1
|
Chen L, Ni Z, Hua J, Ye W, Liu K, Yun T, Zhu Y, Zhang C. Proteomic analysis of host cellular proteins co-immunoprecipitated with duck enteritis virus gC. J Proteomics 2021; 245:104281. [PMID: 34091090 DOI: 10.1016/j.jprot.2021.104281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Duck enteritis virus (DEV), the causative agent of duck viral enteritis, causes a contagious, lethal viral disease in Anseriformes (waterfowls). In virus infection, host-virus interaction plays a crucial role in virus replication and pathogenesis. In our previous study, mRFP was fused with the C-terminus of DEV glycoprotein C (gC) to construct a fluorescent-tag DEV virus rgCRFP. In the current study, fluorescent fusion protein (gC-mRFP) was used as the proteomic probe. Co-immunoprecipitation and mass spectrometric analysis of proteins from rgCRFP-infected chicken embryo fibroblasts using commercial anti-RFP antibody led to the identification of a total of 21 gC interacting host proteins. Out of these 21 proteins, the interaction of seven host proteins (GNG2, AR1H1, PPP2CA, UBE2I, MCM5, NUBP1, HN1) with DEV gC protein was validated using membrane-bound split-ubiquitin yeast two-hybrid system (MbYTH) and bimolecular fluorescence complementation (BiFC) analyses. It indicated direct interaction between these proteins with DEV gC protein. This study has furthered the current understanding of DEV virus infection and pathogenesis. SIGNIFICANCE: gC is an crucial glycoprotein of duck enteritis virus that plays an important role in the viral life cycle. Uncovering the interaction between virus-host is very important to elucidate the pathogenic mechanism of the virus. In this study, host factors interacting with DEV gC have been discerned. And seven host proteins (GNG2, AR1H1, PPP2CA, UBE2I, MCM5, NUBP1, HN1) have been further validated to interact with DEV gC using MbYTH and BiFC analyses. These outcomes could shed light on how DEV manipulates the cellular machinery, which could further our understanding of DEV pathogenesis.
Collapse
Affiliation(s)
- Liu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Keshu Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Yun
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
2
|
Leroux-Roels G, Clément F, Vandepapelière P, Fourneau M, Heineman TC, Dubin G. Immunogenicity and safety of different formulations of an adjuvanted glycoprotein D genital herpes vaccine in healthy adults: a double-blind randomized trial. Hum Vaccin Immunother 2013; 9:1254-62. [PMID: 23434737 PMCID: PMC3901814 DOI: 10.4161/hv.24043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus (HSV) type 2 (HSV-2) is the main cause of genital and neonatal herpes and is highly prevalent worldwide. Previous phase I and II studies showed the immunogenicity and safety of the candidate prophylactic HSV-2 glycoprotein D-based subunit vaccine (gD2-AS04), containing aluminum hydroxide and 3-O-deacylated monophosphoryl lipid A (MPL) as adjuvant (AS04), in healthy adults. The primary objective of the study presented here was to compare the immunogenicity and safety of five different vaccine formulations: 3 different antigen doses [20, 40 or 80 μg of truncated glycoprotein D from HSV-2 strain (gD-2t)], different aluminum salts [AlPO4 or Al(OH)3], different preservatives or different volumes of vaccine (0.5 or 1 ml). One hundred and fifty healthy men and women aged 18–45 years, with negative serological markers for HSV-1 and HSV-2 infection, were vaccinated with one of 5 formulations of the gD2-AS04 candidate vaccine according to a 0-, 1-, 6-month schedule. No statistically significant difference was observed in humoral or cellular immune responses between different antigen doses or the different aluminum salts, preservatives or volumes of vaccine. The gD2-AS04 vaccine was well tolerated by study participants for the duration of the study period. Local symptoms were more frequently reported than general symptoms, with muscle stiffness and/or injection site redness being the most frequently reported. Overall, the incidence of adverse events was comparable in all groups. Based on these results the gD2-AS04 formulation, containing 20 μg of gD-2t, was selected for evaluation of prophylactic efficacy in further clinical trials.
Collapse
|
3
|
Lian B, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Liu F, Han X, Chen X. Induction of immune responses in ducks with a DNA vaccine encoding duck plague virus glycoprotein C. Virol J 2011; 8:214. [PMID: 21569289 PMCID: PMC3115884 DOI: 10.1186/1743-422x-8-214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 05/10/2011] [Indexed: 02/07/2023] Open
Abstract
Background A DNA vaccine expressing glycoprotein C (gC) of duck plague virus (DPV) was evaluated for inducing immunity in ducks. The plasmid encoding gC of DPV was administered via intramuscular (IM) injection and gene gun bombardment. Results After immunization by both routes virus-specific serum antibody and T-cell responses developed. Vaccination of ducks by IM injection induced a stronger humoral, but weaker cell-mediated immune response. In contrast, a better cell-mediated immune response was achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis with as little as 6 μg of DNA. Conclusions This demonstrated that both routes of DNA inoculation can be used for eliciting virus-specific immune responses. Although DNA vaccine containing DPV gC is effective in both intramuscular injection and gene gun bombardment, the latter could induce significantly higher cell-mediated responses against DPV.
Collapse
Affiliation(s)
- Bei Lian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu city, Sichuan, 611130, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Lian B, Xu C, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Bi F, Chen Z, Zhou Y, Yang Z, Chen X. Identification and characterization of duck plague virus glycoprotein C gene and gene product. Virol J 2010; 7:349. [PMID: 21110887 PMCID: PMC3004831 DOI: 10.1186/1743-422x-7-349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral envelope proteins have been proposed to play significant roles in the process of viral infection. RESULTS In this study, an envelope protein gene, gC (NCBI GenBank accession no. EU076811), was expressed and characterized from duck plague virus (DPV), a member of the family herpesviridae. The gene encodes a protein of 432 amino acids with a predicted molecular mass of 45 kDa. Sequence comparisons, multiple alignments and phylogenetic analysis showed that DPV gC has several features common to other identified herpesvirus gC, and was genetically close to the gallid herpervirus.Antibodies raised in rabbits against the pET32a-gC recombinant protein expressed in Escherichia coli BL21 (DE3) recognized a 45-KDa DPV-specific protein from infected duck embryo fibroblast (DEF) cells. Transcriptional and expression analysis, using real-time fluorescent quantitative PCR (FQ-PCR) and Western blot detection, revealed that the transcripts encoding DPV gC and the protein itself appeared late during infection of DEF cells. Immunofluorescence localization further demonstrated that the gC protein exhibited substantial cytoplasm fluorescence in DPV-infected DEF cells. CONCLUSIONS In this work, the DPV gC protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gC product for the first time. These properties of the gC protein provided a prerequisite for further functional analysis of this gene.
Collapse
Affiliation(s)
- Bei Lian
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Durmanová V, Sapák M, Kosovský J, Rezuchová I, Kúdelová M, Buc M, Rajcáni J. Immune response and cytokine production following immunization with experimental herpes simplex virus 1 (HSV-1) vaccines. Folia Microbiol (Praha) 2008; 53:73-83. [PMID: 18481222 DOI: 10.1007/s12223-008-0011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 11/01/2007] [Indexed: 11/25/2022]
Abstract
Balb/c mice were immunized with the recombinant fusion protein gD1/313 (FpgD1/313 representing the ectodomain of HSV-1 gD), with the non-pathogenic ANGpath gE-del virus, with the plasmid pcDNA3.1-gD expressing full-length gD1 and with the recombinant immediate early (IE) HSV-1 protein ICP27. Specific antibodies against these antigens (as detected by ELISA) reached high titers with the exception of the DNA vaccine. High-grade protection against challenge with the virulent strain SC16 was found following immunization with the pcDNA3.1-gD plasmid and with the gE-del virus. Medium grade, but satisfactory protection developed after immunization with the FpgD1/313 and minimum grade protection was seen upon immunization with the IE/ICP27 polypeptide. A considerable response of peripheral blood cells (PBL) and splenocytes in the lymphocyte transformation test (LTT) was found in mice immunized with FpgD1/313, with the pcDNA3.1-gD plasmid and with the live ANGpathgE-del virus. For lymphocyte stimulation in vitro, the FpgD1/313 antigen was less effective than the purified gD1/313 polypeptide (cleaved off from the fusion protein); both proteins elicited higher proliferation at the 5 microg per 0.1 mL dose than at the 1 microg per 0.1 mL dose. The secretion of Th type 1 (TNF, IFN-gamma and IL-2) and Th type 2 (IL-4 and IL-6) cytokines was tested in the medium fluid of purified PBL and splenocyte cultures; their absolute values were expressed in relative indexes. The PBL from FpgD1/313 immunized mice showed increased secretion of both T(H)1 (TNF) as well as T(H)2 (IL-4) cytokines (7-10-fold, respectively). Splenocytes from FpgD1/313 immunized mice showed a significant (23-fold) increase in IL-4 production.
