1
|
Kim AS, Kafai NM, Winkler ES, Gilliland TC, Cottle EL, Earnest JT, Jethva PN, Kaplonek P, Shah AP, Fong RH, Davidson E, Malonis RJ, Quiroz JA, Williamson LE, Vang L, Mack M, Crowe JE, Doranz BJ, Lai JR, Alter G, Gross ML, Klimstra WB, Fremont DH, Diamond MS. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 2021; 184:4414-4429.e19. [PMID: 34416146 PMCID: PMC8382027 DOI: 10.1016/j.cell.2021.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
Alphaviruses are emerging, mosquito-transmitted pathogens that cause musculoskeletal and neurological disease in humans. Although neutralizing antibodies that inhibit individual alphaviruses have been described, broadly reactive antibodies that protect against both arthritogenic and encephalitic alphaviruses have not been reported. Here, we identify DC2.112 and DC2.315, two pan-protective yet poorly neutralizing human monoclonal antibodies (mAbs) that avidly bind to viral antigen on the surface of cells infected with arthritogenic and encephalitic alphaviruses. These mAbs engage a conserved epitope in domain II of the E1 protein proximal to and within the fusion peptide. Treatment with DC2.112 or DC2.315 protects mice against infection by both arthritogenic (chikungunya and Mayaro) and encephalitic (Venezuelan, Eastern, and Western equine encephalitis) alphaviruses through multiple mechanisms, including inhibition of viral egress and monocyte-dependent Fc effector functions. These findings define a conserved epitope recognized by weakly neutralizing yet protective antibodies that could be targeted for pan-alphavirus immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Natasha M Kafai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Theron C Gilliland
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Emily L Cottle
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - James T Earnest
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Prashant N Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aadit P Shah
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel H Fong
- Integral Molecular, Inc., Philadelphia, PA 19104, USA
| | | | - Ryan J Malonis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jose A Quiroz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lauren E Williamson
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lo Vang
- Emergent BioSolutions, Gaithersburg, MD 20879, USA
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - James E Crowe
- Vanderbilt Vaccine Center and Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jonathan R Lai
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - William B Klimstra
- Center for Vaccine Research and Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
2
|
Self-Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice. Mol Ther 2019; 27:850-865. [PMID: 30770173 DOI: 10.1016/j.ymthe.2018.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a known biological defense threat. A live-attenuated investigational vaccine, TC-83, is available, but it has a high non-response rate and can also cause severe reactogenicity. We generated two novel VEE vaccine candidates using self-amplifying mRNA (SAM). LAV-CNE is a live-attenuated VEE SAM vaccine formulated with synthetic cationic nanoemulsion (CNE) and carrying the RNA genome of TC-83. IAV-CNE is an irreversibly-attenuated VEE SAM vaccine formulated with CNE, delivering a TC-83 genome lacking the capsid gene. LAV-CNE launches a TC-83 infection cycle in vaccinated subjects but eliminates the need for live-attenuated vaccine production and potentially reduces manufacturing time and complexity. IAV-CNE produces a single cycle of RNA amplification and antigen expression without generating infectious viruses in subjects, thereby creating a potentially safer alternative to live-attenuated vaccine. Here, we demonstrated that mice vaccinated with LAV-CNE elicited immune responses similar to those of TC-83, providing 100% protection against aerosol VEEV challenge. IAV-CNE was also immunogenic, resulting in significant protection against VEEV challenge. These studies demonstrate the proof of concept for using the SAM platform to streamline the development of effective attenuated vaccines against VEEV and closely related alphavirus pathogens such as western and eastern equine encephalitis and Chikungunya viruses.
Collapse
|
3
|
A Multiagent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus-Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges. J Immunol Res 2018; 2018:8521060. [PMID: 29967804 PMCID: PMC6008678 DOI: 10.1155/2018/8521060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
There remains a need for vaccines that can safely and effectively protect against the biological threat agents Venezuelan (VEEV), western (WEEV), and eastern (EEEV) equine encephalitis virus. Previously, we demonstrated that a VEEV DNA vaccine that was optimized for increased antigen expression and delivered by intramuscular (IM) electroporation (EP) elicited robust and durable virus-specific antibody responses in multiple animal species and provided complete protection against VEEV aerosol challenge in mice and nonhuman primates. Here, we performed a comparative evaluation of the immunogenicity and protective efficacy of individual optimized VEEV, WEEV, and EEEV DNA vaccines with that of a 1 : 1 : 1 mixture of these vaccines, which we have termed the 3-EEV DNA vaccine, when delivered by IM EP. The individual DNA vaccines and the 3-EEV DNA vaccine elicited robust and durable virus-specific antibody responses in mice and rabbits and completely protected mice from homologous VEEV, WEEV, and EEEV aerosol challenges. Taken together, the results from these studies demonstrate that the individual VEEV, WEEV, and EEEV DNA vaccines and the 3-EEV DNA vaccine delivered by IM EP provide an effective means of eliciting protection against lethal encephalitic alphavirus infections in a murine model and represent viable next-generation vaccine candidates that warrant further development.
Collapse
|
4
|
Ahola T, Couderc T, Courderc T, Ng LFP, Hallengärd D, Powers A, Lecuit M, Esteban M, Merits A, Roques P, Liljeström P. Therapeutics and vaccines against chikungunya virus. Vector Borne Zoonotic Dis 2016; 15:250-7. [PMID: 25897811 DOI: 10.1089/vbz.2014.1681] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Currently, there are no licensed vaccines or therapies available against chikungunya virus (CHIKV), and these were subjects discussed during a CHIKV meeting recently organized in Langkawi, Malaysia. In this review, we chart the approaches taken in both areas. Because of a sharp increase in new data in these fields, the present paper is complementary to previous reviews by Weaver et al. in 2012 and Kaur and Chu in 2013 . The most promising antivirals so far discovered are reviewed, with a special focus on the virus-encoded replication proteins as potential targets. Within the vaccines in development, our review emphasizes the various strategies in parallel development that are unique in the vaccine field against a single disease.
Collapse
Affiliation(s)
- Tero Ahola
- 1 Department of Food and Environmental Sciences, University of Helsinki , Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Couderc T, Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. Antiviral Res 2015; 121:120-31. [PMID: 26159730 DOI: 10.1016/j.antiviral.2015.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/04/2015] [Indexed: 11/28/2022]
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted to humans by mosquito bite. A decade ago, the virus caused a major outbreak in the islands of the Indian Ocean, then reached India and Southeast Asia. More recently, CHIKV has emerged in the Americas, first reaching the Caribbean and now extending to Central, South and North America. It is therefore considered a major public health and economic threat. CHIKV causes febrile illness typically associated with debilitating joint pains. In rare cases, it may also cause central nervous system disease, notably in neonates. Joint symptoms may persist for months to years, and lead to arthritis. This review focuses on the spectrum of signs and symptoms associated with CHIKV infection in humans. It also illustrates how the analysis of clinical and biological data from human cohorts and the development of animal and cellular models of infection has helped to identify the tissue and cell tropisms of the virus and to decipher host responses in benign, severe or persistent disease. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World".
Collapse
Affiliation(s)
- Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France.
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France; Global Virus Network.
| |
Collapse
|
6
|
Locking and blocking the viral landscape of an alphavirus with neutralizing antibodies. J Virol 2014; 88:9616-23. [PMID: 24920796 DOI: 10.1128/jvi.01286-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Alphaviruses are serious, sometimes lethal human pathogens that belong to the family Togaviridae. The structures of human Venezuelan equine encephalitis virus (VEEV), an alphavirus, in complex with two strongly neutralizing antibody Fab fragments (F5 and 3B4C-4) have been determined using a combination of cryo-electron microscopy and homology modeling. We characterize these monoclonal antibody Fab fragments, which are known to abrogate VEEV infectivity by binding to the E2 (envelope) surface glycoprotein. Both of these antibody Fab fragments cross-link the surface E2 glycoproteins and therefore probably inhibit infectivity by blocking the conformational changes that are required for making the virus fusogenic. The F5 Fab fragment cross-links E2 proteins within one trimeric spike, whereas the 3B4C-4 Fab fragment cross-links E2 proteins from neighboring spikes. Furthermore, F5 probably blocks the receptor-binding site, whereas 3B4C-4 sterically hinders the exposure of the fusion loop at the end of the E2 B-domain. IMPORTANCE Alphaviral infections are transmitted mainly by mosquitoes. Venezuelan equine encephalitis virus (VEEV) is an alphavirus with a wide distribution across the globe. No effective vaccines exist for alphaviral infections. Therefore, a better understanding of VEEV and its associated neutralizing antibodies will help with the development of effective drugs and vaccines.
Collapse
|
7
|
Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. J Virol 2014; 88:8213-26. [PMID: 24829346 DOI: 10.1128/jvi.01032-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Chikungunya virus (CHIKV) is a reemerging mosquito-transmitted alphavirus that causes epidemics of debilitating polyarthritis in humans. A prior study identified two anti-CHIKV monoclonal antibodies ([MAbs] CHK-152 and CHK-166) against the E2 and E1 structural proteins, which had therapeutic efficacy in immunocompetent and immunocompromised mice. Combination MAb therapy was required as administration of a single MAb resulted in the rapid selection of neutralization escape variants and treatment failure in mice. Here, we initially evaluated the efficacy of combination MAb therapy in a nonhuman primate model of CHIKV infection. Treatment of rhesus macaques with CHK-152 and CHK-166 reduced viral spread and infection in distant tissue sites and also neutralized reservoirs of infectious virus. Escape viruses were not detected in the residual viral RNA present in tissues and organs of rhesus macaques. To evaluate the possible significance of MAb resistance, we engineered neutralization escape variant viruses (E1-K61T, E2-D59N, and the double mutant E1-K61T E2-D59N) that conferred resistance to CHK-152 and CHK-166 and tested them for fitness in mosquito cells, mammalian cells, mice, and Aedes albopictus mosquitoes. In both cell culture and mosquitoes, the mutant viruses grew equivalently and did not revert to wild-type (WT) sequence. All escape variants showed evidence of mild clinical attenuation, with decreased musculoskeletal disease at early times after infection in WT mice and a prolonged survival time in immunocompromised Ifnar1(-/-) mice. Unexpectedly, this was not associated with decreased infectivity, and consensus sequencing from tissues revealed no evidence of reversion or compensatory mutations. Competition studies with CHIKV WT also revealed no fitness compromise of the double mutant (E1-K61T E2-D59N) neutralization escape variant in WT mice. Collectively, our study suggests that neutralization escape viruses selected during combination MAb therapy with CHK-152 plus CHK-166 retain fitness, cause less severe clinical disease, and likely would not be purified during the enzootic cycle. IMPORTANCE Chikungunya virus (CHIKV) causes explosive epidemics of acute and chronic arthritis in humans in Africa, the Indian subcontinent, and Southeast Asia and recently has spread to the New World. As there are no approved vaccines or therapies for human use, the possibility of CHIKV-induced debilitating disease is high in many parts of the world. To this end, our laboratory recently generated a combination monoclonal antibody therapy that aborted lethal and arthritogenic disease in wild-type and immunocompromised mice when administered as a single dose several days after infection. In this study, we show the efficacy of the antibody combination in nonhuman primates and also evaluate the significance of possible neutralization escape mutations in mosquito and mammalian cells, mice, and Aedes albopictus vector mosquitoes. Our experiments show that escape viruses from combination antibody therapy cause less severe CHIKV clinical disease, retain fitness, and likely would not be purified by mosquito vectors.
