1
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
- Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
2
|
Yu YS, AboulFotouh K, Xu H, Williams G, Suman J, Cano C, Warnken ZN, C-W Wu K, Williams Iii RO, Cui Z. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders. Int J Pharm 2023; 640:122990. [PMID: 37127138 DOI: 10.1016/j.ijpharm.2023.122990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Intranasal vaccination by directly applying a vaccine dry powder is appealing. However, a method that can be used to transform a vaccine from a liquid to a dry powder and a device that can be used to administer the powder to the desired region(s) of the nasal cavity are critical for successful intranasal vaccination. In the present study, using a model vaccine that contains liposomal monophosphoryl lipid A and QS-21 adjuvant (AdjLMQ) and ovalbumin (OVA) as a model antigen, it was shown that thin-film freeze-drying can be applied to convert the liquid vaccine containing sucrose at a sucrose to lipid ratio of 15:1 (w/w) into dry powders, in the presence or absence of carboxymethyl cellulose sodium salt (CMC) as a mucoadhesive agent. Ultimately, the thin-film freeze-dried AdjLMQ/OVA vaccine powder containing 1.9% (w/w) of CMC (i.e., TFF AdjLMQ/OVA/CMC1.9% powder) was selected for additional evaluation because the TFF AdjLMQ/OVA/CMC1.9% powder was mucoadhesive and maintained the integrity of the antigen and the physical properties of the vaccine. Compared to the TFF AdjLMQ/OVA powder that did not contain CMC, the TFF AdjLMQ/OVA/CMC1.9% powder had a lower moisture content and a higher glass transition temperature. In addition, the TFF AdjLMQ/OVA/CMC1.9% thin films were relatively thicker than the TFF AdjLMQ/OVA thin films without CMC. When sprayed with Aptar Pharma's Unidose Powder Nasal Spray System (UDSP), the TFF AdjLMQ/OVA powder and the TFF AdjLMQ/OVA/CMC1.9% powder generated similar particle size distribution curves, spray patterns, and plume geometries. Importantly, after the TFF AdjLMQ/OVA/CMC1.9% powder was sprayed with the UDSP nasal device, the integrity of the OVA antigen and the AdjLMQ liposomes did not change. Finally, a Taguchi L4 orthogonal array was applied to identify the optimal parameters for using the UDSP device to deliver the TFF AdjLMQ/OVA/CMC1.9% vaccine powder to the middle and lower turbinate and the nasopharynx regions in both adult and child nasal replica casts. Results from this study showed that it is feasible to apply the TFF technology to transform a nasal vaccine candidate from liquid to a dry powder and then use the UDSP nasal device to deliver the TFF vaccine powder to the desired regions in the nasal cavity for intranasal vaccination.
Collapse
Affiliation(s)
- Yu-Sheng Yu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States; National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States
| | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc. Fort Worth, TX, United States
| | | | - Kevin C-W Wu
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan; National Health Research Institute, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Robert O Williams Iii
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, Texas, United States.
| |
Collapse
|
3
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
4
|
Kumar A, Sharma A, Tirpude NV, Padwad Y, Hallan V, Kumar S. Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS-CoV-2 virus. Pharmacol Rep 2022; 74:1238-1254. [PMID: 36125739 PMCID: PMC9487851 DOI: 10.1007/s43440-022-00418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 outbreak has posed a plethora of problems for the global healthcare system and socioeconomic burden. Despite valiant efforts to contain the COVID-19 outbreak, the situation has deteriorated to the point that there are no viable preventive therapies to treat this disease. The case count has skyrocketed globally due to the newly evolved variants. Despite vaccination drives, the re-occurrence of recent pandemic waves has reinforced the importance of innovation/utilization of immune-booster to achieve appropriate long-term vaccine protection. Plant-derived immuno-adjuvants, which have multifaceted functions, can impede infections by boosting the immune system. Many previous studies have shown that formulation of vaccines using plant-derived adjuvant results in long-lasting immunity may overcome the natural tendency of coronavirus immunity to wane quickly. Plant polysaccharides, glycosides, and glycoprotein extracts have reportedly been utilized as enticing adjuvants in experimental vaccines, such as Advax, Matrix-M, and Mistletoe lectin, which have been shown to be highly immunogenic and safe. When employed in vaccine formulation, Advax and Matrix-M generate long-lasting antibodies, a balanced robust Th1/Th2 cytokine profile, and the stimulation of cytotoxic T cells. Thus, the use of adjuvants derived from plants may increase the effectiveness of vaccines, resulting in the proper immunological response required to combat COVID-19. A few have been widely used in epidemic outbreaks, including SARS and H1N1 influenza, and their use could also improve the efficacy of COVID-19 vaccines. In this review, the immunological adjuvant properties of plant compounds as well as their potential application in anti-COVID-19 therapy are thoroughly discussed.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Aashish Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Yogendra Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| |
Collapse
|
5
|
Jung MH, Kole S, Jung SJ. Efficacy of saponin-based inactivated rock bream iridovirus (RBIV) vaccine in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2022; 121:12-22. [PMID: 34974155 DOI: 10.1016/j.fsi.2021.12.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Rock bream iridovirus (RBIV) causes severe mortality in rock bream (Oplegnathus fasciatus) for last two decades. In view of this constant threat of RBIV to the rock bream industry, we conducted the present study with the aim to develop a safe and efficient remedial measure against the virus. In this study, we evaluated the safety and potentiality of squalene, aluminium hydroxide and saponin adjuvants, singly or in combinations, which can be used for developing an efficient inactivated (IV) vaccine to protect rock bream from RBIV infection. The evaluation results demonstrated that saponin (Sa) has the required potential in enacting the antiviral immune response in the host and in providing protection against virus mediated lethality, without causing any adverted side-effects. The study further, showed that a single primary dose of Sa-adjuvanted IV vaccine can confer moderate protections in short (60.04% relative percent mortality (RPS) at 4 wpv) and medium (53.38% RPS at 8 wpv) term post RBIV challenge; whereas, the same vaccine when administered in a prime-boost strategy, it resulted enhanced 93.34% RPS post virus challenge at 4 and 8 wpv. The moderate to high survivability demonstrated by the Sa-adjuvanted IV vaccine, was substantiated by the significant (p < 0.05) upregulation of IL-1β, Mx and PKR gene transcript. All surviving fish from the Sa-adjuvanted IV vaccine groups were strongly protected from re-infection with RBIV (1.1 × 107) at 70 days post infection (dpi). In conclusion, it can be inferred that, Sa-adjuvanted IV RBIV vaccine can be an efficient control measure to protect the rock bream aquaculture industry against the lethal RBIV virus.
