1
|
Song BH, Yun SI, Goldhardt JL, Kim J, Lee YM. Key virulence factors responsible for differences in pathogenicity between clinically proven live-attenuated Japanese encephalitis vaccine SA14-14-2 and its pre-attenuated highly virulent parent SA14. PLoS Pathog 2025; 21:e1012844. [PMID: 39775684 PMCID: PMC11741592 DOI: 10.1371/journal.ppat.1012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/17/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice. Our findings revealed the following: (i) The single envelope (E) protein of SA14-14-2, which contains nine mutations (eight in the ectodomain and one in the stem region), is both necessary and sufficient to render SA14 non-neuroinvasive and non-neurovirulent. (ii) Conversely, the E protein of SA14 alone is necessary for SA14-14-2 to become highly neurovirulent, but it is not sufficient to make it highly neuroinvasive. (iii) The limited neuroinvasiveness of an SA14-14-2 derivative that contains the E gene of SA14 significantly increases (approaching that of the wild-type strain) when two viral nonstructural proteins are replaced by their counterparts from SA14: (a) NS1/1', which has four mutations on the external surface of the core β-ladder domain; and (b) NS2A, which has two mutations in the N-terminal region, including two non-transmembrane α-helices. In line with their roles in viral pathogenicity, the E, NS1/1', and NS2A genes all contribute to the enhanced spread of the virus in cell culture. Collectively, our data reveal for the first time that the E protein of JEV has a dual function: It is the master regulator of viral neurovirulence and also the primary initiator of viral neuroinvasion. After the initial E-mediated neuroinvasion, the NS1/1' and NS2A proteins act as secondary promoters, further amplifying viral neuroinvasiveness.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Joseph L Goldhardt
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
2
|
Ren Y, Liu Y, Pang R, Xu G, Lei Y, Kwok HF, Wu Y, Cao Z. ZIKV prM hijacks PIM1 kinase for phosphorylation to prevent ubiquitin-mediated degradation and facilitate viral replication. Front Cell Infect Microbiol 2024; 14:1502770. [PMID: 39679197 PMCID: PMC11638163 DOI: 10.3389/fcimb.2024.1502770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Viral infection usually stimulates a variety of host cell factors to modulate the life cycle of the virus. PIM1, a serine/threonine protein kinase widely involved in cell proliferation, survival, differentiation and apoptosis, was recently reported to be upregulated by Zika virus (ZIKV) infection. However, how ZIKV-PIM1 interactions affect the viral life cycle are not fully understood. Methods and results Here, we demonstrated that ZIKV replication was suppressed by the PIM1 kinase inhibitor SGI-1776 in both wt and Ifnar1-/- murine peritoneal macrophages, indicating that PIM1 functions independently of type I IFN signaling. Co-immunoprecipitation and GST pull-down assays revealed that the ZIKV structural protein precursor membrane (prM) interacted with PIM1. Moreover, we found that prM protein stability was enhanced by PIM1, which was attributed to its kinase activity. Mechanistically, we revealed that prM can undergo ubiquitin‒mediated proteolysis and the E3 ubiquitin ligase AMFR can target prM for degradation. Importantly, PIM1 catalyzed phosphorylation of prM at Ser101 and Thr107, and this phosphorylation prevented the proteasome-dependent degradation of prM by impairing its association with AMFR. Therefore, the S101/T107-D phosphorylation mimic mutant of prM was more resistant to PIM1-induced increases in cellular abundance. Discussion These findings revealed PIM1 as a critical host factor that is advantageous to ZIKV and revealed that targeting the PIM1‒prM axis is a conducive strategy for controlling ZIKV infection.
Collapse
Affiliation(s)
- Yingying Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong, China
| | - Yishuo Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Pang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gang Xu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei, China
| | - Yining Lei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, Hubei, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Brown E, Swinscoe G, Lefteri DA, Singh R, Moran A, Thompson RF, Maskell D, Beaumont H, Bentham MJ, Donald C, Kohl A, Macdonald A, Ranson N, Foster R, McKimmie CS, Kalli AC, Griffin S. Inhibitors of the small membrane (M) protein viroporin prevent Zika virus infection. eLife 2024; 13:e68404. [PMID: 39177307 PMCID: PMC11449487 DOI: 10.7554/elife.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/22/2024] [Indexed: 08/24/2024] Open
Abstract
Flaviviruses, including Zika virus (ZIKV), are a significant global health concern, yet no licensed antivirals exist to treat disease. The small membrane (M) protein plays well-defined roles during viral egress and remains within virion membranes following release and maturation. However, it is unclear whether M plays a functional role in this setting. Here, we show that M forms oligomeric membrane-permeabilising channels in vitro, with increased activity at acidic pH and sensitivity to the prototypic channel-blocker, rimantadine. Accordingly, rimantadine blocked an early stage of ZIKV cell culture infection. Structure-based channel models, comprising hexameric arrangements of two trans-membrane domain protomers were shown to comprise more stable assemblages than other oligomers using molecular dynamics simulations. Models contained a predicted lumenal rimantadine-binding site, as well as a second druggable target region on the membrane-exposed periphery. In silico screening enriched for repurposed drugs/compounds predicted to bind to either one site or the other. Hits displayed superior potency in vitro and in cell culture compared with rimantadine, with efficacy demonstrably linked to virion-resident channels. Finally, rimantadine effectively blocked ZIKV viraemia in preclinical models, supporting that M constitutes a physiologically relevant target. This could be explored by repurposing rimantadine, or development of new M-targeted therapies.
Collapse
Affiliation(s)
- Emma Brown
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Gemma Swinscoe
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniella A Lefteri
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Ravi Singh
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Amy Moran
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Rebecca F Thompson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Daniel Maskell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hannah Beaumont
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Matthew J Bentham
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Claire Donald
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Alain Kohl
- MRC and University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Glasgow, United Kingdom
| | - Andrew Macdonald
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Neil Ranson
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Chemistry, Faculty of Maths and Physical Sciences, University of Leeds, Leeds, United Kingdom
| | - Clive S McKimmie
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| | - Antreas C Kalli
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute for Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Stephen Griffin
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, St James' University Hospital, Leeds, United Kingdom
| |
Collapse
|
4
|
Wilken L, Rimmelzwaan GF, Elbahesh H. The Raf kinase inhibitors Dabrafenib and Regorafenib impair Zika virus replication via distinct mechanisms. J Virol 2024; 98:e0061824. [PMID: 39023323 PMCID: PMC11334485 DOI: 10.1128/jvi.00618-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses. IMPORTANCE There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.
Collapse
Affiliation(s)
- Lucas Wilken
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Hannover, Germany
| |
Collapse
|
5
|
Yousefi M, See WR, Aw-Yong KL, Lee WS, Yong CL, Fanusi F, Smith GJD, Ooi EE, Li S, Ghosh S, Ooi YS. GeneRaMeN enables integration, comparison, and meta-analysis of multiple ranked gene lists to identify consensus, unique, and correlated genes. Brief Bioinform 2024; 25:bbae452. [PMID: 39293806 PMCID: PMC11410378 DOI: 10.1093/bib/bbae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
High-throughput experiments often produce ranked gene outputs, with forward genetic screening being a notable example. While there are various tools for analyzing individual datasets, those that perform comparative and meta-analytical examination of such ranked gene lists remain scarce. Here, we introduce Gene Rank Meta Analyzer (GeneRaMeN), an R Shiny tool utilizing rank statistics to facilitate the identification of consensus, unique, and correlated genes across multiple hit lists. We focused on two key topics to showcase GeneRaMeN: virus host factors and cancer dependencies. Using GeneRaMeN 'Rank Aggregation', we integrated 24 published and new flavivirus genetic screening datasets, including dengue, Japanese encephalitis, and Zika viruses. This meta-analysis yielded a consensus list of flavivirus host factors, elucidating the significant influence of cell line selection on screening outcomes. Similar analysis on 13 SARS-CoV-2 CRISPR screening datasets highlighted the pivotal role of meta-analysis in revealing redundant biological pathways exploited by the virus to enter human cells. Such redundancy was further underscored using GeneRaMeN's 'Rank Correlation', where a strong negative correlation was observed for host factors implicated in one entry pathway versus the alternate route. Utilizing GeneRaMeN's 'Rank Uniqueness', we analyzed human coronaviruses 229E, OC43, and SARS-CoV-2 datasets, identifying host factors uniquely associated with a defined subset of the screening datasets. Similar analyses were performed on over 1000 Cancer Dependency Map (DepMap) datasets spanning 19 human cancer types to reveal unique cancer vulnerabilities for each organ/tissue. GeneRaMeN, an efficient tool to integrate and maximize the usability of genetic screening datasets, is freely accessible via https://ysolab.shinyapps.io/GeneRaMeN.