Collapse
|
8
|
Possible future monoclonal antibody (mAb)-based therapy against arbovirus infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:838491. [PMID: 24058915 PMCID: PMC3766601 DOI: 10.1155/2013/838491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 11/17/2022]
Abstract
More than 150 arboviruses belonging to different families are known to infect humans, causing endemic infections as well as epidemic outbreaks. Effective vaccines to limit the occurrence of some of these infections have been licensed, while for the others several new immunogens are under development mostly for their improvements concerning safety and effectiveness profiles. On the other hand, specific and effective antiviral drugs are not yet available, posing an urgent medical need in particular for emergency cases. Neutralizing monoclonal antibodies (mAbs) have been demonstrated to be effective in the treatment of several infectious diseases as well as in preliminary in vitro and in vivo models of arbovirus-related infections. Given their specific antiviral activity as well-tolerated molecules with limited side effects, mAbs could represent a new therapeutic approach for the development of an effective treatment, as well as useful tools in the study of the host-virus interplay and in the development of more effective immunogens. However, before their use as candidate therapeutics, possible hurdles (e.g., Ab-dependent enhancement of infection, occurrence of viral escape variants) must be carefully evaluated. In this review are described the main arboviruses infecting humans and candidate mAbs to be possibly used in a future passive immunotherapy.
Collapse
|
9
|
Straub T, Schweier O, Bruns M, Nimmerjahn F, Waisman A, Pircher H. Nucleoprotein-specific nonneutralizing antibodies speed up LCMV elimination independently of complement and FcγR. Eur J Immunol 2013; 43:2338-48. [PMID: 23749409 DOI: 10.1002/eji.201343565] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
CD8(+) T cells have an essential role in controlling lymphocytic choriomeningitis virus (LCMV) infection in mice. Here, we examined the contribution of humoral immunity, including nonneutralizing antibodies (Abs), in this infection induced by low virus inoculation doses. Mice with impaired humoral immunity readily terminated infection with the slowly replicating LCMV strain Armstrong but showed delayed virus elimination after inoculation with the faster replicating LCMV strain WE and failed to clear the rapidly replicating LCMV strain Docile, which is in contrast to the results obtained with wild-type mice. Thus, the requirement for adaptive humoral immunity to control the infection was dependent on the replication speed of the LCMV strains used. Ab transfers further showed that LCMV-specific IgG Abs isolated from LCMV immune serum accelerated virus elimination. These Abs were mainly directed against the viral nucleoprotein (NP) and completely lacked virus neutralizing activity. Moreover, mAbs specific for the LCMV NP were also able to decrease viral titers after transfer into infected hosts. Intriguingly, neither C3 nor Fcγ receptors were required for the antiviral activity of the transferred Abs. In conclusion, our study suggests that rapidly generated nonneutralizing Abs specific for the viral NP speed up virus elimination and thereby may counteract T-cell exhaustion.
Collapse
Affiliation(s)
- Tobias Straub
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Pal P, Dowd KA, Brien JD, Edeling MA, Gorlatov S, Johnson S, Lee I, Akahata W, Nabel GJ, Richter MKS, Smit JM, Fremont DH, Pierson TC, Heise MT, Diamond MS. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 2013; 9:e1003312. [PMID: 23637602 PMCID: PMC3630103 DOI: 10.1371/journal.ppat.1003312] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/04/2013] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans. Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes outbreaks of polyarthritis in humans, and is currently a threat to spread to the United States due to the presence of its mosquito vector, Aedes albopictus. At present, there is no licensed human vaccine or therapeutic available to protect against CHIKV infection. The primary goal of this study was to develop an antibody-based therapeutic agent against CHIKV. To do this, we developed a panel of 230 new mouse anti-CHIKV MAbs and tested them for their ability to neutralize infection of different CHIKV strains in cell culture. We identified 36 MAbs with broad neutralizing activity, and then tested several of these for their ability to protect immunocompromised Ifnar−/− mice against lethal CHIKV infection. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs limited the development of resistance and protected Ifnar−/− mice against disease even when given just 24 to 36 hours before CHIKV-induced death. Analogous protection against CHIKV-induced arthritis was seen in a disease model in wild type mice. Our data suggest that pairs of highly neutralizing MAbs may be a therapeutic option against CHIKV infection.
Collapse
Affiliation(s)
- Pankaj Pal
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rülker T, Voß L, Thullier P, O' Brien LM, Pelat T, Perkins SD, Langermann C, Schirrmann T, Dübel S, Marschall HJ, Hust M, Hülseweh B. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One 2012; 7:e37242. [PMID: 22666347 PMCID: PMC3364240 DOI: 10.1371/journal.pone.0037242] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/18/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ß-propionolactone (ß-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Cloning, Molecular
- Encephalitis Virus, Venezuelan Equine/immunology
- Gene Library
- Genetic Vectors/genetics
- Humans
- Immunization, Passive
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/isolation & purification
- Sequence Analysis
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/isolation & purification
Collapse
Affiliation(s)
- Torsten Rülker
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Luzie Voß
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Philippe Thullier
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Lyn M. O' Brien
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Thibaut Pelat
- Centre de Recherche du Service de Santé des Armées (CRSSA-IRBA), La Tronche, France
| | - Stuart D. Perkins
- Defence Science and Technology Laboratory, Biomedical Sciences Department, Porton Down, Salisbury, Wiltshire, United Kingdom
| | - Claudia Langermann
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Thomas Schirrmann
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Hans-Jürgen Marschall
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie und Biotechnologie, Braunschweig, Germany
| | - Birgit Hülseweh
- Wehrwissenschaftliches Institut für Schutztechnologien (WIS) – ABC-Schutz, Munster, Germany
| |
Collapse
|
12
|
Xu C, Mutoloki S, Evensen Ø. Superior protection conferred by inactivated whole virus vaccine over subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon (Salmo salar L.). Vaccine 2012; 30:3918-28. [PMID: 22504037 DOI: 10.1016/j.vaccine.2012.03.081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 11/15/2022]
Abstract
Salmonid alphavirus 3 (SAV-3) is an emerging pathogen in Norwegian salmon farming and causes severe annual losses. We studied the immunogenicity and protective ability of subunit and DNA vaccines based on E1 and E2 spike proteins of salmonid alphavirus subtype 3 (SAV-3), and compared these to an experimental inactivated, whole virus (IWV) vaccine in Atlantic salmon. The antigens were delivered as water-in-oil emulsions for the subunit and inactivated vaccines and non-formulated for the DNA vaccines. The IWV and the E2 subunit prime-boost groups had circulating neutralizing antibodies at challenge, correlating with high protection against lethal challenge and 3-log(10) reduction of virus titer in heart for the IWV group. Prime-boost with E1 subunit vaccine also conferred significant protection against mortality, but did not correlate with neutralizing antibody levels. Protection against pathology in internal organs was only seen for the IWV group. Prime-boost with E1 and E2 DNA vaccines showed marginal protection in terms of reduction of viral replication in target organs and protection against mortality was not different from controls. The IWV group showed significant upregulation of IFNγ and IL2 mRNA expression at 4 weeks post challenge possibly indicating that other mechanisms in addition to antibody responses play a role in mediating protection against infection. This is the first report comparing the immunogenicity and protection against mortality for IWV vaccines and spike protein subunit and DNA vaccines against salmonid alphavirus infection in Atlantic salmon. The IWV vaccine has superior immunogenicity over sub-unit and DNA vaccines.
Collapse
Affiliation(s)
- Cheng Xu
- Norwegian School of Veterinary Science, PO Box 8146, N-0033 Oslo, Norway
| | | | | |
Collapse
|
13
|
A panel of IgG1 b12 variants with selectively diminished or enhanced affinity for Fcγ receptors to define the role of effector functions in protection against HIV. J Virol 2011; 85:10572-81. [PMID: 21849450 DOI: 10.1128/jvi.05541-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Passive transfer of neutralizing antibodies is effective in protecting rhesus macaques against simian/human immunodeficiency virus (SHIV) challenge. In addition to neutralization, effector functions of the crystallizable fragment (Fc) of antibodies are involved in antibody-mediated protection against a number of viruses. We recently showed that interaction between the Fc fragment of the broadly neutralizing antibody IgG1 b12 and cellular Fcγ receptors (FcγRs) plays an important role in protection against SHIV infection in rhesus macaques. The specific nature of this Fc-dependent protection is largely unknown. To investigate, we generated a panel of 11 IgG1 b12 antibody variants with selectively diminished or enhanced affinity for the two main activating FcγRs, FcγRIIa and FcγRIIIa. All 11 antibody variants bind gp120 and neutralize virus as effectively as does wild-type b12. Binding studies using monomeric (enzyme-linked immunosorbent assay [ELISA] and surface plasmon resonance [SPR]) and cellularly expressed Fcγ receptors show decreased (up to 5-fold) and increased (up to 90-fold) binding to FcγRIIa and FcγRIIIa with this newly generated panel of antibodies. In addition, there was generally a good correlation between b12 variant affinity for Fcγ receptor and variant function in antibody-dependent cell-mediated virus inhibition (ADCVI), phagocytosis, NK cell activation assays, and antibody-dependent cellular cytotoxicity (ADCC) assays. In future studies, these b12 variants will enable the investigation of the protective role of individual FcγRs in HIV infection.
