1
|
LAMP-1 Chimeric to HIV-1 p55Gag in the Immunization of Neonate Mice Induces an Early Germinal Center Formation and AID Expression. Vaccines (Basel) 2022; 10:vaccines10081246. [PMID: 36016134 PMCID: PMC9414238 DOI: 10.3390/vaccines10081246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.
Collapse
|
2
|
Studstill CJ, Pritzl CJ, Seo YJ, Kim DY, Xia C, Wolf JJ, Nistala R, Vijayan M, Cho YB, Kang KW, Lee SM, Hahm B. Sphingosine kinase 2 restricts T cell immunopathology but permits viral persistence. J Clin Invest 2021; 130:6523-6538. [PMID: 32897877 DOI: 10.1172/jci125297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/02/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic viral infections are often established by the exploitation of immune-regulatory mechanisms that result in nonfunctional T cell responses. Viruses that establish persistent infections remain a serious threat to human health. Sphingosine kinase 2 (SphK2) generates sphingosine 1-phosphate, which is a molecule known to regulate multiple cellular processes. However, little is known about SphK2's role during the host immune responses to viral infection. Here, we demonstrate that SphK2 functions during lymphocytic choriomeningitis virus Cl 13 (LCMV Cl 13) infection to limit T cell immune pathology, which subsequently aids in the establishment of virus-induced immunosuppression and the resultant viral persistence. The infection of Sphk2-deficient (Sphk2-/-) mice with LCMV Cl 13 led to the development of nephropathy and mortality via T cell-mediated immunopathology. Following LCMV infection, Sphk2-/- CD4+ T cells displayed increased activity and proliferation, and these cells promoted overactive LCMV Cl 13-specific CD8+ T cell responses. Notably, oral instillation of an SphK2-selective inhibitor promoted protective T cell responses and accelerated the termination of LCMV Cl 13 persistence in mice. Thus, SphK2 is indicated as an immunotherapeutic target for the control of persistent viral infections.
Collapse
Affiliation(s)
- Caleb J Studstill
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Curtis J Pritzl
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Dae Young Kim
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine
| | - Chuan Xia
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ravi Nistala
- Division of Nephrology, Department of Medicine, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Korea.,College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, Missouri, USA
| |
Collapse
|
3
|
Cheminay C, Körner J, Bernig C, Brückel M, Feigl M, Schletz M, Suter M, Chaplin P, Volkmann A. A single vaccination with non-replicating MVA at birth induces both immediate and long-term protective immune responses. Vaccine 2018; 36:2427-2434. [PMID: 29599088 DOI: 10.1016/j.vaccine.2018.03.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/17/2017] [Accepted: 03/16/2018] [Indexed: 11/16/2022]
Abstract
Newborns are considered difficult to protect against infections shortly after birth, due to their ineffective immune system that shows quantitative and qualitative differences compared to adults. However, here we show that a single vaccination of mice at birth with a replication-deficient live vaccine Modified Vaccinia Ankara [MVA] efficiently induces antigen-specific B- and T-cells that fully protect against a lethal Ectromelia virus challenge. Protection was induced within 2 weeks and using genetically modified mice we show that this protection was mainly T-cell dependent. Persisting immunological T-cell memory and neutralizing antibodies were obtained with the single vaccination. Thus, MVA administered as early as at birth induced immediate and long-term protection against an otherwise fatal disease and appears attractive as a new generation smallpox vaccine that is effective also in children. Moreover, it may have the potential to serve as platform for childhood vaccines as indicated by measles specific T- and B-cell responses induced in newborn mice vaccinated with recombinant MVA expressing measles antigens.
