1
|
Wan Q, Liu X, Zu Y. Oligonucleotide aptamers for pathogen detection and infectious disease control. Theranostics 2021; 11:9133-9161. [PMID: 34522231 PMCID: PMC8419047 DOI: 10.7150/thno.61804] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022] Open
Abstract
During an epidemic or pandemic, the primary task is to rapidly develop precise diagnostic approaches and effective therapeutics. Oligonucleotide aptamer-based pathogen detection assays and control therapeutics are promising, as aptamers that specifically recognize and block pathogens can be quickly developed and produced through simple chemical synthesis. This work reviews common aptamer-based diagnostic techniques for communicable diseases and summarizes currently available aptamers that target various pathogens, including the SARS-CoV-2 virus. Moreover, this review discusses how oligonucleotide aptamers might be leveraged to control pathogen propagation and improve host immune system responses. This review offers a comprehensive data source to the further develop aptamer-based diagnostics and therapeutics specific for infectious diseases.
Collapse
Affiliation(s)
| | | | - Youli Zu
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
2
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
3
|
Could gene therapy cure HIV? Life Sci 2021; 277:119451. [PMID: 33811896 DOI: 10.1016/j.lfs.2021.119451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 02/05/2023]
Abstract
The Human Immunodeficiency Virus (HIV)/Acquired Immune Deficiency Syndrome (AIDS) continues to be a major global public health issue, having claimed almost 33 million lives so far. According to the recent report of the World Health Organization (WHO) in 2019, about 38 million people are living with AIDS. Hence, finding a solution to overcome this life-threatening virus can save millions of lives. Scientists and medical doctors have prescribed HIV patients with specific drugs for many years. Methods such antiretroviral therapy (ART) or latency-reversing agents (LRAs) have been used for a while to treat HIV patients, however they have some side effects and drawbacks causing their application to be not quite successful. Instead, the application of gene therapy which refers to the utilization of the therapeutic delivery of nucleic acids into a patient's cells as a drug to treat disease has shown promising results to control HIV infection. Therefore, in this review, we will summarize recent advances in gene therapy approach against HIV.
Collapse
|
4
|
Therapeutic aptamers in discovery, preclinical and clinical stages. Adv Drug Deliv Rev 2018; 134:51-64. [PMID: 30125605 DOI: 10.1016/j.addr.2018.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/11/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
The aptamer field witnessed steady growth during the past 28 years as evident from the exponentially increasing number of related publications. The field is "coming of age", but like other biomedical research areas facing a global push towards translational research to carry ideas from bench- to bedside, there is pressure to show impact for aptamers at the clinical end. Being easy-to-make, non-immunogenic, stable and high-affinity nano-ligands, aptamers are perfectly poised to move in this direction. They can specifically bind targets ranging from small molecules to complex multimeric structures, making them potentially useful in a limitless variety of therapeutic approaches. This review will summarize efforts made to accomplish the therapeutic promise of aptamers, with a focus on aptamers directly acting as therapeutic molecules, rather than those used in targeted delivery of other drugs. The review will showcase representative examples at various stages of development, covering different disease categories.
Collapse
|
5
|
Bala J, Chinnapaiyan S, Dutta RK, Unwalla H. Aptamers in HIV research diagnosis and therapy. RNA Biol 2018; 15:327-337. [PMID: 29431588 PMCID: PMC5927724 DOI: 10.1080/15476286.2017.1414131] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/07/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022] Open
Abstract
Aptamers are high affinity single-stranded nucleic acid or protein ligands which exhibit specificity and avidity comparable to, or exceeding that of antibodies and can be generated against most targets. The functionality of aptamers is based on their unique tertiary structure, complexity and their ability to attain unique binding pockets by folding. Aptamers are selected in vitro by a process called Systematic Evolution of Ligands by Exponential enrichment (SELEX). The Kd values for the selected aptamer are often in the picomolar to low nanomolar range. Stable and nontoxic aptamers could be selected for a wide range of ligands including small molecules to large proteins. Aptamers have shown tremendous potential and have found multipurpose application in the field of therapeutic, diagnostic, biosensor and bio-imaging. While their mechanism of action can be similar to that of monoclonal antibodies, aptamers provide additional advantages in terms of production cost, simpler regulatory approval and lower immunogenicity as they are synthesized chemically. Human immunodeficiency virus (HIV) is the primary cause of acquired immune deficiency syndrome (AIDS), which causes significant morbidity and mortality with a significant consequent decrease in the quality of patient's lives. While cART has led to good viral control, people living with HIV now suffer from non-HIV comorbidities due to viral protein expression that cannot be controlled by cART. Hence pathophysiological mechanisms that govern these comorbidities with a focus on therapies that neutralize these HIV effects gained increased attention. Recent advances in HIV/AIDS research have identified several molecular targets and for the development of therapeutic and diagnostic using aptamers against HIV/AIDS. This review presents recent advances in aptamers technology for potential application in HIV diagnostics and therapeutics towards improving the quality of life of people living with HIV.
Collapse
Affiliation(s)
- Jyoti Bala
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rajib Kumar Dutta
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hoshang Unwalla
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
6
|
Bobbin ML, Burnett JC, Rossi JJ. RNA interference approaches for treatment of HIV-1 infection. Genome Med 2015; 7:50. [PMID: 26019725 PMCID: PMC4445287 DOI: 10.1186/s13073-015-0174-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/13/2015] [Indexed: 01/05/2023] Open
Abstract
HIV/AIDS is a chronic and debilitating disease that cannot be cured with current antiretroviral drugs. While combinatorial antiretroviral therapy (cART) can potently suppress HIV-1 replication and delay the onset of AIDS, viral mutagenesis often leads to viral escape from multiple drugs. In addition to the pharmacological agents that comprise cART drug cocktails, new biological therapeutics are reaching the clinic. These include gene-based therapies that utilize RNA interference (RNAi) to silence the expression of viral or host mRNA targets that are required for HIV-1 infection and/or replication. RNAi allows sequence-specific design to compensate for viral mutants and natural variants, thereby drastically expanding the number of therapeutic targets beyond the capabilities of cART. Recent advances in clinical and preclinical studies have demonstrated the promise of RNAi therapeutics, reinforcing the concept that RNAi-based agents might offer a safe, effective, and more durable approach for the treatment of HIV/AIDS. Nevertheless, there are challenges that must be overcome in order for RNAi therapeutics to reach their clinical potential. These include the refinement of strategies for delivery and to reduce the risk of mutational escape. In this review, we provide an overview of RNAi-based therapies for HIV-1, examine a variety of combinatorial RNAi strategies, and discuss approaches for ex vivo delivery and in vivo delivery.