Collapse
|
14
|
Hunt AR, Bowen RA, Frederickson S, Maruyama T, Roehrig JT, Blair CD. Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology 2011; 414:146-52. [PMID: 21489591 DOI: 10.1016/j.virol.2011.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/23/2011] [Accepted: 03/18/2011] [Indexed: 02/05/2023]
Abstract
We recently described a Venezuelan equine encephalitis virus (VEEV)-specific human monoclonal antibody (MAb), F5 nIgG, that recognizes a new neutralization epitope on the VEEV E2 envelope glycoprotein. In this study, we investigated the ability of F5 nIgG given prophylactically or therapeutically to protect mice from subcutaneous or aerosolized VEEV infection. F5 nIgG had potent ability to protect mice from infection by either route when administered 24h before exposure; however, mice treated 24h after aerosol exposure developed central nervous system infections but exhibited no clinical signs of disease. Infectious virus, viral antigen and RNA were detected in brains of both treated and untreated mice 2-6 days after aerosol exposure but were cleared from the brains of treated animals by 14-28 days after infection. This fully human MAb could be useful for prophylaxis or immediate therapy for individuals exposed to VEEV accidentally in the laboratory or during a deliberate release.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Cell Line
- Disease Models, Animal
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalitis Virus, Venezuelan Equine/physiology
- Encephalomyelitis, Venezuelan Equine/drug therapy
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Female
- Humans
- Male
- Mice
- Mice, Inbred ICR
- Neutralization Tests
- Post-Exposure Prophylaxis
- Viral Envelope Proteins/immunology
- Virulence
Collapse
Affiliation(s)
- Ann R Hunt
- Department of Microbiology, Immunology & Pathology 1692, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Goodchild SA, O'Brien LM, Steven J, Muller MR, Lanning OJ, Logue CH, D'Elia RV, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody with broad serogroup specificity protects mice from challenge with Venezuelan equine encephalitis virus. Antiviral Res 2011; 90:1-8. [PMID: 21310183 DOI: 10.1016/j.antiviral.2011.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 01/31/2011] [Accepted: 01/31/2011] [Indexed: 12/21/2022]
Abstract
In murine models of Venezuelan equine encephalitis virus (VEEV) infection, the neutralising monoclonal antibody 1A3B-7 has been shown to be effective in passive protection from challenge by the aerosol route with serogroups I, II and Mucambo virus (formally VEE complex subtype IIIA). This antibody is able to bind to all serogroups of the VEEV complex when used in ELISA and therefore is an excellent candidate for protein engineering in order to derive a humanised molecule suitable for therapeutic use in humans. A Complementarity Determining Region (CDR) grafting approach using human germline IgG frameworks was used to produce a panel of humanised variants of 1A3B-7, from which a single candidate molecule with retained binding specificity was identified. Evaluation of humanised 1A3B-7 (Hu1A3B-7) in in vitro studies indicated that Hu1A3B-7 retained both broad specificity and neutralising activity. Furthermore, in vivo experiments showed that Hu1A3B-7 successfully protected mice against lethal subcutaneous and aerosol challenges with VEEV strain TrD (serogroup I). Hu1A3B-7 is therefore a promising candidate for the future development of a broad-spectrum antiviral therapy to treat VEEV disease in humans.
Collapse
Affiliation(s)
- Sarah A Goodchild
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. PLoS Negl Trop Dis 2010; 4:e739. [PMID: 20644615 PMCID: PMC2903468 DOI: 10.1371/journal.pntd.0000739] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 05/25/2010] [Indexed: 01/02/2023] Open
Abstract
Background Venezuelan equine encephalitis virus (VEEV) is responsible for VEE epidemics that occur in South and Central America and the U.S. The VEEV envelope contains two glycoproteins E1 (mediates cell membrane fusion) and E2 (binds receptor and elicits virus neutralizing antibodies). Previously we constructed E1 and E2 epitope maps using murine monoclonal antibodies (mMAbs). Six E2 epitopes (E2c,d,e,f,g,h) bound VEEV-neutralizing antibody and mapped to amino acids (aa) 182–207. Nothing is known about the human antibody repertoire to VEEV or epitopes that engage human virus-neutralizing antibodies. There is no specific treatment for VEE; however virus-neutralizing mMAbs are potent protective and therapeutic agents for mice challenged with VEEV by either peripheral or aerosol routes. Therefore, fully human MAbs (hMAbs) with virus-neutralizing activity should be useful for prevention or clinical treatment of human VEE. Methods We used phage-display to isolate VEEV-specific hFabs from human bone marrow donors. These hFabs were characterized by sequencing, specificity testing, VEEV subtype cross-reactivity using indirect ELISA, and in vitro virus neutralization capacity. One E2-specific neutralizing hFAb, F5n, was converted into IgG, and its binding site was identified using competitive ELISA with mMAbs and by preparing and sequencing antibody neutralization-escape variants. Findings Using 11 VEEV-reactive hFabs we constructed the first human epitope map for the alphaviral surface proteins E1 and E2. We identified an important neutralization-associated epitope unique to the human immune response, E2 aa115–119. Using a 9 Å resolution cryo-electron microscopy map of the Sindbis virus E2 protein, we showed the probable surface location of this human VEEV epitope. Conclusions The VEEV-neutralizing capacity of the hMAb F5 nIgG is similar to that exhibited by the humanized mMAb Hy4 IgG. The Hy4 IgG has been shown to limit VEEV infection in mice both prophylactically and therapeutically. Administration of a cocktail of F5n and Hy4 IgGs, which bind to different E2 epitopes, could provide enhanced prophylaxis or immunotherapy for VEEV, while reducing the possibility of generating possibly harmful virus neutralization-escape variants in vivo. Although the murine immune response to Venezuelan equine encephalitis virus (VEEV) is well-characterized, little is known about the human antibody response to VEEV. In this study we used phage display technology to isolate a panel of 11 VEEV-specfic Fabs from two human donors. Seven E2-specific and four E1-specific Fabs were identified and mapped to five E2 epitopes and three E1 epitopes. Two neutralizing Fabs were isolated, E2-specific F5 and E1-specific L1A7, although the neutralizing capacity of L1A7 was 300-fold lower than F5. F5 Fab was expressed as a complete IgG1 molecule, F5 native (n) IgG. Neutralization-escape VEEV variants for F5 nIgG were isolated and their structural genes were sequenced to determine the theoretical binding site of F5. Based on this sequence analysis as well as the ability of F5 to neutralize four neutralization-escape variants of anti-VEEV murine monoclonal antibodies (mapped to E2 amino acids 182–207), a unique neutralization domain on E2 was identified and mapped to E2 amino acids 115–119.
Collapse
|
17
|
Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, Parker MD, Hart MK, Fine DL. Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for Venezuelan equine encephalitis virus. Vaccine 2010; 28:3143-51. [PMID: 20193792 DOI: 10.1016/j.vaccine.2010.02.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 01/29/2010] [Accepted: 02/15/2010] [Indexed: 12/26/2022]
Abstract
V3526, a genetically modified strain of Venezuelan equine encephalitis virus (VEEV), was formalin inactivated for evaluation as a next generation vaccine candidate for VEEV. In this study, we tested formalin-inactivated V3526 (fV3526) with and without adjuvant for immunogenicity and efficacy in BALB/c mice and results were compared to the existing inactivated VEEV vaccine, C84. Mice were vaccinated intramuscularly (IM) or subcutaneously (SC) with fV3526 formulations and challenged with VEEV IAB Trinidad donkey (VEEV TrD) strain by SC or aerosol exposure. Efficacy following SC or aerosol challenge was not significantly different between the fV3526 formulations or compared to C84 despite C84 being administered in more doses and higher concentration of viral protein per dose. These data support further evaluation of fV3526 formulations as a next generation VEEV vaccine.
Collapse
Affiliation(s)
- Shannon S Martin
- DynPort Vaccine Company LLC, A CSC Company, 64 Thomas Johnson Drive, Frederick, MD 21702, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
O'Brien LM, Underwood-Fowler CD, Goodchild SA, Phelps AL, Phillpotts RJ. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains. Virol J 2009; 6:206. [PMID: 19925641 PMCID: PMC2783036 DOI: 10.1186/1743-422x-6-206] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 11/19/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. RESULTS In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv) isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. CONCLUSION A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans.
Collapse
Affiliation(s)
- Lyn M O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
19
|
Complement modulates pathogenesis and antibody-dependent neutralization of West Nile virus infection through a C5-independent mechanism. Virology 2009; 393:11-5. [PMID: 19744691 DOI: 10.1016/j.virol.2009.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/28/2009] [Accepted: 08/08/2009] [Indexed: 11/23/2022]
Abstract
Although the interactions of complement and viruses have been widely studied, the function of C5 and the membrane attack complex in the context of viral infection or antibody-mediated neutralization remains controversial. Using C5-depleted or -deficient human or mouse sera, we show that C5 does not contribute to the antibody-dependent or -independent neutralization of West Nile virus (WNV) in cell culture. Consistent with this, C5 neither contributed to protection against WNV pathogenesis nor augmented the neutralizing efficacy of complement-fixing anti-WNV neutralizing antibodies in mice. Although previous studies established that activation of the classical, lectin, and alternative complement pathways restricts WNV infection, our results show little effect of C5 and by inference the terminal lytic complement components. Overall, these results enhance our mechanistic understanding of how complement controls flavivirus infections.
Collapse
|
20
|
Couderc T, Khandoudi N, Grandadam M, Visse C, Gangneux N, Bagot S, Prost JF, Lecuit M. Prophylaxis and therapy for Chikungunya virus infection. J Infect Dis 2009; 200:516-23. [PMID: 19572805 PMCID: PMC7109959 DOI: 10.1086/600381] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/25/2009] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a recently reemerged arbovirus responsible for a massive outbreak of infection in the Indian Ocean region and India that has a very significant potential to spread globally because of the worldwide distribution of its mosquito vectors. CHIKV induces a usually self-limited disease in humans that is characterized by fever, arthralgia, myalgia, and rash; however, cases of severe CHIKV infection have recently been described, particularly in adults with underlying condition and neonates born to viremic mothers. METHODS Human polyvalent immunoglobulins were purified from plasma samples obtained from donors in the convalescent phase of CHIKV infection, and the preventive and curative effects of these immunoglobulins were investigated in 2 mouse models of CHIKV infection that we developed. RESULTS CHIKV immunoglobulins contain anti-CHIKV antibodies and exhibit a high in vitro neutralizing activity and a powerful prophylactic and therapeutic efficacy against CHIKV infection in vivo, including in the neonate. CONCLUSIONS Administration of CHIKV immunoglobulins may constitute a safe and efficacious prevention strategy and treatment for individuals exposed to CHIKV who are at risk of severe infection, such as neonates born to viremic mothers and adults with underlying conditions. These results provide a proof-of-concept for purifying human immunoglobulins from plasma samples from patients in the convalescent phase of an emerging infectious disease for which neither prevention nor treatment is available.