Collapse
Affiliation(s)
- Cédric Cheminay
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Jana Körner
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Constanze Bernig
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Michael Brückel
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Markus Feigl
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Martin Schletz
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Mark Suter
- University of Zürich, Dekanat Vetsuisse-Fakultät Immunology, Winterthurerstrasse 204, CH-8057 Zürich, Switzerland
| | - Paul Chaplin
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstrasse 13, D-82152 Martinsried, Germany.
| |
Collapse
|
4
|
Farrag MA, Amer HM, Öhlschläger P, Hamad ME, Almajhdi FN. Novel recombinant DNA vaccine candidates for human respiratory syncytial virus: Preclinical evaluation of immunogenicity and protection efficiency. Hum Vaccin Immunother 2017; 13:1586-1597. [PMID: 28272978 DOI: 10.1080/21645515.2017.1295190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The development of safe and potent vaccines for human respiratory syncytial virus (HRSV) is still a challenge for researchers worldwide. DNA-based immunization is currently a promising approach that has been used to generate human vaccines for different age groups. In this study, novel HRSV DNA vaccine candidates were generated and preclinically tested in BALB/c mice. Three different versions of the codon-optimized HRSV fusion (F) gene were individually cloned into the pPOE vector. The new recombinant vectors either express full-length (pPOE-F), secretory (pPOE-TF), or M282-90 linked (pPOE-FM2) forms of the F protein. Distinctive expression of the F protein was identified in HEp-2 cells transfected with the different recombinant vectors using ELISA and immunofluorescence. Mice immunization verified the potential for recombinant vectors to elicit significant levels of neutralizing antibodies and CD8+ T-cell lymphocytes. pPOE-TF showed higher levels of gene expression in cell culture and better induction of the humoral and cellular immune responses. Following virus challenge, mice that had been immunized with the recombinant vectors were able to control virus replication and displayed lower inflammation compared with mice immunized with empty pPOE vector or formalin-inactivated HRSV vaccine. Moreover, pulmonary cytokine profiles of mice immunized with the 3 recombinant vectors were similar to those of the mock infected group. In conclusion, recombinant pPOE vectors are promising HRSV vaccine candidates in terms of their safety, immunogenicity and protective efficiency. These data encourage further evaluation in phase I clinical trials.
Collapse
Affiliation(s)
- Mohamed A Farrag
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Haitham M Amer
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia.,b Department of Virology , Faculty of Veterinary Medicine, Cairo University , Giza , Egypt
| | - Peter Öhlschläger
- c Institute of Nano- and Biotechnology, Department of Chemistry and Biotechnology , Aachen University of Applied Sciences , Juelich , Germany
| | - Maaweya E Hamad
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Fahad N Almajhdi
- a Department of Botany and Microbiology , College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
5
|
Dai G, Rady HF, Huang W, Shellito JE, Mason C, Ramsay AJ. Gene-based neonatal immune priming potentiates a mucosal adenoviral vaccine encoding mycobacterial Ag85B. Vaccine 2016; 34:6267-6275. [PMID: 27823900 DOI: 10.1016/j.vaccine.2016.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/01/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022]
Abstract
Tuberculosis remains a major public health hazard worldwide, with neonates and young infants potentially more susceptible to infection than adults. BCG, the only vaccine currently available, provides some protection against tuberculous meningitis in children but variable efficacy in adults, and is not safe to use in immune compromised individuals. A safe and effective vaccine that could be given early in life, and that could also potentiate subsequent booster immunization, would represent a significant advance. To test this proposition, we have generated gene-based vaccine vectors expressing Ag85B from Mycobacterium tuberculosis (Mtb) and designed experiments to test their immunogenicity and protective efficacy particularly when given in heterologous prime-boost combination, with the initial DNA vaccine component given soon after birth. Intradermal delivery of DNA vaccines elicited Th1-based immune responses against Ag85B in neonatal mice but did not protect them from subsequent aerosol challenge with virulent Mtb H37Rv. Recombinant adenovirus vectors encoding Ag85B, given via the intranasal route at six weeks of age, generated moderate immune responses and were poorly protective. However, neonatal DNA priming following by mucosal boosting with recombinant adenovirus generated strong immune responses, as evidenced by strong Ag85B-specific CD4+ and CD8+ T cell responses, both in the lung-associated lymph nodes and the spleen, by the quality of these responding cells (assessed by their capacity to secrete multiple antimicrobial factors), and by improved protection, as indicated by reduced bacterial burden in the lungs following pulmonary TB challenge. These results suggest that neonatal immunization with gene-based vaccines may create a favorable immunological environment that potentiates the pulmonary mucosal boosting effects of a subsequent heterologous vector vaccine encoding the same antigen. Our data indicate that immunization early in life with mycobacterial antigens in an appropriate vaccine setting can prime for protective immunity against Mtb.