Collapse
Affiliation(s)
- Maggie L Bobbin
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA
| | - John C Burnett
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| | - John J Rossi
- Irell & Manella School of Biological Sciences, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 91010 USA ; Department of Molecular and Cell Biology, Beckman Research Institute of City of Hope, East Duarte Road, Duarte, CA 9101 USA
| |
Collapse
|
7
|
Problems and Prospects of Gene Therapy Against HIV. Pharm Chem J 2014. [DOI: 10.1007/s11094-014-1023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Possik EJ, Bou Sleiman MS, Ghattas IR, Smith CA. Randomized codon mutagenesis reveals that the HIV Rev arginine-rich motif is robust to substitutions and that double substitution of two critical residues alters specificity. J Mol Recognit 2013; 26:286-96. [PMID: 23595810 DOI: 10.1002/jmr.2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 02/09/2013] [Accepted: 02/10/2013] [Indexed: 02/05/2023]
Abstract
The binding of the arginine-rich motif (ARM) of HIV Rev protein to its high-affinity site in stem IIB in the Rev response element (RRE) initiates assembly of a ribonucleoprotein complex that mediates the export of essential, incompletely spliced viral transcripts. Many biochemical, genetic, and structural studies of Rev-RRE IIB have been published, yet the roles of many peptide residues in Rev ARM are unconfirmed by mutagenesis. Rev aptamer I (RAI) is an optimized RRE IIB that binds Rev with higher affinity and for which mutational data are sparse. Randomized-codon libraries of Rev ARM were assayed for their ability to bind RRE IIB and RAI using a bacterial reporter system based on bacteriophage λ N-nut antitermination. Most Rev ARM residues tolerated substitutions without strong loss of binding to RRE IIB, and all except arginine 39 tolerated substitution without strong loss of binding to RAI. The pattern of critical Rev residues is not the same for RRE IIB and RAI, suggesting important differences between the interactions. The results support and aid the interpretation of existing structural models. Observed clinical variation is consistent with additional constraints on Rev mutation. By chance, we found double mutants of two highly critical residues, arginine 35 (to glycine) and asparagine 40 (to valine or lysine), that bind RRE IIB well, but not RAI. That an apparently distinct binding mode occurs with only two mutations highlights the ability of ARMs to evolve new recognition strategies and supports the application of neutral theories of evolution to protein-RNA recognition.
Collapse
Affiliation(s)
- Elite J Possik
- McGill Cancer Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
9
|
Banerjee J, Nilsen-Hamilton M. Aptamers: multifunctional molecules for biomedical research. J Mol Med (Berl) 2013; 91:1333-42. [PMID: 24045702 DOI: 10.1007/s00109-013-1085-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.
Collapse
Affiliation(s)
- Jayeeta Banerjee
- Biology Department, Indian Institute of Science Education and Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune, 411008, India,
| | | |
Collapse
|
10
|
Duan N, Wu S, Chen X, Huang Y, Xia Y, Ma X, Wang Z. Selection and characterization of aptamers against Salmonella typhimurium using whole-bacterium Systemic Evolution of Ligands by Exponential Enrichment (SELEX). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:3229-3234. [PMID: 23473545 DOI: 10.1021/jf400767d] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this paper, a high-affinity ssDNA aptamer binding to Salmonella typhimurium was obtained by a whole-bacterium-based Systemic Evolution of Ligands by Exponential Enrichment (SELEX) procedure. After nine rounds of selection with S. typhimurium as the target, a highly enriched oligonucleotide pool was sequenced and then grouped into different families based on primary sequence homology and secondary structure similarity. Eleven sequences from different families were selected for further characterization via flow cytometry analysis. The results showed that the sequence ST2P demonstrates affinity for S. typhimurium much more strongly and specifically than other sequences tested. The estimated Kd value of this particularly promising aptamer was 6.33 ± 0.58 nM. To demonstrate the potential use of the aptamers in the quantitative determination of S. typhimurium, a fluorescent bioassay with the aptamer ST2P was prepared. Under optimal conditions, the correlation between the concentration of S. typhimurium and fluorescent signal was found to be linear within the range of 50-10(6) cfu/mL (R(2) = 0.9957). The limit of detection (LOD) of the developed method was found to be 25 cfu/mL. This work demonstrates that this aptamer could potentially be used to improve the detection of S. typhimurium.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Hoxie JA, June CH. Novel cell and gene therapies for HIV. Cold Spring Harb Perspect Med 2012; 2:2/10/a007179. [PMID: 23028130 DOI: 10.1101/cshperspect.a007179] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Highly active antiretroviral therapy dramatically improves survival in HIV-infected patients. However, persistence of HIV in reservoirs has necessitated lifelong treatment that can be complicated by cumulative toxicities, incomplete immune restoration, and the emergence of drug-resistant escape mutants. Cell and gene therapies offer the promise of preventing progressive HIV infection by interfering with HIV replication in the absence of chronic antiviral therapy. Individuals homozygous for a deletion in the CCR5 gene (CCR5Δ32) are largely resistant to infection from R5-topic HIV-1 strains, which are most commonly transmitted. A recent report that an HIV-infected patient with relapsed acute myelogenous leukemia was effectively cured from HIV infection after transplantation of hematopoietic stem/progenitor cells (HSC) from a CCR5Δ32 homozygous donor has generated renewed interest in developing treatment strategies that target viral reservoirs and generate HIV resistance in a patient's own cells. Although the development of cell-based and gene transfer therapies has been slow, progress in a number of areas is evident. Advances in the fields of gene-targeting strategies, T-cell-based approaches, and HSCs have been encouraging, and a series of ongoing and planned trials to establish proof of concept for strategies that could lead to successful cell and gene therapies for HIV are under way. The eventual goal of these studies is to eliminate latent viral reservoirs and the need for lifelong antiretroviral therapy.
Collapse
Affiliation(s)
- James A Hoxie
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
12
|
Berkhout B, Sanders RW. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 2011; 92:7-14. [PMID: 21513746 DOI: 10.1016/j.antiviral.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023]
Abstract
Two antiviral approaches against the human immunodeficiency virus type 1 (HIV-1) were presented at the Antivirals Congress in Amsterdam. The common theme among these two separate therapeutic research lines is the wish to develop a durable therapy that prevents viral escape. We will present a brief overview of these two research lines and focus on our efforts to design an escape-proof anti-HIV therapy. The first topic concerns the class of HIV-1 fusion inhibitors, including the prototype T20 peptide and the improved versions T1249 and T2635, which were all developed by Trimeris-Roche. The selection of T20-resistant HIV-1 strains is a fairly easy evolutionary process that requires a single amino acid substitution in the peptide binding site of the viral envelope glycoprotein (Env) target. The selection of T1249-resistant HIV-1 strains was shown to require a more dramatic amino acid substitution in the viral Env protein, in particular the introduction of charged amino acid residues that cause resistance by charge-repulsion of the antiviral peptide. The third generation peptide T2635 remains active against all these HIV-1 escape variants because the charged residues within this peptide are "masked" by an introduced intra-helical salt bridge. This charge masking concept could facilitate the future design of escape-proof antiviral peptides. The second topic concerns the mechanism of RNA interference (RNAi) that we are currently employing to develop an antiviral gene therapy. One can make human T cells resistant to HIV-1 infection by a stable RNAi-inducing gene transfer, but the virus escapes under therapeutic pressure of a single inhibitor. Several options for a combinatorial RNAi attack to prevent viral escape will be discussed. The simultaneous use of multiple RNAi inhibitors turns out to be the most effective and durable strategy.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
13
|
Kärkkäinen RM, Drasbek MR, McDowall I, Smith CJ, Young NW, Bonwick GA. Aptamers for safety and quality assurance in the food industry: detection of pathogens. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2010.02470.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Single-nucleotide changes in the HIV Rev-response element mediate resistance to compounds that inhibit Rev function. J Virol 2011; 85:3940-9. [PMID: 21289114 DOI: 10.1128/jvi.02683-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previously we described the identification of two compounds (3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide [103833] and 4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile [104366]) that interfered with HIV replication through the inhibition of Rev function. We now describe resistant viral variants that arose after drug selection, using virus derived from two different HIV proviral clones, NL4-3 and R7/3. With HIV(NL4-3), each compound selected a different single point mutation in the Rev response element (RRE) at the bottom of stem-loop IIC. Either mutation led to the lengthening of the stem-loop IIC stem by an additional base pair, creating an RRE that was more responsive to lower concentrations of Rev than the wild type. Surprisingly, wild-type HIV(R7/3) was also found to be inhibited when tested with these compounds, in spite of the fact this virus already has an RNA stem-loop IIC similar to the one in the resistant NL4-3 variant. When drug resistance was selected in HIV(R7/3), a virus arose with two nucleotide changes that mapped to the envelope region outside the RRE. One of these nucleotide changes was synonymous with respect to env, and one was not. The combination of both nucleotide changes appeared to be necessary for the resistance phenotype as the individual point mutations by themselves did not convey resistance. Thus, although drug-resistant variants can be generated with both viral strains, the underlying mechanism is clearly different. These results highlight that minor nucleotide changes in HIV RNA, outside the primary Rev binding site, can significantly alter the efficiency of the Rev/RRE pathway.