Collapse
Affiliation(s)
- Thérèse Couderc
- Groupe Microorganismes et Barrières de l’Hôte and
- Inserm, Avenir U604, and
| | - Nassirah Khandoudi
- Laboratoire Français du Fractionnement et des Biotechnologies, Les Ulis, and
| | - Marc Grandadam
- Unité Interactions Moléculaires Flavivirus-Hôtes, Centre National de Référence des Arbovirus, Institut Pasteur
- Service de Santé des Armées, Laboratoire de Virologie, Institut de Médecine Tropicale, Marseille, France
| | - Catherine Visse
- Laboratoire Français du Fractionnement et des Biotechnologies, Les Ulis, and
| | - Nicolas Gangneux
- Groupe Microorganismes et Barrières de l’Hôte and
- Inserm, Avenir U604, and
| | - Sébastien Bagot
- Laboratoire Français du Fractionnement et des Biotechnologies, Les Ulis, and
| | - Jean-François Prost
- Laboratoire Français du Fractionnement et des Biotechnologies, Les Ulis, and
| | - Marc Lecuit
- Groupe Microorganismes et Barrières de l’Hôte and
- Inserm, Avenir U604, and
- Université Paris Descartes, Hôpital Necker-Enfants Malades, Centre d’Infectiologie Necker-Pasteur, Assistance Publique–Hôpitaux de Paris, Paris
| |
Collapse
|
21
|
O'Brien L, Perkins S, Williams A, Eastaugh L, Phelps A, Wu J, Phillpotts R. Alpha interferon as an adenovirus-vectored vaccine adjuvant and antiviral in Venezuelan equine encephalitis virus infection. J Gen Virol 2009; 90:874-882. [PMID: 19264673 DOI: 10.1099/vir.0.006833-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are no widely available vaccines or antiviral drugs capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV), although an adenovirus vector expressing VEEV structural proteins protects mice from challenge with VEEV and is potentially a vaccine suitable for human use. This work examines whether alpha interferon (IFN-α) could act as an adjuvant for the adenovirus-based vaccine. IFN-α was either expressed by a plasmid linked to the adenovirus vaccine or encoded by a separate adenovirus vector administered as a mixture with the vaccine. In contrast to previous reports with other vaccines, the presence of IFN-α reduced the antibody response to VEEV. When IFN-α was encoded by adenovirus, the lack of a VEEV-specific response was accompanied by an increase in the immune response to the adenovirus vector. IFN-α also plays a direct role in defence against virus infection, inducing the expression of a large number of antiviral proteins. Adenovirus-delivered IFN-α protected mice from VEEV disease when administered 24 h prior to challenge, but not when administered 6 h post-challenge, suggesting that up to 24 h is required for the development of the IFN-mediated antiviral response.
Collapse
Affiliation(s)
- Lyn O'Brien
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Stuart Perkins
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Amanda Williams
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Lin Eastaugh
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Amanda Phelps
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Josh Wu
- Biotechnology Section, Defence Research and Development Canada – Suffield, Box 4000, Station Main, Medicine Hat, Alberta T1A 8K6, Canada
| | - Robert Phillpotts
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
22
|
Hunt AR, Frederickson S, Hinkel C, Bowdish KS, Roehrig JT. A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalomyelitis virus. J Gen Virol 2006; 87:2467-2476. [PMID: 16894184 DOI: 10.1099/vir.0.81925-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A humanized monoclonal antibody (mAb) has been developed and its potential to protect from or cure a Venezuelan equine encephalomyelitis virus (VEEV) infection was evaluated. The VEEV-neutralizing, protective murine mAb 3B4C-4 was humanized using combinatorial antibody libraries and phage-display technology. Humanized VEEV-binding Fabs were evaluated for virus-neutralizing capacity, then selected Fabs were converted to whole immunoglobulin (Ig) G1, and stable cell lines were generated. The humanized mAb Hy4-26C, designated Hy4 IgG, had virus-neutralizing capacity similar to that of 3B4C-4. Passive antibody protection studies with purified Hy4 IgG were performed in adult Swiss Webster mice. As little as 100 ng Hy4 IgG protected 90 % of mice challenged with 100 intraperitoneal (i.p.) mean morbidity (MD(50)) doses of virulent VEEV (Trinidad donkey) 24 h after antibody transfer; also, 500 mug Hy4 IgG protected 80 % of mice inoculated with 100 intranasal MD(50) doses of VEEV. Moreover, 10 mug passive Hy4 IgG protected 70 % of mice from a VEEV challenge dose as great as 10(7) i.p. MD(50). Hy4 IgG also protected mice from challenge with another epizootic VEEV variety, 1C (P676). Importantly, therapeutic administration of the humanized mAb to mice already infected with VEEV cured 90 % of mice treated with Hy4 IgG within 1 h of VEEV inoculation and 75 % of mice treated 24 h after virus infection.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/genetics
- Antibodies, Viral/therapeutic use
- Base Sequence
- Cloning, Molecular
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/therapy
- Genes, Immunoglobulin
- Humans
- Immunization, Passive
- Immunoglobulin G/administration & dosage
- Immunoglobulin G/genetics
- Immunoglobulin G/therapeutic use
- Mice
- Molecular Sequence Data
- Neutralization Tests
- Oligodeoxyribonucleotides/genetics
Collapse
Affiliation(s)
- Ann R Hunt
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA
| | | | | | | | - John T Roehrig
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, PO Box 2087, Fort Collins, CO 80522, USA
| |
Collapse
|
23
|
Bose B, Khanna N, Acharya SK, Sinha S. Generation and characterization of a single-gene mouse-human chimeric antibody against hepatitis B surface antigen. J Gastroenterol Hepatol 2006; 21:1439-47. [PMID: 16911690 DOI: 10.1111/j.1440-1746.2006.04329.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Antibody against hepatitis B surface antigen (HBsAg) is used for passive immunotherapy in certain cases of hepatitis B infection. The authors have earlier reported a high-affinity mouse monoclonal (5S) against HBsAg. However, this mouse antibody cannot be used for therapeutic purposes because it may elicit antimouse immune responses. Chimerization by replacing mouse constant domains with human ones can reduce the immunogenicity of this antibody. METHODS A single-chain variable fragment (scFv), derived from the mouse monoclonal 5S, was fused with the fragment crystallisable (Fc) fragment of human IgG1. The scFv region is expected to bind to the antigen, whereas the Fc fragment can provide the effector functions required for virus neutralization. This chimeric molecule was expressed in Chinese hamster ovary (CHO) cells in serum-free medium. It was purified by affinity chromatography and characterized by in vitro binding studies. RESULTS Purification and characterization indicated that this chimeric scFv-Fc fusion protein is secreted as a disulfide-linked, glycosylated, homodimeric molecule. The yield of the purified chimeric antibody was approximately 4.6 mg/L. In vitro analyses confirmed that this chimeric molecule retained the high affinity and specificity of the original mouse monoclonal. CONCLUSION Because it is a single-gene product, this chimeric scFv-Fc has the advantage of stable expression. Being chimeric and bivalent, it is expected to be less immunogenic and therefore suitable for further in vivo studies on virus neutralization.
Collapse
Affiliation(s)
- Biplab Bose
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | | | | |
Collapse
|
24
|
Phillpotts RJ. Venezuelan equine encephalitis virus complex-specific monoclonal antibody provides broad protection, in murine models, against airborne challenge with viruses from serogroups I, II and III. Virus Res 2006; 120:107-12. [PMID: 16621103 DOI: 10.1016/j.virusres.2006.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/27/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
The alphavirus Venezuelan equine encephalitis virus (VEEV) is highly infectious by the airborne route. It is a hazard to laboratory workers, has been developed as a biological weapon and is a potential bioterrorist agent. A suitable vaccine appears in an advanced stage of development but there remains a need for antiviral drugs, effective in prophylaxis of disease prior to or a short time after exposure to airborne virus. Using a murine model to study monoclonal antibody (MAB) a VEEV complex-specific, glycoprotein E2-binding MAB was identified, able to protect against disease induced by exposure to aerosolised VEEV from serogroups I, II and IIIA (mouse-virulent strains). There was no synergy in protection between anti-E1 and anti-E2 MAB. Assays of MAB virus neutralising activity in a homologous (mouse fibroblast) cell line suggested that neutralisation played a significant role in protection in addition to the previously reported mechanism of Fc receptor-binding [Mathews et al., 1985. J. Virol. 55, 594-600]. Development of an analogous human MAB with identical VEEV epitope specificity may be informed and monitored by reference to these properties.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibody Specificity
- Bioterrorism/prevention & control
- Cells, Cultured
- Drug Administration Schedule
- Drug Evaluation, Preclinical
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Fibroblasts
- Immunization, Passive
- Injections, Intraperitoneal
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- R J Phillpotts
- Biomedical Sciences, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| |
Collapse
|
25
|
Phillpotts RJ, O'brien L, Appleton RE, Carr S, Bennett A. Intranasal immunisation with defective adenovirus serotype 5 expressing the Venezuelan equine encephalitis virus E2 glycoprotein protects against airborne challenge with virulent virus. Vaccine 2005; 23:1615-23. [PMID: 15694514 DOI: 10.1016/j.vaccine.2004.06.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Accepted: 06/15/2004] [Indexed: 11/18/2022]
Abstract
There is no vaccine licensed for human use to protect laboratory or field workers against infection with Venezuelan equine encephalitis virus (VEEV). Infection of these groups is most likely to occur via the airborne route and there is evidence to suggest that protection against airborne infection may require high antibody levels and the presence of antibody on the mucosal surface of the respiratory tract. Recombinant defective type 5 adenoviruses, expressing the E3E26K structural genes of VEEV were examined for their ability to protect mice against airborne challenge with virulent virus. After intranasal administration, good protection was achieved against the homologous serogroup 1A/B challenge virus (strain Trinidad donkey). There was less protection against enzootic serogroup II and III viruses, indicating that inclusion of more than one E3E26K sequence in a putative vaccine may be necessary. These studies confirm the potential of recombinant adenoviruses as vaccine vectors for VEEV and will inform the development of a live replicating adenovirus-based VEEV vaccine, deliverable by a mucosal route and suitable for use in humans.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Administration, Intranasal
- Animals
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Cell Line, Tumor
- Defective Viruses/classification
- Defective Viruses/genetics
- Encephalitis Virus, Venezuelan Equine/genetics
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Humans
- Immunization Schedule
- Mice
- Mice, Inbred BALB C
- Serotyping
- Species Specificity
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Virulence
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- R J Phillpotts
- Biomedical Sciences, Dstl, Porton Down, Salisbury SP4 0JQ, UK.