Collapse
Affiliation(s)
- Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kam Leng Aw-Yong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wai Suet Lee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Cythia Lingli Yong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Felic Fanusi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Gavin J D Smith
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Laboratory of Computational Biology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore
| |
Collapse
|
6
|
Anastasina M, Füzik T, Domanska A, Pulkkinen LIA, Šmerdová L, Formanová PP, Straková P, Nováček J, Růžek D, Plevka P, Butcher SJ. The structure of immature tick-borne encephalitis virus supports the collapse model of flavivirus maturation. SCIENCE ADVANCES 2024; 10:eadl1888. [PMID: 38959313 PMCID: PMC11221509 DOI: 10.1126/sciadv.adl1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.
Collapse
Affiliation(s)
- Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Aušra Domanska
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lenka Šmerdová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Petra Pokorná Formanová
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
| | - Petra Straková
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiří Nováček
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Cheng Y, Wang R, Wu Q, Chen J, Wang A, Wu Z, Sun F, Zhu S. Advancements in Research on Duck Tembusu Virus Infections. Viruses 2024; 16:811. [PMID: 38793692 PMCID: PMC11126125 DOI: 10.3390/v16050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.
Collapse
Affiliation(s)
- Yuting Cheng
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Ruoheng Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Qingguo Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Jinying Chen
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Anping Wang
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Zhi Wu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| | - Fang Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Shanyuan Zhu
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Key Laboratory of Veterinary Bio-Pharmaceutical High Technology Research, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.C.)
| |
Collapse
|
8
|
Wang LL, Cheng Q, Newton ND, Wolfinger MT, Morgan MS, Slonchak A, Khromykh AA, Cheng TY, Parry RH. Xinyang flavivirus, from Haemaphysalis flava ticks in Henan Province, China, defines a basal, likely tick-only Orthoflavivirus clade. J Gen Virol 2024; 105:001991. [PMID: 38809251 PMCID: PMC11165663 DOI: 10.1099/jgv.0.001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Qia Cheng
- Children’s Medical Center, Hunan Provincial People’s Hospital, Changsha, PR China
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael T. Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- RNA Forecast e.U., Vienna, Austria
| | - Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Mi Y, Guo Y, Luo X, Bai Y, Chen H, Wang M, Wang Y, Guo J. Natural products and derivatives as Japanese encephalitis virus antivirals. Pathog Dis 2024; 82:ftae022. [PMID: 39317665 PMCID: PMC11556344 DOI: 10.1093/femspd/ftae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
Collapse
Affiliation(s)
- Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Yan Guo
- School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
| | - Xuliang Luo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Haonan Chen
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| |
Collapse
|
10
|
Jablunovsky A, Jose J. The Dynamic Landscape of Capsid Proteins and Viral RNA Interactions in Flavivirus Genome Packaging and Virus Assembly. Pathogens 2024; 13:120. [PMID: 38392858 PMCID: PMC10893219 DOI: 10.3390/pathogens13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Perera DR, Ranadeva ND, Sirisena K, Wijesinghe KJ. Roles of NS1 Protein in Flavivirus Pathogenesis. ACS Infect Dis 2024; 10:20-56. [PMID: 38110348 DOI: 10.1021/acsinfecdis.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Flaviviruses such as dengue, Zika, and West Nile viruses are highly concerning pathogens that pose significant risks to public health. The NS1 protein is conserved among flaviviruses and is synthesized as a part of the flavivirus polyprotein. It plays a critical role in viral replication, disease progression, and immune evasion. Post-translational modifications influence NS1's stability, secretion, antigenicity, and interactions with host factors. NS1 protein forms extensive interactions with host cellular proteins allowing it to affect vital processes such as RNA processing, gene expression regulation, and cellular homeostasis, which in turn influence viral replication, disease pathogenesis, and immune responses. NS1 acts as an immune evasion factor by delaying complement-dependent lysis of infected cells and contributes to disease pathogenesis by inducing endothelial cell damage and vascular leakage and triggering autoimmune responses. Anti-NS1 antibodies have been shown to cross-react with host endothelial cells and platelets, causing autoimmune destruction that is hypothesized to contribute to disease pathogenesis. However, in contrast, immunization of animal models with the NS1 protein confers protection against lethal challenges from flaviviruses such as dengue and Zika viruses. Understanding the multifaceted roles of NS1 in flavivirus pathogenesis is crucial for effective disease management and control. Therefore, further research into NS1 biology, including its host protein interactions and additional roles in disease pathology, is imperative for the development of strategies and therapeutics to combat flavivirus infections successfully. This Review provides an in-depth exploration of the current available knowledge on the multifaceted roles of the NS1 protein in the pathogenesis of flaviviruses.
Collapse
Affiliation(s)
- Dayangi R Perera
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
| | - Nadeeka D Ranadeva
- Department of Biomedical Science, Faculty of Health Sciences, KIU Campus Sri Lanka 10120
| | - Kavish Sirisena
- Department of Chemistry, Faculty of Science, University of Colombo, Sri Lanka 00300
- Section of Genetics, Institute for Research and Development in Health and Social Care, Sri Lanka 10120
| | | |
Collapse
|
12
|
Bos S, Graber AL, Cardona-Ospina JA, Duarte EM, Zambrana JV, Ruíz Salinas JA, Mercado-Hernandez R, Singh T, Katzelnick LC, de Silva A, Kuan G, Balmaseda A, Harris E. Protection against symptomatic dengue infection by neutralizing antibodies varies by infection history and infecting serotype. Nat Commun 2024; 15:382. [PMID: 38195666 PMCID: PMC10776616 DOI: 10.1038/s41467-023-44330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Dengue viruses (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern. Understanding immune mechanisms that modulate DENV infection outcome is critical for vaccine development. Neutralizing antibodies (nAbs) are an essential component of the protective immune response, yet their measurement often relies on a single cellular substrate and partially mature virions, which does not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we analyze 125 samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long-standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without DC-SIGN and with mature or partially mature virions, we find that nAb potency and the protective NT50 cutoff are greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depends on prior infection history and infecting serotype. Finally, we uncover variations in nAb composition that contribute to protection from symptomatic infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection for vaccines and natural infections.
Collapse
Affiliation(s)
- Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | - Aaron L Graber
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jaime A Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Colombia
| | - Elias M Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Victor Zambrana
- Sustainable Sciences Institute, Managua, Nicaragua
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Reinaldo Mercado-Hernandez
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Tulika Singh
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aravinda de Silva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
14
|
Parry RH, Slonchak A, Campbell LJ, Newton ND, Debat HJ, Gifford RJ, Khromykh AA. A novel tamanavirus ( Flaviviridae) of the European common frog ( Rana temporaria) from the UK. J Gen Virol 2023; 104:001927. [PMID: 38059479 PMCID: PMC10770923 DOI: 10.1099/jgv.0.001927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.
