microbiology, West Virginia University Health Sciences Center, Morgantown 26506
| | | | | | | |
Collapse
|
28
|
Pietschmann SM, Gelderblom HR, Pauli G. Compartment-specific immunolocalization of conserved epitopes of the glycoprotein gB of herpes simplex virus type 1 and bovine herpes virus type 2 in infected cells. Arch Virol 1989; 108:1-17. [PMID: 2480759 DOI: 10.1007/bf01313738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies directed against a surface glycoprotein of the bovine herpes virus type 2 (BHV-2, bovine herpes mammillitis virus) recognize also determinants of the major glycoprotein gB of the human herpes simplex virus type 1 (HSV-1). Cross-reacting antigens of the virions and in infected cells were localized with immunocytochemical methods, immunofluorescence as well as pre-embedding and cryoultramicrotomy immune electron microscopy. All antibodies stain to different degrees cell free BHV-2 and HSV-1 virions. In the cell two predominant staining patterns could be observed indicating that expression of epitopes is dependent upon the cell compartment: (i) staining of cytoplasmic membranes and enveloped particles within membrane systems and (ii) staining of intranuclear antigens. Antibodies tagging intranuclear antigens react with moderately dense material or with the periphery of nucleocapsids. This unexpected result is interpreted in terms of two hypotheses: (1) presence of common epitopes on two entirely different herpesvirus proteins conserved in HSV-1 and BHV-2 and (2) transport of gB or its precursor into the nucleus.
Collapse
|
29
|
Renard-Nozaki J, Kim T, Imakura Y, Kihara M, Kobayashi S. Effect of alkaloids isolated from Amaryllidaceae on herpes simplex virus. RESEARCH IN VIROLOGY 1989; 140:115-28. [PMID: 2547235 DOI: 10.1016/s0923-2516(89)80089-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
Studies were carried out on the effects of Amaryllidaceae alkaloids and their derivatives upon herpes simplex virus (type 1), the relationship between their structure and antiviral activity and the mechanism of this activity. All alkaloids used in these experiments were biosynthesized from N-benzylphenethylamine; the apogalanthamine group was synthesized in our laboratory; those which may eventually prove to be antiviral agents had a hexahydroindole ring with two functional hydroxyl groups. Benzazepine compounds were neither cytotoxic nor antiviral, but many structures containing dibenzazocine were toxic at low concentrations. It was established that the antiviral activity of alkaloids is due to the inhibition of multiplication and not to the direct inactivation of extracellular viruses. The mechanism of the antiviral effect could be partly explained as a blocking of viral DNA polymerase activity.
Collapse
|
30
|
Jacob RJ, Steiner MR. Molecular pathogenesis of equine coital exanthema: identification and expression of infected cell polypeptides at the restricted temperature during equine herpesvirus 3 infection. Vet Microbiol 1988; 18:363-71. [PMID: 2852875 DOI: 10.1016/0378-1135(88)90101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Equine herpesvirus 3 (EHV-3)-infected equine cells display a kinetics of infected cell polypeptide (ICP) synthesis at 34 degrees C that is typical of coordinate cascade gene regulation of herpesviruses. In contrast, when infected cell cultures are incubated at the restricted temperature of 39 degrees C, the shift from early (beta) gene expression to late (gamma) gene expression is perturbed, i.e., there is an accumulation of early (beta) gene products and a decrease in, or absence of, late (gamma) gene products. Some of the affected late (gamma) gene products may be glycoproteins since these ICPs co-migrated with radiolabeled bands from infected cells incubated with [3H] glucosamine, separated by polyacrylamide gel electrophoresis. These findings are consistent with previous findings (Jacob, 1986), indicating that the growth restriction is in a late viral function(s) and possibly involves envelopment of nucleocapsids into infectious virions.