Collapse
|
15
|
Toward a durable treatment of HIV-1 infection using RNA interference. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:141-63. [PMID: 21846571 DOI: 10.1016/b978-0-12-415795-8.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing at the posttranscriptional level. RNAi can be used as an antiviral approach against human pathogens. An attractive target for RNAi therapeutics is the human immunodeficiency virus type 1 (HIV-1), and the first clinical trial using a lentiviral gene therapy was initiated in early 2008. In this chapter, we focus on some basic principles of such an RNAi-based gene therapy against HIV-1. This includes the subjects of target site selection within the viral RNA genome, the phenomenon of viral escape, and therapeutic strategies to prevent viral escape. The latter antiescape strategies include diverse combinatorial RNAi approaches that are all directed against the HIV-1 RNA genome. As an alternative strategy, we also discuss the possibilities and restrictions of targeting cellular cofactors that are essential for virus replication, but less important for cell physiology.
Collapse
|
16
|
Yano A, Horiya S, Minami T, Haneda E, Ikeda M, Harada K. Identification of antisense RNA stem-loops that inhibit RNA-protein interactions using a bacterial reporter system. Nucleic Acids Res 2010; 38:3489-501. [PMID: 20156995 PMCID: PMC2879510 DOI: 10.1093/nar/gkq027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many well-characterized examples of antisense RNAs from prokaryotic systems involve hybridization of the looped regions of stem–loop RNAs, presumably due to the high thermodynamic stability of the resulting loop–loop and loop–linear interactions. In this study, the identification of RNA stem–loops that inhibit U1A protein binding to the hpII RNA through RNA–RNA interactions was attempted using a bacterial reporter system based on phage λ N-mediated antitermination. As a result, loop sequences possessing 7–8 base complementarity to the 5′ region of the boxA element important for functional antitermination complex formation, but not the U1 hpII loop, were identified. In vitro and in vivo mutational analysis strongly suggested that the selected loop sequences were binding to the boxA region, and that the structure of the antisense stem–loop was important for optimal inhibitory activity. Next, in an attempt to demonstrate the ability to inhibit the interaction between the U1A protein and the hpII RNA, the rational design of an RNA stem–loop that inhibits U1A-binding to a modified hpII was carried out. Moderate inhibitory activity was observed, showing that it is possible to design and select antisense RNA stem–loops that disrupt various types of RNA–protein interactions.
Collapse
Affiliation(s)
- Akiko Yano
- Department of Life Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Von Eije KJ, Berkhout B. RNA-interference-based Gene Therapy Approaches to HIV Type-1 Treatment: Tackling the Hurdles from Bench to Bedside. ACTA ACUST UNITED AC 2009; 19:221-33. [DOI: 10.1177/095632020901900602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs (siRNAs) to mediate sequence-specific gene silencing by cleavage of the targeted messenger RNA. RNAi can be used as an antiviral approach to silence HIV type-1 (HIV-1) through stable expression of precursors, such as short hairpin RNAs (shRNAs), which are processed into siRNAs that can elicit degradation of HIV-1 RNAs. At the beginning of 2008, the first clinical trial using a lentivirus with an RNA-based gene therapy against HIV-1 was initiated. The antiviral molecules in this gene therapy consist of three RNA effectors, one of which triggers the RNAi pathway. This review article focuses on the basic principles of an RNAi-based gene therapy against HIV-1, including delivery methods, target selection, viral escape possibilities, systems for multiplexing siRNAs to achieve a durable therapy and the in vitro and in vivo test systems to evaluate the efficacy and safety of such a therapy.
Collapse
Affiliation(s)
- Karin J Von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Fan S, Wu F, Martiniuk F, Hale ML, Ellington AD, Tchou-Wong KM. Protective effects of anti-ricin A-chain RNA aptamer against ricin toxicity. World J Gastroenterol 2008; 14:6360-5. [PMID: 19009652 PMCID: PMC2766118 DOI: 10.3748/wjg.14.6360] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the therapeutic potential of an RNA ligand (aptamer) specific for the catalytic ricin A-chain (RTA), the protective effects of a 31-nucleotide RNA aptamer (31RA), which formed a high affinity complex with RTA, against ricin-induced toxicity in cell-based luciferase translation and cell cytotoxicity assays were evaluated.
METHODS: To test the therapeutic potential of anti-RTA aptamers in Chinese hamster ovary (CHO) AA8 cells stably transfected with a tetracycline regulatable promoter, ricin ribotoxicity was measured using luciferase and ricin-induced cytotoxicity was ascertained by MTS cell proliferation assay with tetrazolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium].
RESULTS: Inhibition of protein synthesis by ricin in CHO AA8 cells resulted in diminished luciferase activity and treatment with polyclonal antibody against deglycosylated RTA (dgA) neutralized the inhibitory effects of ricin on luciferase activity and protected against ricin-induced cytotoxicity as measured by MTS assay. The 31RA anti-RTA aptamer inhibited the translation of luciferase mRNA in cell-free reticulocyte translation assay. 31RA aptamer also partially neutralized the inhibitory effects of ricin on luciferase activity and partially protected against ricin-induced cytotoxicity in CHO AA8 cells.
CONCLUSION: We have shown that anti-RTA RNA aptamer can protect against ricin ribotoxicity in cell-based luciferase and cell cytotoxicity assays. Hence, RNA aptamer that inhibits RTA enzymatic activity represents a novel class of nucleic acid inhibitor that has the potential to be developed as a therapeutic agent for the treatment of ricin intoxication.
Collapse
|
19
|
Abstract
Highly active antiretroviral therapy prolongs the life of HIV-infected individuals, but it requires lifelong treatment and results in cumulative toxicities and viral-escape mutants. Gene therapy offers the promise of preventing progressive HIV infection by sustained interference with viral replication in the absence of chronic chemotherapy. Gene-targeting strategies are being developed with RNA-based agents, such as ribozymes, antisense, RNA aptamers and small interfering RNA, and protein-based agents, such as the mutant HIV Rev protein M10, fusion inhibitors and zinc-finger nucleases. Recent advances in T-cell-based strategies include gene-modified HIV-resistant T cells, lentiviral gene delivery, CD8(+) T cells, T bodies and engineered T-cell receptors. HIV-resistant hematopoietic stem cells have the potential to protect all cell types susceptible to HIV infection. The emergence of viral resistance can be addressed by therapies that use combinations of genetic agents and that inhibit both viral and host targets. Many of these strategies are being tested in ongoing and planned clinical trials.