| | | | | | | | | |
Collapse
|
26
|
Dimmock NJ, Hardy SA. Valency of antibody binding to virions and its determination by surface plasmon resonance. Rev Med Virol 2004; 14:123-35. [PMID: 15027004 DOI: 10.1002/rmv.419] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
All IgGs are homobivalent, but their ability to bind bivalently to the surface of a virus particle depends mainly on a favourable spacing of cognate epitopes and the angle that the FAb arm makes with the virus surface. If the angle of binding forces the second FAb arm to point into solution, monovalent binding is inevitable. This IgG will have the same affinity as its FAb, will be less stably bound than if it were bound bivalently, cannot cross-link epitopes on the surface of a virion, and cannot neutralise by cross-linking surface proteins. However, at moderate IgG concentrations, monovalently bound IgG can reduce infectivity by aggregating virions, a phenomenon that cannot occur with IgG bound bivalently. This review describes how surface plasmon resonance can be used to determine the valency of IgG binding to enveloped and non-enveloped virus particles, and discusses the implications of this new methodology.
Collapse
Affiliation(s)
- Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
27
|
Riemenschneider J, Garrison A, Geisbert J, Jahrling P, Hevey M, Negley D, Schmaljohn A, Lee J, Hart MK, Vanderzanden L, Custer D, Bray M, Ruff A, Ivins B, Bassett A, Rossi C, Schmaljohn C. Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine 2003; 21:4071-80. [PMID: 12922144 DOI: 10.1016/s0264-410x(03)00362-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Multiagent DNA vaccines for highly pathogenic organisms offer an attractive approach for preventing naturally occurring or deliberately introduced diseases. Few animal studies have compared the feasibility of combining unrelated gene vaccines. Here, we demonstrate that DNA vaccines to four dissimilar pathogens that are known biowarfare agents, Bacillus anthracis, Ebola (EBOV), Marburg (MARV), and Venezuelan equine encephalitis virus (VEEV), can elicit protective immunity in relevant animal models. In addition, a combination of all four vaccines is shown to be equally as effective as the individual vaccines for eliciting immune responses in a single animal species. These results demonstrate for the first time the potential of combined DNA vaccines for these agents and point to a possible method of rapid development of multiagent vaccines for disparate pathogens such as those that might be encountered in a biological attack.
Collapse
MESH Headings
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/immunology
- Antibodies, Bacterial/biosynthesis
- Antibodies, Viral/biosynthesis
- Biolistics
- Ebolavirus/immunology
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Enzyme-Linked Immunosorbent Assay
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Macaca fascicularis
- Marburg Virus Disease/immunology
- Marburg Virus Disease/prevention & control
- Marburgvirus/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/immunology
- Rabbits
- Reverse Transcriptase Polymerase Chain Reaction
- Vaccines, Combined/immunology
- Vaccines, DNA/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Jenny Riemenschneider
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mozdzanowska K, Feng J, Gerhard W. Virus-neutralizing activity mediated by the Fab fragment of a hemagglutinin-specific antibody is sufficient for the resolution of influenza virus infection in SCID mice. J Virol 2003; 77:8322-8. [PMID: 12857901 PMCID: PMC165237 DOI: 10.1128/jvi.77.15.8322-8328.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Accepted: 05/13/2003] [Indexed: 11/20/2022] Open
Abstract
Antibodies (Abs) contribute to the control of influenza virus infection in vivo by reducing progeny virus yield from infected cells (yield reduction [YR]) and by inhibiting progeny virus from spreading the infection to new host cells (virus neutralization [VN]). Previous studies showed that the infection could be resolved in severe combined immunodeficiency (SCID) mice by treatment with hemagglutinin (HA)-specific monoclonal antibodies (MAbs) that exhibit both VN and YR activities but not by MAbs that exhibited only YR activity. To determine whether virus clearance requires both activities, we measured the therapeutic activity of an HA-specific MAb (VN and YR) and its Fab fragment (VN) by intranasal (i.n.) administration to infected SCID mice. Immunoglobulin G (IgG) and Fab cleared the infection with i.n. 50% effective doses (ED(50)s) of 16 and 90 pmol, respectively. To resolve an established infection solely by VN activity, Fab must be present in the respiratory tract at an effective threshold concentration until all infected cells have died and production of virus has ceased. Because IgG and Fab had different half-lives in the respiratory tract (22 and 8 h, respectively) and assuming that both operated mainly or solely by VN, it could be estimated that clearance was achieved 24 h after Ab treatment when both reagents were present in the respiratory tract at approximately 10 pmol. This dose was approximately 200 times larger than the respiratory tract-associated Ab dose resulting from administration of the intraperitoneal ED(50) (270 pmol) of IgG. This indicated that our procedure of i.n. administration of Ab did not make optimal use of the Ab's therapeutic activity.
Collapse
|
29
|
Elvin SJ, Bennett AM, Phillpotts RJ. Role for mucosal immune responses and cell-mediated immune functions in protection from airborne challenge with Venezuelan equine encephalitis virus. J Med Virol 2002; 67:384-93. [PMID: 12116032 DOI: 10.1002/jmv.10086] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) replicates in lymphoid tissues following peripheral inoculation and a high titre viraemia develops. Encephalitis develops after the virus enters the central nervous system from the blood, with the earliest neuronal involvement being via the olfactory nerve. Following aerosol challenge with virulent VEEV, the virus is thought to replicate in the nasal mucosa and there could be direct entry into the olfactory nerve via infected neuroepithelial cells. Protection from VEEV infection is believed to be primarily mediated by virus specific antibody. The correlation between protection and neutralising serum antibody titres is, however, inconsistent when the virulent virus is administered by the airborne route. This study demonstrates a link between antibody in serum and the nasal mucosa and protection by means of passive immunisation studies. Intra-nasal administration of antibody increased protection against airborne virus in Balb/c mice. Vaccination of mu MT strain mice that do not have functional B cells and cannot produce antibody revealed normal proliferation of spleen cells in vitro and robust cytokine production. Aerosol challenge of mu MT mice demonstrated that complete protection was only achieved when passive immunisation with antibody was supplemented with active immunisation with the TC-83 vaccine strain of the virus. This implies that cell-mediated immune functions are required for protection against airborne challenge with virulent VEEV.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity
- Cell Line
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Immunity, Cellular
- Immunity, Mucosal
- Immunization, Passive
- Lymphocyte Activation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nasal Mucosa/immunology
- Spleen/cytology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Stephen J Elvin
- Defence Science and Technology Laboratories, Chemical and Biological Sciences, Porton Down, Salisbury, Wiltshire, United Kingdom.
| | | | | |
Collapse
|
30
|
Duggan JM, Coates DM, Ulaeto DO. Isolation of single-chain antibody fragments against Venezuelan equine encephalomyelitis virus from two different immune sources. Viral Immunol 2002; 14:263-73. [PMID: 11572636 DOI: 10.1089/088282401753266774] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Venezuelan equine encephalomyelitis (VEE) virus is an important human and veterinary pathogen of Central and South America. The virus can cause widespread epidemics, affecting hundreds of thousands of horses, and thousands of humans. Detection of the virus early in infection and in mosquito populations may allow epidemics to be predicted such that suitable prophylaxis, such as vaccination, can be used to reduce disease severity and transmission. The sensitivity and specificity of current immunoassays, based on conventional monoclonal and polyclonal antibodies, needs to be improved for the diagnosis of infection. We have examined phage display libraries expressing single-chain antibodies (scFv) produced from two different immune sources, a hybridoma cell line and an immunized mouse spleen. The libraries were panned against VEE virus to select for specific scFvs. scFvs isolated from both libraries were specific for the same epitope on the VEE virus and sequence analysis showed that the scFvs were almost identical apart from the CDR3 region of the heavy chain. The data presented in this article suggest that although scFvs may be useful tools for the detection of viruses, there are serious limitations with the use of phage display as a tool for the isolation of specific antibodies.
Collapse
Affiliation(s)
- J M Duggan
- Biomedical Sciences, DERA, Porton Down, Wiltshire, UK.
| | | | | |
Collapse
|
31
|
Phillpotts RJ, Jones LD, Howard SC. Monoclonal antibody protects mice against infection and disease when given either before or up to 24 h after airborne challenge with virulent Venezuelan equine encephalitis virus. Vaccine 2002; 20:1497-504. [PMID: 11858855 DOI: 10.1016/s0264-410x(01)00505-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Airborne infection with Venezuelan equine encephalitis virus (VEEV) is a significant hazard for laboratory workers, who may not be immunised against VEEV infection as there is no vaccine currently available suitable for human use. We describe a potential alternative strategy that could protect workers exposed to VEEV or similar viruses. VEEV-specific murine monoclonal antibodies (MAB), given by intraperitoneal (i.p.) injection to mice as a single dose of 100 microg, have a half-life of 6-10 days in serum and spread by transudation to respiratory secretions. Administration of MAB (approximately 4 mg/kg) to mice 24h before challenge with approximately 100LD50 of virulent VEEV protected up to 100% animals. The same dose of MAB delivered up to 24h after challenge protected approximately 50%. Two MAB that were synergistic in vitro in plaque reduction neutralisation tests were not synergistic in vivo in protection assays. An examination of virus multiplication, in the blood and internal organs (brain, spleen, lung) of MAB-treated mice infected by the airborne route with VEEV, suggested that therapeutic activity depended both upon the prevention of virus infection of the brain, and the rapid clearance of virus from the periphery. Antiviral therapy with VEEV-specific human or "humanised" MAB, providing that they are administered early, may offer an alternative means of specific medical intervention for those with a known exposure to VEEV.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Antibodies, Viral/metabolism
- Antibodies, Viral/pharmacology
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalitis Virus, Venezuelan Equine/pathogenicity
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Encephalomyelitis, Venezuelan Equine/virology
- Humans
- Medical Laboratory Personnel
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Occupational Diseases/immunology
- Occupational Diseases/prevention & control
- Zoonoses
Collapse
Affiliation(s)
- R J Phillpotts
- Dstl, Medical Sciences Department, Porton Down, Wiltshire SP4 0JQ, UK
| | | | | |
Collapse
|
32
|
Abstract
This chapter discusses in vitro and in vivo antiviral activities of antibody. Since experimentation is far easier in vitro , researchers have been sought to develop in vitro assays that are expected to predict activity in vivo . This could be important in both vaccine design and in passive antibody administration. The proposed mechanisms of in vitro neutralization range from those requiring binding of a single antibody molecule to virus to those requiring substantially complete antibody coating of virus. In vitro, antiviral activity can be separated into activity against virions and activity against infected cells. The activity against virions most often considered is neutralization that can be defined as the loss of infectivity, which ensues when antibody molecule(s) bind to a virus particle, and occurs without the involvement of any other agency. In vivo, it is conventional to distinguish phenomenologically between two types of antibody antiviral activity. One of them is the ability of antibody to protect against infection when it is present before or immediately following infection. Evidence for a number of viruses in vitro indicates that lower antibody concentrations are required to inhibit infection propagated by free virus than are required to inhibit infection propagated by cell-to-cell spread.