Collapse
Affiliation(s)
- Myung-Hwa Jung
- Department of Marine Bio and Medical Sciences, Hanseo University, Republic of Korea
| | - Sajal Kole
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
6
|
Suresh PS, Singh PP, Sharma A, Padwad YS, Sharma U. Steroidal saponins of Trillium govanianum: Quality control, pharmacokinetic analysis, and anti-inflammatory activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Hokello J, Sharma AL, Tyagi M. An Update on the HIV DNA Vaccine Strategy. Vaccines (Basel) 2021; 9:vaccines9060605. [PMID: 34198789 PMCID: PMC8226902 DOI: 10.3390/vaccines9060605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/24/2023] Open
Abstract
In 2020, the global prevalence of human immunodeficiency virus (HIV) infection was estimated to be 38 million, and a total of 690,000 people died from acquired immunodeficiency syndrome (AIDS)–related complications. Notably, around 12.6 million people living with HIIV/AIDS did not have access to life-saving treatment. The advent of the highly active antiretroviral therapy (HAART) in the mid-1990s remarkably enhanced the life expectancy of people living with HIV/AIDS as a result of improved immune functions. However, HAART has several drawbacks, especially when it is not used properly, including a high risk for the development of drug resistance, as well as undesirable side effects such as lipodystrophy and endocrine dysfunctions, which result in HAART intolerability. HAART is also not curative. Furthermore, new HIV infections continue to occur globally at a high rate, with an estimated 1.7 million new infections occurring in 2018 alone. Therefore, there is still an urgent need for an affordable, effective, and readily available preventive vaccine against HIV/AIDS. Despite this urgent need, however, progress toward an effective HIV vaccine has been modest over the last four decades. Reasons for this slow progress are mainly associated with the unique aspects of HIV itself and its ability to rapidly mutate, targeting immune cells and escape host immune responses. Several approaches to an HIV vaccine have been undertaken. However, this review will mainly discuss progress made, including the pre-clinical and clinical trials involving vector-based HIV DNA vaccines and the use of integrating lentiviral vectors in HIV vaccine development. We concluded by recommending particularly the use of integrase-defective lentiviral vectors, owing to their safety profiles, as one of the promising vectors in HIV DNA vaccine strategies both for prophylactic and therapeutic HIV vaccines.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Microbiology and Immunology, Faculty of Biomedical Sciences, Kampala International University-Western Campus, P.O. Box 71, Bushenyi 0256, Uganda;
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
8
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Sarkar S, Piepenbrink MS, Basu M, Thakar J, Keefer MC, Hessell AJ, Haigwood NL, Kobie JJ. IL-33 enhances the kinetics and quality of the antibody response to a DNA and protein-based HIV-1 Env vaccine. Vaccine 2019; 37:2322-2330. [PMID: 30926296 PMCID: PMC6506229 DOI: 10.1016/j.vaccine.2019.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Induction of a sustained and broad antibody (Ab) response is a major goal in developing a protective HIV-1 vaccine. DNA priming alone shows reduced levels of immunogenicity; however, when combined with protein boosting is an attractive vaccination strategy for induction of humoral responses. Using the VC10014 DNA and protein-based vaccine consisting of HIV-1 envelope (Env) gp160 plasmids and trimeric gp140 proteins derived from an HIV-1 clade B infected subject who developed broadly neutralizing serum Abs, and which has been previously demonstrated to induce Tier 2 heterologous neutralizing Abs in rhesus macaques, we evaluated whether MPLA and IL-33 when administered during the DNA priming phase enhances the humoral response in mice. The addition of IL-33 during the gp160 DNA priming phase resulted in high titer gp120-specific plasma IgG after the first immunization. The IL-33 treated mice had higher plasma IgG Ab avidity, breadth, and durability after DNA and protein co-immunization with alum adjuvant as compared to MPLA and alum only treated mice. IL-33 was also associated with a significant IgM Env-specific response and expansion of peritoneal and splenic B-1b B cells. These results indicate that DNA priming in the presence of exogenous IL-33 qualitatively alters the HIV-1 Env-specific humoral response, improving the kinetics and breadth of potentially protective Ab.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael S Piepenbrink
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Madhubanti Basu
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Juilee Thakar
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Michael C Keefer
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - James J Kobie
- Infectious Diseases Division, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
10
|
Immunotherapeutic Potential of Mollusk Hemocyanins in Combination with Human Vaccine Adjuvants in Murine Models of Oral Cancer. J Immunol Res 2019; 2019:7076942. [PMID: 30847353 PMCID: PMC6362480 DOI: 10.1155/2019/7076942] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Mollusk hemocyanins have been used for decades in immunological and clinical applications as natural, nontoxic, nonpathogenic, and nonspecific immunostimulants for the treatment of superficial bladder cancer, as carriers/adjuvants of tumor-associated antigens in cancer vaccine development and as adjuvants to dendritic cell-based immunotherapy, because these glycoproteins induce a bias towards Th1 immunity. Here, we analyzed the preclinical therapeutic potential of the traditional keyhole limpet hemocyanin (KLH) and two new hemocyanins from Concholepas concholepas (CCH) and Fissurella latimarginata (FLH) in mouse models of oral squamous cell carcinoma. Due to the aggressiveness and deadly malignant potential of this cancer, the hemocyanins were applied in combination with adjuvants, such as alum, AddaVax, and QS-21, which have been shown to be safe and effective in human vaccines, to potentiate their antitumor activity. The immunogenic performance of the hemocyanins in combination with the adjuvants was compared, and the best formulation was evaluated for its antitumor effects in two murine models of oral cancer: MOC7 cells implanted in the flank (heterotopic) and bioluminescent AT-84 E7 Luc cells implanted in the floor of the mouth (orthotopic). The results demonstrated that the hemocyanins in combination with QS-21 showed the greatest immunogenicity, as reflected by a robust, specific humoral response predominantly characterized by IgG2a antibodies and a sustained cellular response manifesting as a delayed hypersensitivity reaction. The KLH- and FLH-QS-21 formulations showed reduced tumor development and greater overall survival. Hemocyanins, as opposed to QS-21, had no cytotoxic effect on either oral cancer cell line cultured in vitro, supporting the idea that the antitumor effects of hemocyanins are associated with their modulation of the immune response. Therefore, hemocyanin utilization would allow a lower QS-21 dosage to achieve therapeutic results. Overall, our study opens a new door to further investigation of the use of hemocyanins plus adjuvants for the development of immunotherapies against oral carcinoma.
Collapse
|
11
|
Lee J, Arun Kumar S, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018; 80:31-47. [PMID: 30172933 PMCID: PMC7105045 DOI: 10.1016/j.actbio.2018.08.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022]
Abstract
Engineering vaccine-based therapeutics for infectious diseases is highly challenging, as trial formulations are often found to be nonspecific, ineffective, thermally or hydrolytically unstable, and/or toxic. Vaccines have greatly improved the therapeutic landscape for treating infectious diseases and have significantly reduced the threat by therapeutic and preventative approaches. Furthermore, the advent of recombinant technologies has greatly facilitated growth within the vaccine realm by mitigating risks such as virulence reversion despite making the production processes more cumbersome. In addition, seroconversion can also be enhanced by recombinant technology through kinetic and nonkinetic approaches, which are discussed herein. Recombinant technologies have greatly improved both amino acid-based vaccines and DNA-based vaccines. A plateau of interest has been reached between 2001 and 2010 for the scientific community with regard to DNA vaccine endeavors. The decrease in interest may likely be attributed to difficulties in improving immunogenic properties associated with DNA vaccines, although there has been research demonstrating improvement and optimization to this end. Despite improvement, to the extent of our knowledge, there are currently no regulatory body-approved DNA vaccines for human use (four vaccines approved for animal use). This article discusses engineering DNA vaccines against infectious diseases while discussing advantages and disadvantages of each, with an emphasis on applications of these DNA vaccines. Statement of Significance This review paper summarizes the state of the engineered/recombinant DNA vaccine field, with a scope entailing “Engineering DNA vaccines against infectious diseases”. We endeavor to emphasize recent advances, recapitulating the current state of the field. In addition to discussing DNA therapeutics that have already been clinically translated, this review also examines current research developments, and the challenges thwarting further progression. Our review covers: recombinant DNA-based subunit vaccines; internalization and processing; enhancing immune protection via adjuvants; manufacturing and engineering DNA; the safety, stability and delivery of DNA vaccines or plasmids; controlling gene expression using plasmid engineering and gene circuits; overcoming immunogenic issues; and commercial successes. We hope that this review will inspire further research in DNA vaccine development.