Collapse
Affiliation(s)
- John J Rossi
- Division of Molecular Biology, Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, California 91010, USA.
| | | | | |
Collapse
|
20
|
Marathe JG, Wooley DP. Is gene therapy a good therapeutic approach for HIV-positive patients? GENETIC VACCINES AND THERAPY 2007; 5:5. [PMID: 17300725 PMCID: PMC1810294 DOI: 10.1186/1479-0556-5-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/14/2007] [Indexed: 11/10/2022]
Abstract
Despite advances and options available in gene therapy for HIV-1 infection, its application in the clinical setting has been challenging. Although published data from HIV-1 clinical trials show safety and proof of principle for gene therapy, positive clinical outcomes for infected patients have yet to be demonstrated. The cause for this slow progress may arise from the fact that HIV is a complex multi-organ system infection. There is uncertainty regarding the types of cells to target by gene therapy and there are issues regarding insufficient transduction of cells and long-term expression. This paper discusses state-of-the-art molecular approaches against HIV-1 and the application of these treatments in current and ongoing clinical trials.
Collapse
Affiliation(s)
- Jai G Marathe
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Dawn P Wooley
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH 45435, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Chan R, Gilbert M, Thompson KM, Marsh HN, Epstein DM, Pendergrast PS. Co-expression of anti-NFkappaB RNA aptamers and siRNAs leads to maximal suppression of NFkappaB activity in mammalian cells. Nucleic Acids Res 2006; 34:e36. [PMID: 16517938 PMCID: PMC1390692 DOI: 10.1093/nar/gnj028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The specific down-regulation of gene expression in cells is a powerful method for elucidating a gene's function. A common method for suppressing gene expression is the elimination of mRNA by RNAi or antisense. Alternatively, oligonucleotide-derived aptamers have been used as protein-directed agents for the specific knock-down of both intracellular and extracellular protein activity. Protein-directed methods offer the advantage of more closely mimicking small molecule therapeutics' mechanism of activity. Furthermore, protein-directed methods may synergize with RNA-directed methods since the two methods attack gene expression at different levels. Here we have knocked down a well-characterized intracellular protein's activity, NFκB, by expressing either aptamers or small interfering RNAs (siRNAs). Both methods can diminish NFκB's activity to similar levels (from 29 to 64%). Interestingly, expression of both aptamers and siRNAs simultaneously, suppressed NFκB activity better than either method alone (up to 90%). These results demonstrate that the expression of intracellular aptamers is a viable alternative to siRNA knock-down. Furthermore, for the first time, we show that the use of aptamers and siRNA together can be the most effective way to achieve maximal knock-down of protein activity.
Collapse
|
22
|
Pendergrast PS, Marsh HN, Grate D, Healy JM, Stanton M. Nucleic acid aptamers for target validation and therapeutic applications. J Biomol Tech 2005; 16:224-34. [PMID: 16461946 PMCID: PMC2291729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In the simplest view, aptamers can be thought of as nucleic acid analogs to antibodies. They are able to bind specifically to proteins, and, in many cases, that binding leads to a modulation of protein activity. New aptamers are rapidly generated through the SELEX (Systematic Evolution of Ligands by Exponential enrichment) process and have a very high target affinity and specificity (picomoles to nanomoles). Furthermore, aptamers composed of modified nucleotides have a long in vivo half-life (hours to days), are nontoxic and nonimmunogenic, and are easily produced using standard nucleic acid synthesis methods. These properties make aptamers ideal for target validation and as a new class of therapeutics. As a target validation tool, aptamers provide important information that complements that provided by other methods. For example, siRNA is widely used to demonstrate that protein knock-out in a cellular assay can lead to a biological effect. Aptamers extend that information by showing that the dose-dependent modulation of protein activity can be used to derive a therapeutic benefit. That is, aptamers can be used to demonstrate that the protein is a good target for drug development. As a new class of therapeutics, aptamers bridge the gap between small molecules and biologics. Like biologics, biologically active aptamers are rapidly discovered, have no class-specific toxicity, and are adept at disrupting protein-protein interaction. Like small molecules, aptamers can be rationally engineered and optimized, are nonimmunogenic, and are produced by scalable chemical procedures at moderate cost. As such, aptamers are emerging as an important source of new therapeutic molecules.
Collapse
|
23
|
Wilkinson TA, Zhu L, Hu W, Chen Y. Retention of Conformational Flexibility in HIV-1 Rev−RNA Complexes. Biochemistry 2004; 43:16153-60. [PMID: 15610009 DOI: 10.1021/bi048409e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequence-specific recognition between HIV-1 Rev and viral RNA mediates the nuclear export of the viral mRNA and thus is important for the viral life cycle. HIV Rev binds to its viral RNA target with high affinity and specificity and also binds to an in vitro selected RNA aptamer that has a significantly different sequence from the viral RNA target with a 6-fold higher affinity than its natural target. The high-resolution structures of HIV Rev Arg-rich motif (ARM) in complexes with the wild-type RNA and the RNA aptamer reveal that, despite the significantly different RNA sequences, the two complexes share similar structural features and the protein-RNA interactions are mediated mostly by the Arg side chains in Rev ARM. To gain further insight into the role of these Arg side chains in the sequence-specific protein-RNA recognition, we have characterized the flexibility of these Arg side chains at the interfaces of the two high-affinity complexes using (15)N R(1), R(2), nuclear Overhauser effect, and chemical-shift anisotropy dipolar cross-correlation relaxation measurements. The ARM peptide contains uniformly (13)C/(15)N-labeled Arg residues, and the RNA samples were unlabeled. Despite the apparently similar roles of Arg side chains in both complexes, most of them display a different dynamic behavior in the context of different RNA molecules, and extensive and highly diverse motions have been observed for all of these side chains that interact with RNA. Most of the differences in side-chain dynamics between the complexes cannot be inferred from the three-dimensional structures. Additionally, more than half of the residues have increased flexibility in the Rev-RNA aptamer complex that has a higher affinity. This study provides new insights into ARM-RNA recognition and indicates that retention of conformational flexibility is likely important in high-affinity ARM-RNA recognition.