Collapse
Affiliation(s)
- Guixiang Dai
- Department of Microbiology, Immunology & Parasitology, LSUHSC-New Orleans, LA 70112, USA; The Louisiana Vaccine Center, LSUHSC-New Orleans, LA 70112, USA
| | - Hamada F Rady
- Department of Microbiology, Immunology & Parasitology, LSUHSC-New Orleans, LA 70112, USA; The Louisiana Vaccine Center, LSUHSC-New Orleans, LA 70112, USA
| | - Weitao Huang
- Department of Microbiology, Immunology & Parasitology, LSUHSC-New Orleans, LA 70112, USA; The Louisiana Vaccine Center, LSUHSC-New Orleans, LA 70112, USA
| | - Judd E Shellito
- Internal Medicine, LSUHSC-New Orleans, LA 70112, USA; The Louisiana Vaccine Center, LSUHSC-New Orleans, LA 70112, USA
| | - Carol Mason
- Internal Medicine, LSUHSC-New Orleans, LA 70112, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology & Parasitology, LSUHSC-New Orleans, LA 70112, USA; Internal Medicine, LSUHSC-New Orleans, LA 70112, USA; The Louisiana Vaccine Center, LSUHSC-New Orleans, LA 70112, USA.
| |
Collapse
|
6
|
Liu X, Zhang S, Li X, Zheng P, Hu F, Zhou Z. Vaccination with a co-expression DNA plasmid containing GAD65 fragment gene and IL-10 gene induces regulatory CD4(+) T cells that prevent experimental autoimmune diabetes. Diabetes Metab Res Rev 2016; 32:522-33. [PMID: 26797873 DOI: 10.1002/dmrr.2780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/11/2015] [Accepted: 01/15/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND The non-obese diabetic (NOD) mouse is a commonly used animal model for studying type 1 diabetes (T1D). The aims of our study were to explore the diabetes-preventive effect in NOD mice and the potential mechanisms of an optimized co-expression DNA vaccine containing GAD65 fragment gene with the IL-10 gene (SGAD65190-315 /IL-10). METHODS Female NOD mice at the age of 3-4 weeks old were randomly divided into two groups and received intra-muscular injection of either blank pBudCE4.l vector (n = 34) or pBudCE4.l carrying the SGAD65190-315 /IL-10 (n = 32). The incidence of diabetes was monitored up to 30 weeks of age. The severity of insulitis, apoptosis rate of β cells and relevant mechanisms were examined. RESULTS Administration with SGAD65190-315 /IL-10 blocked the onset of autoimmune diabetes in NOD mice, significantly suppressed islet inflammation, inhibited the apoptosis of islet β cells, induced immune tolerance to autoantigen GAD65 and proinsulin and shifted the Th1/Th2 balance towards Th2. More importantly, the frequencies of CD4(+) CD25(+) Foxp3(+) regulatory T cells (Tregs) in the spleen and pancreatic lymph nodes in vaccine-immunized mice were significantly increased, and these Tregs were GAD65-reactive. In addition, Treg depletion by anti-CD25 mAb administration abolished the protective effects of SGAD65190-315 /IL-10 on diabetes and insulitis. Moreover, depletion of CD4(+) CD25(+) T cells using magnetic-activated cell sorting impaired the protective effect of SGAD65190-315 /IL-10 vaccination on adoptive transfer of diabetes. CONCLUSIONS Our data suggested that SGAD65190-315 /IL-10 DNA vaccine had protective effects on T1D by upregulating autoantigen-reactive Tregs. Our findings may provide a novel preventive therapy for T1D. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xinyuan Liu
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China, 410011
| | - Song Zhang
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China, 410011
| | - Xia Li
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China, 410011
| | - Peilin Zheng
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China, 410011
| | - Fang Hu
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China, 410011
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, Second Xiangya Hospital, Central South University, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China, 410011
| |
Collapse
|
7
|
Xu Q, Cui N, Ma X, Wang F, Li H, Shen Z, Zhao X. Evaluation of a chimeric multi-epitope-based DNA vaccine against subgroup J avian leukosis virus in chickens. Vaccine 2016; 34:3751-6. [DOI: 10.1016/j.vaccine.2016.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/21/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