Collapse
|
12
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
13
|
Parenterally Administered Norovirus GII.4 Virus-Like Particle Vaccine Formulated with Aluminum Hydroxide or Monophosphoryl Lipid A Adjuvants Induces Systemic but Not Mucosal Immune Responses in Mice. J Immunol Res 2018; 2018:3487095. [PMID: 29682589 PMCID: PMC5851174 DOI: 10.1155/2018/3487095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
Norovirus (NoV) is a main cause of acute gastroenteritis across all ages worldwide. NoV vaccine candidates currently in clinical trials are based on noninfectious highly immunogenic virus-like particles (VLPs) delivered intramuscularly (IM). Since NoV is an enteric pathogen, it is likely that mucosal immunity has a significant role in protection from infection in the intestine. Due to the fact that IM delivery of NoV VLPs does not generate mucosal immunity, we investigated whether NoV genotype GII.4 VLPs coadministered with aluminum hydroxide (Al(OH)3) or monophosphoryl lipid A (MPLA) would induce mucosal antibodies in mice. Systemic as well as mucosal IgG and IgA antibodies in serum and intestinal and nasal secretions were measured. As expected, strong serum IgG, IgG1, and IgG2a antibodies as well as a dose sparing effect were induced by both Al(OH)3 and MPLA, but no mucosal IgA antibodies were detected. In contrast, IN immunization with GII.4 VLPs without an adjuvant induced systemic as well as mucosal IgA antibody response. These results indicate that mucosal delivery of NoV VLPs is needed for induction of mucosal responses.
Collapse
|
14
|
Wang Y, Wang X, Huang J, Li J. Adjuvant Effect of Quillaja saponaria Saponin (QSS) on Protective Efficacy and IgM Generation in Turbot (Scophthalmus maximus) upon Immersion Vaccination. Int J Mol Sci 2016; 17:325. [PMID: 26950114 PMCID: PMC4813187 DOI: 10.3390/ijms17030325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
The adjuvant effect of Quillaja saponaria saponin (QSS) on protection of turbot fry was investigated with immersion vaccination of formalin-killed Vibrio anguillarum O1 and various concentrations of QSS (5, 25, 45 and 65 mg/L). Fish were challenged at days 7, 14 and 28 post-vaccination. Significantly high relative percent of survival (RPS) ((59.1 ± 13.6)%, (81.7 ± 8.2)%, (77.8 ± 9.6)%) were recorded in the fish that received bacterins immersion with QSS at 45 mg/L, which is comparable to the positive control group vaccinated by intraperitoneal injection (IP). Moreover, a remarkably higher serum antibody titer was also demonstrated after 28 days in the vaccinated fish with QSS (45 mg/L) than those vaccinated fish without QSS (p < 0.05), but lower than the IP immunized fish (p < 0.05). Significant upregulation of IgM gene expression has also been identified in the tissues of skin, gill, spleen and kidney from the immunized fish in comparison to the control fish. Taken together, the present study indicated that QSS was able to dramatically evoke systemic and mucosal immune responses in immunized fish. Therefore, QSS might be a promising adjuvant candidate for fish vaccination via an immersion administering route.
Collapse
Affiliation(s)
- Yujuan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Xiuhua Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jun Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI 49783, USA.
| |
Collapse
|
15
|
Poecheim J, Heuking S, Brunner L, Barnier-Quer C, Collin N, Borchard G. Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release. NANOMATERIALS 2015; 5:2317-2334. [PMID: 28347123 PMCID: PMC5304807 DOI: 10.3390/nano5042317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP) as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA). The formulations included (1) trimethyl chitosan (TMC) nanoparticles, (2) a squalene-in-water nanoemulsion, and (3) a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9). In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2) was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.
Collapse
Affiliation(s)
- Johanna Poecheim
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.
| | - Simon Heuking
- Vaccine Formulation Laboratory, Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Livia Brunner
- Vaccine Formulation Laboratory, Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Christophe Barnier-Quer
- Vaccine Formulation Laboratory, Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Laboratory, Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | - Gerrit Borchard
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland.
| |
Collapse
|
16
|
Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-a saponins are equally effective in inducing specific immune responses. PLoS One 2014; 9:e105374. [PMID: 25148077 PMCID: PMC4141792 DOI: 10.1371/journal.pone.0105374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/19/2014] [Indexed: 12/04/2022] Open
Abstract
Inactivated polio vaccines (IPV) have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV). An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE) and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control), Quil-A (50 µg), AE (400 µg) or QB-90 (50 µg). Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A.
Collapse
|
17
|
Hou J, Liu Y, Hsi J, Wang H, Tao R, Shao Y. Cholera toxin B subunit acts as a potent systemic adjuvant for HIV-1 DNA vaccination intramuscularly in mice. Hum Vaccin Immunother 2014; 10:1274-83. [PMID: 24633335 PMCID: PMC4896579 DOI: 10.4161/hv.28371] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 11/19/2022] Open
Abstract
Cholera toxin B subunit (CTB) was investigated as a classical mucosal adjuvant that can increase vaccine immunogenicity. In this study, we found out the in vitro efficacy of cholera toxin B subunit (CTB) in activating mice bone marrow-derived dendritic cells (BMDCs) through Toll-like receptor signaling pathways. In vitro RNA and transcriptional level profiling arrays revealed that CTB guides high levels of Th1 and Th2 type cytokines, inflammatory cytokines, and chemokines. Based on the robustness of these profiling results, we examined the induction of HIV Env-specific immunity by CTB co-inoculated with HIV Env DNA vaccine intramuscularly in vivo. CTB enhanced HIV-Env specific cellular immune responses in Env-specific IFN-γ ELISPOT, compared with DNA vaccine alone. Moreover, CTB induced high levels of Env specific humoral response and promoted antibody maturation after the third round of vaccination. This combination immunization strategy induced a Th2-type bias response which is indicative of a high ratio of IgG1/IgG2a. This study reports that CTB as a classical mucosal adjuvant could enhance HIV-1 DNA-based vaccine immunogenicity intramuscularly; therefore, these findings suggest that CTB could serve as an effective candidate adjuvant for DNA vaccination.
Collapse
Affiliation(s)
- Jue Hou
- State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention; Beijing, PR China
- Center of Medical Physics and Technology; Hefei Institutes of Physical Science; Chinese Academy of Sciences; Hefei, PR China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention; Beijing, PR China
| | - Jenny Hsi
- State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention; Beijing, PR China
| | - Hongzhi Wang
- Center of Medical Physics and Technology; Hefei Institutes of Physical Science; Chinese Academy of Sciences; Hefei, PR China
| | - Ran Tao
- The Fourth Affiliated Hospital of Anhui Medical University; Hefei, PR China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control; National Center for AIDS/STD Control and Prevention; Chinese Center for Disease Control and Prevention; Beijing, PR China
| |
Collapse
|
18
|
Recent Developments in Preclinical DNA Vaccination. Vaccines (Basel) 2014; 2:89-106. [PMID: 26344468 PMCID: PMC4494203 DOI: 10.3390/vaccines2010089] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022] Open
Abstract
The advantages of genetic immunization of the new vaccine using plasmid DNAs are multifold. For example, it is easy to generate plasmid DNAs, increase their dose during the manufacturing process, and sterilize them. Furthermore, they can be stored for a long period of time upon stabilization, and their protein encoding sequences can be easily modified by employing various DNA-manipulation techniques. Although DNA vaccinations strongly increase Th1-mediated immune responses in animals, several problems persist. One is about their weak immunogenicity in humans. To overcome this problem, various genetic adjuvants, electroporation, and prime-boost methods have been developed preclinically, which are reviewed here.