Collapse
Affiliation(s)
- R J Jacob
- Department of Microbiology and Immunology, Chandler Medical Center, Lexington, KY
| | | |
Collapse
|
31
|
Lopez-Iglesias C, Puvion-Dutilleul F. Effects of tunicamycin and monensin on the distribution of highly phosphorylated proteins in cells infected with herpes simplex virus type 1. JOURNAL OF ULTRASTRUCTURE AND MOLECULAR STRUCTURE RESEARCH 1988; 101:173-84. [PMID: 2478642 DOI: 10.1016/0889-1605(88)90007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023]
Abstract
New aspects of the distribution of highly phosphorylated proteins in cells infected with herpes simplex virus type 1 (HSV-1) were investigated at the ultrastructural level by the use of drugs which inhibit the glycosylation of viral proteins. The highly phosphorylated proteins were localized by the bismuth tartrate procedure applied on sections of glutaraldehyde-fixed cells embedded in Lowicryl. The drugs employed were tunicamycin, which alters the glycosylation activity of the rough endoplasmic reticulum (RER), and monensin, which blocks the migration of vesicles of the Golgi apparatus (GA) thereby impairing the glycosylation function of the GA. Tunicamycin induced proliferation of RER and the accumulation of highly phosphorylated proteins on its membranes and also impaired GA vesicle maturation and inhibited the usual accumulation of phosphorylated proteins within them. Monensin induced proliferation of the nuclear envelope, including both outer and inner membranes, with bismuth bound to staggered segments of the latter, and also affected the GA in that bismuth-binding proteins were accumulated on the external surface of the swollen vesicles instead of the lumen. These data suggest that an injury of one membrane system, RER or GA, engenders consequential effects on the other. This also supports evidence for an interrelationship between post-translational glycosylation and phosphorylation of proteins in HSV infection.
Collapse
Affiliation(s)
- C Lopez-Iglesias
- Institut de Recherches Scientifiques sur la Cancer, ER272 CNRS, Villejuif, France
| | | |
Collapse
|
32
|
Lopez-Iglesias C, Puvion-Dutilleul F. Visualization of glycoproteins after tunicamycin and monensin treatment of herpes simplex virus infected cells. JOURNAL OF ULTRASTRUCTURE AND MOLECULAR STRUCTURE RESEARCH 1988; 101:75-91. [PMID: 3249040 DOI: 10.1016/0889-1605(88)90083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
The effects of tunicamycin and monensin on the morphogenesis of herpes simplex virus type 1 and on the ultrastructure and function of host cell membranes was investigated by conventional technics of electron microscopy and cytochemical localization of glycoproteins with thiocarbohydrazide-SO2. Infected RS 537 rabbit fibroblasts were treated with tunicamycin, which inhibits the glycosylation of many glycoproteins, or monensin, which inhibits the transport of proteins to the cell surface, and were compared with untreated infected cells. Tunicamycin treatment almost entirely suppresses the perinuclear envelopment of viral capsids, induces the nuclear export of unusually numerous naked viral capsids, and prevents the proliferation of the Golgi apparatus. On the other hand, perinuclear envelopment of viral capsids still occurs following a monensin treatment; however, enveloped viral capsids are not released into the extracellular space; in addition this treatment induces the proliferation of the rough endoplasmic reticulum (RER). The number of structures stained for glycoproteins in tunicamycin-treated cells is markedly lower than that in nontreated infected cells, whereas an unusual additional staining of the entire outer nuclear membrane and of the RER occurs following monensin treatment.
Collapse
Affiliation(s)
- C Lopez-Iglesias
- Groupe de Laboratoires de l'Institut de Recherches Scientifiques sur le Cancer, ER272 CNRS, Villejuif, France
| | | |
Collapse
|
33
|
Zajac BA, O'Neill K, Friedman HM, MacGregor RR. Increased adherence of human granulocytes to herpes simplex virus type 1 infected endothelial cells. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1988; 24:321-5. [PMID: 2835355 DOI: 10.1007/bf02628834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
We studied the interaction of human polymorphonuclear leukocytes (PMNs) with umbilical vein endothelial cells infected with herpes simplex virus (HSV) type 1. PMNs labeled with 51Cr were added to endothelial monolayers at varying times after infection and their adherence assessed 1 h later. Granulocyte adherence (GA) to uninfected cells averaged 26.5 +/- 1.9%. Increased adherence began 6 h postinfection and rose to a maximum at 20 to 24 h. HSV-1 glycoproteins seemed to mediate the increase in GA: tunicamycin treatment of infected monolayers for 18 h abolished the increased GA as did incubation of infected cells with F(ab')2 fragments prepared from human antiserum containing HSV-1 antibody.