Collapse
Affiliation(s)
- Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
| | - Lewis J. Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Institute of Zoology, Zoological Society of London, London, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
| | - Humberto J. Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola (UFYMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5020ICA, Argentina
| | | | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
- AIDRC Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Goellner S, Enkavi G, Prasad V, Denolly S, Eu S, Mizzon G, Witte L, Kulig W, Uckeley ZM, Lavacca TM, Haselmann U, Lozach PY, Brügger B, Vattulainen I, Bartenschlager R. Zika virus prM protein contains cholesterol binding motifs required for virus entry and assembly. Nat Commun 2023; 14:7344. [PMID: 37957166 PMCID: PMC10643666 DOI: 10.1038/s41467-023-42985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
For successful infection of host cells and virion production, enveloped viruses, including Zika virus (ZIKV), extensively rely on cellular lipids. However, how virus protein-lipid interactions contribute to the viral life cycle remains unclear. Here, we employ a chemo-proteomics approach with a bifunctional cholesterol probe and show that cholesterol is closely associated with the ZIKV structural protein prM. Bioinformatic analyses, reverse genetics alongside with photoaffinity labeling assays, and atomistic molecular dynamics simulations identified two functional cholesterol binding motifs within the prM transmembrane domain. Loss of prM-cholesterol association has a bipartite effect reducing ZIKV entry and leading to assembly defects. We propose a model in which membrane-resident M facilitates cholesterol-supported lipid exchange during endosomal entry and, together with cholesterol, creates a platform promoting virion assembly. In summary, we identify a bifunctional role of prM in the ZIKV life cycle by mediating viral entry and virus assembly in a cholesterol-dependent manner.
Collapse
Affiliation(s)
- Sarah Goellner
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Sungmin Eu
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- d-fine GmbH, Frankfurt, Germany
| | - Giulia Mizzon
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Leander Witte
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Zina M Uckeley
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Department of Molecular Genetics & Microbiology, University of Florida, Florida, USA
| | - Teresa M Lavacca
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Pierre-Yves Lozach
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- INRAE, EPHE, IVPC, University of Lyon, Lyon, France
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg, Germany.
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Munt JE, Henein S, Adams C, Young E, Hou YJ, Conrad H, Zhu D, Dong S, Kose N, Yount B, Meganck RM, Tse LPV, Kuan G, Balmaseda A, Ricciardi MJ, Watkins DI, Crowe JE, Harris E, DeSilva AM, Baric RS. Homotypic antibodies target novel E glycoprotein domains after natural DENV 3 infection/vaccination. Cell Host Microbe 2023; 31:1850-1865.e5. [PMID: 37909048 PMCID: PMC11221912 DOI: 10.1016/j.chom.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear. To identify the primary DENV3 nAb targets in sera after natural infection or vaccination, chimeric DENV1 recombinant encoding DENV3 EDI, EDII, or EDIII were generated. DENV3 EDII is the principal target of TS polyclonal nAb responses and encodes two or more neutralizing epitopes. In contrast, some were individuals vaccinated with a DENV3 monovalent vaccine-elicited serum TS nAbs targeting each ED in a subject-dependent fashion, with an emphasis on EDI and EDIII. Vaccine responses were also sensitive to DENV3 genotypic variation. This DENV1/3 panel allows the measurement of serum ED TS nAbs, revealing differences in TS nAb immunity after natural infection or vaccination.
Collapse
Affiliation(s)
- Jennifer E Munt
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sandra Henein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Cameron Adams
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ellen Young
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Deanna Zhu
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita M Meganck
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Long Ping V Tse
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Guillermina Kuan
- Health Center Socrates Flores Vivas, Ministry of Health, Managua, Nicaragua; Sustainable Sciences Institute, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; National Virology Laboratory, National Center for Diagnosis and Reference, Ministry of Health, Managua, Nicaragua
| | | | - David I Watkins
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aravinda M DeSilva
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Chan C, Kwan Sze NS, Suzuki Y, Ohira T, Suzuki T, Begley TJ, Dedon PC. Dengue virus exploits the host tRNA epitranscriptome to promote viral replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565734. [PMID: 37986976 PMCID: PMC10659268 DOI: 10.1101/2023.11.05.565734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The 40-50 RNA modifications of the epitranscriptome regulate posttranscriptional gene expression. Here we show that flaviviruses hijack the host tRNA epitranscriptome to promote expression of pro-viral proteins, with tRNA-modifying ALKBH1 acting as a host restriction factor in dengue virus infection. Early in the infection of human Huh-7 cells, ALKBH1 and its tRNA products 5-formylcytidine (f5C) and 2'-O-methyl-5-formylcytidine (f5Cm) were reduced. ALKBH1 knockdown mimicked viral infection, but caused increased viral NS3 protein levels during infection, while ALKBH1 overexpression reduced NS3 levels and viral replication, and increased f5C and f5Cm. Viral NS5, but not host FTSJ1, increased f5Cm levels late in infection. Consistent with reports of impaired decoding of leucine UUA codon by f5Cm-modified tRNALeu(CAA), ALKBH1 knockdown induced translation of UUA-deficient transcripts, most having pro-viral functions. Our findings support a dynamic ALKBH1/f5Cm axis during dengue infection, with virally-induced remodeling of the proteome by tRNA reprogramming and codon-biased translation.
Collapse
Affiliation(s)
- Cheryl Chan
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
| | - Newman Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Yuka Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Thomas J. Begley
- Department of Biological Sciences and The RNA Institute, College of Arts and Science, University at Albany, SUNY, Albany, NY, 12222, USA
| | - Peter C. Dedon
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602, Singapore
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
18
|
Crampon E, Covernton E, Vaney MC, Dellarole M, Sommer S, Sharma A, Haouz A, England P, Lepault J, Duquerroy S, Rey FA, Barba-Spaeth G. New insight into flavivirus maturation from structure/function studies of the yellow fever virus envelope protein complex. mBio 2023; 14:e0070623. [PMID: 37607061 PMCID: PMC10653854 DOI: 10.1128/mbio.00706-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/16/2023] [Indexed: 08/24/2023] Open
Abstract
IMPORTANCE All enveloped viruses enter cells by fusing their envelope with a target cell membrane while avoiding premature fusion with membranes of the producer cell-the latter being particularly important for viruses that bud at internal membranes. Flaviviruses bud in the endoplasmic reticulum, are transported through the TGN to reach the external milieu, and enter other cells via receptor-mediated endocytosis. The trigger for membrane fusion is the acidic environment of early endosomes, which has a similar pH to the TGN of the producer cell. The viral particles therefore become activated to react to mildly acidic pH only after their release into the neutral pH extracellular environment. Our study shows that for yellow fever virus (YFV), the mechanism of activation involves actively knocking out the fusion brake (protein pr) through a localized conformational change of the envelope protein upon exposure to the neutral pH external environment. Our study has important implications for understanding the molecular mechanism of flavivirus fusion activation in general and points to an alternative way of interfering with this process as an antiviral treatment.
Collapse
Affiliation(s)
- E. Crampon
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - E. Covernton
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - M. C. Vaney
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - M. Dellarole
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - S. Sommer
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - A. Sharma
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - A. Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de Cristallographie-C2RT, Paris, France
| | - P. England
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de Biophysique Moléculaire-C2RT, Paris, France
| | - J. Lepault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - S. Duquerroy
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
- Université Paris-Saclay, Faculté des Sciences, Orsay, France
| | - F. A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - G. Barba-Spaeth
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| |
Collapse
|
19
|
Kuhn RJ, Barrett ADT, Desilva AM, Harris E, Kramer LD, Montgomery RR, Pierson TC, Sette A, Diamond MS. A Prototype-Pathogen Approach for the Development of Flavivirus Countermeasures. J Infect Dis 2023; 228:S398-S413. [PMID: 37849402 PMCID: PMC10582523 DOI: 10.1093/infdis/jiad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/28/2023] [Indexed: 10/19/2023] Open
Abstract
Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.
Collapse
Affiliation(s)
- Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Aravinda M Desilva
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, California, USA
| | - Laura D Kramer
- School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Ruth R Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Theodore C Pierson
- Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, University of California in San Diego, San Diego, California, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
20
|
Kwasnik M, Rola J, Rozek W. Tick-Borne Encephalitis-Review of the Current Status. J Clin Med 2023; 12:6603. [PMID: 37892741 PMCID: PMC10607749 DOI: 10.3390/jcm12206603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The tick-borne encephalitis virus (TBEV) is the arboviral etiological agent of tick-borne encephalitis (TBE), considered to be one of the most important tick-borne viral diseases in Europe and Asia. In recent years, an increase in the incidence of TBE as well as an increasing geographical range of the disease have been noted. Despite the COVID-19 pandemic and the imposition of restrictions that it necessitated, the incidence of TBE is rising in more than half of the European countries analyzed in recent studies. The virus is transmitted between ticks, animals, and humans. It seems that ticks and small mammals play a role in maintaining TBEV in nature. The disease can also affect dogs, horses, cattle, and small ruminants. Humans are incidental hosts, infected through the bite of an infected tick or by the alimentary route, through the consumption of unpasteurized milk or milk products from TBEV-infected animals. TBEV infections in humans may be asymptomatic, but the symptoms can range from mild flu-like to severe neurological. In Europe, cases of TBE are reported every year. While there is currently no effective treatment for TBE, immunization and protection against tick bites are critical in preventing this disease.