Collapse
|
19
|
|
20
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
21
|
Abd Alla MD, Wolf R, White GL, Kosanke SD, Cary D, Verweij JJ, Zhang MJ, Ravdin JI. Efficacy of a Gal-lectin subunit vaccine against experimental Entamoeba histolytica infection and colitis in baboons (Papio sp.). Vaccine 2012; 30:3068-75. [PMID: 22406457 DOI: 10.1016/j.vaccine.2012.02.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/03/2012] [Accepted: 02/25/2012] [Indexed: 11/30/2022]
Abstract
To determine the efficacy of a Gal-lectin based intranasal synthetic peptide vaccine, we developed a new experimental primate model of Entamoeba histolytica intestinal infection. Release of xenic E. histolytica trophozoites (5×10(6)) into the small bowel of baboons (Papio sp.) resulted in a rapid intestinal anti-amebic antibody response and a brief infection; however, release of trophozoites directly into the cecum (5 baboons) elicited a sustained E. histolytica infection, as determined by quantitative fecal PCR, and an ulcerative, inflammatory colitis observed on colonoscopy and histopathology. In three controlled experiments, baboons received four immunizations at seven day intervals of 1600 μg of the vaccine/nostril, with Cholera toxin, 20 μg/nostril as adjuvant; vaccinated (n=6) and control baboons (n=6) baboons were then challenged via colonoscopy with xenic trophozoites (5×10(6)). During 90 days of follow up, 250 of 415 (60.24%) fecal samples in control baboons had a (+) PCR for E. histolytica, compared to only 36 of 423 (8.51%) samples from vaccinated baboons (P<0.001). All 6 vaccinated baboons were free of infection by the 51st day after challenge, 5 of 6 controls positive had (+) fecal PCRs for up to 126 days post-challenge (P=0.019). Inflammatory colitis developed in 4 of 6 control baboons post-challenge, with invasive E. histolytica trophozoites present in 2 of the 4 on histopathology. There was no evidence of inflammatory colitis or parasite invasion in any of the vaccinated baboons; there was a strong inverse correlation between positive ELISA OD value indicating the presence of intestinal anti-peptide IgA antibodies and baboons having a positive fecal PCR CT value, P<0.001. In conclusion, we developed a novel primate model of E. histolytica intestinal infection and demonstrated that a Gal-lectin-based intranasal synthetic peptide vaccine was highly efficacious in preventing experimental E. histolytica infection and colitis in baboons.
Collapse
|
22
|
Poinern GEJ, Le XT, Shan S, Ellis T, Fenwick S, Edwards J, Fawcett D. Ultrasonic synthetic technique to manufacture a pHEMA nanopolymeric-based vaccine against the H6N2 avian influenza virus: a preliminary investigation. Int J Nanomedicine 2011; 6:2167-74. [PMID: 22114480 PMCID: PMC3215157 DOI: 10.2147/ijn.s24272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This preliminary study investigated the use of poly (2-hydroxyethyl methacrylate) (pHEMA) nanoparticles for the delivery of the deoxyribonucleic acid (DNA) vaccine pCAG-HAk, which expresses the full length hemagglutinin (HA) gene of the avian influenza A/Eurasian coot/Western Australian/2727/1979 (H6N2) virus with a Kozak sequence which is in the form of a pCAGGS vector. The loaded and unloaded nanoparticles were characterized using field-emission scanning electron microscopy. Further characterizations of the nanoparticles were made using atomic force microscopy and dynamic light scattering, which was used to investigate particle size distributions. This preliminary study suggests that using 100 μg of pHEMA nanoparticles as a nanocarrier/adjuvant produced a reduction in virus shedding and improved the immune response to the DNA vaccine pCAG-HAk.
Collapse
|
23
|
Ubhi K, Masliah E. Recent advances in the development of immunotherapies for tauopathies. Exp Neurol 2011; 230:157-61. [PMID: 20970422 PMCID: PMC3125641 DOI: 10.1016/j.expneurol.2010.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/09/2010] [Accepted: 10/12/2010] [Indexed: 01/03/2023]
Abstract
The use of immunotherapy for Alzheimer's disease (AD) has traditionally focused on the amyloid-β (Aβ) peptide and has shown great potential in both animal and human studies. However, an emerging body of work has begun to concentrate on tau and to develop immunization protocols designed to decrease tau pathology in AD and other tauopathies. This commentary will discuss the use of immunotherapy for AD, focusing on tau immunotherapy in the context of recent reports on the use of tau phospho-peptides in transgenic models of tau pathology.
Collapse
Affiliation(s)
- Kiren Ubhi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
24
|
Mandell RB, Flick R, Staplin WR, Kaniewski LD, Carzoli AK, Manuszak RP, Wang J, Rossi GR, Vahanian NN, Link CJ. The αGal HyperAcute(®) Technology: enhancing immunogenicity of antiviral vaccines by exploiting the natural αGal-mediated zoonotic blockade. Zoonoses Public Health 2011; 56:391-406. [PMID: 19486321 DOI: 10.1111/j.1863-2378.2008.01191.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The αGal HyperAcute(®) Technology exploits a robust zoonotic blockade to enhance potency of antiviral vaccines. Naturally acquired immunity against the common αGal epitope [galactose-alpha(1,3)-galactose-beta(1,4)N-acetylglucosamine-R (Gal-α(1,3)-Gal-β(1,4)-GlcNAc-R)] is facilitated by the loss of a key enzyme in the epitope's biosynthetic pathway. As human cells are devoid of this epitope, chronic stimulus from gut flora leads to high levels of circulating anti-αGal antibodies and the development of a robust immune pathway. As the αGal epitope is immediately recognized as foreign, the naturally acquired αGal immune pathway in humans serves as a strong barrier to zoonotic infection. The αGal HyperAcute(®) Technology takes advantage of this natural process to facilitate the rapid presentation of modified antigens to antigen-presenting cells, leading to a strong immune response. The evolutionary immunity to αGal ensures that the presence of αGal epitopes on antigens will lead to a robust immune response involving cross-activation of T(H)1 immunity, characterized by cytokine secretion and increased phagocytic activity, and T(H)2 immunity characterized by high antibody titres. αGal epitopes can be applied to antiviral vaccines by biological, enzymatic or chemical means. Several detection methods that directly and indirectly verify αGal addition are discussed. Enhanced immunogenicity (humoral and cellular) of αGal-modified vaccines is shown for several antiviral vaccine candidates. αGal modification of antiviral vaccine components leads to enhanced immunogenicity. The existing body of literature describing the utility of αGal epitopes as a safe and robust immunostimulatory and -modulatory agent in humans supports the basis for applying the αGal HyperAcute(®) Technology to the improvement of antiviral vaccines, both new and currently approved.