Collapse
Affiliation(s)
- B A Zajac
- Department of Medicine, University of Pennsylvania School of Medicine
| | | | | | | |
Collapse
|
34
|
Puvion-Dutilleul F. Molecular and functional significance of cellular modifications induced by herpes simplex virus infection. ELECTRON MICROSCOPY REVIEWS 1988; 1:279-339. [PMID: 2856491 DOI: 10.1016/0892-0354(88)90005-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Affiliation(s)
- F Puvion-Dutilleul
- Groupe de Laboratoires, Institut de Recherches Scientifiques sur le Cancer, Villejuif, France
| |
Collapse
|
35
|
Hebbel RP, Visser MR, Goodman JL, Jacob HS, Vercellotti GM. Potentiated adherence of sickle erythrocytes to endothelium infected by virus. J Clin Invest 1987; 80:1503-6. [PMID: 3680511 PMCID: PMC442411 DOI: 10.1172/jci113233] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023] Open
Abstract
Systemic viral infection is a known precipitant of vasocclusive crisis in sickle patients, but the mechanism underlying this clinical observation is unknown. In the present studies, human umbilical vein endothelial cells were infected with Herpes simplex virus type 1 (HSV) to model systemic viral disease. The already abnormal adherence of sickle erythrocytes to control endothelium is enhanced 1.8 +/- 0.4-fold to HSV-infected endothelium (P less than 0.001). This component of potentiated adherence is eliminated by maneuvers that block Fc receptors, it is prevented by tunicamycin, and it is not seen using a mutant HSV that is unable to express the Fc receptor glycoprotein. Thus, the incremental adherence seen here occurs due to expression of Fc receptor activity on HSV-infected endothelium and the consequent recognition of abnormal amounts of IgG on sickle erythrocytes. We conclude that systemic viral infection potentially can induce a novel mechanism for enhancement of erythrocyte adherence to endothelium and that this may increase the likelihood of vasocclusion during viral infection.
Collapse
Affiliation(s)
- R P Hebbel
- Department of Medicine, University of Minnesota Medical School, Minneapolis 55455
| | | | | | | | | |
Collapse
|
36
|
Abstract
African swine fever (ASF) virus production was inhibited more than 100 fold by 5 mM glucosamine, 2 mM 2-deoxyglucose and 3 microM tunicamycin. ASF virus induced in Vero cells the synthesis of 19 glycosylated components of molecular weights ranging from 9K to 220K, the major ones being those of 9K, 13K, 14K, 74K and 220K. At least five of the induced glycosylated components, of molecular weights 13K, 33K, 34K, 38K and 220K, were probably virus-coded glycoproteins, as suggested by a comparative analysis of the time course of synthesis and the antigenicity of these components in extracts from [35S]methionine or [14C]glucosamine-labeled infected cells. The non-protein glycosylated components present in extracellular ASF virus particles had a cellular origin.
Collapse
|
37
|
Affiliation(s)
- R Datema
- Department of Antiviral Chemotherapy, Astra Alab AB, Södertälje, Sweden
| | | | | |
Collapse
|
38
|
Chapter 24 Herpesviridae. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0168-7069(08)70111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register]
|
39
|
Claesson-Welsh L, Spear PG. Amino-terminal sequence, synthesis, and membrane insertion of glycoprotein B of herpes simplex virus type 1. J Virol 1987; 61:1-7. [PMID: 3023687 PMCID: PMC255182 DOI: 10.1128/jvi.61.1.1-7.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Glycoprotein B (gB) was purified from cells infected with two strains (KOS and F) of herpes simplex virus type 1. Determination of amino acid sequence at the NH2 termini revealed, by comparison with amino acid sequence deduced from previously published nucleotide sequence, that gB is made with a cleavable signal sequence of 29 or 30 amino acids, depending on the virus strain. Analysis of gB translated in vitro in the presence and absence of membranes showed that gB is inserted into membranes and glycosylated cotranslationally; a large portion of the gB polypeptide made in vitro is protected from proteolysis by membranes; the large protected fragment carries N-linked carbohydrate and is probably the NH2 terminus based on locations of signals for the addition of N-linked carbohydrate; and the size of the protected fragment is 93 kilodaltons (kDa) for gB made in vitro and associated with dog pancreas membranes, whereas both 93- and 98-kDa protected fragments can be detected for gB made in vivo. These last results are consistent with a previous proposal that gB may traverse the membrane three times.