Collapse
Affiliation(s)
- V Durmanová
- Institute of Virology, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
6
|
Nakayama T, Shirane J, Hieshima K, Shibano M, Watanabe M, Jin Z, Nagakubo D, Saito T, Shimomura Y, Yoshie O. Novel antiviral activity of chemokines. Virology 2006; 350:484-92. [PMID: 16603217 DOI: 10.1016/j.virol.2006.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/01/2006] [Accepted: 03/06/2006] [Indexed: 11/18/2022]
Abstract
Antimicrobial peptides are a diverse family of small, mostly cationic polypeptides that kill bacteria, fungi and even some enveloped viruses, while chemokines are a group of mostly cationic small proteins that induce directed migration of leukocytes through interactions with a group of seven transmembrane G protein-coupled receptors. Recent studies have shown that antimicrobial peptides and chemokines have substantially overlapping functions. Thus, while some antimicrobial peptides are chemotactic for leukocytes, some chemokines can kill a wide range of bacteria and fungi. Here, we examined a possible direct antiviral activity of chemokines against an enveloped virus HSV-1. Among 22 human chemokines examined, chemokines such as MIP-1 alpha/CCL3, MIP-1 beta/CCL4 and RANTES/CCL5 showed a significant direct antiviral activity against HSV-1. It is intriguing that these chemokines are mostly known to be highly expressed by effector CD8+ T cells. The chemokines with a significant anti-HSV-1 activity commonly bound to HSV-1 virions via envelope glycoprotein gB. Electron microscopy revealed that the chemokines with a significant anti-HSV-1 activity were commonly capable of generating pores in the envelope of HSV-1. Thus, some chemokines have a significant direct antiviral activity against HSV-1 in vitro and may have a potential role in host defense against HSV-1 as a direct antiviral agent.
Collapse
Affiliation(s)
- Takashi Nakayama
- Department of Microbiology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gyotoku T, Ono F, Aurelian L. Development of HSV-specific CD4+ Th1 responses and CD8+ cytotoxic T lymphocytes with antiviral activity by vaccination with the HSV-2 mutant ICP10DeltaPK. Vaccine 2002; 20:2796-807. [PMID: 12034107 DOI: 10.1016/s0264-410x(02)00199-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A growth compromised herpes simplex virus type 2 (HSV-2) mutant which is deleted in the PK domain of the large subunit of ribonucleotide reductase (ICP10DeltaPK) protects from HSV-2 challenge in the mouse and guinea pig cutaneous and vaginal models and reduces the incidence and frequency of recurrent disease (Vaccine (17) (1999) 1951; Vaccine (19) (2001) 1879). The present studies were designed to identify the immune responses induced by ICP10DeltaPK and define the component responsible for protective activity. We found that ICP10DeltaPK elicits a predominant HSV-specific T helper type 1 (Th1) response, as evidenced by: (1) higher levels of HSV-specific IgG2a (Th1) than IgG1 (Th2) isotypes and (2) higher numbers of CD4+ IFN-gamma than IL-10 secreting T cells in popliteal lymph nodes. This Th1 response pattern was associated with a significant increase in the levels of IL-12 produced by dendritic cells from ICP10DeltaPK than HSV-2 immunized animals. Lymph node cells (LNCs) from ICP10DeltaPK immunized mice had significantly higher levels of HSV-2 specific cytolytic activity than LNCs from mice immunized with HSV-2 and it was mediated by CD8+ T cells. CD8+ CTL were not seen in LNCs from HSV-2 immunized mice. In adoptive transfer experiments, CD8+ T cells and, to a lower extent, CD4+ T cells from ICP10DeltaPK immunized mice inhibited HSV-2 replication, suggesting that they are involved in the protective immunity induced by ICP10DeltaPK vaccination.
Collapse
Affiliation(s)
- T Gyotoku
- Virology/Immunology Laboratories, Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 10 S. Pine Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
8
|
Zhang QJ, Chen SS, Saari CA, Massuci MG, Tufaro F, Jefferies WA. Evidence of selective processing of immunodominant epitopes in virally infected cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4513-21. [PMID: 10779752 DOI: 10.4049/jimmunol.164.9.4513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent advances in clarifying the molecular mechanisms involved in Ag processing and presentation have relied heavily on the use of somatic cell mutants deficient in proteasome subunits, TAP transporter, and cell surface expression of MHC class I molecules. Of particular interest currently are those mutants that lack specific protease activity involved in the generation of antigenic peptides. It is theoretically possible that deficiencies of this nature could selectively prevent the cleavage of certain peptide bonds and thus generate only a subset of antigenic peptides. Gro29/Kb cell line is derived from the wild-type murine Ltk- cell line. This cell line is one example of a mutant that lacks specific protease activities. This deficiency manifests itself in an inability to generate a subset of immunodominant peptide epitopes derived from vesicular stomatitis virus and herpes simplex virus. This in turn leads to a general inability to present these viral epitopes to cytotoxic T lymphocytes (CTL). These studies describe a unique Ag processing deficiency and provide new insight into the role of proteasome-independent proteases in MHC class I-restricted peptide generation.
Collapse
Affiliation(s)
- Q J Zhang
- Biotechnology Laboratory and Biomedical Research Centre, Medical Genetics and Zoology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Dingwell KS, Johnson DC. The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J Virol 1998; 72:8933-42. [PMID: 9765438 PMCID: PMC110310 DOI: 10.1128/jvi.72.11.8933-8942.1998] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/1998] [Accepted: 08/05/1998] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus (HSV) glycoprotein complex gE-gI mediates the spread of viruses between adjacent cells, and this property is especially evident for cells that form extensive cell junctions, e.g., epithelial cells, fibroblasts, and neurons. Mutants lacking gE or gI are not compromised in their ability to enter cells as extracellular viruses. Therefore, gE-gI functions specifically in the movement of virus across cell-cell contacts and, as such, provides a molecular handle on this poorly understood process. We expressed gE-gI in human epithelial cells by using replication-defective adenovirus (Ad) vectors. gE-gI accumulated at lateral surfaces of the epithelial cells, colocalizing with the adherens junction protein beta-catenin but was not found on either the apical or basal plasma membranes and did not colocalize with ZO-1, a component of tight junctions. In subconfluent monolayers, gE-gI was found at cell junctions but was absent from those lateral surfaces not in contact with another cell, as was the case for beta-catenin. Similar localization of gE-gI to cell junctions was observed in HSV-infected epithelial cells. By contrast, HSV glycoprotein gD, expressed using a recombinant Ad vectors, was found primarily along the apical surfaces of cells, with little or no protein found on the basal or lateral surfaces. Expression of gE-gI without other HSV polypeptides did not cause redistribution of either ZO-1 or beta-catenin or alter tight-junction functions. Together these results support a model in which gE-gI accumulates at sites of cell-cell contact by interacting with junctional components. We hypothesize that gE-gI mediates transfer of HSV across cell junctions by virtue of these interactions with cell junction components.
Collapse
Affiliation(s)
- K S Dingwell
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
10
|
Maeda K, Yokoyama N, Fujita K, Maejima M, Mikami T. Heparin-binding activity of feline herpesvirus type 1 glycoproteins. Virus Res 1997; 52:169-76. [PMID: 9495532 DOI: 10.1016/s0168-1702(97)00113-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Feline herpesvirus type 1 (FHV-1) possesses a very narrow host range, but the mechanism of its infection has not yet been analyzed. Heparan sulfate on the cell surface serves as a receptor for several herpesviruses. In this study, we determined that infection of FHV-1 is inhibited by addition of soluble heparin in cells cultures. Using heparin-affinity column, it was shown that FHV-1 gC is a major heparin-binding protein, and FHV-1 gB weakly binds to heparin, but FHV-1 gD does not. Furthermore, the FHV-1 gC expressed in insect cells can also bind to heparin despite of being immature glycosylation. Our results suggested that FHV-1 gC can bind to heparin as observed in other herpesviruses and that glycosylation of the gC does not affect its heparin-binding activity. In addition, mice immunized with the gC expressed in insect cells produced complement-dependent virus-neutralizing antibody.
Collapse
Affiliation(s)
- K Maeda
- Department of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, Yamaguchi-city, Japan
| | | | | | | | | |
Collapse
|
11
|
Katayama S, Okada N, Yoshiki K, Okabe T, Shimizu Y. Protective effect of glycoprotein gC-rich antigen against pseudorabies virus. J Vet Med Sci 1997; 59:657-63. [PMID: 9300361 DOI: 10.1292/jvms.59.657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A trial vaccine containing pseudorabies virus (PRV) glycoprotein gC as the main component showed excellent protection against virulent virus infection in pigs. Glycoprotein gC-rich antigen was prepared by heparin affinity chromatography from PRV-infected cell lysates. The preparations were mixed with mineral oil adjuvant as a water-in-oil emulsion. Six-week-old pigs were immunized twice at two-week intervals with trial vaccines containing 128,000, 12,800 and 1,280 HA units per dose of gC antigen. They were then challenged with a virulent PRV at day 7 after the final immunization. Neutralizing (NT) antibodies were produced with increase of antibody titers after challenge. Pigs immunized with 128,000 HA units per dose of gC survived and showed no virus shedding during the 2-week experimental period after the challenge. The role of cell-mediated immunity was examined using BALB/c mice, and induction of gC-specific cytotoxic T lymphocytes (CTLs) was detected by 51Cr release assay. From these results with mice, it is inferred that cell-mediated immunity, especially CTL, may play an important role in the effectiveness of our trial vaccine in addition to humoral immunity.