8
|
Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. THE JOURNAL OF IMMUNOLOGY 2015; 194:4339-49. [PMID: 25810392 DOI: 10.4049/jimmunol.1402672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Young-Jin Seo
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Zachary D Stokes
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
9
|
Rim YA, Yi H, Kim Y, Park N, Jung H, Kim J, Jung SM, Park SH, Ju JH. Self in vivo production of a synthetic biological drug CTLA4Ig using a minicircle vector. Sci Rep 2014; 4:6935. [PMID: 25374010 PMCID: PMC5381501 DOI: 10.1038/srep06935] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/16/2014] [Indexed: 11/08/2022] Open
Abstract
Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin fusion protein (CTLA4Ig, abatacept) is a B7/CD28 costimulation inhibitor that can ward off the immune response by preventing the activation of naïve T cells. This therapeutic agent is administered to patients with autoimmune diseases such as rheumatoid arthritis. Its antiarthritic efficacy is satisfactory, but the limitations are the necessity for frequent injection and high cost. Minicircles can robustly express the target molecule and excrete it outside the cell as an indirect method to produce the protein of interest in vivo. We inserted the sequence of abatacept into the minicircle vector, and by successful in vivo injection the host was able to produce the synthetic protein drug. Intravenous infusion of the minicircle induced spontaneous production of CTLA4Ig in mice with collagen-induced arthritis. Self-produced CTLA4Ig significantly decreased the symptoms of arthritis. Injection of minicircle CTLA4Ig regulated Foxp3(+) T cells and Th17 cells. Parental and mock vectors did not ameliorate arthritis or modify the T cell population. We have developed a new concept of spontaneous protein drug delivery using a minicircle vector. Self in vivo production of a synthetic protein drug may be useful when biological drugs cannot be injected because of manufacturing or practical problems.
Collapse
MESH Headings
- Abatacept
- Animals
- Antirheumatic Agents/immunology
- Antirheumatic Agents/metabolism
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/therapy
- DNA, Circular/administration & dosage
- DNA, Circular/biosynthesis
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Genetic Vectors/administration & dosage
- Genetic Vectors/biosynthesis
- Immunoconjugates/immunology
- Immunoconjugates/metabolism
- Immunoconjugates/pharmacology
- Immunosuppressive Agents/immunology
- Immunosuppressive Agents/metabolism
- Immunosuppressive Agents/pharmacology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred DBA
- Molecular Targeted Therapy
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Yeri Alice Rim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
| | - Hyoju Yi
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
| | - Youngkyun Kim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
| | - Narae Park
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
| | - Hyerin Jung
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
| | - Juryun Kim
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
| | - Seung Min Jung
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, Republic of Korea
| | - Ji Hyeon Ju
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul. 137-701, Republic of Korea
| |
Collapse
|
10
|
Bandrick M, Theis K, Molitor TW. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets. BMC Vet Res 2014; 10:124. [PMID: 24903770 PMCID: PMC4065585 DOI: 10.1186/1746-6148-10-124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 05/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Results Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. Conclusions In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.
Collapse
Affiliation(s)
| | | | - Thomas W Molitor
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1365 Gortner Ave, St, Paul, MN 55108, USA.