Collapse
|
40
|
Richman DD, Buckmaster A, Bell S, Hodgman C, Minson AC. Identification of a new glycoprotein of herpes simplex virus type 1 and genetic mapping of the gene that codes for it. J Virol 1986; 57:647-55. [PMID: 3003396 PMCID: PMC252780 DOI: 10.1128/jvi.57.2.647-655.1986] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
A type-specific monoclonal antibody, LP10, precipitated a glycoprotein with a molecular weight of approximately 59,000 from purified herpes simplex virus type 1. Although this glycoprotein was similar in size to glycoprotein D (gD), it was shown to be less abundant in both virions and infected cells, to migrate more rapidly in its precursor form, to incorporate glucosamine but not mannose, and to have a more stable precursor in tunicamycin-treated cells than the gD precursor (pgD). Immunoassays of cells infected with insertion recombinants and intertypic recombinants localized the gene coding for the target antigen of LP10 to the unique short (Us) region at map units 0.892 to 0.924 excluding gD. The target antigen of LP10 was then definitively mapped to the Us4 open reading frame by immunoprecipitation of a polypeptide synthesized by in vitro translation of a Us4-specific transcript prepared by using an SP6 cloning This newly identified glycoprotein product of the Us4 gene of herpes simplex virus type 1 is distinct from the previously identified gB1, gC1, gE1, and gH1.
Collapse
|
41
|
Hongo S, Sugawara K, Homma M, Nakamura K. The functions of oligosaccharide chains associated with influenza C viral glycoproteins. I. The formation of influenza C virus particles in the absence of glycosylation. Arch Virol 1986; 89:171-87. [PMID: 3718234 DOI: 10.1007/bf01309887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The effect of a glycosylation inhibitor, tunicamycin (TM) on the replication of influenza C virus was investigated. Incorporation of [3H]-glucosamine into the gp88 glycoproteins of this virus was completely inhibited by TM at the concentrations higher than 0.25 microgram/ml. Under these conditions, the synthesis of internal proteins NP and M was shown in TM-treated cells but the synthesis of gp88 was not. The disappearance of gp88 was however accompanied with the appearance of two new polypeptides with molecular weights of 80,000 (T80) and 76,000 (T76). While T80 was identified by peptide mapping as a host cell protein whose synthesis was enhanced by TM, T76 was shown to correspond to a nonglycosylated form of gp88. Pulse-chase experiments revealed that there was no significant difference in the intracellular stability of T76 and gp88. Although TM depressed the production of infectious progeny virus greater than 100-fold, only a five-fold decrease was observed in the release of noninfectious physical particles, suggesting that glycosylation is not essential for the formation of influenza C virus particles. However, the virions from TM-treated cells had a lower buoyant density in isopycnic sucrose gradients and lacked surface proteins in either glycosylated or nonglycosylated form.
Collapse
|
42
|
Abstract
The effect of tunicamycin, which inhibits N-linked glycosylation, on the replication of Epstein-Barr virus was examined. Tunicamycin markedly reduced the yield of virus from producing cells. At concentrations of 1 to 2 micrograms of tunicamycin per ml, there was a buildup of intracellular virus in P3HR1-Cl13 cells but not in MCUV5 cells; at a concentration of 5 micrograms of tunicamycin per ml in P3HR1-Cl13 cells, viral DNA synthesis was inhibited as well. Viral glycoproteins lacking N-linked sugars were apparently inserted into the cell membrane, and the small amount of virus made in the presence of drug was able to bind specifically to its receptor on B cells. However, the ability of the virus to induce immunoglobulin secretion by fresh human lymphocytes was impaired. This implies a role for viral glycoproteins in the penetration as well as the attachment of virus.
Collapse
|
43
|
Abstract
Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with [3H]glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing.