Collapse
Affiliation(s)
- S Katayama
- Division of Veterinary Microbiology, Kyoto Biken Laboratories, Japan
| | | | | | | | | |
Collapse
|
12
|
Brehm MA, Bonneau RH, Knipe DM, Tevethia SS. Immunization with a replication-deficient mutant of herpes simplex virus type 1 (HSV-1) induces a CD8+ cytotoxic T-lymphocyte response and confers a level of protection comparable to that of wild-type HSV-1. J Virol 1997; 71:3534-44. [PMID: 9094625 PMCID: PMC191500 DOI: 10.1128/jvi.71.5.3534-3544.1997] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Replication-deficient viruses provide an attractive alternative to conventional approaches used in the induction of antiviral immunity. We have quantitatively evaluated both the primary and memory cytotoxic T-lymphocyte (CTL) responses elicited by immunization with a replication-deficient mutant of herpes simplex virus type 1 (HSV-1). In addition, we have examined the potential role of these CTL in protection against HSV infection. Using bulk culture analysis and limiting-dilution analysis, we have shown that a replication-deficient virus, d301, generates a strong primary CTL response that is comparable to the response induced by the wild type-strain, KOS1.1. Furthermore, the CTL induced by d301 immunization recognized the immunodominant, H-2Kb-restricted, CTL recognition epitope gB498-505 to a level similar to that for CTL from KOS1.1-immunized mice. The memory CTL response evoked by d301 was strong and persistent, even though the frequencies of CTL were slightly lower than the frequencies of CTL induced by KOS1.1. Adoptive transfer studies indicated that both the CD8+ and the CD4+ T-cell responses generated by immunization with d301 and KOS1.1 were able to limit the extent of a cutaneous HSV infection to comparable levels. Overall, these results indicate that viral replication is not necessary to elicit a potent and durable HSV-specific immune response and suggest that replication-deficient viruses may be effective in eliciting protection against viral pathogens.
Collapse
Affiliation(s)
- M A Brehm
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | | | |
Collapse
|
13
|
Maeda K, Yokoyama N, Fujita K, Mikami T. Identification and characterization of the feline herpesvirus type 1 glycoprotein C gene. Virus Genes 1997; 14:105-9. [PMID: 9237349 DOI: 10.1023/a:1007961100023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The feline herpesvirus type 1 (FHV-1) gene encoding glycoprotein C (gC) has been sequenced and identified based on its genomic location and comparative analysis to other alphaherpesvirus gCs, and the expressed gC protein was also identified by using specific monoclonal antibodies. The FHV-1 gC gene was located within a 7.0 kbp EcoRI fragment, and was 1602 bp in length. The amino acid sequence deduced from the nucleotide sequence was predicted to encode a membrane glycoprotein containing a characteristic N-terminal hydrophobic signal sequence, nine potential N-linked glycosylation sites, and C-terminal transmembrane and cytoplasmic domains. The FHV-1 gC was expressed in COS-7 cells. When flowcytometric analysis was carried out, the gC expressed in COS-7 cells reacted with a panel of monoclonal antibodies against gp113: By immunoprecipitation analysis, the gC expressed in COS-7 cells possessed molecular masses of 125-150 kilodalton, and was similar in size to that in FHV-1-infected CRFK cells.
Collapse
Affiliation(s)
- K Maeda
- Department of Veterinary Microbiology, Faculty of Agriculture, University of Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Gallichan WS, Rosenthal KL. Long-lived cytotoxic T lymphocyte memory in mucosal tissues after mucosal but not systemic immunization. J Exp Med 1996; 184:1879-90. [PMID: 8920875 PMCID: PMC2192861 DOI: 10.1084/jem.184.5.1879] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The induction and maintenance of long-term CTL memory at mucosal surfaces may be a critical component of protection against mucosal pathogens and is one goal towards development of effective mucosal vaccines. In these studies we have functionally evaluated short and long-term CTL memory in systemic and respiratory or genital-associated lymphoid tissues following mucosal or systemic routes of immunization. Our results indicate that shortly after immunizing mice with a recombinant adenovirus vector expressing glycoprotein B (gB) of herpes simplex virus (AdgB8), gB-specific CTL memory responses were observed in systemic and mucosal immune compartments regardless of the route of inoculation. In contrast, several months after immunization, anamnestic CTL responses compartmentalized exclusively to mucosal or systemic lymphoid tissues after mucosal or systemic immunization, respectively. Furthermore, the compartmentalized CTL memory responses in mucosal tissues were functionally observed for longer than 1.5 yr after intranasal immunization, and CTL precursor frequencies one year after immunization were comparable to those seen shortly after immunization. Therefore, to our knowledge, this is the first functional demonstration that the maintenance of anti-viral memory CTL in mucosal tissues is dependent on the route of immunization and the time of assessment. These results have important implications for our understanding of the development, maintenance, and compartmentalization of functional T cell memory and the development and evaluation of vaccines for mucosal pathogens, such as HSV and HIV.
Collapse
Affiliation(s)
- W S Gallichan
- Department of Pathology, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
15
|
Mastrolorenzo A, Tiradritti L, Salimbeni L, Zuccati G. Multicentre clinical trial with herpes simplex virus vaccine in recurrent herpes infection. Int J STD AIDS 1995; 6:431-5. [PMID: 8845402 DOI: 10.1177/095646249500600611] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this work was to confirm our preliminary clinical and immunological evaluation of the protective effects of a herpes simplex virus (HSV) vaccine derived from killed virus in the treatment of relapsing facial or genital herpes simplex infection. A total of 142 patients were treated with the HSV vaccine and a control group of 50 were treated with intermittent oral acyclovir (ACV). The vaccine reduced annual active disease days in vaccinees to 11.59 (+/- 15.3) after treatment (65.11 +/- 31.64 before treatment) compared to 30.4 +/- 17.49 days after treatment of the control group patients (71.86 +/- 32.5 before treatment).
Collapse
Affiliation(s)
- A Mastrolorenzo
- Department of Dermatology, STD & AIDS Center, University of Florence, Italy
| | | | | | | |
Collapse
|
16
|
Avitabile E, Ward PL, Di Lazzaro C, Torrisi MR, Roizman B, Campadelli-Fiume G. The herpes simplex virus UL20 protein compensates for the differential disruption of exocytosis of virions and viral membrane glycoproteins associated with fragmentation of the Golgi apparatus. J Virol 1994; 68:7397-405. [PMID: 7933123 PMCID: PMC237182 DOI: 10.1128/jvi.68.11.7397-7405.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Golgi apparatus is fragmented and dispersed in Vero cells but not in human 143TK- cells infected with wild-type herpes simplex virus 1. Moreover, a recombinant virus lacking the gene encoding the membrane protein UL20 (UL20- virus) accumulates in the space between the inner and outer nuclear membranes of Vero cells but is exported and spreads from cell to cell in 143TK- cell cultures. Here we report that in Vero cells infected with UL20- virus, the virion envelope glycoproteins were of the immature type, whereas the viral glycoproteins associated with cell membranes were fully processed up to the addition of sialic acid, a trans-Golgi function. Moreover, the amounts of viral glycoproteins accumulating in the plasma membranes were considerably smaller than those detected on the surface of Vero cells infected with wild-type virus. In contrast, the amounts of viral glycoproteins present on the plasma membranes of 143TK- cells infected with wild-type or UL20- virus were nearly identical. We conclude that (i) in Vero cells infected with UL20- virus the block in the export of virions is at the entry into the exocytic pathway, and a second block in the exocytosis of viral glycoproteins associated with cytoplasmic membranes is due to an impairment of transport beyond Golgi fragments containing trans-Golgi enzymes and not to a failure of the Golgi oligosaccharide-processing functions; (ii) these defects are manifested in cells in which the Golgi apparatus is fragmented; and (iii) the UL20 protein compensates for these defects by enabling transport to and from the fragmented Golgi apparatus.
Collapse
Affiliation(s)
- E Avitabile
- Department of Experimental Pathology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Jacobs L. Glycoprotein E of pseudorabies virus and homologous proteins in other alphaherpesvirinae. Arch Virol 1994; 137:209-28. [PMID: 7944945 DOI: 10.1007/bf01309470] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper reviews biological properties of glycoprotein E (gE) of pseudorabies virus (Aujeszky's disease virus) and homologous proteins in other alphaherpesvirinae. It focuses on the gene encoding gE, conserved regions in the gE protein and its homologs, the complex of gE and gI, biological functions of gE in vitro and in vivo, the role of gE in latency and the role of gE in the induction of humoral and cellular immune responses. Special emphasis is placed on the use of gE as a marker protein in the control and eradication of pseudorabies virus.
Collapse
Affiliation(s)
- L Jacobs
- Central Veterinary Institute (CDI-DLO), Lelystad, The Netherlands
| |
Collapse
|
18
|
Sivropoulou A, Vasilaki A, Arsenakis M. Application of a transformed cell line constitutively expressing HSV-1 polypeptides for the detection of HSV antibodies in human sera by an enzyme immunoassay. Arch Virol 1994; 139:183-8. [PMID: 7826208 DOI: 10.1007/bf01309463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have previously reported the construction of a cell line BA4, constitutively producing the glycoproteins gD, gG, and alpha 4, the major regulatory protein of HSV-1. These cells have been selected in stepwise increasing concentrations of methotrexate and shown to produce much higher amounts of gD than non-selected cells. Extracts of the selected cells were used in an enzyme linked immunosorbent assay to detect HSV antibodies in human sera obtained from Greek blood donors. We report here that (i) the assay developed is able to distinguish HSV antibody positive from negative human sera and (ii) that its application in an epidemiological survey showed that the incidence of HSV infection in the general population in Greece is 90.4%.