Collapse
Affiliation(s)
- P W Parren
- Departments of Immunology and Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
33
|
Bennett AM, Elvin SJ, Wright AJ, Jones SM, Phillpotts RJ. An immunological profile of Balb/c mice protected from airborne challenge following vaccination with a live attenuated Venezuelan equine encephalitis virus vaccine. Vaccine 2000; 19:337-47. [PMID: 10930689 DOI: 10.1016/s0264-410x(00)00123-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The live attenuated vaccine strain of Venezuelan equine encephalitis virus (VEEV), TC-83, protects mice against challenge (subcutaneous and aerosol) with virulent VEEV but is not suitable for widescale human use. Elucidation of the immune response profile of protected mice should assist in the development of an improved vaccine. We determined the optimum dose of TC-83 required to consistently protect Balb/c mice from airborne challenge with the virulent Trinidad Donkey strain of VEEV and studied the development of humoral and cellular immune responses in protected mice between 6 h and 21 days post-vaccination. The most dramatic immune responses occurred in draining lymph nodes 24 h following vaccination with increased levels of activated B cells and T cells of both CD4(+) and CD8(+) subtypes. Activated monocyte/macrophages and natural killer cells were also seen between 6 h and 7 days post-vaccination. Serum contained detectable VEEV-specific IgG on day 5 post-vaccination with titres continuing to rise on days 7, 14 and 21. Isotypes of IgG measured on days 7 and 21 were predominantly of the IgG2a subclass, indicating that the immune response was Th1-mediated. Cytokine mRNA was quantified by RT-PCR and revealed production of the Th1 cytokine IFN-gamma and the inflammatory cytokine TNF-alpha, whereas the Th2 cytokine IL4 was not detected above control levels at any of the time points studied. This data describes key cellular immune responses at early times post-vaccination and is consistent with previous data demonstrating protection against aerosol challenge with VEEV in the absence of detectable levels of specific IgG or IgA antibody.
Collapse
Affiliation(s)
- A M Bennett
- Defence Evaluation and Research Agency, CBD n Down, Salisbury SP4 0JQ, Porto, UK
| | | | | | | | | |
Collapse
|
34
|
Ourmanov I, Bilska M, Hirsch VM, Montefiori DC. Recombinant modified vaccinia virus ankara expressing the surface gp120 of simian immunodeficiency virus (SIV) primes for a rapid neutralizing antibody response to SIV infection in macaques. J Virol 2000; 74:2960-5. [PMID: 10684319 PMCID: PMC111793 DOI: 10.1128/jvi.74.6.2960-2965.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutralizing antibodies were assessed before and after intravenous challenge with pathogenic SIVsmE660 in rhesus macaques that had been immunized with recombinant modified vaccinia virus Ankara expressing one or more simian immunodeficiency virus gene products (MVA-SIV). Animals received either MVA-gag-pol, MVA-env, MVA-gag-pol-env, or nonrecombinant MVA. Although no animals were completely protected from infection with SIV, animals immunized with recombinant MVA-SIV vaccines had lower virus loads and prolonged survival relative to control animals that received nonrecombinant MVA (I. Ourmanov et al., J. Virol. 74:2740-2751, 2000). Titers of neutralizing antibodies measured with the vaccine strain SIVsmH-4 were low in the MVA-env and MVA-gag-pol-env groups of animals and were undetectable in the MVA-gag-pol and nonrecombinant MVA groups of animals on the day of challenge (4 weeks after final immunization). Titers of SIVsmH-4-neutralizing antibodies remained unchanged 1 week later but increased approximately 100-fold 2 weeks postchallenge in the MVA-env and MVA-gag-pol-env groups while the titers remained low or undetectable in the MVA-gag-pol and nonrecombinant MVA groups. This anamnestic neutralizing antibody response was also detected with T-cell-line-adapted stocks of SIVmac251 and SIV/DeltaB670 but not with SIVmac239, as this latter virus resisted neutralization. Most animals in each group had high titers of SIVsmH-4-neutralizing antibodies 8 weeks postchallenge. Titers of neutralizing antibodies were low or undetectable until about 12 weeks of infection in all groups of animals and showed little or no evidence of an anamnestic response when measured with SIVsmE660. The results indicate that recombinant MVA is a promising vector to use to prime for an anamnestic neutralizing antibody response following infection with primate lentiviruses that cause AIDS. However, the Env component of the present vaccine needs improvement in order to target a broad spectrum of viral variants, including those that resemble primary isolates.
Collapse
Affiliation(s)
- I Ourmanov
- Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | | | | | | |
Collapse
|
35
|
Phillpotts RJ, Wright AJ. TC-83 vaccine protects against airborne or subcutaneous challenge with heterologous mouse-virulent strains of Venezuelan equine encephalitis virus. Vaccine 1999; 17:982-8. [PMID: 10067707 DOI: 10.1016/s0264-410x(98)00315-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vaccination with TC-83 virus produced solid protection against subcutaneous challenge with Venezuelan equine encephalitis (VEEV) viruses from homologous and heterologous serogroups, but breakthrough infection and disease occurred after airborne challenge. Breakthrough occurred more often with time after vaccination, and was more frequent with epizootic, homologous serogroup 1A/B viruses than with enzootic, heterologous serogroup viruses. A decrease in VEEV-specific IgA levels in the respiratory tract of vaccinated mice may explain the increased frequency of breakthrough with time after vaccination. However increased breakthrough with the highly virulent homologous serogroup 1A/B viruses (compared to less virulent viruses from heterologous serogroups) may be a consequence of their greater ability to invade the brain via the olfactory neuroepithelium and olfactory nerve.
Collapse
Affiliation(s)
- R J Phillpotts
- D.E.R.A., Microbiology Department, Chemical and Biological Defence Sector, Porton Down, Wiltshire, UK
| | | |
Collapse
|
36
|
Mozdzanowska K, Furchner M, Washko G, Mozdzanowski J, Gerhard W. A pulmonary influenza virus infection in SCID mice can be cured by treatment with hemagglutinin-specific antibodies that display very low virus-neutralizing activity in vitro. J Virol 1997; 71:4347-55. [PMID: 9151823 PMCID: PMC191651 DOI: 10.1128/jvi.71.6.4347-4355.1997] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have previously shown that a pulmonary influenza virus infection in SCID mice can be cured by treatment with monoclonal antibodies (MAbs) specific for the viral transmembrane protein hemagglutinin (HA) but not for matrix 2. Since both types of MAbs react with infected cells but only the former neutralizes the virus, it appeared that passive MAbs cured by neutralization of progeny virus rather than reaction with infected host cells. To prove this, we selected a set of four HA-specific MAbs, all of the immunoglobulin G2a isotype, which reacted well with native HA expressed on infected cells yet differed greatly (>10,000-fold) in virus neutralization (VN) activity in vitro, apparently because of differences in antibody avidity and accessibility of the respective determinants on the HA of mature virions. Since the VN activities of these MAbs in vitro were differentially enhanced by serum components, we determined their prophylactic activities in vivo and used them as measures of their actual VN activities in vivo. The comparison of therapeutic and prophylactic activities indicated that these MAbs cured the infection to a greater extent by VN activity (which was greatly enhanced in vivo) and to a lesser extent by reaction with infected host cells. Neither complement- nor NK cell-dependent mechanisms were involved in the MAb-mediated virus clearance.
Collapse
Affiliation(s)
- K Mozdzanowska
- The Wistar Institute, Philadelphia, Pennsylvania 19104-4268, USA
| | | | | | | | | |
Collapse
|
37
|
Hart MK, Pratt W, Panelo F, Tammariello R, Dertzbaugh M. Venezuelan equine encephalitis virus vaccines induce mucosal IgA responses and protection from airborne infection in BALB/c, but not C3H/HeN mice. Vaccine 1997; 15:363-9. [PMID: 9141206 DOI: 10.1016/s0264-410x(96)00204-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunization with either a live-attenuated (TC-83) or formalin-inactivated (C-84) vaccine for Venezuelan equine encephalitis (VEE) virus protected BALB/c mice from lethal VEE infection acquired subcutaneously or by aerosol. While vaccinated C3H/HeN mice were also protected from parenteral infection, neither vaccine protected these mice from an aerosol infection. The apparent vaccine failures in C3H/HeN mice could not be attributed to deficiencies in virus-neutralizing antibodies in serum, as these responses were typically of equal or higher titer than those observed in protected BALB/c mice before challenge. IgG subclass analysis offered no facile explanation: profiles of IgG2 alpha dominance were observed in C3H/HeN mice given either vaccine and in BALB/c mice given the live-attenuated vaccine, whereas BALB/c antibody responses shifted toward IgGl dominance after immunization with the killed C-84 vaccine. Data from immunized congenic mice showed that the H-2 genes from the C3H/He mice were not singularly responsible for the inability of these mice to resist aerosol infection with VEE virus. VEE virus-specific IgA responses were detected more frequently in respiratory and vaginal secretions obtained from the protected BALB/c mice.