Collapse
Affiliation(s)
- Thomas A Wilkinson
- Division of Immunology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
24
|
Bai J, Banda N, Lee NS, Rossi J, Akkina R. RNA-based anti-HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol Ther 2002; 6:770-82. [PMID: 12498773 DOI: 10.1006/mthe.2002.0800] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effective suppression of HIV-1 replication requires inhibition of critical viral target molecules. Tat and Rev are indispensable regulatory factors for HIV-1 replication, whereas Env mediates virus entry by direct interaction with surface receptor CD4 and coreceptor CCR5 or CXCR4. Anti-HIV-1 tat-rev and env ribozymes and Rev aptamers were previously demonstrated to provide relatively long-term protection against HIV-1 infection in vitro. However, further improvements in these constructs for clinical application in a stem-cell-based gene therapy setting requires in vivo characterization. Toward this end, we introduced these constructs into CD34(+) hematopoietic progenitor cells by retrovirus-mediated gene transduction. Ribozyme- and aptamer-transduced CD34(+) cells differentiated normally into multiple lineages of erythroid and myeloid progenies in a colony-forming unit assay. Macrophages that differentiated from the transduced CD34(+) cells expressed anti-tat-rev and -env ribozymes and Rev aptamers and displayed their normal characteristic surface markers CD14, CD4, and CCR5. Using the SCID-hu mouse in vivo human thymopoiesis model, we demonstrated that ribozyme- and aptamer-transduced CD34(+) cells retained their normal capacity to reconstitute human fetal thymus and liver tissue (thy/liv) grafts. Reconstitution by ribozyme- and aptamer-transduced CD34(+) cells reached levels of up to 87% based on HLA surface marker staining. Differentiated thymocytes derived from reconstituted grafts expressed anti-tat-rev and -env ribozymes and Rev aptamers and showed significant resistance to HIV-1 infection upon challenge. Analysis of reconstituted thymocytes by hybridization revealed an average of 0.4 to 2 copies of vector sequences per cell. Southern analysis of proviral integration junctions in progeny thymocytes demonstrated that the human thy/liv grafts were reconstituted by a few primitive hematopoietic stem cells. These results highlight the utility of RNA-based anti-HIV-1 gene therapeutic approaches and their preclinical testing in a surrogate animal model harboring human tissue.
Collapse
MESH Headings
- Animals
- Antigens, CD34/metabolism
- Base Sequence
- Cell Differentiation
- Cell Line
- Cell Lineage
- Cytokines/pharmacology
- Disease Models, Animal
- Gene Expression Regulation, Viral
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- Genetic Therapy/methods
- HIV Infections/genetics
- HIV Infections/therapy
- HIV-1/genetics
- HIV-1/physiology
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/virology
- Humans
- Liver Transplantation
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, SCID
- Mitogens/pharmacology
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Catalytic/therapeutic use
- Receptors, CXCR4/metabolism
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/immunology
- Thymus Gland/virology
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Jirong Bai
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
25
|
Chaloin L, Lehmann MJ, Sczakiel G, Restle T. Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 2002; 30:4001-8. [PMID: 12235384 PMCID: PMC137107 DOI: 10.1093/nar/gkf522] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aptamers, small oligonucleotides derived from an in vitro evolution process called SELEX, are promising therapeutic and diagnostic agents. Although very effective in vitro, only a few examples are available showing their potential in vivo. We have analyzed the effect of a well characterized pseudoknot RNA aptamer selected for tight binding to human immunodeficiency virus (HIV) type 1 reverse transcriptase on HIV replication. Transient intracellular expression of a chimeric RNA consisting of the human initiator tRNA(Met) (tRNA(Meti))/aptamer sequence in human 293T cells showed inhibition of HIV particle release by >75% when the cells were co-transfected with proviral HIV-1 DNA. Subsequent virus production of human T-lymphoid C8166 cells, infected with viral particles derived from co-transfected 293T cells, was again reduced by >75% as compared with the control. As the observed effects are additive, in this model for virus spread, the total reduction of HIV particle formation by transient intracellular expression of the pseudoknot RNA aptamer amounts to >95%. Low-dose HIV infection of human T cells stably expressing the aptamer did not show any virus replication over a period of 35 days. This is the first example of an RNA aptamer selected against a viral enzyme target to show powerful antiviral activity in HIV-1-permissive human T-lymphoid cell lines.
Collapse
Affiliation(s)
- Laurent Chaloin
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Otto Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
26
|
Famulok M, Blind M, Mayer G. Intramers as promising new tools in functional proteomics. CHEMISTRY & BIOLOGY 2001; 8:931-9. [PMID: 11590018 DOI: 10.1016/s1074-5521(01)00070-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aptamers are valuable tools for studying numerous aspects of biological processes, opening up new experimental opportunities to analyse the function of a wide range of cellular molecules. Functional RNA molecules can be rapidly selected in vitro from complex combinatorial mixtures of different sequences. Recently, it was shown that in vitro selection processes can be automated: the first generation selection robots will soon mean aptamers for several targets can be isolated in parallel within days rather than weeks. Aptamers not only exhibit highly specific molecular recognition properties but are also able to modulate the function of their cognate targets in a highly specific manner by agonistic or antagonistic mechanisms. These properties prompted the development of novel technologies to exploit the use of aptamers to modulate distinct functions of biological targets. Recent controlled expression of aptamers inside cells demonstrated their impressive potential as rapidly generated intracellular inhibitors of biomolecules. Intracellularly applied aptamers are also called 'intramers'. Here we discuss recent developments and strategies for intramer-based technologies that have the potential to greatly facilitate characterisation of unknown protein functions in the context of their natural expression status in vivo. Thus, intramer-based technologies offer many promising applications in functional genomics, proteomics and drug discovery.
Collapse
Affiliation(s)
- M Famulok
- Kekulé-Institut für Organische und Biochimie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.
| | | | | |
Collapse
|
27
|
Affiliation(s)
- N Dorman
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
28
|
Affiliation(s)
- A M Lever
- University of Cambridge Department of Medicine, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| |
Collapse
|
29
|
Kao C, Rüdisser S, Zheng M. A simple and efficient method to transcribe RNAs with reduced 3' heterogeneity. Methods 2001; 23:201-5. [PMID: 11243833 DOI: 10.1006/meth.2000.1131] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ribose C2' methoxy groups (-OCH3) on the penultimate nucleotide or the last two nucleotides of DNA templates can dramatically improve the quality of transcripts produced by T7 RNA polymerase. This strategy can be adapted to generate transcripts of varying lengths and will allow greater ease in purification of the products.
Collapse
Affiliation(s)
- C Kao
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
30
|
Dayton AI, Zhang MJ. Therapies directed against the Rev axis of HIV autoregulation. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 49:199-228. [PMID: 11013765 DOI: 10.1016/s1054-3589(00)49028-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- A I Dayton
- Laboratory of Molecular Virology, Food and Drug Administration, Rockville, Maryland 20852-1448, USA
| | | |
Collapse
|
31
|
Famulok M, Mayer G, Blind M. Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 2000; 33:591-9. [PMID: 10995196 DOI: 10.1021/ar960167q] [Citation(s) in RCA: 332] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aptamers are nucleic acid ligands which are isolated from combinatorial oligonucleotide libraries by in vitro selection. They exhibit highly complex and sophisticated molecular recognition properties and are capable of binding tightly and specifically to targets ranging from small molecules to complex multimeric structures. Besides their promising application as molecular sensors, many aptamers targeted against proteins are also able to interfere with the proteins' biological function. Recently developed techniques facilitate the intracellular application of aptamers and their use as in vivo modulators of cellular physiology. Using these approaches, one can quickly obtain highly specific research reagents that act on defined intracellular targets in the context of the living cell.