Collapse
Affiliation(s)
- Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (J.R.); (W.R.)
| | | | | |
Collapse
|
21
|
Bos S, Graber AL, Cardona-Ospina JA, Duarte EM, Zambrana JV, Ruíz Salinas JA, Mercado-Hernandez R, Singh T, Katzelnick LC, de Silva A, Kuan G, Balmaseda A, Harris E. The association of neutralizing antibodies with protection against symptomatic dengue virus infection varies by serotype, prior infection history, and assay condition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.20.23291522. [PMID: 37502957 PMCID: PMC10371115 DOI: 10.1101/2023.06.20.23291522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The four dengue virus serotypes (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern worldwide. Understanding immune mechanisms that modulate DENV infection outcome is critical for epidemic preparedness and development of a safe and effective vaccine. Neutralizing antibodies (nAbs) are an essential component of the protective response, yet their measurement often relies on a single cellular substrate and partially mature virions, which do not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency. Here, we investigated the characteristics of nAbs associated with protection against dengue cases using samples collected after one or more DENV infections but prior to subsequent symptomatic or inapparent DENV1, DENV2, or DENV3 infections from a long- standing pediatric cohort study in Nicaragua. By assessing nAb responses using Vero cells with or without the attachment factor DC-SIGN and with mature or partially mature virions, we found that nAb potency and the protective NT 50 cutoff were greatly influenced by cell substrate and virion maturation state. Additionally, the correlation between nAb titer and protection from disease depended on an individual's prior infection history and the subsequent infecting DENV serotype. Finally, we uncovered variations in nAbs composition that contributed to protection from symptomatic DENV infection differently after primary and secondary prior infection. These findings have important implications for identifying antibody correlates of protection in the context of vaccines and natural infections.
Collapse
|
22
|
Ishida K, Yagi H, Kato Y, Morita E. N-linked glycosylation of flavivirus E protein contributes to viral particle formation. PLoS Pathog 2023; 19:e1011681. [PMID: 37819933 PMCID: PMC10593244 DOI: 10.1371/journal.ppat.1011681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.
Collapse
Affiliation(s)
- Kotaro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Morita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Japan
- Division of Biomolecular Function, Bioresources Science, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Japan
| |
Collapse
|
23
|
Desingu PA, Mishra S, Dindi L, Srinivasan S, Rajmani RS, Ravi V, Tamta AK, Raghu S, Murugasamy K, Pandit AS, Sundaresan NR. PARP1 inhibition protects mice against Japanese encephalitis virus infection. Cell Rep 2023; 42:113103. [PMID: 37676769 DOI: 10.1016/j.celrep.2023.113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 05/20/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Japanese encephalitis (JE) is a vector-borne viral disease that causes acute encephalitis in children. Although vaccines have been developed against the JE virus (JEV), no effective antiviral therapy exists. Our study shows that inhibition of poly(ADP-ribose) polymerase 1 (PARP1), an NAD+-dependent (poly-ADP) ribosyl transferase, protects against JEV infection. Interestingly, PARP1 is critical for JEV pathogenesis in Neuro-2a cells and mice. Small molecular inhibitors of PARP1, olaparib, and 3-aminobenzamide (3-AB) significantly reduce clinical signs and viral load in the serum and brains of mice and improve survival. PARP1 inhibition confers protection against JEV infection by inhibiting autophagy. Mechanistically, upon JEV infection, PARP1 PARylates AKT and negatively affects its phosphorylation. In addition, PARP1 transcriptionally upregulates PTEN, the PIP3 phosphatase, negatively regulating AKT. PARP1-mediated AKT inactivation promotes autophagy and JEV pathogenesis by increasing the FoxO activity. Thus, our findings demonstrate PARP1 as a potential mediator of JEV pathogenesis that can be effectively targeted for treating JE.
Collapse
Affiliation(s)
- Perumal Arumugam Desingu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India.
| | - Sneha Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Lavanya Dindi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Shalini Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Venkatraman Ravi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Ankit Kumar Tamta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Sukanya Raghu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Krishnega Murugasamy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Anwit Shriniwas Pandit
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India
| | - Nagalingam R Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
24
|
Lai M, La Rocca V, Iacono E, Filipponi C, De Carli A, Favaro D, Fonnesu R, Filippini F, Spezia PG, Amato R, Catelli E, Matteo B, Lottini G, Onorati M, Clementi N, Freer G, Piomelli D, Pistello M. Inhibiting immunoregulatory amidase NAAA blocks ZIKV maturation in Human Neural Stem Cells. Antiviral Res 2023; 216:105664. [PMID: 37414288 DOI: 10.1016/j.antiviral.2023.105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023]
Abstract
Recent evidence suggests that lipids play a crucial role in viral infections beyond their traditional functions of supplying envelope and energy, and creating protected niches for viral replication. In the case of Zika virus (ZIKV), it alters host lipids by enhancing lipogenesis and suppressing β-oxidation to generate viral factories at the endoplasmic reticulum (ER) interface. This discovery prompted us to hypothesize that interference with lipogenesis could serve as a dual antiviral and anti-inflammatory strategy to combat the replication of positive sense single-stranded RNA (ssRNA+) viruses. To test this hypothesis, we examined the impact of inhibiting N-Acylethanolamine acid amidase (NAAA) on ZIKV-infected human Neural Stem Cells. NAAA is responsible for the hydrolysis of palmitoylethanolamide (PEA) in lysosomes and endolysosomes. Inhibition of NAAA results in PEA accumulation, which activates peroxisome proliferator-activated receptor-α (PPAR-α), directing β-oxidation and preventing inflammation. Our findings indicate that inhibiting NAAA through gene-editing or drugs moderately reduces ZIKV replication by approximately one log10 in Human Neural Stem Cells, while also releasing immature virions that have lost their infectivity. This inhibition impairs furin-mediated prM cleavage, ultimately blocking ZIKV maturation. In summary, our study highlights NAAA as a host target for ZIKV infection.
Collapse
Affiliation(s)
- Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Centre for Instrumentation Sharing, University of Pisa (CISUP), Italy.