Collapse
Affiliation(s)
- R B Mandell
- BioProtection Systems Corporation, Ames, IA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cristillo AD, Ferrari MG, Hudacik L, Lewis B, Galmin L, Bowen B, Thompson D, Petrovsky N, Markham P, Pal R. Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations. J Gen Virol 2011; 92:128-40. [PMID: 21169215 PMCID: PMC3052530 DOI: 10.1099/vir.0.023242-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As sexual transmission of human immunodeficiency virus-1 (HIV-1) occurs via the mucosa, an ideal HIV-1 vaccine should induce both mucosal and systemic immunity. We therefore sought to evaluate the induction of mucosal responses using a DNA env prime–gp120 protein boost approach in which sequential nasal and parenteral protein administration was performed with two novel carbohydrate-based adjuvants. These adjuvants, Advax-M and Advax-P, were specifically designed for mucosal and systemic immune enhancement, respectively. Murine intranasal immunization with gp120/Advax-M adjuvant elicited gp120-specific IgA in serum and mucosal secretions that was markedly enhanced by DNA priming. Boosting of DNA-primed mice with gp120/Advax-M and gp120/Advax-P by sequential intranasal and intramuscular immunization, or vice versa, elicited persistent mucosal gp120-specific IgA, systemic IgG and memory T- and B-cell responses. Induction of homologous, but not heterologous, neutralizing activity was noted in the sera of all immunized groups. While confirmation of efficacy is required in challenge studies using non-human primates, these results suggest that the combination of DNA priming with sequential nasal and parenteral protein boosting, with appropriate mucosal and systemic adjuvants, could generate strong mucosal and systemic immunity and may block HIV-1 mucosal transmission and infection.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ragupathi G, Damani P, Deng K, Adams MM, Hang J, George C, Livingston PO, Gin DY. Preclinical evaluation of the synthetic adjuvant SQS-21 and its constituent isomeric saponins. Vaccine 2010; 28:4260-7. [PMID: 20450868 DOI: 10.1016/j.vaccine.2010.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/10/2010] [Accepted: 04/15/2010] [Indexed: 11/19/2022]
Abstract
The saponin fraction QS-21 from Quillaja saponaria has been demonstrated to be a potent immunological adjuvant when mixed with keyhole limpet hemocyanin conjugate vaccines, as well as with other classes of subunit antigen vaccines. QS-21 adjuvant is composed of two isomers that include the apiose and xylose forms in a ratio of 65:35, respectively. The chemical syntheses of these two isomers in pure form have recently been disclosed. Herein we describe detailed in vivo immunological evaluations of these synthetic QS-21 isomeric constituents, employing the GD3-KLH melanoma antigen. With this vaccine construct, high antibody titers against GD3 ganglioside and KLH were elicited when GD3-KLH was co-administered with adjuvant, either as the individual separate synthetic QS-21 isomers (SQS-21-Api or SQS-21-Xyl), or as its reconstituted 65:35 isomeric mixture (SQS-21). These antibody titer levels were comparable to that elicited by vaccinations employing naturally derived QS-21 (PQS-21). Moreover, toxicities of the synthetic saponin adjuvants were also found to be comparable to that of naturally derived PQS-21. These findings demonstrate unequivocally that the adjuvant activity of QS-21 resides in these two principal isomeric forms, and not in trace contaminants within the natural extracts. This lays the foundation for future exploration of structure-function correlations to enable the discovery of novel saponins with increased potency, enhanced stability, and attenuated toxicity.
Collapse
Affiliation(s)
- Govind Ragupathi
- Laboratory of Tumor Vaccinology, Melanoma and Sarcoma Service, Department of Medicine, 1275 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Characterization of T-cell responses in macaques immunized with a single dose of HIV DNA vaccine. J Virol 2009; 84:1243-53. [PMID: 19923181 DOI: 10.1128/jvi.01846-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The optimization of immune responses (IR) induced by HIV DNA vaccines in humans is one of the great challenges in the development of an effective vaccine against AIDS. Ideally, this vaccine should be delivered in a single dose to immunize humans. We recently demonstrated that the immunization of mice with a single dose of a DNA vaccine derived from pathogenic SHIV(KU2) (Delta4SHIV(KU2)) induced long-lasting, potent, and polyfunctional HIV-specific CD8(+) T-cell responses (G. Arrode, R. Hegde, A. Mani, Y. Jin, Y. Chebloune, and O. Narayan, J. Immunol. 178:2318-2327, 2007). In the present work, we expanded the characterization of the IR induced by this DNA immunization protocol to rhesus macaques. Animals immunized with a single high dose of Delta4SHIV(KU2) DNA vaccine were monitored longitudinally for vaccine-induced IR using multiparametric flow cytometry-based assays. Interestingly, all five immunized macaques developed broad and polyfunctional HIV-specific T-cell IR that persisted for months, with an unusual reemergence in the blood following an initial decline but in the absence of antibody responses. The majority of vaccine-specific CD4(+) and CD8(+) T cells lacked gamma interferon production but showed high antigen-specific proliferation capacities. Proliferative CD8(+) T cells expressed the lytic molecule granzyme B. No integrated viral vector could be detected in mononuclear cells from immunized animals, and this high dose of DNA did not induce any detectable autoimmune responses against DNA. Taken together, our comprehensive analysis demonstrated for the first time the capacity of a single high dose of HIV DNA vaccine alone to induce long-lasting and polyfunctional T-cell responses in the nonhuman primate model, bringing new insights for the design of future HIV vaccines.
Collapse
|
29
|
Mishra K, Chanda S, Shukla K, Ganju L. Adjuvant effect of aqueous extract ofRhodiola imbricatarhizome on the immune responses to tetanus toxoid and ovalbumin in rats. Immunopharmacol Immunotoxicol 2009. [DOI: 10.3109/08923970903218874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Transdermal immunization with low-pressure-gene-gun mediated chitosan-based DNA vaccines against Japanese encephalitis virus. Biomaterials 2009; 30:6017-25. [PMID: 19656560 DOI: 10.1016/j.biomaterials.2009.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022]
Abstract
DNA vaccine is a milestone in contemporary vaccine development. It has considerably offset many shortcomings in conventional vaccines. Although DNA vaccines applied through 'traditional' high-pressure gene guns generally elicit high titers of protective immunity, such a practice however requires enormous investment in daunting instruments that often discourage vaccines due to an inevitable pain-eliciting effect. In this study, we exploited a less expensive yet low-pressure-gene-gun that can alleviate such phobia of pain. DNA vaccines were prepared by using the associative feature of cationic chitosan and anionic DNAs. The optimized N/P ratio is 3. The formulized complex sizes to nano-scale. The vaccine complexes were tested in C3H/HeN mice. The expression of GFP reporter gene was observable and traceable in epidermis and spleen over 3 days. The expressions of GFP and the activation of dendritic cells (DCs) were evident and co-localized in hair follicles and epidermis. C3H/HeN mice immunized with the developed chitosan-JEV DNA vaccines can elicit desired JEV specific antibodies, whereby the mice maintained high survival rates against 50xLD(50) JEV challenge. The low-pressure-gene-gun mediated chitosan-based JEV DNA vaccines have proven to be convenient and efficacious, thereby with high capacity in deployment for future prophylaxis against JEV outbreaks.
Collapse
|
31
|
Laddy DJ, Weiner DB. From Plasmids to Protection: A Review of DNA Vaccines Against Infectious Diseases. Int Rev Immunol 2009; 25:99-123. [PMID: 16818367 DOI: 10.1080/08830180600785827] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The field of DNA vaccine development began over 16 years ago with the observation that plasmid DNA could be injected into and expressed in vivo and drive adaptive immune responses. Since then, there has been great interest in developing this technology to create a new generation of vaccines with the ability to elicit both humoral and cellular immune responses from an inherently innocuous injection. However, DNA vaccines have yet to proceed past phase I/II clinical trials in humans--primarily due to a desire to induce more potent immune responses. This review will examine how DNA vaccines function to induce an immune response and how this information might be useful in future vaccine design.