Collapse
Affiliation(s)
- M Famulok
- Kekulé-Institut für Organische Chemie und Biochemie, Gerhard Domagk-Strasse 1, 53121 Bonn, Germany.
| | | | | |
Collapse
|
32
|
Lisziewicz J, Zeng G, Gratas C, Weinstein JN, Lori F. Combination gene therapy: synergistic inhibition of human immunodeficiency virus Tat and Rev functions by a single RNA molecule. Hum Gene Ther 2000; 11:807-15. [PMID: 10779158 DOI: 10.1089/10430340050015428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current drug combinations can achieve long-term suppression of HIV replication in infected individuals. Unfortunately, complicated dosing schedules and high toxicity make long-term compliance with drug regimens difficult for most patients. Gene therapy may provide a permanent solution for HIV disease by generating cells genetically resistant to virus replication. As with the highly active antiretroviral therapies, genetic drugs must have strong antiviral potency and the ability to prevent the emergence of escape mutants. We have constructed antiviral genes containing unique combinations of Tat- and Rev-binding decoys. The new antiviral molecules are chimeric TAR-RRE RNAs that are expressed only in HIV infected cells in a Tat-regulated manner. One RNA molecule competes for both Tat and Rev binding, and thus blocks the activation and the expression of all viral genes. The two functional Tat- and Rev-binding domains exhibit the highest synergy at the lowest concentration. Conservative quantitative estimates of this synergistic effect were I = 0.24 at 50% inhibition, in terms of the Berenbaum "interaction index," indicating that the combined construct was approximately fourfold more potent than would be predicted on the basis of additive effects. The possibility of HIV escape from this inhibition is unlikely, because it requires simultaneous mutation of TAR and RRE in a manner in which both Tat and Rev preserve their respective functions. TAR-RRE combination decoys represent the first example of mathematically proven synergistic antiviral activity between two domains of the same molecule.
Collapse
Affiliation(s)
- J Lisziewicz
- Research Institute for Genetic and Human Therapy, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Combinatorial library selections through the systematic evolution of ligands by exponential enrichment (SELEX) technique identify so-called nucleic acid aptamers that bind with high-affinity and specificity to a wide range of selected molecules. However, the modest chemical functionality of nucleic acids poses some limits on their versatility as binders and catalysts, and, furthermore, the sensitivity of pure RNA- and DNA-based aptamers to nucleases restricts their use as therapeutic and diagnostic agents. Here we review synthetic chemistries for modifying nucleotides that have been developed to enhance the affinity of aptamers for targets and to increase their stability in biological fluids. Implementation of in vitro selections with modified nucleotides promises to be an elegant technique for the creation of ligands with novel physical and chemical properties and is anticipated to have a significant impact on biotechnology, diagnostics and drug development. The current molecular designs and applications of modified nucleotides for in vitro selections are reviewed, along with a discussion of future developments expected to further the utility of this approach in both practical and theoretical terms.
Collapse
Affiliation(s)
- W Kusser
- Invitrogen Corporation, Carlsbad, CA 92008, USA.
| |
Collapse
|
34
|
Hesselberth JR, Miller D, Robertus J, Ellington AD. In vitro selection of RNA molecules that inhibit the activity of ricin A-chain. J Biol Chem 2000; 275:4937-42. [PMID: 10671531 DOI: 10.1074/jbc.275.7.4937] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytotoxin ricin disables translation by depurinating a conserved site in eukaryotic rRNA. In vitro selection has been used to generate RNA ligands (aptamers) specific for the catalytic ricin A-chain (RTA). The anti-RTA aptamers bear no resemblance to the normal RTA substrate, the sarcin-ricin loop (SRL), and were not depurinated by RTA. An initial 80-nucleotide RNA ligand was minimized to a 31-nucleotide aptamer that contained all sequences and structures necessary for interacting with RTA. This minimal RNA formed high affinity complexes with RTA (K(d) = 7.3 nM) which could compete directly with the SRL for binding to RTA. The aptamer inhibited RTA depurination of the SRL and could partially protect translation from RTA inhibition. The IC(50) of the aptamer for RTA in an in vitro translation assay is 100 nM, roughly 3 orders of magnitude lower than a small molecule inhibitor of ricin, pteroic acid, and 2 orders of magnitude lower than the best known RNA inhibitor. The novel anti-RTA aptamers may find application as diagnostic reagents for a potential biological warfare agent and hold promise as scaffolds for the development of strong ricin inhibitors.
Collapse
Affiliation(s)
- J R Hesselberth
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
35
|
Kjems J, Askjaer P. Rev protein and its cellular partners. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 48:251-98. [PMID: 10987094 DOI: 10.1016/s1054-3589(00)48009-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J Kjems
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
36
|
Kao C, Zheng M, Rüdisser S. A simple and efficient method to reduce nontemplated nucleotide addition at the 3 terminus of RNAs transcribed by T7 RNA polymerase. RNA (NEW YORK, N.Y.) 1999; 5:1268-72. [PMID: 10496227 PMCID: PMC1369849 DOI: 10.1017/s1355838299991033] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
DNA templates modified with C2'-methoxyls at the last two nucleotides of the 5' termini dramatically reduced nontemplated nucleotide addition by the T7 RNA polymerase from both single- and double-stranded DNA templates. This strategy was used to generate several different transcripts. Two of the transcripts were demonstrated by nuclear magnetic resonance spectroscopy to be unaffected in their sequence. Transcripts produced from the modified templates can be purified with greater ease and should be useful in a number of applications.
Collapse
Affiliation(s)
- C Kao
- Department of Biology, Indiana University, Bloomington 47405, USA.
| | | | | |
Collapse
|
37
|
Abstract
RNA molecules that bind tightly and specifically to a Rex fusion protein have been isolated from a conformationally constrained pool of random sequence RNAs. The anti-Rex aptamers effectively mimic several features of the wild-type Rex-binding element (XBE). The highest-affinity aptamers effectively compete with the wild-type XBE for binding to the RNA-binding domain of Rex, an arginine-rich motif (ARM), but do not bind to the functionally analogous Rev protein or its ARM. However, characteristic sequence and structural motifs found in some of the anti-Rex aptamers may provide insights into how the Rex protein can interact with other viral RNAs, such as the Rev-responsive element. The anti-Rex aptamers can functionally substitute for the XBE in vivo, a result which supports a previously proposed model for mRNA transport in which the viral genome serves as a platform for assembling a nucleoprotein complex that can co-opt the cellular transport apparatus. Overall, these studies suggest that anti-Rex aptamers may serve as RNA decoys of the Rex protein.
Collapse
Affiliation(s)
- S Baskerville
- Department of Biology, Indiana University at Bloomington, Bloomington, Indiana, USA
| | | | | |
Collapse
|
38
|
Symensma TL, Baskerville S, Yan A, Ellington AD. Polyvalent Rev decoys act as artificial Rev-responsive elements. J Virol 1999; 73:4341-9. [PMID: 10196332 PMCID: PMC104215 DOI: 10.1128/jvi.73.5.4341-4349.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between Rev and the Rev-responsive element (RRE) control the order, rate, and extent of gene expression in human immunodeficiency virus type 1. Rev decoys may therefore prove to be useful RNA therapeutics for the treatment of AIDS. To improve upon the current generation of Rev decoys that bind single Rev molecules, it would be useful to generate polyvalent Rev decoys that could bind multiple Rev molecules. J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) originally constructed functional polyvalent Rev decoys, but the structural context of these polyvalent decoys remains unclear, and it has been argued that the individual decoys were either structurally discrete (Kjems and Sharp, J. Virol. 67:4769-4776, 1993) or were part of an extended helix (R. W. Zemmel et al., Mol. Biol. 258:763-777, 1996). To resolve the differences between these models, we have designed and synthesized concatemers of Rev-binding elements (RBEs) that fold to form multiple, discrete, high-affinity Rev-binding sites. We find that the concatenated RBEs can facilitate the cytoplasmic transport of viral mRNAs and therefore likely bind multiple Rev molecules. These artificial RREs may simultaneously sequester Rev and hinder access to the cellular transport machinery.