Collapse
Affiliation(s)
- A Sivropoulou
- Department of Biology, Aristotelian University, Thessaloniki, Greece
| | | | | |
Collapse
|
19
|
Nataraj C, Srikumaran S. Bovine x murine T-cell hybridomas specific for bovine herpesvirus 1 (BHV-1) glycoproteins. Viral Immunol 1994; 7:11-23. [PMID: 7986332 DOI: 10.1089/vim.1994.7.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Difficulties in the isolation and long-term maintenance of bovine herpesvirus-1 (BHV-1) specific T-cell clones have hindered the analysis of bovine cell-mediated immune response to this virus. In an effort to identify the T-cell epitopes of the virus, bovine murine T-cell hybridomas specific for BHV-1 were generated as an alternative to T-cell clones. Peripheral blood lymphocytes from a calf immunized with BHV-1 were restimulated in vitro with the virus to generate bulk T-cell cultures. The antigen-specific T-cell-enriched bulk culture lymphocytes were fused with the T-cell receptor-deficient mutant of the murine thymoma cell line BW 5147. T-cell hybridomas were screened for their ability to produce interferon-gamma in response to BHV-1 stimulation. Hybridomas with various specificities were obtained. One of them was specific for the BHV-1 glycoprotein gI, two were specific for gIV, while three other hybridomas were specific for gIII. One hybridoma responded to stimulation with BHV-1, but not to any of the glycoproteins gI, gIII, or gIV, suggesting that proteins other than these major glycoproteins may be involved in the bovine T-cell response to BHV-1. Of these hybridomas, one was MHC Class I restricted, while all the others were Class II restricted.
Collapse
Affiliation(s)
- C Nataraj
- Department of Veterinary and Biomedical Sciences, IANR, University of Nebraska-Lincoln
| | | |
Collapse
|
20
|
Toh Y, Tanaka S, Liu Y, Hidaka Y, Mori R. Molecular characterization of naturally occurring glycoprotein C-negative herpes simplex virus type 1. Arch Virol 1993; 129:119-30. [PMID: 8385911 DOI: 10.1007/bf01316889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We previously isolated glycoprotein C (gC)-negative herpes simplex virus type 1 (HSV-1) mutants, TN-1, TN-2 and TN-3, from a patient with recurrent herpetic keratitis at one-year intervals. In the present study, the molecular basis for the inability of these clinical isolates to express gC was examined. The nucleotide sequence of the gC gene of the TN-1 strain was compared with that of the HSV-1 KOS strain. In the open reading frame of the gC gene, there were 12 nucleotide differences between the TN-1 and KOS strains, seven of which led to amino acid substitutions. Importantly, one of them was the codon change from CAG for glutamine at position 280 to TAG for the amber termination codon. Accordingly, the TN-1 strain produced a truncated gC with a predicted molecular weight, which was secreted into the extracellular fluid. These results suggest that this amber mutation in the TN-gC gene results in a premature termination of gC translation and is the cause of the gC-negative phenotype of the TN strains. It is expected that these extremely rare HSV-1 strains will provide us with valuable information concerning the in vivo functions of gC, especially in ocular diseases.
Collapse
Affiliation(s)
- Y Toh
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
21
|
Martin S, Mercadal CM, Weir JP, Rouse BT. The proportion of herpes simplex virus-specific cytotoxic T lymphocytes (Tc) that recognize glycoprotein C varies between individual mice and is dependent on the form of immunization. Viral Immunol 1993; 6:21-33. [PMID: 8386515 DOI: 10.1089/vim.1993.6.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mice the immune response to HSV-1 includes a brisk Tc response that is intimately associated with the control of infection. This report evaluated the Tc response to gC, one of the envelope glycoproteins of HSV-1. This protein was recognized as a target antigen for Tc from HSV-1 immune mice only if they expressed the H-2Kb MHC allele. However, even within these "responder" strains of mice the proportion of gC specific Tc was highly variable. The failure of HSV-induced Tc to recognize gC in the context of other class 1 MHC haplotypes (H-2d and H-2k) was demonstrable at the clonal level and could not be attributed to peculiarities of the recombinant constructs. Surprisingly, despite the inability of H-2k-restricted, HSV-1-induced Tc to recognize gC, when a vaccinia gC virus construct was used to immunize H-2k strains of mice it showed a variable ability to induce memory Tc populations capable of lysing HSV-1-infected autologous cells. Of added importance was the correlation of this induced Tc response with optimum protection against subsequent challenge with HSV-1. This demonstrated that despite the presence of suitable epitopes, the context of the immunogen would also influence its ability to induce Tc. Consequently, the potential repertoire of available HSV-1-specific Tc specificities is larger than indicated by studying animals immunized with HSV.
Collapse
Affiliation(s)
- S Martin
- Upjohn Laboratories, Kalamazoo, Michigan
| | | | | | | |
Collapse
|
22
|
Ghiasi H, Kaiwar R, Nesburn AB, Wechsler SL. Baculovirus expressed herpes simplex virus type 1 glycoprotein C protects mice from lethal HSV-1 infection. Antiviral Res 1992; 18:291-302. [PMID: 1416910 DOI: 10.1016/0166-3542(92)90062-a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A recombinant baculovirus (vAc-gC1) was constructed that expresses the glycoprotein C (gC) gene of herpes simplex virus type 1 (HSV-1). When Sf9 cells were infected with this recombinant, a protein that was smaller in size than authentic HSV-1 gC was detected by Western blotting using anti-gC polyclonal antibody. The recombinant gC was susceptible to tunicamycin, partially resistant to Endo-H, and was found on the membrane of Sf9 cells. Antibodies raised in mice to recombinant gC reacted with gC from HSV-1 infected cells and neutralized the infectivity of HSV-1 in vitro. Immunized mice were protected from lethal challenge with HSV-1.
Collapse
Affiliation(s)
- H Ghiasi
- Ophthalmology Research, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | | | | | | |
Collapse
|
23
|
Nazerian K, Lee LF, Yanagida N, Ogawa R. Protection against Marek's disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek's disease virus. J Virol 1992; 66:1409-13. [PMID: 1310755 PMCID: PMC240864 DOI: 10.1128/jvi.66.3.1409-1413.1992] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fowlpox virus (FPV) recombinants expressing the glycoprotein B and the phosphorylated protein (pp38) of the GA strain of Marek's disease virus (MDV) were assayed for their ability to protect chickens against challenge with virulent MDV. The recombinant FPV expressing the glycoprotein B gene elicited neutralizing antibodies against MDV, significantly reduced the level of cell-associated viremia, and, similar to the conventional herpesvirus of turkeys, protected chickens against challenge with the GA strain and the highly virulent RB1B and Md5 strains of MDV. The recombinant FPV expressing the pp38 gene failed to either elicit neutralizing antibodies against MDV or protect the vaccinated chickens against challenge with MDV.
Collapse
Affiliation(s)
- K Nazerian
- Avian Disease and Oncology Laboratory, U.S. Department of Agriculture, East Lansing, Michigan 48823
| | | | | | | |
Collapse
|
24
|
Schmid DS, Rouse BT. The role of T cell immunity in control of herpes simplex virus. Curr Top Microbiol Immunol 1992; 179:57-74. [PMID: 1499350 DOI: 10.1007/978-3-642-77247-4_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D S Schmid
- Viral Exanthems and Herpesvirus Branch, Atlanta, GA 30333
| | | |
Collapse
|
25
|
Forrester A, Farrell H, Wilkinson G, Kaye J, Davis-Poynter N, Minson T. Construction and properties of a mutant of herpes simplex virus type 1 with glycoprotein H coding sequences deleted. J Virol 1992; 66:341-8. [PMID: 1309250 PMCID: PMC238293 DOI: 10.1128/jvi.66.1.341-348.1992] [Citation(s) in RCA: 298] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A mutant of herpes simplex virus type 1 (HSV-1) in which glycoprotein H (gH) coding sequences were deleted and replaced by the Escherichia coli lacZ gene under the control of the human cytomegalovirus IE-1 gene promoter was constructed. The mutant was propagated in Vero cells which contained multiple copies of the HSV-1 gH gene under the control of the HSV-1 gD promoter and which therefore provide gH in trans following HSV-1 infection. Phenotypically gH-negative virions were obtained by a single growth cycle in Vero cells. These virions were noninfectious, as judged by plaque assay and by expression of beta-galactosidase following high-multiplicity infection, but partial recovery of infectivity was achieved by using the fusogenic agent polyethylene glycol. Adsorption of gH-negative virions to cells blocked the adsorption of superinfecting wild-type virus, a result in contrast to that obtained with gD-negative virions (D. C. Johnson and M. W. Ligas, J. Virol. 62:4605-4612, 1988). The simplest conclusion is that gH is required for membrane fusion but not for receptor binding, a conclusion consistent with the conservation of gH in all herpesviruses.
Collapse
Affiliation(s)
- A Forrester
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Erturk M, Phillpotts RJ, Welch MJ, Jennings R. Efficacy of HSV-1 ISCOM vaccine in the guinea-pig model of HSV-2 infection. Vaccine 1991; 9:728-34. [PMID: 1661978 DOI: 10.1016/0264-410x(91)90288-h] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The capability of a herpes simplex virus (HSV)-1 ISCOM vaccine to protect against intravaginal HSV-2 challenge infection in guinea-pigs is described. The protective efficacy of the HSV-1 ISCOM vaccine is compared with that of a purified, aqueous HSV-1 antigen preparation administered using a similar immunization schedule. The results show that female guinea-pigs immunized with two doses of HSV-1 ISCOM vaccine, each consisting of 20 micrograms of protein given 2 weeks apart responded with high ELISA and neutralization antibody titres, and are almost completely protected against the clinical effects of intravaginal challenge with 10(5.2) TCID50 of HSV-2. This cross-protection is significantly greater than that observed in guinea-pigs immunized with a single dose of HSV-1 ISCOM vaccine, two doses of aqueous HSV-1 antigen preparation or two doses of a mock ISCOM vaccine. However, none of the vaccine preparations completely prevented HSV-2 replication following challenge. Western blot and radioimmunoprecipitation of sera from immunized guinea-pigs show the HSV-1 ISCOM vaccine preparation to contain the major HSV-1 glycoproteins. These findings are discussed in relation to the value and potential use of HSV-1 ISCOM vaccine in humans.