Collapse
Affiliation(s)
- Dominick J Laddy
- Department of Pathology & Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
32
|
Cheng JY, Huang HN, Tseng WC, Li TL, Chan YL, Cheng KC, Wu CJ. Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. J Control Release 2009; 135:242-9. [DOI: 10.1016/j.jconrel.2009.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
|
33
|
Liu GX, Xu QA, Jin J, Li YH, Jia R, Guo JH, Fan MW. Mucosal and systemic immunization with targeted fusion anti-caries DNA plasmid in young rats. Vaccine 2009; 27:2940-7. [PMID: 19428904 DOI: 10.1016/j.vaccine.2009.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/01/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
Early life vaccination is necessary to protect young children from dental caries. Our group had previously reported that a plasmid DNA vaccine pGJA-P/VAX against the glucosyltransferase (GTF) enzyme and cell surface antigen AgI/II (PAc) of Streptococcus mutans (S. mutans) elicited a specific and protective immunity in adult experimental animal models. In this report, early life immunization with the same plasmid was studied following intranasal (i.n.) and intramuscular (i.m.) delivery in murine models. The potential of inducing mucosal and systemic immune responses to special antigens was measured by ELISA. In addition, cytokine production and protection effectiveness against dental caries formation were also investigated. In the i.n. route, rats were primed when they were 5 days old, and boosted after 10 and 20 days with either plasmid pGJA-P/VAX-bupivacaine complexes, or pGJA-P/VAX alone, or empty vector. The pGJA-P/VAX-bupivacaine combination was able to mount the immune responses characterized by increased antibody levels of specific salivary IgA and serum IgG, preferential IFN-gamma production and significant reduction in the dental caries lesions. In the i.m. route, rats were vaccinated with either pGJA-P/VAX alone or empty vector with the same immunization schedule as the i.n. route. Plasmid pGJA-P/VAX alone induced a significant increase in the serum IgG and IFN-gamma production. However, it was not effective in eliciting specific salivary IgA and in decreasing the dental caries formation. All these findings indicate the feasibility of immunity with a targeted fusion DNA vaccine to a young immune system.
Collapse
Affiliation(s)
- G X Liu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Mucosal adjuvanticity of a Shigella invasin complex with dna-based vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:574-86. [PMID: 19225079 DOI: 10.1128/cvi.00435-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protection against many infectious diseases may require the induction of cell-mediated and mucosal immunity. Immunization with plasmid DNA-based vaccines has successfully induced cell-mediated immune responses in small animals but is less potent in humans. Therefore, several methods are under investigation to augment DNA vaccine immunogenicity. In the current study, a mucosal adjuvant consisting of an invasin protein-lipopolysaccharide complex (Invaplex) isolated from Shigella spp. was evaluated as an adjuvant for DNA-based vaccines. Coadministration of plasmid DNA encoding the Orientia tsutsugamushi r56Karp protein with Invaplex resulted in enhanced cellular and humoral responses in intranasally immunized mice compared to immunization with DNA without adjuvant. Mucosal immunoglobulin A, directed to plasmid-encoded antigen, was detected in lung and intestinal compartments after Invaplex-DNA immunization followed by a protein booster. Moreover, immunization with Invaplex elicited Shigella-specific immune responses, highlighting its potential use in a combination vaccine strategy. The capacity of Invaplex to enhance the immunogenicity of plasmid-encoded genes suggested that Invaplex promoted the uptake and expression of the delivered genes. To better understand the native biological activities of Invaplex related to its adjuvanticity, interactions between Invaplex and mammalian cells were characterized. Invaplex rapidly bound to and was internalized by nonphagocytic, eukaryotic cells in an endocytic process dependent on actin polymerization and independent of microtubule formation. Invaplex also mediated transfection with several plasmid DNA constructs, which could be inhibited with monoclonal antibodies specific for IpaB and IpaC or Invaplex-specific polyclonal sera. The cellular binding and transport capabilities of Invaplex likely contribute to the adjuvanticity and immunogenicity of Invaplex.
Collapse
|
35
|
Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009; 27:1787-96. [PMID: 19208455 DOI: 10.1016/j.vaccine.2009.01.091] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 01/18/2009] [Accepted: 01/19/2009] [Indexed: 12/24/2022]
Abstract
Saponins are natural glycosides of steroid or triterpene which exhibited many different biological and pharmacological activities. Notably, saponins can also activate the mammalian immune system, which have led to significant interest in their potential as vaccine adjuvants. The most widely used saponin-based adjuvants are Quil A and its derivatives QS-21, isolated from the bark of Quillaja saponaria Molina, which have been evaluated in numerous clinical trials. Their unique capacity to stimulate both the Th1 immune response and the production of cytotoxic T-lymphocytes (CTLs) against exogenous antigens makes them ideal for use in subunit vaccines and vaccines directed against intracellular pathogens as well as for therapeutic cancer vaccines. However, Quillaja saponins have serious drawbacks such as high toxicity, undesirable haemolytic effect and instability in aqueous phase, which limits their use as adjuvant in vaccination. It has driven much research for saponin-based adjuvant from other kinds of natural products. This review will summarize the current advances concerning adjuvant effects of different kinds of saponins. The structure-activity relationship of saponin adjuvants will also be discussed in the light of recent findings. It is hoped that the information collated here will provide the reader with information regarding the adjuvant potential applications of saponins and stimulate further research into these compounds.
Collapse
Affiliation(s)
- Hong-Xiang Sun
- Key Laboratory of Animal Epidemic Etiology & Immunological Prevention of Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Kaixuan Road 268, Hangzhou 310029, PR China.
| | | | | |
Collapse
|
36
|
Deng K, Adams MM, Damani P, Livingston PO, Ragupathi G, Gin DY. Synthesis of QS-21-xylose: establishment of the immunopotentiating activity of synthetic QS-21 adjuvant with a melanoma vaccine. Angew Chem Int Ed Engl 2008; 47:6395-8. [PMID: 18624313 DOI: 10.1002/anie.200801885] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Deng
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
37
|
Deng K, Adams M, Damani P, Livingston P, Ragupathi G, Gin D. Synthesis of QS-21-Xylose: Establishment of the Immunopotentiating Activity of Synthetic QS-21 Adjuvant with a Melanoma Vaccine. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Deng K, Adams MM, Gin DY. Synthesis and structure verification of the vaccine adjuvant QS-7-Api. Synthetic access to homogeneous Quillaja saponaria immunostimulants. J Am Chem Soc 2008; 130:5860-1. [PMID: 18410100 DOI: 10.1021/ja801008m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
QS-7-Api is an exceedingly potent immuno-adjuvant isolated from the bark of Quillaja saponaria. It is significantly less toxic than QS-21, a related saponin that is currently the favored adjuvant in anticancer and antiviral vaccine clinical trials. Tedious isolation/purification protocols and uncertainty in its structural constitution have hindered the clinical development of QS-7. A chemical synthesis of QS-7-Api is described, providing structural verification of the adjuvant. A novel semisynthetic sequence to QS-7-Api has also been established, greatly facilitating access to QS-7 for preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Kai Deng