Collapse
MESH Headings
- Administration, Oral
- Aerosols
- Air Microbiology
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Encephalitis Virus, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/etiology
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Female
- Immunity, Mucosal/immunology
- Immunoglobulin A, Secretory/biosynthesis
- Immunoglobulin A, Secretory/blood
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- M K Hart
- Divisions of Virology, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
38
|
Kalinke U, Krebber A, Krebber C, Bucher E, Plückthun A, Zinkernagel RM, Hengartner H. Monovalent single-chain Fv fragments and bivalent miniantibodies bound to vesicular stomatitis virus protect against lethal infection. Eur J Immunol 1996; 26:2801-6. [PMID: 8977271 DOI: 10.1002/eji.1830261202] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several antibody-dependent mechanisms have been postulated to mediate neutralization of different animal viruses, including blocking of docking to receptors, induction of conformational changes in the virus coat, and Fc-dependent opsonization. We have studied the molecular requirements for antibody-mediated neutralization of vesicular stomatitis virus (VSV) in vitro and protection against lethal disease in vivo with a single-chain Fv fragment (scFv) and the corresponding bivalent miniantibody (scFv-dHLX) generated from a VSV-neutralizing monoclonal antibody. Both monovalent scFv and bivalent scFv-dHLX miniantibodies were able to neutralize VSV in vitro and to protect interferon-alphabeta receptor-deficient (IFN-alphabeta R-/-) mice against lethal disease after intravenous injection of 50 plaque-forming units (pfu) VSV pre-incubated with the scFv reagents. Similarly, severe-combined immunodeficient (SCID) mice infected with immune complexes of 10(8) pfu VSV and bivalent scFv-dHLX were protected against lethal disease; however, mice infected with immune complexes of 10(8) pfu VSV and monovalent scFv were not. Although repeated scFv-dHLX treatment reduced virus quantities in the blood, neither SCID nor IFN-alphabeta R-/- mice were protected against lethal disease after passive immunization and subsequent VSV infection. This was due to the short half-life of 17 min of scFv-dHLX in the circulation. These data demonstrate that neutralization of VSV and protection against lethal disease do not require Fc-mediated mechanisms and that cross-linking is not crucial for protection against physiologically relevant virus doses in vivo.
Collapse
Affiliation(s)
- U Kalinke
- Institute of Experimental Immunology, Department of Pathology, University of Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Pincus SH, Cole R, Ireland R, McAtee F, Fujisawa R, Portis J. Protective efficacy of nonneutralizing monoclonal antibodies in acute infection with murine leukemia virus. J Virol 1995; 69:7152-8. [PMID: 7474136 PMCID: PMC189636 DOI: 10.1128/jvi.69.11.7152-7158.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We have used an experimental retrovirus infection to study the roles played by different antibodies in resistance to both infection and disease. A molecularly cloned chimeric murine leukemia virus was used to induce acute lethal neurological disease in neonatal mice. A panel of monoclonal antibodies directed against the Gag and Env proteins was tested for protective efficacy. In vitro neutralization assays demonstrated that anti-Env antibodies gave different degrees of neutralization, while no anti-Gag neutralized the virus. In vivo experimental endpoints were onset of clinical signs and premoribund condition. As expected, different anti-Env antibodies demonstrated different degrees of protection which correlated with their neutralizing abilities. Surprisingly, anti-Gag antibodies directed against both p15 (MA protein) and p30 (CA protein) were also protective, significantly delaying the onset of disease. No protection was seen with either of two control antibodies. The protection with anti-Gag was dose related and time dependent and was also produced with Fab fragments. Treatment with anti-Gag did not prevent viremia but resulted in a slight slowing in viremia kinetics and decreased levels of virus in the central nervous systems of mice protected from disease. These data indicate that nonneutralizing antiretroviral antibodies can influence the outcome of retroviral disease. The data also suggest a functional role for cell surface expression of Gag proteins on murine leukemia virus-infected cells.
Collapse
Affiliation(s)
- S H Pincus
- Laboratory of Microbial Structure and Function, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hunt AR, Roehrig JT. Localization of a protective epitope on a Venezuelan equine encephalomyelitis (VEE) virus peptide that protects mice from both epizootic and enzootic VEE virus challenge and is immunogenic in horses. Vaccine 1995; 13:281-8. [PMID: 7543231 DOI: 10.1016/0264-410x(95)93315-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In order to define more precisely the protective epitope encoded within the first 25 amino acids (aa) of the E2 glycoprotein of the Trinidad donkey strain of Venezuelan equine encephalomyelitis (VEE) virus, we examined the immunogenicity of smaller peptides within the first 19 aa. pep1-9 and pep3-10 elicited virus-reactive antibody, but failed to protect mice from virus challenge. Additionally, pep3-10 was identified by a competitive binding assay using overlapping peptide octamers as the putative binding site of the antipeptide monoclonal antibody (mAb) 1A2B-10. Since the E2 amino-terminal sequence for all VEE subtype viruses is conserved, we tested the protective capacity in mice of passively transferred mAb 1A2B-10 and found it to protect from both epizootic and enzootic VEE virus challenge. Since horses are an important natural host for VEE virus, pep1-19 was used to immunize horses and was found to be immunogenic and to elicit virus-reactive antibody.
Collapse
Affiliation(s)
- A R Hunt
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522, USA
| | | |
Collapse
|
41
|
Mathews JH, Kinney RM, Roehrig JT, Barrett AD, Trent DW. Murine T-helper cell immune response to recombinant vaccinia-Venezuelan equine encephalitis virus. Vaccine 1994; 12:620-4. [PMID: 8085379 DOI: 10.1016/0264-410x(94)90266-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The T-helper (Th) cell immune response following immunization of C3H (H-2k) mice with a recombinant vaccinia (VAC) virus (TC-5A) expressing the structural proteins (capsid, E1 and E2) of the attenuated vaccine strain (TC-83) of Venezuelan equine encephalitis (VEE) virus was compared with the immune response induced in mice after immunization with TC-83 virus. TC-5A virus elicited Th cells that strongly recognized both VAC and TC-83 viruses in in vitro lymphoblastogenesis tests. Th-cell activation was associated with elevated levels of interleukin-2. TC-5A virus induced long-term humoral immunity; VEE virus-binding and neutralizing antibodies were detected in mouse sera collected from mice 16 months after a single immunization.
Collapse
Affiliation(s)
- J H Mathews
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522
| | | | | | | | | |
Collapse
|
42
|
Abstract
The equine encephalitis viruses are members of the genus Alphavirus, in the family Togaviridae. Three main virus serogroups represented by western (WEE), eastern (EEE) and Venezuelan equine encephalitis (VEE) viruses cause epizootic and enzootic infection of horses throughout the western hemisphere. All equine encephalitis viruses are transmitted through the bite of an infected mosquito. The first equine encephalitis virus vaccines were produced by virus inactivation. Problems with inadequate inactivation, which may have caused a major epidemic/epizootic of VEE in central America and Texas in the 1970s, led to the development of a live attenuated VEE virus vaccine (TC-83) derived by cell culture passage. Inactivated vaccines are still used to prevent equine infections with WEE and EEE viruses. Alphaviruses are small single stranded, positive sense RNA viruses. The 12000 nucleotide genome is enclosed in an icosahedral nucleocapsid composed of multiple copies of the capsid (C) protein. The virion is enveloped. The membrane is modified by the insertion of heterodimers of two glycoproteins: E1 and E2. Monoclonal antibody analysis of the surface glycoproteins have provided a detailed understanding of important protective antigens. Recent studies comparing gene sequences from virulent and avirulent VEE viruses have begun to delineate mechanisms of alphavirus attenuation.
Collapse
Affiliation(s)
- J T Roehrig
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, Colorado 80522
| |
Collapse
|
43
|
Mathews JH, Roehrig JT, Brubaker JR, Hunt AR, Allan JE. A synthetic peptide to the E glycoprotein of Murray Valley encephalitis virus defines multiple virus-reactive T- and B-cell epitopes. J Virol 1992; 66:6555-62. [PMID: 1383567 PMCID: PMC240150 DOI: 10.1128/jvi.66.11.6555-6562.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic peptides from the envelope glycoprotein sequence of Murray Valley encephalitis (MVE) virus were previously evaluated in various strains of mice for both the induction of antibody and the in vitro proliferation of peptide-primed T-helper (Th) cells. MVE peptide 6 (amino acids 230 to 251) elicited reciprocal Th- and B-cell reactivity with native MVE virus after primary inoculation of C57BL/6 mice. In this study, we prepared overlapping subunit peptides of MVE peptide 6 and evaluated their immunogenicity. Analysis of these peptides delineated at least two B-cell epitopes that induced antibody reactive with MVE and other Japanese encephalitis serocomplex viruses. This antibody at low titer neutralized MVE virus. Genetic restriction of the antibody response to various T-cell elements within peptide 6 was observed in C3H, BALB/c, C57BL/6, and B10 congenic mice. One element demonstrable after primary immunization, located in the carboxy terminus, associated only with major histocompatibility complex class II IAb and IAbiEk glycoproteins. Functional stimulation with the peptides in association with IAkIEk and IAdIEd molecules was observed only after in vivo secondary stimulation. Peptide 6-1 (amino acids 230 to 241) was nonimmunogenic but could be recognized by Th cells from peptide 6-immunized mice. Further association of peptide 6 with the IAkIEk and IAdIEd subregions was demonstrated by the finding that T cells from MVE peptide 6-inoculated C3H and BALB/c mice primed for an antibody response to MVE virus. These results suggest that the peptide 6 sequence, which is relatively conserved among a number of flaviviruses, should be given consideration when synthetic immunogens for vaccine purposes are designed.