Collapse
|
44
|
van Drunen Littel-van den Hurk S, Babiuk LA. Effect of tunicamycin and monensin on biosynthesis, transport, and maturation of bovine herpesvirus type-1 glycoproteins. Virology 1985; 143:104-18. [PMID: 2997997 PMCID: PMC7130974 DOI: 10.1016/0042-6822(85)90100-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
The effect of tunicamycin and monensin on the biosynthesis, intracellular transport, and maturation of bovine herpesvirus type-1 (BHV-1) glycoproteins was examined. Tunicamycin completely inhibited the production of infectious virus particles and significantly reduced the incorporation of [3H]glucosamine into viral glycoproteins. In the presence of monensin, reduced amounts of infectious virus particles were produced, which was mainly due to inhibition of virus release, rather than virus production. Monensin only slightly inhibited viral glycoprotein synthesis. The effects of these compounds on infectivity indicated that glycosylation is required for the production of infectious virus, though complete processing of the glycoproteins is not essential. In addition, egress of the virions from infected cells probably requires a functional Golgi complex. In the presence of tunicamycin or monensin various degrees of glycosylation of the major glycoproteins occurred, consequently their rates of migration differed from that of the normal glycoproteins. Tunicamycin completely blocked glycosylation of GVP 6/11a/16 and GVP 7. In contrast, GVP 3/9 and GVP 11b were partially glycosylated in the presence of tunicamycin. These results indicated that GVP 6/11a/16 and GVP 7 are N-linked glycoproteins, but GVP 3/9 and GVP 11b contain both N- and O-linked oligosaccharide side chains. Tunicamycin blocked the transport of all viral glycoproteins to the cell surface, suggesting that glycosylation is required for this process. In the presence of monensin, the viral glycoproteins were transported and expressed on the cell surface indicating that transport does not require complete processing of the glycoproteins and may occur via a Golgi-independent pathway. In addition, monensin-treated BHV-1 infected cells could act as target cells in an antibody-dependent cell cytotoxicity assay. Thus, complete glycosylation may not be essential for maintenance of antigenicity and participation in immune destruction.
Collapse
|
45
|
Structural analysis of the varicella-zoster virus gp98-gp62 complex: posttranslational addition of N-linked and O-linked oligosaccharide moieties. J Virol 1985; 53:761-70. [PMID: 2983087 PMCID: PMC254704 DOI: 10.1128/jvi.53.3.761-770.1985] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Varicella-zoster virus specifies the formation of several glycoproteins, including the preponderant gp98-gp62 glycoprotein complex in the outer membranes of virus-infected cells. These viral glycoproteins are recognized and precipitated by a previously described monoclonal antibody designated monoclone 3B3. When an immunoblot analysis was performed, only gp98 was reactive with monoclone 3B3 antibody; likewise, titration in the presence of increased concentrations of sodium dodecyl sulfate during antigen-antibody incubations caused selective precipitation of gp98 but not gp62. Further structural analyses of gp98 were performed by using the glycosidases endo-beta-N-acetylglucosaminidase H (endoglycosidase H) and neuraminidase and two inhibitors of glycosylation (tunicamycin and monensin). In addition to gp98, antibody 3B3 reacted with several intermediate products, including gp90, gp88, gp81, and a nonglycosylated polypeptide, p73. Since gp98 was completely resistant to digestion with endoglycosidase H, it contained only complex carbohydrate moieties; conversely, gp81 contained mainly high-mannose residues. Polypeptide p73 was immunodetected in the presence of tunicamycin and designated as a nascent recipient of N-linked sugars, whereas gp88 was considered to contain O-linked oligosaccharides because its synthesis was not affected by tunicamycin. The ionophore monensin inhibited production of mature gp98, but other intermediate forms, including gp90, were detected. Since the latter product was similar in molecular weight to the desialated form of gp98, one effect of monensin treatment of varicella-zoster virus-infected cells was to block the addition of N-acetylneuraminic acid. Monensin also blocked insertion of gp98 into the plasma membrane and, as determined by electron microscopy, inhibited envelopment of the nucleocapsid and its transport within the cytoplasm. On the basis of this study, we reached the following conclusions: the primary antibody 3B3-binding epitope is located on gp98, gp98 is a mature product of viral glycoprotein processing, gp98 contains both N-linked and O-linked oligosaccharide side chains, gp90 is the desialated penultimate form of gp98, gp88 is an O-linked intermediate of gp98, gp81 is the high-mannose intermediate of gp98, and p73 is the unglycosylated precursor of gp98.