| | - Veronica La Rocca
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Elena Iacono
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Carolina Filipponi
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandro De Carli
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Domenico Favaro
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rossella Fonnesu
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Fabio Filippini
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pietro Giorgio Spezia
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Rachele Amato
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Elisa Catelli
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Giulia Lottini
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Department of Medical Biotechnologies, University of Siena, Siena, 53100, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, 56127, Italy
| | - Nicola Clementi
- Laboratory of Medical Microbiology and Virology, Vita-Salute San Raffaele University, Milan, 20100, Italy
| | - Giulia Freer
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697-4625, United States
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
25
|
Pustijanac E, Buršić M, Talapko J, Škrlec I, Meštrović T, Lišnjić D. Tick-Borne Encephalitis Virus: A Comprehensive Review of Transmission, Pathogenesis, Epidemiology, Clinical Manifestations, Diagnosis, and Prevention. Microorganisms 2023; 11:1634. [PMID: 37512806 PMCID: PMC10383662 DOI: 10.3390/microorganisms11071634] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, can cause serious infection of the central nervous system in humans, resulting in potential neurological complications and fatal outcomes. TBEV is primarily transmitted to humans through infected tick bites, and the viral agent circulates between ticks and animals, such as deer and small mammals. The occurrence of the infection aligns with the seasonal activity of ticks. As no specific antiviral therapy exists for TBEV infection, treatment approaches primarily focus on symptomatic relief and support. Active immunization is highly effective, especially for individuals in endemic areas. The burden of TBEV infections is increasing, posing a growing health concern. Reported incidence rates rose from 0.4 to 0.9 cases per 100,000 people between 2015 and 2020. The Baltic and Central European countries have the highest incidence, but TBE is endemic across a wide geographic area. Various factors, including social and environmental aspects, improved medical awareness, and advanced diagnostics, have contributed to the observed increase. Diagnosing TBEV infection can be challenging due to the non-specific nature of the initial symptoms and potential co-infections. Accurate diagnosis is crucial for appropriate management, prevention of complications, and effective control measures. In this comprehensive review, we summarize the molecular structure of TBEV, its transmission and circulation in natural environments, the pathogenesis of TBEV infection, the epidemiology and global distribution of the virus, associated risk factors, clinical manifestations, and diagnostic approaches. By improving understanding of these aspects, we aim to enhance knowledge and promote strategies for timely and accurate diagnosis, appropriate management, and the implementation of effective control measures against TBEV infections.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100 Pula, Croatia
| | - Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation and the Department of Health Metrics Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dubravka Lišnjić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
26
|
Smith TJ, Fusco RM, Elmore ZC, Asokan A. Interplay between Furin and Sialoglycans in Modulating Adeno-Associated Viral Cell Entry. J Virol 2023; 97:e0009323. [PMID: 37097176 PMCID: PMC10231208 DOI: 10.1128/jvi.00093-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
Adeno-associated viruses (AAVs) are small, helper-dependent, single-stranded DNA viruses that exploit a broad spectrum of host factors for cell entry. During the course of infection, several AAV serotypes have been shown to transit through the trans-Golgi network within the host cell. In the current study, we investigated whether the Golgi-localized, calcium-dependent protease furin influences AAV transduction. While CRISPR/Cas9-mediated knockout (KO) of the Furin gene minimally affected the transduction efficiency of most recombinant AAV serotypes tested, we observed a striking increase in transgene expression (~2 log orders) for the African green monkey isolate AAV4. Interrogation of different steps in the infectious pathway revealed that AAV4 binding, uptake, and transcript levels are increased in furin KO cells, but postentry steps such as uncoating or nuclear entry remain unaffected. Recombinant furin does not cleave AAV4 capsid proteins nor alter cellular expression levels of essential factors such as AAVR or GPR108. Interestingly, fluorescent lectin screening revealed a marked increase in 2,3-O-linked sialoglycan staining on the surface and perinuclear space of furin KO cells. The essential nature of increased sialoglycan expression in furin KO cells in enhancing AAV4 transduction was further corroborated by (i) increased transduction by the closely related isolates AAVrh.32.33 and sea lion AAV and (ii) selective blockade or removal of cellular 2,3-O-linked sialoglycans by specific lectins or neuraminidase, respectively. Based on the overall findings, we postulate that furin likely plays a key role in regulating expression of cellular sialoglycans, which in turn can influence permissivity to AAVs and possibly other viruses. IMPORTANCE Adeno-associated viruses (AAVs) are a proven recombinant vector platform for gene therapy and have demonstrated success in the clinic. Continuing to improve our knowledge of AAV-host cell interactions is critical for improving the safety and efficacy. The current study dissects the interplay between furin, a common intracellular protease, and certain cell surface sialoglycans that serve as viral attachment factors for cell entry. Based on the findings, we postulate that differential expression of furin in host cells and tissues is likely to influence gene expression by certain recombinant AAV serotypes.
Collapse
Affiliation(s)
- Timothy J. Smith
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert M. Fusco
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Zachary C. Elmore
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aravind Asokan
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
27
|
Stiasny K, Medits I, Roßbacher L, Heinz FX. Impact of structural dynamics on biological functions of flaviviruses. FEBS J 2023; 290:1973-1985. [PMID: 35246954 PMCID: PMC10952610 DOI: 10.1111/febs.16419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Flaviviruses comprise a number of mosquito- or tick-transmitted human pathogens of global public health importance. Advances in structural biology techniques have contributed substantially to our current understanding of the life cycle of these small enveloped RNA viruses and led to deep insights into details of virus assembly, maturation and cell entry. In addition to large-scale conformational changes and oligomeric rearrangements of envelope proteins during these processes, there is increasing evidence that smaller-scale protein dynamics (referred to as virus "breathing") can confer extra flexibility to these viruses for the fine-tuning of their interactions with the immune system and possibly with cellular factors they encounter in their complex ecological cycles in arthropod and vertebrate hosts. In this review, we discuss how work with tick-borne encephalitis virus has extended our view on flavivirus breathing, leading to the identification of a novel mechanism of antibody-mediated infection enhancement and demonstrating breathing intermediates of the envelope protein in the process of membrane fusion. These data are discussed in the context of other flaviviruses and the perspective of a potential role of virus breathing to cope with the requirements of adaptation and replication in evolutionarily very different hosts.
Collapse
Affiliation(s)
- Karin Stiasny
- Center for VirologyMedical University of ViennaAustria
| | - Iris Medits
- Center for VirologyMedical University of ViennaAustria
| | | | | |
Collapse
|
28
|
Lee MF, Wu YS, Poh CL. Molecular Mechanisms of Antiviral Agents against Dengue Virus. Viruses 2023; 15:v15030705. [PMID: 36992414 PMCID: PMC10056858 DOI: 10.3390/v15030705] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Dengue is a major global health threat causing 390 million dengue infections and 25,000 deaths annually. The lack of efficacy of the licensed Dengvaxia vaccine and the absence of a clinically approved antiviral against dengue virus (DENV) drive the urgent demand for the development of novel anti-DENV therapeutics. Various antiviral agents have been developed and investigated for their anti-DENV activities. This review discusses the mechanisms of action employed by various antiviral agents against DENV. The development of host-directed antivirals targeting host receptors and direct-acting antivirals targeting DENV structural and non-structural proteins are reviewed. In addition, the development of antivirals that target different stages during post-infection such as viral replication, viral maturation, and viral assembly are reviewed. Antiviral agents designed based on these molecular mechanisms of action could lead to the discovery and development of novel anti-DENV therapeutics for the treatment of dengue infections. Evaluations of combinations of antiviral drugs with different mechanisms of action could also lead to the development of synergistic drug combinations for the treatment of dengue at any stage of the infection.
Collapse
|
29
|
Pulkkinen LIA, Barrass SV, Lindgren M, Pace H, Överby AK, Anastasina M, Bally M, Lundmark R, Butcher SJ. Simultaneous membrane and RNA binding by tick-borne encephalitis virus capsid protein. PLoS Pathog 2023; 19:e1011125. [PMID: 36787339 PMCID: PMC9970071 DOI: 10.1371/journal.ppat.1011125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Tick-borne encephalitis virus is an enveloped, pathogenic, RNA virus in the family Flaviviridae, genus Flavivirus. Viral particles are formed when the nucleocapsid, consisting of an RNA genome and multiple copies of the capsid protein, buds through the endoplasmic reticulum membrane and acquires the viral envelope and the associated proteins. The coordination of the nucleocapsid components to the sites of assembly and budding are poorly understood. Here, we investigate the interactions of the wild-type and truncated capsid proteins with membranes with biophysical methods and model membrane systems. We show that capsid protein initially binds membranes via electrostatic interactions with negatively-charged lipids, which is followed by membrane insertion. Additionally, we show that membrane-bound capsid protein can recruit viral genomic RNA. We confirm the biological relevance of the biophysical findings by using mass spectrometry to show that purified virions contain negatively-charged lipids. Our results suggest that nucleocapsid assembly is coordinated by negatively-charged membrane patches on the endoplasmic reticulum and that the capsid protein mediates direct contacts between the nucleocapsid and the membrane.