| |
Collapse
|
11
|
van Drunen Littel-van den Hurk S, Hannaman D. Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 2014; 9:503-17. [DOI: 10.1586/erv.10.42] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
|
13
|
van Drunen Littel-van den Hurk S, Lawman Z, Wilson D, Luxembourg A, Ellefsen B, van den Hurk JV, Hannaman D. Electroporation enhances immune responses and protection induced by a bovine viral diarrhea virus DNA vaccine in newborn calves with maternal antibodies. Vaccine 2010; 28:6445-54. [PMID: 20670907 DOI: 10.1016/j.vaccine.2010.07.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 12/25/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the major pathogens in cattle. In this study, newborn calves with maternal antibodies were vaccinated with a BVDV DNA vaccine, either by conventional intramuscular (IM) injection or with the TriGrid™ Delivery System for IM delivery (TDS-IM). The calves vaccinated with the TDS-IM developed more rapidly and effectively BVDV-specific humoral and cell-mediated immune responses in the presence of maternal antibodies. Overall, the immune responses induced by delivery with the TDS-IM remained stronger than those elicited by conventional IM injection of the BVDV DNA vaccine. Accordingly, electroporation-mediated delivery of the BVDV DNA vaccine resulted in close to complete protection from clinical signs of disease, while conventional IM administration did not fully prevent morbidity and mortality following challenge with BVDV-2. These results demonstrate the TDS-IM to be effective as a delivery system for a BVDV DNA vaccine in newborn calves in the presence of maternal antibodies, which supports the potential of electroporation as a delivery method for prophylactic DNA vaccines.
Collapse
|
14
|
Pasetti MF, Ramirez K, Barry EM, Kotloff K, Levine MM. Measles DNA vaccine priming for young infants. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.provac.2010.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Shivakumar P, Sabla GE, Whitington P, Chougnet CA, Bezerra JA. Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia. J Clin Invest 2009; 119:2281-90. [PMID: 19662681 DOI: 10.1172/jci38879] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biliary atresia is a neonatal obstructive cholangiopathy that progresses to end-stage liver disease. Although the etiology is unknown, a neonatal adaptive immune signature has been mechanistically linked to obstruction of the extrahepatic bile ducts. Here, we investigated the role of the innate immune response in the pathogenesis of biliary atresia. Analysis of livers of infants at diagnosis revealed that NK cells populate the vicinity of intrahepatic bile ducts and overexpress several genes involved in cytotoxicity. Using a model of rotavirus-induced biliary atresia in newborn mice, we found that activated NK cells also populated murine livers and were the most abundant cells in extrahepatic bile ducts at the time of obstruction. Rotavirus-primed hepatic NK cells lysed cholangiocytes in a contact- and Nkg2d-dependent fashion. Depletion of NK cells and blockade of Nkg2d each prevented injury of the duct epithelium after rotavirus infection, maintained continuity of duct lumen between the liver and duodenum, and enabled bile flow, despite the presence of virus in the tissue and the overexpression of proinflammatory cytokines. These findings identify NK cells as key initiators of cholangiocyte injury via Nkg2d and demonstrate that injury to the duct epithelium drives the phenotype of experimental biliary atresia.
Collapse
Affiliation(s)
- Pranavkumar Shivakumar
- Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | |
Collapse
|
16
|
Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. Editorial: DNA Vaccination: A Simple Concept with Challenges Regarding Implementation. Int Rev Immunol 2009; 25:51-81. [PMID: 16818365 DOI: 10.1080/08830180600743008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper. Vaccine 2009; 27:5178-83. [DOI: 10.1016/j.vaccine.2009.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 11/18/2022]
|
18
|
Comparing the ability of a series of viral protein-expressing plasmid DNAs to protect against H5N1 influenza virus. Virus Genes 2008; 38:30-8. [DOI: 10.1007/s11262-008-0305-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/12/2008] [Indexed: 10/21/2022]
|
19
|
Bråve A, Johansen K, Palma P, Benthin R, Hinkula J. Maternal immune status influences HIV-specific immune responses in pups after DNA prime protein boost using mucosal adjuvant. Vaccine 2008; 26:5957-66. [DOI: 10.1016/j.vaccine.2008.08.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 08/05/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
|
20
|
Nanjappa SG, Walent JH, Morre M, Suresh M. Effects of IL-7 on memory CD8 T cell homeostasis are influenced by the timing of therapy in mice. J Clin Invest 2008; 118:1027-39. [PMID: 18246202 DOI: 10.1172/jci32020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 11/28/2007] [Indexed: 01/09/2023] Open
Abstract
IL-7 is integral to the generation and maintenance of CD8(+) T cell memory, and insufficient IL-7 is believed to limit survival and the persistence of memory CD8(+) T cells. Here, we show that during the mouse T cell response to lymphocytic choriomeningitis virus, IL-7 enhanced the number of memory CD8(+) T cells when its administration was restricted to the contraction phase of the response. Likewise, IL-7 administration during the contraction phase of the mouse T cell response to vaccinia virus or a DNA vaccine potentiated antigen-specific CD8(+) memory T cell proliferation and function. Qualitatively, CD8(+) T cells from IL-7-treated mice exhibited superior recall responses and improved viral control. IL-7 treatment during the memory phase stimulated a marked increase in the number of memory CD8(+) T cells, but the effects were transient. IL-7 therapy during contraction of the secondary CD8(+) T cell response also expanded the pool of memory CD8(+) T cells. Collectively, our studies show differential effects of IL-7 on memory CD8(+) T cell homeostasis and underscore the importance of the timing of IL-7 therapy to effectively improve CD8(+) T cell memory and protective immunity. These findings may have implications in the clinical use of IL-7 as an immunotherapeutic agent to bolster vaccine-induced CD8(+) T cell memory.