Collapse
|
46
|
Characterization of the gene encoding herpes simplex virus type 2 glycoprotein C and comparison with the type 1 counterpart. J Virol 1985; 53:561-9. [PMID: 2982036 PMCID: PMC254671 DOI: 10.1128/jvi.53.2.561-569.1985] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
The gene encoding the glycoprotein C (gC) of herpes simplex virus type 1 maps to the region of the viral genome from 0.62 to 0.64. Recently, a herpes simplex virus type 2 glycoprotein previously designated gF and now designated gC was mapped to a homologous location. Analysis of the herpes simplex virus type 2 mRNA species encoded in this region revealed a major transcript of 2.5 kilobases, a 0.73-kilobase transcript (the 5' ends of which were mapped by primer extension), and several minor species, all nearly identical to the herpes simplex virus type 1 pattern. A polypeptide of ca. 60,000 daltons was identified by in vitro translation of hybrid-selected mRNA. A smaller protein of ca. 20,000 daltons was also mapped to this region. The nucleotide sequence of a 3.4-kilobase segment of DNA encompassing gC was determined, and an open reading frame of 1,440 nucleotides specifying a 480-amino acid protein with properties consistent with that of a glycoprotein was identified. Comparative DNA sequence analysis showed regions of limited homology within the coding sequences for gC and a deletion which results in 31 fewer amino acids in the gC-2 near the amino terminus of the protein. The carboxy termini of gC-1 and gC-2 are very similar, as are the 20,000-dalton proteins.
Collapse
|
47
|
Eisenberg RJ, Long D, Ponce de Leon M, Matthews JT, Spear PG, Gibson MG, Lasky LA, Berman P, Golub E, Cohen GH. Localization of epitopes of herpes simplex virus type 1 glycoprotein D. J Virol 1985; 53:634-44. [PMID: 2578577 PMCID: PMC254679 DOI: 10.1128/jvi.53.2.634-644.1985] [Citation(s) in RCA: 136] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids.
Collapse
|
48
|
Seehafer J, Longenecker BM, Shaw AR. Biochemical characterization of human carcinoma surface antigen associated with protein kinase activity. Int J Cancer 1984; 34:821-9. [PMID: 6511126 DOI: 10.1002/ijc.2910340613] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
MAb 50H.19 immunoprecipitates two proteins from lysates of human carcinoma cell lines, and embryonic fibroblasts intrinsically labelled with 3H-leucine, 35S-methionine, or a 3H-amino acid mixture; a major component of Mr = 22,000 (22 kd component) and a minor component of Mr = 24,000 (24 kd component). Oligomeric forms of the proteins are not observed under reducing or non-reducing conditions. Both proteins are expressed on the plasma membrane, and are glycoproteins. We investigated the relationship between the proteins in terms of their glycosylation and derivation from precursors. The 22 kd component is O-glycosylated as demonstrated by 3H-galactose incorporation, insensitivity to tunicamycin (TM), and its stepwise generation from a 20.5 kd precursor. The 24 kd protein is N-glycosylated, as shown by 3H-mannose incorporation, and by the total inhibition of its synthesis in the presence of TM. Further evidence for its N-glycosylation is provided by the appearance of a 23 kd precursor in lysates from the osteogenic sarcoma cell line SKOSC pulse-labelled for 5 min, a time preceding O-glycosylation of the 20.5 kd protein. Furthermore, mild alkali treatment of the immune complex leads to a loss of approximately 1,000 daltons in each glycoprotein confirming the O-glycosylated nature of the 22 kd component, and suggesting that the 24 kd component is additionally O-glycosylated. Both glycoproteins undergo an apparent increase of molecular weight of about 500 daltons when run in the non-reduced form on SDS polyacrylamide gels under standard electrophoretic conditions, suggesting they contain a similar degree of intra-chain disulphide bonding. Confirmatory evidence that the two components share a common polypeptide backbone is provided by the appearance of only the 20.5 kd component in lysates from SKOSC cells pulse-labelled for 5 min in the presence of TM.