Collapse
Affiliation(s)
- Lauri Ilmari Aurelius Pulkkinen
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sarah Victoria Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marie Lindgren
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Hudson Pace
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Maria Anastasina
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marta Bally
- Department of Clinical Microbiology, Faculty of Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Lundmark
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail: (SJB); (RL)
| | - Sarah Jane Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (SJB); (RL)
| |
Collapse
|
30
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
32
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
33
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
34
|
De S, Aamna B, Sahu R, Parida S, Behera SK, Dan AK. Seeking heterocyclic scaffolds as antivirals against dengue virus. Eur J Med Chem 2022; 240:114576. [PMID: 35816877 PMCID: PMC9250831 DOI: 10.1016/j.ejmech.2022.114576] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/20/2022]
Abstract
Dengue is one of the most typical viral infection categorized in the Neglected Tropical Diseases (NTDs). It is transmitted via the female Aedes aegypti mosquito to humans and majorly puts risk to the lives of more than half of the world. Recent advancements in medicinal chemistry have led to the design and development of numerous potential heterocyclic scaffolds as antiviral drug candidates for the inhibition of the dengue virus (DENV). Thus, in this review, we have discussed the significance of inhibitory and antiviral activities of nitrogen, oxygen, and mixed (nitrogen-sulfur and nitrogen-oxygen) heterocyclic scaffolds that are published in the last seven years (2016–2022). Furthermore, we have also discussed the probable mechanisms of action and the diverse structure-activity relationships (SARs) of the heterocyclic scaffolds. In addition, this review has elaborately outlined the mechanism of viral infection and the life cycle of DENV in the host cells. The wide set of heterocycles and their SARs will aid in the development of pharmaceuticals that will allow the researchers to synthesize the promising anti-dengue drug candidate in the future.
Collapse
|
35
|
Increased Cleavage of Japanese Encephalitis Virus prM Protein Promotes Viral Replication but Attenuates Virulence. Microbiol Spectr 2022; 10:e0141722. [PMID: 35695552 PMCID: PMC9241796 DOI: 10.1128/spectrum.01417-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In flavivirus, the furin-mediated cleavage of prM is mandatory to produce infectious particles, and the immature particles containing uncleaved prM cannot undergo membrane fusion and release to the extracellular environment. However, the detailed relationship between viral replication or pathogenicity and furin in Japanese encephalitis virus (JEV) hasn't been clarified. Here, JEV with the mutations in furin cleavage sites and its nearby were constructed. Compared with WT virus, the mutant virus showed enhanced cleavage efficiency of prM protein and increased replication ability. Furthermore, we found that the mutations mainly promote genomic replication and assembly of JEV. However, the mutant formed smaller plaques than WT virus in plaque forming assay, indicating the lower cytopathogenicity of mutant virus. To assess the virulence of JEV mutant, an in vivo assay was performed using a mouse model. A higher survival rate and attenuated neuroinflammation were observed in JEV mutant-infected mice than those of WT-infected mice, suggesting the cleavage of prM by furin was closely related to viral virulence. These findings will provide new understanding on JEV pathogenesis and contribute to the development of novel JEV vaccines. IMPORTANCE Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis epidemics in Southeast Asia, affecting mostly children, with high morbidity and mortality. During the viral maturation process, prM is cleaved into M by the cellular endoprotease furin in the acidic secretory system. After cleavage of the prM protein, mature virions are exocytosed. Here, the mutant in furin cleavage sites and its nearby was constructed, and the results showed that the mutant virus with enhanced replication mainly occurred in the process of genomic replication and assembly. Meanwhile, the mutant showed an attenuated virulence than WT virus in vivo. Our study contributes to understanding the function of prM and M proteins and provides new clues for live vaccine designation for JEV.
Collapse
|
36
|
Vaney MC, Dellarole M, Duquerroy S, Medits I, Tsouchnikas G, Rouvinski A, England P, Stiasny K, Heinz FX, Rey FA. Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery. Nat Commun 2022; 13:3718. [PMID: 35764616 PMCID: PMC9239988 DOI: 10.1038/s41467-022-31111-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022] Open
Abstract
The flavivirus envelope glycoproteins prM and E drive the assembly of icosahedral, spiky immature particles that bud across the membrane of the endoplasmic reticulum. Maturation into infectious virions in the trans-Golgi network involves an acid-pH-driven rearrangement into smooth particles made of (prM/E)2 dimers exposing a furin site for prM cleavage into "pr" and "M". Here we show that the prM "pr" moiety derives from an HSP40 cellular chaperonin. Furthermore, the X-ray structure of the tick-borne encephalitis virus (pr/E)2 dimer at acidic pH reveals the E 150-loop as a hinged-lid that opens at low pH to expose a positively-charged pr-binding pocket at the E dimer interface, inducing (prM/E)2 dimer formation to generate smooth particles in the Golgi. Furin cleavage is followed by lid-closure upon deprotonation in the neutral-pH extracellular environment, expelling pr while the 150-loop takes the relay in fusion loop protection, thus revealing the elusive flavivirus mechanism of fusion activation.
Collapse
Affiliation(s)
- Marie-Christine Vaney
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Mariano Dellarole
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
- CIBION, CONICET, Buenos Aires, Argentina
| | - Stéphane Duquerroy
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
- Université Paris Saclay, Faculté des Sciences, Orsay, France
| | - Iris Medits
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Georgios Tsouchnikas
- Center for Virology, Medical University of Vienna, Vienna, Austria
- HOOKIPA Pharma 19 Inc, Vienna, Austria
| | - Alexander Rouvinski
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Patrick England
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Plateforme de Biophysique Moléculaire, Paris, France
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité de Virologie Structurale, Paris, France.
| |
Collapse
|
37
|
Molecular Organisation of Tick-Borne Encephalitis Virus. Viruses 2022; 14:v14040792. [PMID: 35458522 PMCID: PMC9027435 DOI: 10.3390/v14040792] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions.
Collapse
|
38
|
Fishburn AT, Pham OH, Kenaston MW, Beesabathuni NS, Shah PS. Let's Get Physical: Flavivirus-Host Protein-Protein Interactions in Replication and Pathogenesis. Front Microbiol 2022; 13:847588. [PMID: 35308381 PMCID: PMC8928165 DOI: 10.3389/fmicb.2022.847588] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Flaviviruses comprise a genus of viruses that pose a significant burden on human health worldwide. Transmission by both mosquito and tick vectors, and broad host tropism contribute to the presence of flaviviruses globally. Like all viruses, they require utilization of host molecular machinery to facilitate their replication through physical interactions. Their RNA genomes are translated using host ribosomes, synthesizing viral proteins that cooperate with each other and host proteins to reshape the host cell into a factory for virus replication. Thus, dissecting the physical interactions between viral proteins and their host protein targets is essential in our comprehension of how flaviviruses replicate and how they alter host cell behavior. Beyond replication, even single interactions can contribute to immune evasion and pathogenesis, providing potential avenues for therapeutic intervention. Here, we review protein interactions between flavivirus and host proteins that contribute to virus replication, immune evasion, and disease.