Collapse
Affiliation(s)
- Som G Nanjappa
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
21
|
Qu D, Lanier G, Yuan ZH, Wen YM, Howard CR, Ahmed R. Localization of CD8+ cells specific for hepatitis B virus surface protein in the liver of immunized mice. J Med Virol 2008; 80:225-32. [PMID: 18098130 DOI: 10.1002/jmv.21039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
DNA plasmids are potent inducers of long-lasting antigen-specific CTL responses. Little is known about the distribution of antigen-specific CD8+ T cells in the lymphoid tissue and the non-lymphoid tissue after DNA immunization. HBsAg-specific CD8+ T cells in peripheral blood mononuclear cells, spleen, lymph nodes, and the liver of Balb/c mice have been quantified after injection with a DNA plasmid expressing the major S protein of hepatitis B virus (HBV). The kinetics of CD8+ T-cell responses in the circulation were measured after priming and boosting, showing that antigen-specific CD8+ T cells undergo first expansion and then decline to a sustainable level in the circulation, although the frequencies of HBsAg-specific CD8+ T cells in the circulation were lower than for the spleen. The greater frequencies of HBsAg-specific CD8+ T cells were found in the liver, whereas the largest numbers of antigen-specific CD8+ T cells were found in the spleen. By day 100 after priming, HBsAg-specific CD8+ T cells were still detected in the circulation, the spleen and the liver. After boosting with the same plasmid DNA immunogen, HBsAg-specific CD8+ T cells proliferated quickly and vigorously. By 150 days after boosting, HBsAg-specific memory CD8+ T cells were sustained at higher levels than those recorded after the first, primary injection, both in the spleen and the liver: anti-HBs antibody-secreting plasma cells persisted in the bone marrow and in the spleen, consistent with the detection of anti-HBs antibodies detected in the blood. These findings indicate that DNA immunization has considerable potential for inducing specific T cell responses in the liver and offers a strategy for the development of post-exposure immunotherapy against persistent hepatitis B infections.
Collapse
Affiliation(s)
- Di Qu
- Department of Medical Molecular Virology, Institutes of Bio-medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Whitmire JK, Eam B, Benning N, Whitton JL. Direct interferon-gamma signaling dramatically enhances CD4+ and CD8+ T cell memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:1190-7. [PMID: 17617612 DOI: 10.4049/jimmunol.179.2.1190] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies in IFN-gamma-deficient mice suggest that the delivery of IFN-gamma to CD8(+) T cells early in virus infection programs their eventual contraction, thereby reducing the abundance of CD8(+) memory T cells. In this study, we show that such mice fail to completely eliminate virus infection and that, when evaluated without the confounding factor of persisting Ag, both CD4(+) and CD8(+) T cells undergo profound contraction when they are unable to receive IFN-gamma signals. Furthermore, the abundance of CD4(+) and CD8(+) memory cells that express the IFN-gamma receptor is approximately 100-fold higher than cells lacking this molecule. Thus, direct IFN-gamma signaling is not required for T cell contraction during virus infection, and it enhances, rather than suppresses, the development of virus-specific CD4(+) and CD8(+) T cell memory.