Collapse
Affiliation(s)
- M Erturk
- Department of Experimental and Clinical Microbiology, Medical School, University of Sheffield, UK
| | | | | | | |
Collapse
|
27
|
Erturk M, Jennings R, Phillpotts RJ, Potter CW. Biochemical characterization of herpes simplex virus type-1-immunostimulating complexes (ISCMOs): a multi-glycoprotein structure. Vaccine 1991; 9:668-74. [PMID: 1659055 DOI: 10.1016/0264-410x(91)90193-a] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The preparation and characterization of an immunostimulating complex (ISCOM) preparation containing several HSV-1 glycoproteins, including the major glycoproteins B and D is described. The multi-glycoprotein HSV-1 ISCOM preparation was obtained from a gradient-purified aqueous HSV-1 antigen preparation following extraction from infected cells using a zwitterionic detergent. With polyclonal and monoclonal antibodies to HSV-1 glycoproteins in enzyme-linked immunosorbent assay, SDS-polyacrylamide gel electrophoresis and radioimmunoprecipitation techniques, the HSV-1 ISCOM preparation was shown to contain glycoproteins B, C, D, E, H and I, although further, additional proteins were also present. The DNA content of HSV-1 ISCOMs was determined using a 3H-thymidine labelling method. The protein and DNA contents of the HSV-1 ISCOM preparation are discussed with reference to the potentialities of the preparation as a vaccine for use in human beings.
Collapse
Affiliation(s)
- M Erturk
- Department of Virology, University of Sheffield Medical School, UK
| | | | | | | |
Collapse
|
28
|
Banks TA, Allen EM, Dasgupta S, Sandri-Goldin R, Rouse BT. Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize immediate-early protein ICP27. J Virol 1991; 65:3185-91. [PMID: 1709698 PMCID: PMC240975 DOI: 10.1128/jvi.65.6.3185-3191.1991] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The identity of herpes simplex virus type 1 (HSV-1) antigens that serve as targets for cytotoxic T lymphocytes (CTL) and their ability to induce protective immunity remain uncertain. In this article, we report the identification of the immediate-early protein ICP27 as a CTL antigen in H-2d mice but not in H-2k or H-2b mice. Calculation of the frequencies of H-2d-restricted virus-specific CTL demonstrated that approximately one-fourth of the total HSV-1-specific response was directed against ICP27. To define the location of this CTL epitope, four truncated derivatives of the ICP27 gene which place the epitope in a 217-amino-acid region (amino acids 189 to 406) near the central portion of the protein were constructed. Mice immunized with ICP27 were able both to induce HSV-1-specific CTL and to survive a lethal intraperitoneal challenge with virulent HSV-1. However, neither appreciable antibody nor delayed-type hypersensitivity responses were induced in immunized mice, and they were also unable to clear a local epithelial virus challenge. It appears that ICP27, although capable of inducing several aspects of the immune response, is by itself unable to provide complete immunity.
Collapse
Affiliation(s)
- T A Banks
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845
| | | | | | | | | |
Collapse
|
29
|
Welling-Webster S, Scheffer AJ, Welling GW. B and T cell epitopes of glycoprotein D of herpes simplex virus type 1. FEMS MICROBIOLOGY IMMUNOLOGY 1991; 3:59-68. [PMID: 1713774 DOI: 10.1111/j.1574-6968.1991.tb04198.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Welling-Webster
- Rijksuniversiteit Groningen, Laboratorium voor Medische Microbiologie, Groningen, The Netherlands
| | | | | |
Collapse
|
30
|
Hanke T, Graham FL, Rosenthal KL, Johnson DC. Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J Virol 1991; 65:1177-86. [PMID: 1847447 PMCID: PMC239884 DOI: 10.1128/jvi.65.3.1177-1186.1991] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) responses to herpes simplex virus (HSV) polypeptides play an important role in recovery from infection and in preventing latency. We have previously shown that glycoprotein B (gB) is a major target recognized by HSV-specific CTLs in C57BL/6 (H-2b) and BALB/c (H-2d) mice but not in CBA/J (H-2k) mice (L. A. Witmer, K. L. Rosenthal, F. L. Graham, H. M. Friedman, A. Yee, and D. C. Johnson, J. Gen. Virol. 71:387-396, 1990). In this report, we utilize adenovirus vectors expressing gB with various deletions to localize an immunodominant site in gB, recognized by H-2b-restricted anti-HSV CTLs, to a region between residues 462 and 594. Overlapping peptides spanning this region were synthesized and used to further localize the immunodominant site to residues 489 to 515, a region highly conserved in HSV type 1 (HSV-1) and HSV-2 strains. The 11-amino-acid peptide was apparently associated exclusively with the Kb major histocompatibility complex gene product and not the Db gene product. In contrast, H-2d-restricted CTLs recognized an immunodominant site between residues 233 and 379.
Collapse
Affiliation(s)
- T Hanke
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Flowers CC, Eastman EM, O'Callaghan DJ. Sequence analysis of a glycoprotein D gene homolog within the unique short segment of the EHV-1 genome. Virology 1991; 180:175-84. [PMID: 1845821 DOI: 10.1016/0042-6822(91)90021-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA sequence analysis of one-third of the unique short (Us) segment of the equine herpesvirus type 1 (EHV-1) genome revealed an open reading frame (ORF) whose translated sequence exhibits significant homology to glycoprotein D of herpes simplex virus (HSV) types 1 and 2 and to pseudorabies virus (PRV) glycoprotein 50, the gD equivalent. The ORF of the EHV-1 gD homolog lies within the pSZ-4 BamHI/KpnI fragment (map units 0.865 to 0.872 and 0.869 to 0.884) and is capable of encoding a polypeptide of 385 amino acids (43,206 molecular weight). Analysis of the nucleotide sequence revealed a complete transcriptional unit including CAAT and TATA elements and signals for polyadenylation. The predicted protein exhibits features typical of a transmembrane protein: a hydrophobic N-terminal signal sequence followed by a probable cleavage site, four potential N-linked glycosylation sites, and a hydrophobic membrane-spanning domain near the carboxyl terminus followed by a charged membrane anchor sequence.
Collapse
Affiliation(s)
- C C Flowers
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | |
Collapse
|
32
|
Abstract
The genomic position of an equine herpesvirus 4 (EHV-4) gene homologue of the herpes simplex virus 1 (HSV-1) gC gene was determined by Southern analysis and DNA sequencing. The gene lies within a 2-kbp Bg/II-EcoRI fragment mapping between 0.15 and 0.17 within the long unique component of the EHV-4 genome and is transcribed from right to left. Putative promoter elements were identified upstream of the 1455-bp open reading frame which encodes a 485-amino-acid protein of unglycosylated molecular weight 52,513. Computer-assisted analysis of the primary sequence predicts the protein possesses a domain structure characteristic of a type 1 integral membrane glycoprotein. Four domains were distinguished--(i) an N-terminal signal sequence, (ii) a large extracellular domain containing 11 putative N-linked glycosylation sites, (iii) a hydrophobic transmembrane domain, and (iv) a C-terminal charged domain. Comparison of the predicted amino acid sequence to that of other herpesvirus glycoproteins indicated identities of between 22 and 29% with HSV-1 gC, HSV-2 gC, VZV gpV, PRV gIII, BHV-1 gIII, and MDV A antigen and of 79% with EHV-1 gp13. A gene with no apparent homologue in HSV-1 or VZV maps immediately downstream of the EHV-4 gC gene homologue.
Collapse
Affiliation(s)
- L Nicolson
- Department of Veterinary Pathology, University of Glasgow Veterinary School, United Kingdom
| | | |
Collapse
|
33
|
Iglesias G, Molitor T, Reed D, L'Italien J. Antibodies to Aujeszky's disease virus in pigs immunized with purified virus glycoproteins. Vet Microbiol 1990; 24:1-10. [PMID: 2171185 DOI: 10.1016/0378-1135(90)90045-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibodies to Aujeszky's disease virus (ADV) glycoproteins gII, gIII, and gp50 were compared using four in vitro tests. Antibodies generated by vaccination with a modified-live vaccine (MLV) were also compared. The serological assays employed were: serum neutralization test (SNT), complement facilitated serum neutralization test (C'SNT), complement-mediated cytolysis and antibody dependent cellular cytotoxicity (ADCC). Pigs were immunized with single glycoproteins twice 14 days apart, or once with the modified-live vaccine. Fourteen days after the second immunization, sera were collected. Virus neutralizing activity (SNT) was demonstrated in the sera from all pigs immunized with gp50 and in one out of three immunized with gIII. Sera from the MLV group all had neutralization titers higher than animals immunized with single glycoproteins. Addition of guinea pig complement to the serum neutralization test (i.e., C'SNT) produced an enhancement of antibody titers in all groups except the pigs immunized with gIII. The complement-mediated cytolysis test rendered antibody titers similar in magnitude for all pigs immunized with single glycoproteins, but slightly lower than values for MLV vaccinated pigs. ADCC activity was clearly displayed in sera from pigs immunized with gIII or vaccinated with MLV, whereas sera from pigs immunized with gII or gp50 had a minimal response. The results indicate that the relative efficiency of antibodies against ADV glycoproteins in protection should be considered for selecting or producing gene-deleted strains for use in vaccine production.