Collapse
Affiliation(s)
- Adam T Fishburn
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Oanh H Pham
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Matthew W Kenaston
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
| | - Nitin S Beesabathuni
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States.,Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
39
|
Du Pont KE, McCullagh M, Geiss BJ. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1688. [PMID: 34472205 PMCID: PMC8888775 DOI: 10.1002/wrna.1688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Flaviviruses are a major health concern because over half of the world population is at risk of infection and there are very few antiviral therapeutics to treat diseases resulting from infection. Replication is an essential part of the flavivirus survival. One of the viral proteins, NS3 helicase, is critical for unwinding the double stranded RNA intermediate during flaviviral replication. The helicase performs the unwinding of the viral RNA intermediate structure in an ATP-dependent manner. NS3 helicase is a member of the Viral/DEAH-like subfamily of the superfamily 2 helicase containing eight highly conserved structural motifs (I, Ia, II, III, IV, IVa, V, and VI) localized between the ATP-binding and RNA-binding pockets. Of these structural motifs only three are well characterized for function in flaviviruses (I, II, and VI). The roles of the other structural motifs are not well understood for NS3 helicase function, but comparison of NS3 with other superfamily 2 helicases within the viral/DEAH-like, DEAH/RHA, and DEAD-box subfamilies can be used to elucidate the roles of these structural motifs in the flavivirus NS3 helicase. This review aims to summarize the role of each conserved structural motif within flavivirus NS3 in RNA helicase function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Kelly E. Du Pont
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brian J. Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
40
|
Diosa-Toro M, Kennedy DR, Chuo V, Popov VL, Pompon J, Garcia-Blanco MA. Y-Box Binding Protein 1 Interacts with Dengue Virus Nucleocapsid and Mediates Viral Assembly. mBio 2022; 13:e0019622. [PMID: 35189699 PMCID: PMC8903895 DOI: 10.1128/mbio.00196-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Infection with dengue virus (DENV) induces vast rearrangements of the endoplasmic reticulum, which allows the compartmentalization of viral RNA replication and particle assembly. Both processes occur in concert with viral and cellular proteins. Prior studies from our group suggest that the host RNA-binding protein (RBP) Y-box binding protein 1 (YBX1) is required for a late step in the DENV replication cycle. Here we report that YBX1 interacts with the viral nucleocapsid, distributes to DENV assembly sites and is required for efficient assembly of intracellular infectious virions and their secretion. Genetic ablation of YBX1 decreased the spatial proximity between capsid and envelope, increased the susceptibility of envelope to proteinase K mediated degradation, resulted in the formation of rough empty-looking particles, and decreased the secretion of viral particles. We propose a model wherein YBX1 enables the interaction between the viral nucleocapsid with the structural protein E, which is required for proper assembly of intracellular virus particles and their secretion. IMPORTANCE The global incidence of dengue virus (DENV) infections has steadily increased over the past decades representing an enormous challenge for public health. During infection, DENV viral RNA interacts with numerous host RNA binding proteins (RBPs) that aid viral replication and thus constitute potential molecular targets to curb infection. We recently reported that Y-box-binding protein 1 (YBX1) interacts with DENV RNA and is required at a late step of the replication cycle. Here we describe the molecular mechanism by which YBX1 mediates DENV infection. We show that YBX1 interacts with the viral nucleocapsid, distributes to DENV assembly sites and is required for efficient assembly of intracellular infectious virions. These results provide important insights into DENV assembly, revealing novel functions of host RBPs during viral infection and opening new avenues for antiviral intervention.
Collapse
Affiliation(s)
- Mayra Diosa-Toro
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Debbie R. Kennedy
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Julien Pompon
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Mariano A. Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Institute of Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
41
|
Flavivirus infections induce a Golgi stress response in vertebrate and mosquito cells. Sci Rep 2021; 11:23489. [PMID: 34873243 PMCID: PMC8648732 DOI: 10.1038/s41598-021-02929-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023] Open
Abstract
The stress of the Golgi apparatus is an autoregulatory mechanism that is induced to compensate for greater demand in the Golgi functions. No examples of Golgi stress responses due to physiological stimuli are known. Furthermore, the impact on this organelle of viral infections that occupy the vesicular transport during replication is unknown. In this work, we evaluated if a Golgi stress response is triggered during dengue and Zika viruses replication, two flaviviruses whose replicative cycle is heavily involved with the Golgi complex, in vertebrate and mosquito cells. Using GM-130 as a Golgi marker, and treatment with monensin as a positive control for the induction of the Golgi stress response, a significant expansion of the Golgi cisternae was observed in BHK-21, Vero E6 and mosquito cells infected with either virus. Activation of the TFE3 pathway was observed in the infected cells as indicated by the translocation from the cytoplasm to the nucleus of TFE3 and increased expression of pathway targeted genes. Of note, no sign of activation of the stress response was observed in CRFK cells infected with Feline Calicivirus (FCV), a virus released by cell lysis, not requiring vesicular transport. Finally, dilatation of the Golgi complex and translocation of TFE3 was observed in vertebrate cells expressing dengue and Zika viruses NS1, but not NS3. These results indicated that infections by dengue and Zika viruses induce a Golgi stress response in vertebrate and mosquito cells due to the increased demand on the Golgi complex imposed by virion and NS1 processing and secretion.
Collapse
|
42
|
Roles of ESCRT proteins (ALIX and CHIMP4A) and their interplay with ISG15 during tick-borne flavivirus infection. J Virol 2021; 96:e0162421. [PMID: 34851141 PMCID: PMC8826915 DOI: 10.1128/jvi.01624-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites. During infection, virus replication and assembly, whose cellular sites are relatively close, are controlled by virus proteins and a diverse range of host proteins. By siRNA-mediated gene silencing, we showed that ALIX and CHMP4A, two members of the host endosomal sorting complex required for transport (ESCRT) protein machinery, are required during flavivirus infection. Using cell lines expressing subgenomic replicons and replicon virus-like particles, we demonstrated specific roles for ALIX and CHMP4A in viral replication and assembly, respectively. Employing biochemical and imaging methodology, we showed that the ESCRT proteins are recruited by a putative specific late (L) domain motif LYXLA within the NS3 protein of tick-borne flaviviruses. Furthermore, to counteract the recruitment of ESCRT proteins, the host cells may elicit defense mechanisms. We found that ectopic expression of the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) reduced virus replication by suppressing the positive effects of ALIX and CHMP4A. Collectively, these results have provided new insights into flavivirus-host cell interactions that function as checkpoints, including the NS3 and the ESCRT proteins, the ISG15 and the ESCRT proteins, at essential stages of the virus life cycle. IMPORTANCE Flaviviruses are important zoonotic viruses with high fatality rates worldwide. Here, we report that during infection, the virus employs members of ESCRT proteins for virus replication and assembly. Among the ESCRT proteins, ALIX acts during virus replication, while CHMP4A is required during virus assembly. Another important ESCRT protein, TSG101, is not required for virus production. The ESCRT, complex, ALIX-CHMP4A, is recruited to NS3 through their interactions with the putative L domain motif of NS3, while CHMP4A is recruited to E. In addition, we demonstrate the antiviral mechanism of ISG15 and HERC5, which degrades ALIX and CHIMP4A, indirectly targets virus infection. In summary, we reveal host-dependency factors supporting flavivirus infection, but these factors may also be targeted by antiviral host effector mechanisms.
Collapse
|
43
|
Stout AE, Millet JK, Stanhope MJ, Whittaker GR. Furin cleavage sites in the spike proteins of bat and rodent coronaviruses: Implications for virus evolution and zoonotic transfer from rodent species. One Health 2021; 13:100282. [PMID: 34179330 PMCID: PMC8216856 DOI: 10.1016/j.onehlt.2021.100282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/02/2022] Open
Abstract
Bats and rodents comprise two of the world's largest orders of mammals and the order Chiroptera (bats) has been implicated as a major reservoir of coronaviruses in nature and a source of zoonotic transfer to humans. However, the order Rodentia (rodents) also harbors coronaviruses, with two human coronaviruses (HCoV-OC43 and HCoV-HKU1) considered to have rodent origins. The coronavirus spike protein mediates viral entry and is a major determinant of viral tropism; importantly, the spike protein is activated by host cell proteases at two distinct sites, designated as S1/S2 and S2'. SARS-CoV-2, which is considered to be of bat origin, contains a cleavage site for the protease furin at S1/S2, absent from the rest of the currently known betacoronavirus lineage 2b coronaviruses (Sarbecoviruses). This cleavage site is thought to be critical to its replication and pathogenesis, with a notable link to virus transmission. Here, we examine the spike protein across coronaviruses identified in both bat and rodent species and address the role of furin as an activating protease. Utilizing two publicly available furin prediction algorithms (ProP and PiTou) and based on spike sequences reported in GenBank, we show that the S1/S2 furin cleavage site is typically not present in bat virus spike proteins but is common in rodent-associated sequences, and suggest this may have implications for zoonotic transfer. We provide a phylogenetic history of the Embecoviruses (betacoronavirus lineage 2a), including context for the use of furin as an activating protease for the viral spike protein. From a One Health perspective, continued rodent surveillance should be an important consideration in uncovering novel circulating coronaviruses.