Collapse
|
23
|
Shivakumar P, Sabla G, Mohanty S, McNeal M, Ward R, Stringer K, Caldwell C, Chougnet C, Bezerra JA. Effector role of neonatal hepatic CD8+ lymphocytes in epithelial injury and autoimmunity in experimental biliary atresia. Gastroenterology 2007; 133:268-77. [PMID: 17631148 PMCID: PMC2013308 DOI: 10.1053/j.gastro.2007.04.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 04/05/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Lymphocytes populate the livers of infants with biliary atresia, but it is unknown whether neonatal lymphocytes regulate pathogenesis of disease. Here, we investigate this question by examining the role of T lymphocytes in the destruction of extrahepatic bile ducts of neonatal mice using an experimental model of biliary atresia. METHODS Inoculation of neonatal mice with rhesus rotavirus followed by multistaining flow cytometry to quantify expression of interferon-gamma by hepatic lymphocytes, and real-time polymerase chain reaction for mRNA expression of pro-inflammatory cytokines. This was followed by determining the consequences of antibody-mediated depletion of lymphocyte subtypes on the development of biliary obstruction, and coculture and cell transfer experiments to investigate the effector role of lymphocyte subtypes on neonatal biliary disease. RESULTS Rotavirus infection results in overexpression of interferon-gamma by neonatal hepatic T cells. Among these cells, depletion of CD4(+) cells did not change the course of inflammatory injury and obstruction of neonatal bile ducts. In contrast, loss of CD8(+) cells remarkably suppressed duct injury, prevented luminal obstruction, and restored bile flow. Coculture experiments showed that rotavirus-primed, but not naïve, CD8(+) cells were cytotoxic to cholangiocytes. In adoptive transfer experiments, we found that primed CD8(+) cells preferentially homed to extrahepatic bile ducts of neonatal mice and invaded their epithelial lining. CONCLUSIONS Primed neonatal CD8(+) cells can activate a pro-inflammatory program, target diseased and healthy duct epithelium, and drive the phenotypic expression of biliary atresia, thus constituting a potential therapeutic target to halt disease progression.
Collapse
Affiliation(s)
- Pranavkumar Shivakumar
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Santos Júnior RRD, Sartori A, Bonato VLD, Coelho Castelo AAM, Vilella CA, Zollner RL, Silva CL. Immune modulation induced by tuberculosis DNA vaccine protects non-obese diabetic mice from diabetes progression. Clin Exp Immunol 2007; 149:570-8. [PMID: 17590177 PMCID: PMC2219319 DOI: 10.1111/j.1365-2249.2007.03433.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have described previously the prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in experimental murine tuberculosis. However, the high homology of this protein to the corresponding mammalian 60 kDa heat shock protein (Hsp60), together with the CpG motifs in the plasmid vector, could trigger or exacerbate the development of autoimmune diseases. The non-obese diabetic (NOD) mouse develops insulin-dependent diabetes mellitus (IDDM) spontaneously as a consequence of an autoimmune process that leads to destruction of the insulin-producing beta cells of the pancreas. IDDM is characterized by increased T helper 1 (Th1) cell responses toward several autoantigens, including Hsp60, glutamic acid decarboxylase and insulin. In the present study, we evaluated the potential of DNA-HSP65 injection to modulate diabetes in NOD mice. Our results show that DNA-HSP65 or DNA empty vector had no diabetogenic effect and actually protected NOD mice against the development of severe diabetes. However, this effect was more pronounced in DNA-HSP65-injected mice. The protective effect of DNA-HSP65 injection was associated with a clear shift in the cellular infiltration pattern in the pancreas. This change included reduction of CD4(+) and CD8(+) T cells infiltration, appearance of CD25(+) cells influx and an increased staining for interleukin (IL)-10 in the islets. These results show that DNA-HSP65 can protect NOD mice against diabetes and can therefore be considered in the development of new immunotherapeutic strategies.