Collapse
Affiliation(s)
- G Iglesias
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul
| | | | | | | |
Collapse
|
34
|
Johnson DC, Burke RL, Gregory T. Soluble forms of herpes simplex virus glycoprotein D bind to a limited number of cell surface receptors and inhibit virus entry into cells. J Virol 1990; 64:2569-76. [PMID: 2159532 PMCID: PMC249433 DOI: 10.1128/jvi.64.6.2569-2576.1990] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and HSV-2 plaque production was inhibited by treating cells with soluble forms of HSV-1 glycoprotein D (gD-1t) and HSV-2 glycoprotein D (gD-2t). Both glycoproteins inhibited entry of HSV-1 and HSV-2 without affecting virus adsorption. In contrast, a soluble form of HSV-2 glycoprotein B had no effect on virus entry into cells. Specific binding of gD-1t and gD-2t to cells was saturable, and approximately 4 x 10(5) to 5 x 10(5) molecules bound per cell. Binding of gD-1t was markedly reduced by treating cells with certain proteases but was unaffected when cell surface heparan sulfate glycosaminoglycans were enzymatically removed or when the binding was carried out in the presence of heparin. Together, these results suggest that gD binds to a limited set of cell surface receptors which may be proteins and that these interactions are essential for subsequent virus entry into cells. However, binding of gD to its receptors is not required for the initial adsorption of virus to the cell surface, which involves more numerous sites (probably including heparan sulfate) than those which mediate gD binding.
Collapse
Affiliation(s)
- D C Johnson
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
35
|
Guo PX, Goebel S, Perkus ME, Taylor J, Norton E, Allen G, Languet B, Desmettre P, Paoletti E. Coexpression by vaccinia virus recombinants of equine herpesvirus 1 glycoproteins gp13 and gp14 results in potentiated immunity. J Virol 1990; 64:2399-406. [PMID: 2157895 PMCID: PMC249404 DOI: 10.1128/jvi.64.5.2399-2406.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The equine herpesvirus 1 glycoprotein 14 (EHV-1 gp14) gene was cloned, sequenced, and expressed by vaccinia virus recombinants. Recombinant virus vP613 elicited the production of EHV-1-neutralizing antibodies in guinea pigs and was effective in protecting hamsters from subsequent lethal EHV-1 challenge. Coexpression of EHV-1 gp14 in vaccinia virus recombinant vP634 along with EHV-1 gp13 (P. Guo, S. Goebel, S. Davis, M. E. Perkus, B. Languet, P. Desmettre, G. Allen, and E. Paoletti, J. Virol. 63:4189-4198, 1989) greatly enhanced the protective efficacy in the hamster challenge model over that obtained with single recombinants. The inoculum doses (log10) required for protection of 50% of hamsters were 6.1 (EHV-1 gp13), 5.2 (EHV-1 gp14), and less than 3.6 (vaccinia virus recombinant expressing both EHV-1 glycoproteins [gp13 and gp14]).
Collapse
Affiliation(s)
- P X Guo
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Coussens PM, Wilson MR, Camp H, Roehl H, Isfort RJ, Velicer LF. Characterization of the gene encoding herpesvirus of turkeys gp57-65: comparison to Marek's disease virus gp57-65 and herpes simplex virus glycoprotein C. Virus Genes 1990; 3:291-307. [PMID: 2161583 DOI: 10.1007/bf00569037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A gene encoding herpesvirus of turkeys (HVT) strain FC 126 gp57-65 has been mapped to the viral genome and sequenced. The HVT (FC 126) gp57-65 gene maps to BamHI fragments K1 and M, colinear with the gene from Marek's disease virus (MDV) strain GA. HVT gp57-65 gene sequences were compared to the MDV strain GA gp57-65 gene that we sequenced previously. Overall, the two sequences are 66% identical, with greater similarity in the 3' proximal two thirds of the genes. HVT gp57-65 gene sequences have a slightly higher overall guanosine plus cytosine (G + C) content than MDV gp57-65 gene sequences (46% vs. 41%, respectively). A single, long open reading frame capable of encoding 523 amino acids was identified within the HVT gp57-65 gene region. The predicted precursor polypeptide derived from this open reading frame would have a calculated molecular weight of 58,587. The predicted HVT gp57-65 amino acid sequences contain six potential N-linked glycosylation sites (asn-x-ser/thr). Five of these six potential N-linked glycosylation sites are conserved between the HVT and MDV predicted amino acid sequences. Hydropathic analysis of the predicted HVT gp57-65 amino acid sequences indicate the presence of an amino-terminal hydrophobic sequence, which may function as a signal peptide, and a hydrophobic carboxyl terminal sequence, which may function as a membrane anchor sequence. Overall, MDV gp57-65 and HVT gp57-65 precursor polypeptide sequences are 73% homologous and share many potential antigenic epitopes. Predicted MDV and HVT gp57-65 protein sequences are similar to those of herpes simplex virus glycoprotein C (gC) and gC-like proteins from other herpes-viruses. Similarities are scattered throughout the molecule, with a primary concentration near the carboxyl half of the molecule. One stretch of 60 amino acids (HVT amino acids 378-437 and MDV amino acids 350-410) are relatively well conserved among gC-like proteins from six herpesviruses. The possible implications of these homologies and the potential roles of gC-like proteins in virus infection, growth, and replication are discussed.
Collapse
Affiliation(s)
- P M Coussens
- Department of Animal Science, Michigan State University, East Lansing 48824
| | | | | | | | | | | |
Collapse
|
37
|
Guo PX. Characterization of the gene and an antigenic determinant of equine herpesvirus type-1 glycoprotein 14 with homology to gB-equivalent glycoproteins of other herpesviruses. Gene 1990; 87:249-55. [PMID: 1692002 DOI: 10.1016/0378-1119(90)90309-f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The gene encoding glycoprotein 14 (gp14) of equine herpesvirus type 1 was sequenced. Nucleotide sequence analysis revealed a complete transcription unit composed of a CAT box, a TATA box, a ribosome-binding sequence, a polyadenylation signal and an open reading frame (ORF) of 2940 bp transcribed from left to right. The amino acid (aa) sequence deduced from this ORF corresponded to that of a protein with 979 aa and had the characteristic features of membrane gp including a 20-aa signal sequence at the N terminus, a 743-aa surface domain, a 40-aa membrane anchoring region, a 108-aa hydrophilic cytoplasmic domain at the C terminus and eleven potential sites for N-linked glycosylation. An unusual feature of this protein was an exceptionally long (66aa) sequence, with a preponderance of hydrophilic residues, preceding the hydrophobic signal core. An antigenic determinant recognized by an anti-gp14 monoclonal antibody was present in the N terminus of the postulated surface domain. Comparison of gp 14 with the gp of other herpesviruses indicated that gp14 was highly homologous to corresponding gp of pseudorabies (gII), bovine herpesvirus (gI), varicella-zoster virus (gII), as well as of herpes simplex virus, Epstein-Barr virus and human cytomegalovirus (gB).
Collapse
Affiliation(s)
- P X Guo
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| |
Collapse
|
38
|
Wu CT, Levine M, Homa F, Highlander SL, Glorioso JC. Characterization of the antigenic structure of herpes simplex virus type 1 glycoprotein C through DNA sequence analysis of monoclonal antibody-resistant mutants. J Virol 1990; 64:856-63. [PMID: 1688628 PMCID: PMC249181 DOI: 10.1128/jvi.64.2.856-863.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Earlier studies of a group of monoclonal antibody-resistant (mar) mutants of herpes simplex virus type 1 glycoprotein C (gC) operationally defined two distinct antigenic sites on this molecule, each consisting of numerous overlapping epitopes. In this report, we further define epitopes of gC by sequence analysis of the mar mutant gC genes. In 18 mar mutants studied, the mar phenotype was associated with a single nucleotide substitution and a single predicted amino acid change. The mutations were localized to two regions within the coding sequence of the external domain of gC and correlated with the two previously defined antigenic sites. The predicted amino acid substitutions of site I mutants resided between residues Gln-307 and Pro-373, whereas those of site II mutants occurred between amino acids Arg-129 and Glu-247. Of the 12 site II mutations, 9 induced amino acid substitutions within an arginine-rich segment of 8 amino acids extending from residues 143 to 151. The clustering of the majority of substituted residues suggests that they contribute to the structure of the affected sites. Moreover, the patterns of substitutions which affected recognition by antibodies with similar epitope specificities provided evidence that epitope structures are physically linked and overlap within antigenic sites. Of the nine epitopes defined on the basis of mutations, three were located within site I and six were located within site II. Substituted residues affecting the site I epitopes did not overlap substituted residues of site II, supporting our earlier conclusion that sites I and II reside in spatially distinct antigenic domains. A computer analysis of the distribution of charged residues and the predicted secondary structural features of wild-type gC revealed that the two antigenic sites reside within the most hydrophilic regions of the molecule and that the antigenic residues are likely to be organized as beta sheets which loop out from the surface of the molecule. Together, these data and our previous studies support the conclusion that the mar mutations identified by sequence analysis very likely occur within or near the epitope structures themselves. Thus, two highly antigenic regions of gC have now been physically and genetically mapped to well-defined domains of the protein molecule.