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | | | | |
Collapse
|
39
|
Cristillo AD, Galmin L, Restrepo S, Hudacik L, Suschak J, Lewis B, Draghia-Akli R, Aziz N, Weiss D, Markham P, Pal R. HIV-1 Env vaccine comprised of electroporated DNA and protein co-administered with Talabostat. Biochem Biophys Res Commun 2008; 370:22-6. [PMID: 18329382 DOI: 10.1016/j.bbrc.2008.02.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 02/29/2008] [Indexed: 11/26/2022]
Abstract
Selection of potent yet low reactogenic adjuvants for protein immunization is important for HIV-1 vaccine development. Immunogenicity of electroporated DNA (HIV env) and recombinant gp120, administered with either QS-21 or the orally administered immunomodulator, Talabostat, was evaluated in BALB/c mice. Electroporation of low dose DNA elicited Th1 cytokines and anti-envelope antibodies. Immunization with gp120 protein alone with or without Talabostat elicited lower Th1 and Th2 cytokine levels but comparable anti-gp120 antibodies to QS-21-formulated protein. Boosting of DNA-primed mice with gp120/Talabostat induced similar anti-gp120 antibody titers and slightly higher levels of Th1 and Th2 cytokines relative to QS-21-formulated protein. Induction of CD8(+) and CD4(+) T cells and functional CTL activity was noted. These results highlight the potential use of orally administered Talabostat for efficient protein boosting of antibody and T-cell responses primed by DNA.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories, Inc., 5510 Nicholson Lane, Kensington, MD 20895, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
The development of more advanced and effective vaccines is of great interest in modern medicine. These new-generation vaccines, based on recombinant proteins or DNA, are often less reactogenic and immunogenic than traditional vaccines. Thus, there is an urgent need for the development of new and improved adjuvants. Besides many other immunostimulatory components, the bacterial ghost (BG) system is currently under investigation as a potent vaccine delivery system with intrinsic adjuvant properties. BGs are nonliving cell envelope preparations from Gram-negative cells, devoid of cytoplasmic contents, while their cellular morphology and native surface antigenic structures remain preserved. Owing to the particulate nature of BGs and the fact that they contain many well known immune-stimulating compounds, BGs have the potential to enhance immune responses against ghost-delivered target antigens.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Chemistry, Pharmaceutical
- Drug Carriers
- Genetic Vectors
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/immunology
- Humans
- Immunity, Mucosal
- Technology, Pharmaceutical/trends
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Eva M Riedmann
- Department of Chromosome Biology, Max F Perutz Laboratories, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
42
|
Rajput ZI, Hu SH, Xiao CW, Arijo AG. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 2007; 8:153-61. [PMID: 17323426 PMCID: PMC1810383 DOI: 10.1631/jzus.2007.b0153] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 05/26/2006] [Indexed: 11/11/2022]
Abstract
Vaccines require optimal adjuvants including immunopotentiator and delivery systems to offer long term protection from infectious diseases in animals and man. Initially it was believed that adjuvants are responsible for promoting strong and sustainable antibody responses. Now it has been shown that adjuvants influence the isotype and avidity of antibody and also affect the properties of cell-mediated immunity. Mostly oil emulsions, lipopolysaccharides, polymers, saponins, liposomes, cytokines, ISCOMs (immunostimulating complexes), Freund's complete adjuvant, Freund's incomplete adjuvant, alums, bacterial toxins etc., are common adjuvants under investigation. Saponin based adjuvants have the ability to stimulate the cell mediated immune system as well as to enhance antibody production and have the advantage that only a low dose is needed for adjuvant activity. In the present study the importance of adjuvants, their role and the effect of saponin in immune system is reviewed.
Collapse
Affiliation(s)
- Zahid Iqbal Rajput
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Song-hua Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Chen-wen Xiao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310029, China
| | - Abdullah G. Arijo
- Department of Parasitology, Sindh Agriculture University, Tando Jam 70060, Pakistan
| |
Collapse
|
43
|
Kojima Y, Jounai N, Takeshita F, Nakazawa M, Okuda K, Watabe S, Xin KQ, Okuda K. The degree of apoptosis as an immunostimulant for a DNA vaccine against HIV-1 infection. Vaccine 2007; 25:438-45. [PMID: 17079059 DOI: 10.1016/j.vaccine.2006.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/26/2006] [Accepted: 08/03/2006] [Indexed: 11/25/2022]
Abstract
To regulate the expression of the apoptotic gene, we constructed bicistronic DNA vaccines that encode for HIV env and caspase-3 mutant (casp 3m) that are expressed via the encephalomyocarditis virus internal ribosomal entry site (IRES) or cytomegalovirus (CMV) promoter-dependent translations. While IRES-casp 3m induced weak apoptosis and caused little reduction in antigen expression, CMV-casp 3m elicited strong apoptosis and led to a marked decrease in the antigen expression. Therefore, IRES-casp 3m augmented HIV-specific immune responses, and IRES-casp 3m induced significant protection against the vaccinia-HIV chimeric virus. These results suggest that the appropriate level of apoptosis is important for DNA vaccine development.
Collapse
Affiliation(s)
- Yoshitsugu Kojima
- Department of Molecular Biodefense Research, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
It is well-established that most pathogens that cause infectious diseases enter the host via mucosal membranes of the respiratory, digestive and genital tracts. Some parenterally administered vaccines induce protection against mucosal pathogens. However, there is increasing evidence that mucosal protection is better afforded by mucosal vaccination, particularly for the induction of memory responses. Mucosal vaccines must pass several difficult hurdles before entering the host and inducing an effective and protective immune response. This review deals with present and past efforts in devising effective mucosal vaccines using delivery systems and immunopotentiating adjuvants for protein-based vaccines. The paper will conclude with the authors' opinion on how the field will or should progress in the future and what will be the required components of ideal future mucosal vaccines that can induce immunological memory.
Collapse
Affiliation(s)
- Michael Vajdy
- Chiron Vaccines, 4560 Horton Street, Emeryville, California 94608, USA.
| | | |
Collapse
|
45
|
Cox E, Verdonck F, Vanrompay D, Goddeeris B. Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res 2006; 37:511-39. [PMID: 16611561 DOI: 10.1051/vetres:2006014] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 01/10/2006] [Indexed: 12/21/2022] Open
Abstract
In developing veterinary mucosal vaccines and vaccination strategies, mucosal adjuvants are one of the key players for inducing protective immune responses. Most of the mucosal adjuvants seem to exert their effect via binding to a receptor/or target cells and these properties were used to classify the mucosal adjuvants reviewed in the present paper: (1) ganglioside receptor-binding toxins (cholera toxin, LT enterotoxin, their B subunits and mutants); (2) surface immunoglobulin binding complex CTA1-DD; (3) TLR4 binding lipopolysaccharide; (4) TLR2-binding muramyl dipeptide; (5) Mannose receptor-binding mannan; (6) Dectin-1-binding ss 1,3/1,6 glucans; (7) TLR9-binding CpG-oligodeoxynucleotides; (8) Cytokines and chemokines; (9) Antigen-presenting cell targeting ISCOMATRIX and ISCOM. In addition, attention is given to two adjuvants able to prime the mucosal immune system following a systemic immunization, namely 1alpha, 25(OH)2D3 and cholera toxin.