Collapse
Affiliation(s)
- T L Symensma
- Department of Microbiology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
39
|
Blind M, Kolanus W, Famulok M. Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc Natl Acad Sci U S A 1999; 96:3606-10. [PMID: 10097084 PMCID: PMC22341 DOI: 10.1073/pnas.96.7.3606] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A vaccinia virus-based RNA expression system enabled high-level cytoplasmic expression of RNA aptamers directed against the intracellular domain of the beta2 integrin LFA-1, a transmembrane protein that mediates cell adhesion to intercellular adhesion molecule-1 (ICAM-1). In two different cell types, cytoplasmic expression of integrin-binding aptamers reduced inducible cell adhesion to ICAM-1. The aptamers specifically target, and thereby define, a functional cytoplasmic subdomain important for the regulation of cell adhesion in leukocytes. Our approach of aptamer-controlled blocking of signaling pathways in vivo could potentially be applied wherever targeted modulation of a signal-transduction cascade is desired.
Collapse
Affiliation(s)
- M Blind
- Institut für Biochemie, Ludwig-Maximilians-Universität Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
40
|
|
41
|
Tan R, Frankel AD. A novel glutamine-RNA interaction identified by screening libraries in mammalian cells. Proc Natl Acad Sci U S A 1998; 95:4247-52. [PMID: 9539722 PMCID: PMC22474 DOI: 10.1073/pnas.95.8.4247] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The arginine-rich motif provides a versatile framework for RNA recognition in which few amino acids other than arginine are needed to mediate specific binding. Using a mammalian screening system based on transcriptional activation by HIV Tat, we identified novel arginine-rich peptides from combinatorial libraries that bind tightly to the Rev response element of HIV. Remarkably, a single glutamine, but not asparagine, within a stretch of polyarginine can mediate high-affinity binding. These results, together with the structure of a Rev peptide-Rev response element complex, suggest that the carboxamide groups of glutamine or asparagine are well-suited to hydrogen bond to G-A base pairs and begin to establish an RNA recognition code for the arginine-rich motif. The screening approach may provide a relatively general method for screening expression libraries in mammalian cells.
Collapse
Affiliation(s)
- R Tan
- Department of Biochemistry and Biophysics, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
42
|
Conrad RC, Symensma TL, Ellington AD. Natural and unnatural answers to evolutionary questions. Proc Natl Acad Sci U S A 1997; 94:7126-8. [PMID: 9207054 PMCID: PMC33677 DOI: 10.1073/pnas.94.14.7126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- R C Conrad
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
43
|
Klug SJ, Hüttenhofer A, Kromayer M, Famulok M. In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB. Proc Natl Acad Sci U S A 1997; 94:6676-81. [PMID: 9192624 PMCID: PMC21217 DOI: 10.1073/pnas.94.13.6676] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The special elongation factor SelB of Escherichia coli promotes selenocysteine incorporation into formate dehydrogenases. This is thought to be achieved through simultaneous binding to selenocysteyl-tRNASec and, in the case of formate dehydrogenase H, to an fdhF mRNA hairpin structure 3' adjacent to the UGA selenocysteine codon. By in vitro selection, novel RNA sequences ("aptamers"), which can interact tightly and specifically with SelB, were isolated from an RNA library. The library was comprised of mutagenized variants of the wild-type fdhF mRNA hairpin. One-half of the selected sequences contained the apical stem-loop of the fdhF mRNA hairpin highly conserved. Some of the aptamers showed deviations in the primary sequence within this region of the wild-type fdhF hairpin motif while still binding with high affinity to SelB. Binding studies performed with truncated versions of SelB revealed that aptamers binding to different sites on the protein have been selected. To dissect SelB binding to the fdhF hairpin from the overall biological function of this complex, four selected aptamers were analyzed in vivo for UGA readthrough in a lacZ fusion construct. Among these, one promoted UGA readthrough in vivo. Three of the aptamers, however, were drastically reduced or unable to replace the fdhF mRNA hairpin in vivo, despite the similar secondary structure and binding affinities of these RNAs compared with the wild-type motif. This finding implies functions of the fdhF hairpin that go beyond the mere tethering of selenocysteyl-tRNASec to the UGA codon.
Collapse
Affiliation(s)
- S J Klug
- Institut für Biochemie der Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
44
|
Li K, Fernandez-Saiz M, Rigl CT, Kumar A, Ragunathan KG, McConnaughie AW, Boykin DW, Schneider HJ, Wilson WD. Design and analysis of molecular motifs for specific recognition of RNA. Bioorg Med Chem 1997; 5:1157-72. [PMID: 9222510 DOI: 10.1016/s0968-0896(97)00054-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Selective targeting of RNA has become a recent priority in drug design strategies due to the emergence of retroviruses, the need for new antibiotics to counter drug resistance, and our increased awareness of the essential role RNA and RNA structures play in the progression of disease. Most organic compounds known to specifically target RNA are complex, naturally occurring antibiotics that are difficult to synthesize or derivatize and modification of these compounds to optimize interactions with structurally unique RNAs is difficult. The de novo design of synthetically accessible analogues is one possible alternative; however, little is known about the RNA recognition principles on which to design new compounds and limited information on RNA structure in general is available. To contribute to the growing body of knowledge on RNA recognition principles, we have prepared two series of polycationic RNA-binding agents, one with a linear scaffold, the other with a macrocyclic scaffold. We evaluated these compounds for their ability to bind to DNA and RNA, as well as to a specific RNA, the regulatory sequence, RRE, derived from HIV-1, by using thermal melting, circular dichroism, and electrophoresis gel shift methods. Out results suggest that cationic charge centers of high pKa that are displayed along a scaffold of limited flexibility bind preferentially to RNA, most likely within the major groove. Related derivatives that bind more strongly to DNA more closely mimic classical DNA minor-groove binding agents. Several of the macrocyclic polycations expand on a new binding motif where purine bases in duplex RNA are complexed within the macrocyclic cavity, enhancing base-pair opening processes and ultimately destabilizing the RNA duplex. The results in this report should prove a helpful addition to the growing information on molecular motifs that specifically bind to RNA.