Collapse
Affiliation(s)
- C T Wu
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | |
Collapse
|
39
|
Kato A, Sato I, Ihara T, Ueda S, Ishihama A, Hirai K. Homologies between herpesvirus of turkey and Marek's disease virus type-1 DNAs within two co-linearly arranged open reading frames, one encoding glycoprotein A. Gene X 1989; 84:399-405. [PMID: 2558972 DOI: 10.1016/0378-1119(89)90514-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genomes of two avian herpesviruses, Marek's disease virus type 1 (MDV1) and herpesvirus of turkey (HVT), share close homology only within certain DNA regions. One such homologous region of HVT DNA was cloned and sequenced. Two open reading frames (ORFs) were found in the long unique region, ORF1 encoding the glycoprotein A (gA), and ORF2 encoding a still unidentified protein. These two HVT-ORFs are located at almost the same positions as the homologous MDV1-ORFs. The nucleotide sequence homologies between HVT and MDV1 were 73% and 68% for ORF1 and ORF2, respectively. Both the 5'- and 3'-noncoding regions, however, are less conserved. The third letter within every codon of ORF1 and ORF2 showed a mismatch of greater than 50% between the two viruses. The amino acid (aa) sequence homologies between the corresponding putative viral proteins are 83% and 80% for ORF1 (gA) and ORF2, respectively. More than 90% homology was observed in the C-terminal region of ORF1 (gA). Furthermore, the deduced aa sequences for both of the ORFs in these two viruses showed considerable homology to two adjoining genes in herpes simplex virus type 1, the glycoprotein C and UL45 genes.
Collapse
Affiliation(s)
- A Kato
- Nippon Institute for Biological Science, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Guo PX, Goebel S, Davis S, Perkus ME, Languet B, Desmettre P, Allen G, Paoletti E. Expression in recombinant vaccinia virus of the equine herpesvirus 1 gene encoding glycoprotein gp13 and protection of immunized animals. J Virol 1989; 63:4189-98. [PMID: 2550665 PMCID: PMC251033 DOI: 10.1128/jvi.63.10.4189-4198.1989] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The equine herpesvirus 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was cloned into the hemagglutinin (HA) locus of vaccinia virus (Copenhagen strain). Expression of the gp13 gene was driven by the early/late vaccinia virus H6 promoter. Metabolically radiolabeled polypeptides of approximately 47 and 44 kilodaltons and 90 kilodaltons (glycosylated form) were precipitated with both polyclonal and gp13-specific monoclonal antibodies. Presentation of gp13 on the cytoplasmic membrane of cells infected with the recombinant gp13 vaccinia virus was demonstrated by immunofluorescence of unfixed cells. Inoculation of the recombinant gp13 vaccinia virus into guinea pigs induced neutralizing antibodies to both EHV-1 and vaccinia virus. Hamsters vaccinated with the recombinant gp13 vaccinia virus survived a lethal challenge with the hamster-adapted Kentucky strain of EHV-1. These results indicate that expression in vaccinia virus vectors of EHV-1 gp13, the glycoprotein homolog of herpes simplex virus gC-1 and gC-2, pseudorabies virus gIII, and the varicella-zoster virus gpV may provide useful vaccine candidates for equine herpesvirus infections.
Collapse
Affiliation(s)
- P X Guo
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Use of a glucocorticoid-inducible promoter for expression of herpes simplex virus type 1 glycoprotein gC1, a cytotoxic protein in mammalian cells. Mol Cell Biol 1989. [PMID: 2548078 DOI: 10.1128/mcb.9.6.2303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abundant expression of herpes simplex virus type 1 glycoprotein gC (gC1) in transfected mammalian cells has not previously been achieved, possibly because gC1 protein is toxic to cells. To approach this problem, the gC1 coding sequence was placed under the control of the weak but inducible glucocorticoid-responsive promoter from the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). As controls to evaluate for gC1 cytotoxicity, the MMTV LTR promoter was used to express glycoprotein gD1, and a strong, constitutive promoter from the Moloney murine sarcoma virus LTR was used to express gC1. L cells were transfected with these constructs, and a clone expressing gC1 from the inducible MMTV LTR promoter was analyzed. In the absence of glucocorticoid (dexamethasone) stimulation, only a low level of gC1 mRNA expression was detected; after overnight stimulation with dexamethasone, transcription increased approximately 200-fold. Abundant gC1 protein that was functionally active in that it bound complement component C3b, was produced. From passages 5 through 26 (70 cell population doublings), the gC1-producing clone became less responsive to overnight dexamethasone stimulation. The block to gC1 expression occurred at the level of transcription and was associated with hypermethylation of the MMTV LTR DNA. Treatment of the clone with 5-aza-2'-deoxycytidine partially reversed the block in gC1 protein production. Late-passage cells assumed a gC1-negative phenotype that appeared to offer a selective growth advantage, which suggested that gC1 was cytotoxic. Several findings support this view: (i) some cells expressing gC1 after overnight stimulation with dexamethasone assumed bizarre, syncytial shapes; (ii) continuous stimulation with dexamethasone for 5 weeks resulted in death of most cells; (iii) cells transfected with gC1 under the control of the strong Moloney murine sarcoma virus promoter assumed bizarre shapes, and stable gC1-expressing clones could not be established; and (iv) cells induced to express gD1 retained a normal appearance after overnight stimulation or 15 weeks of continuous stimulation with dexamethasone. The inducible MMTV LTR promoter is useful for expressing gC1 and may have applications for expressing other cytotoxic proteins.
Collapse
|
42
|
Eberle R, Black D, Hilliard JK. Relatedness of glycoproteins expressed on the surface of simian herpes-virus virions and infected cells to specific HSV glycoproteins. Arch Virol 1989; 109:233-52. [PMID: 2482016 DOI: 10.1007/bf01311084] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The antigenic relatedness of the surface glycoprotein antigens of six herpesviruses indigenous to human and nonhuman primates was examined. Binding of anti-viral sera to viral antigens expressed on the surface of infected cells demonstrated that the surface antigens of herpes simplex virus type 1 (HSV 1), HSV 2, simian agent 8 (SA8), and Herpesvirus simiae (B virus) exhibit extensive cross-reactivity. Surface antigens of two viruses isolated from South American primates, H. saimiri 1 (HVS 1) and H. ateles 1 (HVA 1), were comparatively more virus-specific in their antigenic reactivity. Endpoint neutralization tests performed in the presence and absence of complement confirmed these results. Immunoprecipitation of viral proteins was used to identify those representing cross-reactive surface antigens. A glycoprotein of approximately 110,000-125,000 Daltons (110-125 k) was immunoprecipitated from cells infected with each of the six primate herpesvirus by antisera to each of the viruses. Using monospecific antisera, these glycoproteins were shown to be antigenically related to the gB glycoproteins of HSV. Although these glycoproteins were antigenically conserved among all six viruses, antibodies to the gB glycoproteins did not cross-neutralize heterologous viruses. A glycoprotein of approximately 60-70 k was precipitated from HSV 1, HSV 2, SA8, and B virus infected cells by antisera to each of these four viruses. These SA8 and B virus glycoproteins were shown to be antigenically related to the gD glycoproteins of HSV 1 and HSV 2 and to be involved in cross-neutralization among these viruses. Antisera to HVS 1 and HVA 1 did not recognize these gD glycoproteins nor was a glycoprotein of similar molecular weight precipitable from HVS 1 or HVA 1 infected cells by antisera to the other four viruses. Southern blot hybridizations using probes for HSV glycoprotein genes confirmed the conservation of the gB glycoproteins among all the simian viruses and of the gD gene in SA8 and B virus. A glycoprotein of approximately 75-80 k was, however, precipitated from HVS 1 and HVA 1 infected cells by antisera to either of these two viruses. In addition, at least one glycoprotein which appeared to be predominantly virus-specific in its reactivity was identified for five of the viruses.