Collapse
Affiliation(s)
- Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | |
Collapse
|
46
|
Someya K, Ami Y, Nakasone T, Izumi Y, Matsuo K, Horibata S, Xin KQ, Yamamoto H, Okuda K, Yamamoto N, Honda M. Induction of Positive Cellular and Humoral Immune Responses by a Prime-Boost Vaccine Encoded with Simian Immunodeficiency Virusgag/pol. THE JOURNAL OF IMMUNOLOGY 2006; 176:1784-95. [PMID: 16424209 DOI: 10.4049/jimmunol.176.3.1784] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is believed likely that immune responses are responsible for controlling viral load and infection. In this study, when macaques were primed with plasmid DNA encoding SIV gag and pol genes (SIVgag/pol DNA) and then boosted with replication-deficient vaccinia virus DIs recombinant expressing the same genes (rDIsSIVgag/pol), this prime-boost regimen generated higher levels of Gag-specific CD4+ and CD8+ T cell responses than did either SIVgag/pol DNA or rDIsSIVgag/pol alone. When the macaques were i.v. challenged with pathogenic simian/HIV, the prime-boost group maintained high CD4+ T cell counts and reduced plasma viral loads up to 30 wk after viral challenge, whereas the rDIsSIVgag/pol group showed only a partial attenuation of the viral infection, and the group immunized with SIVgag/pol DNA alone showed none at all. The protection levels were better correlated with the levels of virus-specific T cell responses than the levels of neutralization Ab responses. These results demonstrate that a vaccine regimen that primes with DNA and then boosts with a replication-defective vaccinia virus DIs generates anti-SIV immunity, suggesting that it will be a promising vaccine regimen for HIV-1 vaccine development.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Female
- Flow Cytometry
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genetic Vectors
- Immunity, Cellular
- Immunization, Secondary
- Interferon-gamma/metabolism
- Kinetics
- Macaca fascicularis
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccinia virus
Collapse
Affiliation(s)
- Kenji Someya
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cristillo AD, Wang S, Caskey MS, Unangst T, Hocker L, He L, Hudacik L, Whitney S, Keen T, Chou THW, Shen S, Joshi S, Kalyanaraman VS, Nair B, Markham P, Lu S, Pal R. Preclinical evaluation of cellular immune responses elicited by a polyvalent DNA prime/protein boost HIV-1 vaccine. Virology 2005; 346:151-68. [PMID: 16325880 DOI: 10.1016/j.virol.2005.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/19/2005] [Accepted: 10/21/2005] [Indexed: 10/25/2022]
Abstract
While DNA vaccines have been shown to prime cellular immune responses, levels are often low in nonhuman primates or humans. Hence, efforts have been directed toward boosting responses by combining DNA with different vaccination modalities. To this end, a polyvalent DNA prime/protein boost vaccine, consisting of codon optimized HIV-1 env (A, B, C, E) and gag (C) and homologous gp120 proteins in QS-21, was evaluated in rhesus macaques and BALB/c mice. Humoral and cellular responses, detected following DNA immunization, were increased following protein boost in macaques and mice. In dissecting cellular immune responses in mice, protein-enhanced responses were found to be mediated by CD4+ and CD8+ T cells with a Th1 cytokine bias. Our study reveals that, in addition to augmenting humoral responses, protein boosting of DNA-primed animals augments cellular immune responses mediated by CD8+ CTL, CD4+ T-helper cells and Th1 cytokines; thus, offering much promise in controlling HIV-1 in vaccinees.
Collapse
Affiliation(s)
- Anthony D Cristillo
- Advanced BioScience Laboratories, Department of Cell Biology, 5510 Nicholson Lane, Kensington, MD 20895, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Host defenses against Streptococcus pneumoniae involve opsonophagocytosis mediated by antibodies and complement. Because the pneumococcus is a respiratory pathogen, mucosal immunity may play an important role in the defense against infection. The mechanism for protection in mucosal immunity consists of induction of immunity by the activation of lymphocytes within the mucosal-associated lymphoid tissues, transport of antigen-specific B and T cells from inductive sites through bloodstream and distribute to distant mucosal effector sites. Secretory IgA is primarily involved in protection of mucosal surfaces. Mucosal immunization is an effective way of inducing immune responses at mucosal surfaces. Several mucosal vaccines are in various stages of development. A number of mucosal adjuvants have been proposed. CpG oligodeoxynucleotide (ODN) has been shown to be an effective mucosal adjuvant for various antigens. Mucosal immunity induced by intranasal immunization was studied with a pneumococcal glycoconjugate, using CpG ODN as adjuvant. Mice immunized with type 9V polysaccharide (PS) conjugated to inactivated pneumolysin (Ply) plus CpG produced high levels of 9V PS IgG and IgA antibodies compared to the group that received the conjugate alone. High levels of subclasses of IgGI, IgG2 and IgG3 antibodies were also observed in sera of mice immunized with 9V PS-Ply plus CpG. In addition, high IgG and IgA antibody responses were observed in sera of young mice immunized with 9V PS-Ply plus CpG or the conjugate plus non-CpG compared with the group received the conjugate alone. These results reveal that mucosal immunization with pneumococcal glycoconjugate using CpG as adjuvant can confer protective immunity against pneumococcal infection.
Collapse
Affiliation(s)
- Chi-Jen Lee
- Center for Biologics and Research, Food and Drug Administration, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
49
|
Zhou J, Hinton DR, Stohlman SA, Liu CP, Zhong L, Marten NW. Maintenance of CD8+ T cells during acute viral infection of the central nervous system requires CD4+ T cells but not interleukin-2. Viral Immunol 2005; 18:162-9. [PMID: 15802960 DOI: 10.1089/vim.2005.18.162] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The JHM strain of mouse hepatitis virus (JHMV) is rapidly cleared from the central nervous system (CNS) by CD8(+) T cells. In the absence of CD4(+) T cells, fewer CD8(+) T cells are found within the CNS in association with a coordinate increase in apoptotic lymphocytes. Previous data suggested that CD4(+) T cells may support CD8(+) T cells through secretion of interleukin-2 (IL-2). To determine the in vivo role of IL-2 during CNS infection, IL-2 signaling was inhibited via administration of a neutralizing IL-2-specific monoclonal antibody (mAb). In contrast to depletion of CD4(+) T cells, inhibition of IL-2 signaling did not influence CD8(+) T cell infiltration, effector cell function or survival within the CNS. These data suggest that the cellular immune response to acute neurotropic JHMV infection requires a distinct CD4(+) T cell component, but is independent of a requirement for IL-2 for induction, activation, recruitment, and/or maintenance of CD8(+) T cells within the CNS during acute infection.
Collapse
Affiliation(s)
- Jiehao Zhou
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Pinczewski J, Zhao J, Malkevitch N, Patterson LJ, Aldrich K, Alvord WG, Robert-Guroff M. Enhanced immunity and protective efficacy against SIVmac251 intrarectal challenge following ad-SIV priming by multiple mucosal routes and gp120 boosting in MPL-SE. Viral Immunol 2005; 18:236-43. [PMID: 15802969 DOI: 10.1089/vim.2005.18.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previously, 39% of rhesus macaques primed orally, intranasally, and intratracheally with adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinants and boosted with gp120 in monophosphoryl lipid A-stable emulsion (MPL-SE) remained aviremic or cleared or controlled viremia at the threshold of detection following SIV(mac251) intrarectal challenge (Study B). In contrast, no macaques primed orally and intranasally with Ad-SIV recombinants and boosted with gp120 in Quillaja Saponaria-21 exhibited undetectable viremia post-challenge (Study A). We conducted a detailed comparison of the studies to elucidate the effect of different vaccine regimens on induced immunity associated with the different challenge outcomes. Quantitative viral load comparisons were statistically analyzed. All immune responses were assessed at identical timepoints post-immunization, and cellular immunity was re-evaluated on cryopreserved cells from Study B macaques to match Study A data acquired with frozen cells. Study B exhibited greater protective efficacy, increased levels of p11C and p54m tetramer positive cells and a trend toward enhanced interferon-gamma secreting cells in response to Env and Gag peptides, modestly enhanced serum neutralizing antibodies, and greater positivity in anti-gp120 rectal IgA and IgG antibodies. Study A macaques exhibited greater positivity in salivary IgA anti-gp120 antibodies. Thus, the vaccine regimen using oral-intranasal-intratracheal priming and protein boosting in MPL-SE was superior, eliciting greater protective efficacy against pathogenic SIV(mac251) and enhanced SIV-specific immunity, systemically and at rectal sites. The mechanism(s) by which binding antibodies, lacking neutralizing activity against the primary challenge virus, may contribute to protection requires further study.
Collapse
Affiliation(s)
- Joel Pinczewski
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|