Collapse
Affiliation(s)
- K Li
- Department of Chemistry, Georgia State University, Atlanta 30303, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Osborne SE, Ellington AD. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev 1997; 97:349-370. [PMID: 11848874 DOI: 10.1021/cr960009c] [Citation(s) in RCA: 389] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Scott E. Osborne
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | | |
Collapse
|
46
|
Nakaya T, Iwai S, Fujinaga K, Sato Y, Otsuka E, Ikuta K. Decoy approach using RNA-DNA chimera oligonucleotides to inhibit the regulatory function of human immunodeficiency virus type 1 Rev protein. Antimicrob Agents Chemother 1997; 41:319-25. [PMID: 9021186 PMCID: PMC163708 DOI: 10.1128/aac.41.2.319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes two regulatory proteins, Tat and Rev, that bind to target RNA sequences. These are the trans-activation responsive (TAR) RNA and the Rev-responsive element (RRE), respectively. The Rev protein shifts RNA synthesis to viral transcripts by binding to the RRE within the env gene. In the present study we prepared a RNA-DNA chimera consisting of 29 or 31 nucleotides to inhibit the Rev regulatory function by means of the decoy approach. The chimera oligonucleotides (anti-Rev oligonucleotides [AROs]) contained an RNA "bubble" structure (13 oligonucleotides; the Rev-binding element in RRE) that bound Rev with a high affinity in an in vitro assay. The controls were RNA-DNA chimera oligonucleotides (negative control oligonucleotides [NCOs]) similar to ARO, but without the bubble structure, that bound with considerably less affinity to Rev. When the inhibitory effects of these decoys on HIV-1 replication were examined, we found that AROs, but no NCOs, reduced more than 90% of the HIV-1 production generated by productively infected human T-cell lines. The production of primary HIV-1 isolates in healthy donor-derived peripheral blood mononuclear cells was also similarly inhibited by AROs. In addition, the induction of viral mRNAs and antigens in latently HIV-1-infected ACH-2 cells by tumor necrosis factor alpha was specifically inhibited by AROs, but not by NCOs. No apparent cytotoxicity was caused by either decoy. Thus, the use of a Rev-binding element-based decoy, the RNA-DNA chimera oligonucleotide, may represent a safer approach to gene therapy for reducing the virus load in HIV-1-infected individuals.
Collapse
Affiliation(s)
- T Nakaya
- Section of Serology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Wang Y, Hamasaki K, Rando RR. Specificity of aminoglycoside binding to RNA constructs derived from the 16S rRNA decoding region and the HIV-RRE activator region. Biochemistry 1997; 36:768-79. [PMID: 9020774 DOI: 10.1021/bi962095g] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aminoglycoside antibiotics can bind to many different types of RNA molecules. It was of interest to determine the nature of the selectivity of binding of aminoglycosides to important, biologically relevant RNA targets. Fluorescence anisotropy methods were developed to quantitatively measure aminoglycoside affinities to constructs of the HIV-1 RRE transcriptional activation region and the prokaryotic rRNA decoding region which is the natural antibacterial target of the aminoglycosides. A fluorescent analog of Rev34-50 (Fl-Rev34-50) was prepared and shown by fluorescence anisotropy measurements to bind to the HIV-1 RRE region with a stoichiometry of 1 and a dissociation constant of 7.6 nM. RRE RNA is a target for the arginine rich Rev protein, and the binding is known to be mimicked by Rev34-50. The binding is driven by a strongly negative enthalpic term. Aminoglycosides compete with Fl-Rev34-50 binding and competition experiments with semisynthetic aminoglycosides and neomycin B and tobramycin show binding affinities in the 1-2 microM range. The binding of aminoglycosides to this construct is thus not highly selective. A prokaryotic rRNA construct was also prepared and shown to bind a fluorescent dye labeled derivative of the antibiotic paromomycin (CRP) stoichiometrically with a dissociation constant of 0.16 microM. Competition experiments with other aminoglycosides showed binding in the micromolar range, with limited specificity for aminoglycoside type, suggesting that much of the aminoglycoside molecule is not involved in binding. The relatively modest specificity in the binding of aminoglycoside described above is to be contrasted to the subnanomolar affinities and specificity of aminoglycoside binding found using in vitro selected RNA molecules (Wang et al., 1996).
Collapse
MESH Headings
- Amino Acid Sequence
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/metabolism
- Base Sequence
- Binding Sites
- Binding, Competitive
- Carbohydrate Sequence
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Genes, env
- HIV-1/genetics
- HIV-1/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Structure
- Mutation
- Nucleic Acid Conformation
- Paromomycin/chemistry
- Paromomycin/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Thermodynamics
- rev Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Y Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
48
|
Afonina E, Neumann M, Pavlakis GN. Preferential binding of poly(A)-binding protein 1 to an inhibitory RNA element in the human immunodeficiency virus type 1 gag mRNA. J Biol Chem 1997; 272:2307-11. [PMID: 8999938 DOI: 10.1074/jbc.272.4.2307] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) mRNAs encoding structural proteins contain multiple inhibitory/instability elements (INS), which decrease the efficiency of viral protein expression. We have previously identified a strong INS element (INS-1) within the p17(gag) coding region. Here we show that poly(A)-binding protein 1 (PABP1) binds preferentially to INS-1 within the p17(gag) mRNA, but not to a mutated mRNA in which INS-1 function is eliminated. Competition experiments performed in the presence of different nucleic acids and homoribopolymers demonstrated preferential binding of PABP1 to the INS-1-containing RNA. In contrast to HeLa cells and several lymphoid cell lines, certain human glioma cell lines exhibit high levels of gag expression in the absence of Rev upon transient transfection with wild type gag expression vectors. We analyzed extracts of different cell lines and found that the binding of PABP1 to INS-1 RNA is significantly diminished in glial cell extracts. The expression levels of gag correlate with the absence of binding of PABP1 to the INS-1 RNA in cellular extracts. These results suggest a role for PABP1 in the inhibition of gag expression mediated through INS-1.
Collapse
Affiliation(s)
- E Afonina
- Human Retrovirus Section, ABL-Basic Research Program, NCI-FCRDC, Frederick, Maryland 21702-1201, USA
| | | | | |
Collapse
|
49
|
Rigl CT, Lloyd DH, Tsou DS, Gryaznov SM, Wilson WD. Structural RNA mimetics: N3'-->P5' phosphoramidate DNA analogs of HIV-1 RRE and TAR RNA form A-type helices that bind specifically to Rev and Tat-related peptides. Biochemistry 1997; 36:650-9. [PMID: 9012680 DOI: 10.1021/bi961980w] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An attractive strategy for the development of anti-retroviral drugs is the exploration of compounds that mimic RNA control regions of the viral genome and act as "decoys" to sequester viral gene regulatory proteins. Decoys consisting of RNA, however, are chemically unstable and readily degraded by cellular nucleases. DNA decoys, which are slightly more stable, also might not be appropriate because of possible structural differences between RNA and DNA helices and the complexes they form with proteins. It was recently reported, however, that DNA analogs with modified N3'-->P5' phosphoramidate sugar-phosphate backbones are stable and nuclease-resistant and exist predominately as A-form helices in solution [Gryaznov, S., et al. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 5798-5802]. We now report that oligonucleotide N3'-->P5' phosphoramidates DNA analogs of HIV-1 RRE IIB and TAR RNA form stable duplexes that exist in the A form as judged by circular dichroism (CD). Moreover, gel shift assays demonstrate that these phosphoramidates can specifically bind to peptides derived from HIV-1 Rev and Tat proteins. Isosequential phosphodiester DNA duplexes, existing in the B form by CD, do not bind to the respective peptides under the experimental conditions used. These results suggest the possibility that nuclease-resistant oligonucleotide N3'-->P5' phosphoramidates might serve as RNA-like decoys and disrupt specific viral RNA/protein interactions such as RRE/Rev and TAR/Tat in HIV-1.
Collapse
Affiliation(s)
- C T Rigl
- Department of Chemistry, Georgia State University, Atlanta 30303, USA
| | | | | | | | | |
Collapse
|
50
|
|