Collapse
Affiliation(s)
- R Eberle
- Department of Veterinary Parasitology, Microbiology, and Public Health, College of Veterinary Medicine, Oklahoma State University, Stillwater
| | | | | |
Collapse
|
43
|
Friedman HM, Yee A, Diggelmann H, Hastings JC, Tal-Singer R, Seidel-Dugan CA, Eisenberg RJ, Cohen GH. Use of a glucocorticoid-inducible promoter for expression of herpes simplex virus type 1 glycoprotein gC1, a cytotoxic protein in mammalian cells. Mol Cell Biol 1989; 9:2303-14. [PMID: 2548078 PMCID: PMC362303 DOI: 10.1128/mcb.9.6.2303-2314.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abundant expression of herpes simplex virus type 1 glycoprotein gC (gC1) in transfected mammalian cells has not previously been achieved, possibly because gC1 protein is toxic to cells. To approach this problem, the gC1 coding sequence was placed under the control of the weak but inducible glucocorticoid-responsive promoter from the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). As controls to evaluate for gC1 cytotoxicity, the MMTV LTR promoter was used to express glycoprotein gD1, and a strong, constitutive promoter from the Moloney murine sarcoma virus LTR was used to express gC1. L cells were transfected with these constructs, and a clone expressing gC1 from the inducible MMTV LTR promoter was analyzed. In the absence of glucocorticoid (dexamethasone) stimulation, only a low level of gC1 mRNA expression was detected; after overnight stimulation with dexamethasone, transcription increased approximately 200-fold. Abundant gC1 protein that was functionally active in that it bound complement component C3b, was produced. From passages 5 through 26 (70 cell population doublings), the gC1-producing clone became less responsive to overnight dexamethasone stimulation. The block to gC1 expression occurred at the level of transcription and was associated with hypermethylation of the MMTV LTR DNA. Treatment of the clone with 5-aza-2'-deoxycytidine partially reversed the block in gC1 protein production. Late-passage cells assumed a gC1-negative phenotype that appeared to offer a selective growth advantage, which suggested that gC1 was cytotoxic. Several findings support this view: (i) some cells expressing gC1 after overnight stimulation with dexamethasone assumed bizarre, syncytial shapes; (ii) continuous stimulation with dexamethasone for 5 weeks resulted in death of most cells; (iii) cells transfected with gC1 under the control of the strong Moloney murine sarcoma virus promoter assumed bizarre shapes, and stable gC1-expressing clones could not be established; and (iv) cells induced to express gD1 retained a normal appearance after overnight stimulation or 15 weeks of continuous stimulation with dexamethasone. The inducible MMTV LTR promoter is useful for expressing gC1 and may have applications for expressing other cytotoxic proteins.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cloning, Molecular
- Cytotoxins/biosynthesis
- Cytotoxins/genetics
- DNA, Viral/genetics
- Dexamethasone/pharmacology
- Genes, Viral
- Glucocorticoids/genetics
- Immunoblotting
- Mammary Tumor Virus, Mouse/genetics
- Plasmids
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Simplexvirus/drug effects
- Simplexvirus/genetics
- Transfection
- Viral Envelope Proteins/biosynthesis
- Viral Envelope Proteins/genetics
Collapse
Affiliation(s)
- H M Friedman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cook CG, Splitter GA. Comparison of bovine mononuclear cells with other species for cytolytic activity against virally-infected cells. Vet Immunol Immunopathol 1989; 20:239-61. [PMID: 2655269 DOI: 10.1016/0165-2427(89)90004-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- C G Cook
- Department of Veterinary Science, University of Wisconsin-Madison 53706
| | | |
Collapse
|
45
|
Seidel-Dugan C, Ponce de Leon M, Friedman HM, Fries LF, Frank MM, Cohen GH, Eisenberg RJ. C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus types 1 and 2. J Virol 1988; 62:4027-36. [PMID: 2845122 PMCID: PMC253832 DOI: 10.1128/jvi.62.11.4027-4036.1988] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glycoprotein C from herpes simplex virus type 1 (gC-1 from HSV-1) acts as a receptor for the C3b fragment of the third component of complement on HSV-1-infected cell surfaces. Direct binding assays with purified gC-1 and C3b demonstrate that other viral and cellular proteins are not required for this interaction. Although C3b receptor activity is not expressed on HSV-2-infected cell surfaces, purified gC-2 specifically binds C3b in direct binding assays, suggesting that gC-1 and gC-2 are functionally similar. Here, we used a transient transfection system to further characterize the role of gC-1 and gC-2 as C3b receptors and to localize the site(s) on gC involved in C3b binding. The genes for gC-1 and gC-2 were each cloned into a eucaryotic expression vector containing the Rous sarcoma virus long terminal repeat as the promoter and transfected into NIH 3T3 cells. The expressed proteins were similar in molecular size, extent of carbohydrate processing, and antigenic properties to gC-1 and gC-2 purified from infected cells. Using a double-label immunofluorescence assay, we found that both gC-1 and gC-2 were expressed on the surfaces of transfected cells and bound C3b. These results suggest that other proteins expressed during HSV-2 infection prevent receptor activity. We constructed three in-frame deletion mutants of gC-2 to identify domains on the protein important for C3b receptor activity. These mutants lacked amino acids 26 to 73, 219 to 244, or 318 to 346. The mutant protein lacking residues 26 to 73 was reactive with two monoclonal antibodies recognizing distinct epitopes, showed a wild-type pattern of carbohydrate processing, and bound C3b on the transfected cell surface. These results suggest that residues 26 to 73 are not involved in C3b binding. The other two mutant proteins were present on the cell surface, but did not bind C3b. In addition, these mutant proteins showed altered patterns of carbohydrate processing, formed aggregates, and were no longer recognized by the monoclonal antibodies. These properties indicate that removal of residues 219 to 244 or 318 to 346 disrupted the native conformation of gC-2, possibly owing to an alteration in the spacing between critical cysteine residues.
Collapse
Affiliation(s)
- C Seidel-Dugan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
46
|
Sunstrum JC, Chrisp CE, Levine M, Glorioso JC. Pathogenicity of glycoprotein C negative mutants of herpes simplex virus type 1 for the mouse central nervous system. Virus Res 1988; 11:17-32. [PMID: 2845681 PMCID: PMC7134065 DOI: 10.1016/0168-1702(88)90064-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A previous study from our laboratory showed that a mutant of herpes simplex virus type 1 (HSV-1), strain KOS-321, carrying a deletion in the structural gene for glycoprotein C (gC) had reduced pathogenicity for the mouse central nervous system when compared to the wild-type virus (Kümel et al., 1985). In this study, eight additional gC negative (gC-) mutants derived from KOS-321 were shown to vary widely in their ability to induce lethal encephalitis in female DBA/2 mice following intracerebral inoculation. This variation in virulence showed no correlation with thymidine kinase activity. One less virulent gC- strain, gC-39, was further studied to determine whether the neurovirulent phenotype could be restored by rescue of the gC gene using standard marker rescue cotransfection procedures. The resulting progeny contained 2% gC+ recombinant virions and was tested for its ability to cause encephalitis. Although this progeny had increased virulence, it was not attributable to the acquisition of the gC gene since passive immunization of mice with a pool of anti-gC monoclonal antibodies had no effect on the development of encephalitis and only gC- viruses were isolated from diseased brain tissues. In agreement with these findings, individual plaque-purified gC positive (gC+) virus recombinants were shown not to have been restored to the wild-type virus level of neurovirulence. It is concluded that gC is not a virulence determinant in this mouse model of HSV-induced encephalitis and that cotransfection procedures can induce additional mutations that affect viral pathogenesis.
Collapse
Affiliation(s)
- J C Sunstrum
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | |
Collapse
|
47
|
Allen GP, Coogle LD. Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C. J Virol 1988; 62:2850-8. [PMID: 2455821 PMCID: PMC253721 DOI: 10.1128/jvi.62.8.2850-2858.1988] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary divergence than the C-terminal sequences.
Collapse
Affiliation(s)
- G P Allen
- Department of Veterinary Science, University of Kentucky, Lexington 40546-0099
| | | |
Collapse
|
48
|
Abstract
We have used recombinant vaccinia viruses expressing the cloned genes coding for glycoprotein B (gB) or glycoprotein D (gD) of HSV-1 to analyze the role of HSV-1--specific cytotoxic T lymphocytes (CTL) in antiviral immunity. Various studies in mice revealed that either vector could stimulate some aspects of HSV-1--specific immunity, but surprisingly, HSV-specific CTL were not induced. Even though gD appeared to be a target antigen for class II-MHC-restricted CTL, neither the gB or the gD vector was capable of forming a target-cell complex that was recognized by class I-MHC-restricted HSV-specific CTL. The inability of these major extracellular glycoproteins to act as CTL-target antigens was even more unusual in light of the ability of CTL to apparently recognize the immediate early genes of HSV, none of which are considered to be expressed on the surface of infected cells. The selective failure of either the gB or gD vector to induce numerous aspect of anti-HSV immunity in the absence of a CTL response allowed us to assess the consequence of this failure in terms of the level of protective immunity against HSV challenge seen in vector-immunized mice. These studies suggest that this failure to induce HSV-specific CTL appears to minimize the protective response to only efficiently protecting against low-challenge doses of HSV-1. These findings are discussed with relevance to the role of CTL in the control of herpesvirus infections.
Collapse
Affiliation(s)
- S Martin
- Department of Microbiology, College of Veterinary Medicine, University of Tennesse, Knoxville 37996-0845
| | | | | |
Collapse
|
49
|
Martin S, Courtney RJ, Fowler G, Rouse BT. Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize virus nonstructural proteins. J Virol 1988; 62:2265-73. [PMID: 2836610 PMCID: PMC253369 DOI: 10.1128/jvi.62.7.2265-2273.1988] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The specificity of herpes simplex virus type 1-specific cytotoxic T cells was examined with target cells expressing either input viral structural antigens or antigens resulting from permissive infection or cells from an interrupted infection in which they expressed predominantly nonstructural immediate-early proteins. These studies indicated that only an insignificant minority of cytotoxic T cells recognized the input viral antigens, whereas a significant proportion (20 to 35%) recognized target cells that expressed the immediate-early proteins despite the absence of serologically detectable viral antigens upon the infected cell surface. The finding that a significant proportion of cytotoxic T-cell populations obtained from the draining lymph nodes of mice acutely infected with herpes simplex virus type 1 also recognized immediately-early gene-expressing target cells indicates the importance of nonstructural herpes simplex virus proteins to antiviral immunity in vivo.
Collapse
Affiliation(s)
- S Martin
- Department of Microbiology, College of Veterinary Medicine, University of Tennessee, Knoxville 37996-0845
| | | | | | | |
Collapse
|
50
|
Expression and affinity purification of recombinant bovine herpes virus-1 glycoproteins. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/bf01404136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|