Collapse
Affiliation(s)
- J H Mathews
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, Colorado 80522
| | | | | | | | | |
Collapse
|
44
|
Cheung SC, Dietzschold B, Koprowski H, Notkins AL, Rando RF. A recombinant human Fab expressed in Escherichia coli neutralizes rabies virus. J Virol 1992; 66:6714-20. [PMID: 1404611 PMCID: PMC240167 DOI: 10.1128/jvi.66.11.6714-6720.1992] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A recombinant human anti-rabies monoclonal antibody (MAb-57) Fab was prepared by cloning the heavy (Fd)- and light-chain domains into the same bacterial expression vector. To construct the recombinant Fab, mRNA was extracted from MAb-57-producing hybridoma cells, reverse transcribed, and then amplified by polymerase chain reaction (PCR) by using oligonucleotides specific for immunoglobulin heavy- and light-chain DNA sequences. PCR-amplified Fd-chain cDNA was fused, in frame, between a bacterial leader peptide (PelB) at the amino terminus and a 10-amino-acid peptide tag at the carboxy terminus. The PCR-amplified lambda-chain cDNA was also fused to the PelB leader peptide. The immunoglobulin Fab was then expressed as a dicistronic message in bacteria by using the isopropyl-beta-D-thiogalactopyranoside-inducible lactose promotor (lacZ). DNA sequencing was used to define the gamma-chain isotype (immunoglobulin G1) and VH (VHI) chain and VL (V lambda II) chain gene usage. The recombinant Fab (rFab57) specifically bound the rabies virus coat glycoprotein, while the Fd and lambda chains, when expressed individually, did not. The binding specificity of rFab57 was indistinguishable from that of the intact MAb in direct enzyme-linked immunosorbent assays; however, the dissociation constant of rFab57 for rabies virus protein G was approximately 1 log10 U lower than that of complete MAb-57 in competition enzyme-linked immunosorbent assays. A fluorescent-focus inhibition assay showed that bacterially expressed rFab was capable of neutralizing rabies virus strain CVS-11. We conclude that a human Fab expressed in bacteria maintains its specificity and biologic activity.
Collapse
Affiliation(s)
- S C Cheung
- Laboratory of Oral Medicine, National Institute of Dental Research, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
45
|
Baldridge JR, Buchmeier MJ. Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J Virol 1992; 66:4252-7. [PMID: 1376367 PMCID: PMC241229 DOI: 10.1128/jvi.66.7.4252-4257.1992] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The role of antiviral antibodies in resistance to lymphocytic choriomeningitis virus (LCMV) infection was explored. Immune serum and monoclonal antibodies prevented fatal T-cell-mediated immunopathology following acute LCMV infections. In addition, 10- and 14-day-old mice that received maternally derived anti-LCMV antibodies through nursing were protected from an otherwise lethal LCMV challenge. Detailed investigation of the mechanism(s) by which these antiviral antibodies provided was carried out by using anti-LCMV monoclonal antibodies. Protection correlated directly with the ability of the antibodies to reduce viral titers in the tissues of conventional (K. E. Wright and M. J. Buchmeier, J. Virol. 65:3001-3006, 1991) and nude mice. However, this reduction was not simply a reflection of virus neutralizing activity, since not all antibodies which neutralized in vitro were protective. A correlation was also found between immunoglobulin isotype and protection: all of the protective antibodies were immunoglobulin G2a (IgG2a), while IgG1 antibodies mapping to the same epitopes were not. Protection appeared to be associated with events controlled by the Fc region. Functional F(ab')2 fragments which retained in vitro neutralizing activity were not protective in vivo. Furthermore, this Fc-associated function was not related to complement-mediated cell lysis, since C5-deficient mouse strains were also protected. These results suggest a role for antibody in protection from arenavirus infections and indicate that a distinct immunoglobulin subclass, IgG2a, may be essential for this protection.
Collapse
Affiliation(s)
- J R Baldridge
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
46
|
Hunt AR, Short WA, Johnson AJ, Bolin RA, Roehrig JT. Synthetic peptides of the E2 glycoprotein of Venezuelan equine encephalomyelitis virus. II. Antibody to the amino terminus protects animals by limiting viral replication. Virology 1991; 185:281-90. [PMID: 1718085 DOI: 10.1016/0042-6822(91)90775-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A peptide composed of the amino-terminal 25 amino acids of the E2 glycoprotein of the virulent Trinidad donkey (TRD) strain of Venezuelan equine encephalomyelitis virus was found to protect peptide-immunized mice from lethal TRD virus challenge (Hunt et al., 1990). Viral growth in peptide-immunized animals was found to be limited in comparison to that in nonimmunized controls. Although both treated and control groups of mice responded to virus challenge by producing neutralizing antibody, only immunized mice with preexisting antipeptide antibody survived. Polyclonal antipeptide sera as well as a monoclonal antipeptide antibody were able to passively protect naive mice from TRD virus challenge, despite the fact that these antibodies were nonneutralizing. Passive transfer of antipeptide antibody to immunosuppressed recipients was not protective, thus indicating that survival of TRD virus challenge required an in situ immune response as well as preexisting antipeptide antibody. Binding studies of both polyclonal and monoclonal antipeptide antibodies indicated that they recognize only epitopes present on virus-infected cells or denatured virus.
Collapse
Affiliation(s)
- A R Hunt
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control, Fort Collins, Colorado 80522
| | | | | | | | | |
Collapse
|
47
|
Kingsford L, Boucquey KH, Cardoso TP. Effects of specific monoclonal antibodies on La Crosse virus neutralization: aggregation, inactivation by Fab fragments, and inhibition of attachment to baby hamster kidney cells. Virology 1991; 180:591-601. [PMID: 1703370 DOI: 10.1016/0042-6822(91)90073-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At high concentrations, several monoclonal antibodies to the G1 glycoprotein of La Crosse (LAC) virus aggregated the virus. To determine whether this accounted for the neutralization, the monoclonal antibodies were digested to make Fab fragments. With one exception, each monovalent antibody neutralized LAC virus to the same extent that bivalent antibody did, although higher concentrations were needed. Fab fragments of synergistic pairs of antibodies also exhibited enhanced binding in a competition binding assay but did not increase neutralization. To determine specific mechanisms for neutralization, the effects of polyclonal or monoclonal antibodies on virus attachment were examined. Polyclonal antibody to LAC virus reduced virus attachment by only 68% although it neutralized 99.99% of the virus. When virus was preincubated with a neutralizing monoclonal antibody to each of seven antigenic regions on G1, only antibody to one region reduced attachment of virus by as much as 92%. Antibodies to two regions that neutralize virus by 90-98% only inhibited attachment by 9 and 13%, respectively. The other antibodies showed intermediate degrees of neutralization and inhibition of attachment. Pairs of antibodies previously shown to be synergistic in neutralizing activity did not inhibit attachment any more than the single antibodies did.
Collapse
Affiliation(s)
- L Kingsford
- Department of Microbiology, California State University, Long Beach 90840
| | | | | |
Collapse
|
48
|
Zhang MJ, Wang MJ, Jiang SZ, Ma WY. Passive protection of mice, goats, and monkeys against Japanese encephalitis with monoclonal antibodies. J Med Virol 1989; 29:133-8. [PMID: 2557383 DOI: 10.1002/jmv.1890290211] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Six monoclonal antibodies (McAbs) against Japanese encephalitis virus (JEV) were tested for passive protection in JEV-infected mice, goats, and rhesus monkeys. mG9 and nG2 had no protective effect; mG3 and 2D2 had some protective effect, but not sufficient to be of therapeutic significance; and 2H4 and 2F2 had excellent protective efficacy in mice even 120 hr after infection when most of the mice in the virus control group were sick. The mixture of 2H4, 2F2, mC3 (M-McAb), and their F(ab')2 fragments showed excellent protection in mice, goats, and monkeys and was safe. The protective effects of McAbs correlated with their neutralization titers, but cytotoxicity-mediated activities also played a role in protection.
Collapse
Affiliation(s)
- M J Zhang
- Department of Microbiology, Fourth Military Medical University Xian, Shannxi, People's Republic of China
| | | | | | | |
Collapse
|
49
|
Virgin HW, Bassel-Duby R, Fields BN, Tyler KL. Antibody protects against lethal infection with the neurally spreading reovirus type 3 (Dearing). J Virol 1988; 62:4594-604. [PMID: 2460637 PMCID: PMC253571 DOI: 10.1128/jvi.62.12.4594-4604.1988] [Citation(s) in RCA: 203] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mammalian reoviruses have provided a valuable model for studying the pathogenesis of viral infections of the central nervous system (CNS). We have used this model to study the effect of antibody on disease produced by the neurally spreading reovirus type 3 (Dearing) (T3). Polyclonal and monoclonal antibodies protect mice from fatal infection with T3 after either footpad or intracerebral virus challenge. Protection occurs with monoclonal antibodies directed against the viral cell attachment protein sigma 1, and with polyclonal antisera without T3 sigma 1 binding activity. In vivo protection occurs with both neutralizing and nonneutralizing monoclonal antibodies. Antibody-mediated protection does not require serum complement and, under specific circumstances, can occur via Fc-independent mechanisms. Antibody can protect mice when transferred up to 5 days after intracerebral challenge and up to 7 days after footpad challenge, times when high titers of virus are present in the CNS. Thus, antibody mediated protection against this neurally spreading virus does not require neutralizing antibody or serum complement and occurs even in the face of established CNS infection.
Collapse
Affiliation(s)
- H W Virgin
- Department of Microbiology & Molecular Genetics, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
50
|
Roehrig JT, Hunt AR, Kinney RM, Mathews JH. In vitro mechanisms of monoclonal antibody neutralization of alphaviruses. Virology 1988; 165:66-73. [PMID: 2455383 DOI: 10.1016/0042-6822(88)90659-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have previously identified at least eight epitopes on the E2 glycoprotein of Venezuelan equine encephalomyelitis (VEE) virus vaccine strain TC-83 by using monoclonal antibodies (MAbs). Several of these antibodies identified a critical neutralization (N) domain in competitive binding assays. Passive transfer of these MAbs protected animals from a lethal virus challenge. Using radioactive, purified virus as a marker, we have demonstrated that antibody-mediated virus N, preattachment, can be effected by one of three mechanisms. Interaction of antibody can block virus attachment to susceptible Vero or human embryonic lung cells. The MAbs that were most efficient at blocking attachment were those that defined epitopes spatially proximal to the E2c epitope. The E2c MAbs were, however, the most efficient antibodies for neutralizing virus postattachment. Other E2 MAbs were unable to efficiently block virus attachment to cells; however, resulting replication as monitored by plaque assay or intracellular viral RNA synthesis could not be detected. One novel MAb that defined the E2f epitope appeared to enhance virus attachment to Vero cells, but not BHK-21 or LLC-MK2 cells, by stabilizing virus-cell interaction. This antibody did, however, efficiently neutralize virus infectivity. Once virus had attached to cells, the ability of most MAbs to neutralize infectivity was diminished, except for E2c MAbs. On a molar basis antibody Fab fragments were less efficient than intact antibody at blocking virus attachment.
Collapse
Affiliation(s)
- J T Roehrig
- Division of Vector-Borne Viral Diseases, Centers for Disease Control, Fort Collins, Colorado 80522
| | | | | | | |
Collapse
|