Collapse
Affiliation(s)
- Alison E. Stout
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352, Jouy-en-Josas, France
| | - Michael J. Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
- Master of Public Health Program, Cornell University, Ithaca, NY, USA
| |
Collapse
|
44
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
45
|
Maus H, Barthels F, Hammerschmidt SJ, Kopp K, Millies B, Gellert A, Ruggieri A, Schirmeister T. SAR of novel benzothiazoles targeting an allosteric pocket of DENV and ZIKV NS2B/NS3 proteases. Bioorg Med Chem 2021; 47:116392. [PMID: 34509861 DOI: 10.1016/j.bmc.2021.116392] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023]
Abstract
In recent years, dengue virus (DENV) and Zika virus (ZIKV), both mosquito-borne members of the Flaviviridae family, have emerged as intercontinental health issues since their vectors have spread from their tropical origins to temperate climate zones due to climate change and increasing globalization. DENV and ZIKV are positive-sense, single-stranded RNA viruses, whose genomes consist of three structural (capsid, membrane precursor, envelope) and seven non-structural (NS) proteins, all of which are initially expressed as a single precursor polyprotein. For virus maturation, the polyprotein processing is accomplished by host proteases and the viral NS2B/NS3 protease complex, whose inhibitors have been shown to be effective antiviral agents with loss of viral pathogenicity. In this work, we elucidate new structure-activity relationships of benzo[d]thiazole-based allosteric NS2B/NS3 inhibitors. We developed a new series of Y-shaped inhibitors, which, with its larger hydrophobic contact surface, should bind to previously unaddressed regions of the allosteric NS2B/NS3 binding pocket. By scaffold-hopping, we varied the benzo[d]thiazole core and identified benzofuran as a new lead scaffold shifting the selectivity of initially ZIKV-targeting inhibitors to higher activities towards the DENV protease. In addition, we were able to increase the ligand efficiency from 0.27 to 0.41 by subsequent inhibitor truncation and identified N-(5,6-dihydroxybenzo[d]thiazol-2-yl)-4-iodobenzamide as a novel sub-micromolar NS2B/NS3 inhibitor. Utilizing cell-based assays, we could prove the antiviral activity in cellulo. Overall, we report new series of sub-micromolar allosteric DENV and ZIKV inhibitors with good efficacy profile in terms of cytotoxicity and protease inhibition selectivity.
Collapse
Affiliation(s)
- Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Stefan Josef Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Katja Kopp
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Benedikt Millies
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Andrea Gellert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, University of Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany.
| |
Collapse
|
46
|
Nanaware N, Banerjee A, Mullick Bagchi S, Bagchi P, Mukherjee A. Dengue Virus Infection: A Tale of Viral Exploitations and Host Responses. Viruses 2021; 13:v13101967. [PMID: 34696397 PMCID: PMC8541669 DOI: 10.3390/v13101967] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Dengue is a mosquito-borne viral disease (arboviral) caused by the Dengue virus. It is one of the prominent public health problems in tropical and subtropical regions with no effective vaccines. Every year around 400 million people get infected by the Dengue virus, with a mortality rate of about 20% among the patients with severe dengue. The Dengue virus belongs to the Flaviviridae family, and it is an enveloped virus with positive-sense single-stranded RNA as the genetic material. Studies of the infection cycle of this virus revealed potential host targets important for the virus replication cycle. Here in this review article, we will be discussing different stages of the Dengue virus infection cycle inside mammalian host cells and how host proteins are exploited by the virus in the course of infection as well as how the host counteracts the virus by eliciting different antiviral responses.
Collapse
Affiliation(s)
- Nikita Nanaware
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | - Anwesha Banerjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
| | | | - Parikshit Bagchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Correspondence: or (P.B.); or (A.M.)
| | - Anupam Mukherjee
- Division of Virology, ICMR-National AIDS Research Institute, Pune 411026, MH, India; (N.N.); (A.B.)
- Correspondence: or (P.B.); or (A.M.)
| |
Collapse
|
47
|
Current Trends and Limitations in Dengue Antiviral Research. Trop Med Infect Dis 2021; 6:tropicalmed6040180. [PMID: 34698303 PMCID: PMC8544673 DOI: 10.3390/tropicalmed6040180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022] Open
Abstract
Dengue is the most prevalent arthropod-borne viral disease worldwide and affects approximately 2.5 billion people living in over 100 countries. Increasing geographic expansion of Aedes aegypti mosquitoes (which transmit the virus) has made dengue a global health concern. There are currently no approved antivirals available to treat dengue, and the only approved vaccine used in some countries is limited to seropositive patients. Treatment of dengue, therefore, remains largely supportive to date; hence, research efforts are being intensified for the development of antivirals. The nonstructural proteins, 3 and 5 (NS3 and NS5), have been the major targets for dengue antiviral development due to their indispensable enzymatic and biological functions in the viral replication process. NS5 is the largest and most conserved nonstructural protein encoded by flaviviruses. Its multifunctionality makes it an attractive target for antiviral development, but research efforts have, this far, not resulted in the successful development of an antiviral targeting NS5. Increase in structural insights into the dengue NS5 protein will accelerate drug discovery efforts focused on NS5 as an antiviral target. In this review, we will give an overview of the current state of therapeutic development, with a focus on NS5 as a therapeutic target against dengue.
Collapse
|
48
|
Sabir MJ, Al-Saud NBS, Hassan SM. Dengue and human health: A global scenario of its occurrence, diagnosis and therapeutics. Saudi J Biol Sci 2021; 28:5074-5080. [PMID: 34466085 PMCID: PMC8381008 DOI: 10.1016/j.sjbs.2021.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Dengue is one of the highest and rapidly spreading vector-borne viral diseases with high mortality rates. The infection causes acute febrile illness, a major public health concern in the tropics and subtropics globally. The disease is caused by an RNA virus that belongs to the Flaviviridae family. The virus is transferred to humans by the mosquito vector called Aedvrves aegypti, which is the cause of new prevalent sicknesses worldwide. These vector-borne viral diseases spread very fast and pose public health and economic challenges that deemed various prevention and control techniques. The Flavivirus genus consists of five different types of viruses starting from DENV-1 to DENV-5. Thus, the present review focuses on the origin of the virus, how the Dengue virus can be detected, infection, the morphology of the virus, its classifications as proposed by ICTV, the replication and genome of the dengue virus, translation, receptor binding, and some vaccine trial volunteers. In addition, it highlights the current challenges and limitations of effective dengue treatment.
Collapse
Affiliation(s)
- Mernan Jamal Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Najla Bint Saud Al-Saud
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabah Mohmoud Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Fibriansah G, Lim XN, Lok SM. Morphological Diversity and Dynamics of Dengue Virus Affecting Antigenicity. Viruses 2021; 13:v13081446. [PMID: 34452312 PMCID: PMC8402850 DOI: 10.3390/v13081446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 01/30/2023] Open
Abstract
The four serotypes of the mature dengue virus can display different morphologies, including the compact spherical, the bumpy spherical and the non-spherical clubshape morphologies. In addition, the maturation process of dengue virus is inefficient and therefore some partially immature dengue virus particles have been observed and they are infectious. All these viral particles have different antigenicity profiles and thus may affect the type of the elicited antibodies during an immune response. Understanding the molecular determinants and environmental conditions (e.g., temperature) in inducing morphological changes in the virus and how potent antibodies interact with these particles is important for designing effective therapeutics or vaccines. Several techniques, including cryoEM, site-directed mutagenesis, hydrogen-deuterium exchange mass spectrometry, time-resolve fluorescence resonance energy transfer, and molecular dynamic simulation, have been performed to investigate the structural changes. This review describes all known morphological variants of DENV discovered thus far, their surface protein dynamics and the key residues or interactions that play important roles in the structural changes.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Xin-Ni Lim
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shee-Mei Lok
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore 169857, Singapore; (G.F.); (X.-N.L.)
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
- Correspondence:
| |
Collapse
|
50
|
Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nowadays, many viral infections have emerged and are taking a huge toll on human lives globally. Meanwhile, viral resistance to current drugs has drastically increased. Hence, there is a pressing need to design potent broad-spectrum antiviral agents to treat a variety of viral infections and overcome viral resistance. Covalent inhibitors have the potential to achieve both goals owing to their biochemical efficiency, prolonged duration of action, and the capability to inhibit shallow, solvent-exposed substrate-binding domains. In this chapter, we review the structures, activities, and inhibition mechanisms of covalent inhibitors against severe acute respiratory syndrome coronavirus 2, dengue virus, enterovirus, hepatitis C virus, human immunodeficiency virus, and influenza viruses. We also discuss the application of in silico study in covalent inhibitor design.
Collapse
Affiliation(s)
- Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Fatemeh Abdi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|