Collapse
|
49
|
Pereira L, Hoffman M, Tatsuno M, Dondero D. Polymorphism of human cytomegalovirus glycoproteins characterized by monoclonal antibodies. Virology 1984; 139:73-86. [PMID: 6208685 DOI: 10.1016/0042-6822(84)90331-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Abstract
Monoclonal antibody panels selected in this and preceding studies were employed to begin to characterize the properties of human cytomegalovirus (CMV) glycoproteins. The results were as follows. (i) Four antigenically distinct CMV glycoproteins designated as gA, gB, gC, and gD have been identified. (ii) gA, gC, and gD each form several bands when immune precipitated from infected cell extracts by the corresponding monoclonal antibodies and electrophoretically separated in sodium dodecyl sulfate-polyacrylamide gels. In contrast, gB migrated at one broad band with an apparent molecular weight in the range of 116,000 to 123,000. Bands with different molecular weights were shown to share antigenic determinants by reactivity of monoclonal antibodies with electrophoretically separated polypeptides immobilized on nitrocellulose. (iii) A panel of 16 monoclonal antibodies to gA precipitated a family of glycoproteins 160,000-148,000, 142,000, 138,000, 123,000-107,000, 95,000, and 58,500 in apparent molecular weight designated as gA1 through gA6, respectively. (iv) To identify partially glycosylated precursors of gA, infected cells were treated with tunicamycin or deoxyglucose and reacted with different monoclonal antibodies. Tunicamycin-treated infected cells labeled for a short pulse or longer intervals contained only gA5. Whereas cells treated with deoxyglucose during a pulse contained gA4, those labeled for a longer interval contained gA6 and an additional band approximately 56,500 in apparent molecular weight designated gA7. (v) Precipitates of gA from infected cells labeled for a short pulse contained gA2 and gA3 which appear to be products of rapid glycosylation. After a chase, trace amounts of gA1 and gA6 were also precipitated suggesting that these are products of slow post-translational processing. (vi) Endo-beta-N-acetylglucosaminidase H was used to identify the forms of gA which contain high-mannose oligosaccharide chains. After treatment, the electrophoretic mobility of gA2, gA3, and gA6 increased significantly suggesting that these forms contain high-mannose chains cleaved by the enzyme. A hypothesis for processing gA is presented.
Collapse
|
50
|
Compton T, Courtney RJ. Evidence for post-translational glycosylation of a nonglycosylated precursor protein of herpes simplex virus type 1. J Virol 1984; 52:630-7. [PMID: 6092685 PMCID: PMC254567 DOI: 10.1128/jvi.52.2.630-637.1984] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
Incubation of herpes simplex virus type 1-infected Vero and HEp-2 cells at a reduced temperature (34 degrees C) enhanced the detection of the nonglycosylated precursors (pgB97 and pgC75) to the gB and gC glycoproteins in the cytoplasmic and nuclear fractions. Relative to the fully glycosylated and high-mannose forms detected, the nonglycosylated precursors were the predominant components associated with the nuclear fraction of infected cells. Furthermore, addition of protease inhibitors to the fractionation buffers did not affect the distribution or abundance of the nonglycosylated precursors, suggesting that the presence of pgB97 and pgC75 was not the result of proteolysis. When infected Vero or HEp-2 cells were harvested at various times postinfection, the nonglycosylated precursors were detected after the initial appearance of the high mannose components (pgB110 and pgC105). In Vero cells, pgB97 and pgC75 were detected simultaneously at 8 h postinfection, whereas detection was not apparent in HEp-2 cells until 20 h postinfection. Conditions which favored detection of appreciable amounts of nonglycosylated precursors provided an unique approach to probe possible post-translational modifications in the absence of inhibitors of glycosylation. In nuclear fractions isolated from cycloheximide-treated HEp-2 or Vero cells, numerous discrete gC-immunoreactive bands migrating with decreased electrophoretic mobility relative to the nonglycosylated precursor pgC75 were observed. This series of one to four additional bands was eliminated by digestion with endoglycosidase H, and the appearance of these bands was blocked by the addition of tunicamycin. Collectively, the data suggest that high-mannose core oligosaccharides may be added to the nonglycosylated precursor of the gC glycoprotein of herpes simplex virus type 1 in a post-translational fashion.
Collapse
|