Collapse
|
25
|
Arrode G, Hegde R, Mani A, Jin Y, Chebloune Y, Narayan O. Phenotypic and Functional Analysis of Immune CD8+ T Cell Responses Induced by a Single Injection of a HIV DNA Vaccine in Mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:2318-27. [PMID: 17277137 DOI: 10.4049/jimmunol.178.4.2318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV DNA vaccines are potent inducers of cell-mediated immune (CMI) response in mice but elicit poor HIV-specific IFN-gamma-producing T cells in monkeys and humans. In this study, we performed kinetic analyses on splenocytes of BALB/c mice that were immunized by a single injection with a unique DNA vaccine. Using IFN-gamma-ELISPOT and multiparametric FACS analysis, we characterized the induced CMI response. We found that the response was detectable for at least 63 wk. ELISPOT detection of IFN-gamma-producing T cells showed a profile with two waves separated by a long period of minimal response. Multiparametric FACS analysis showed two populations of CD3(+)CD8(+) T cells that were specific for all HIV Ags. These cells had similar robust proliferation abilities and contained granzyme B. However, only a few produced IFN-gamma. Both IFN-gamma-producing and non-IFN-gamma-producing HIV-specific CD8(+) T cells were detected in the early stage (week (W)1 and W2 postimmunization (PI)), in the prolonged intermediate period of minimal response (W4-W26 PI), and in the final late phase of increased response (W30-W63 PI). Our longitudinal characterization showed that both subsets of cells underwent expansion, contraction, and memory generation/maintenance phases throughout the lifespan of the animal. Altogether, these findings bring insight to the heterogeneity of the immune T cell response induced by a single immunization with this DNA and strengthen the concept that used of the IFN-gamma-ELISPOT assay alone may be insufficient to detect critical T cell responses to candidate HIV vaccines.
Collapse
Affiliation(s)
- Geraldine Arrode
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Capozzo AVE, Ramírez K, Polo JM, Ulmer J, Barry EM, Levine MM, Pasetti MF. Neonatal Immunization with a Sindbis Virus-DNA Measles Vaccine Induces Adult-Like Neutralizing Antibodies and Cell-Mediated Immunity in the Presence of Maternal Antibodies. THE JOURNAL OF IMMUNOLOGY 2006; 176:5671-81. [PMID: 16622037 DOI: 10.4049/jimmunol.176.9.5671] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infants younger than age 9 mo do not respond reliably to the live attenuated measles vaccine due the immaturity of their immune system and the presence of maternal Abs that interfere with successful immunization. We evaluated the immune responses elicited by Sindbis virus replicon-based DNA vaccines encoding measles virus (MV) hemagglutinin (H, pMSIN-H) or both hemagglutinin and fusion (F, pMSINH-FdU) glycoproteins in neonatal mice born to naive and measles-immune mothers. Despite the presence of high levels of maternal Abs, neonatal immunization with pMSIN-H induced long-lasting, high-avidity MV plaque reduction neutralization (PRN) Abs, mainly IgG2a, that also inhibited syncytium formation in CD150(+) B95-8 cells. IgG secreting plasma cells were detected in spleen and bone marrow. Newborns vaccinated with pMSINH-FdU elicited PRN titers that surpassed the protective level (200 mIU/ml) but were short-lived, had low syncytium inhibition capacity, and lacked avidity maturation. This vaccine failed to induce significant PRN titers in the presence of placentally transferred Abs. Both pMSIN-H and pMSINH-FdU elicited strong Th1 type cell-mediated immunity, measured by T cell proliferation and IFN-gamma production, that was unaffected by maternal Abs. Newborns responded to measles DNA vaccines with similar or even higher PRN titers and cell-mediated immunity than adult mice. This study is the first demonstration that a Sindbis virus-based measles DNA vaccine can elicit robust MV immunity in neonates bypassing maternal Abs. Such a vaccine could be followed by the current live attenuated MV vaccine in a heterologous prime-boost to protect against measles early in life.
Collapse
Affiliation(s)
- Alejandra V E Capozzo
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Santos-Junior RR, Sartori A, De Franco M, Filho OGR, Coelho-Castelo AAM, Bonato VLD, Cabrera WHK, Ibañez OM, Silva CL. Immunomodulation and protection induced by DNA-hsp65 vaccination in an animal model of arthritis. Hum Gene Ther 2006; 16:1338-45. [PMID: 16259568 DOI: 10.1089/hum.2005.16.1338] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We described a prophylactic and therapeutic effect of a DNA vaccine encoding the Mycobacterium leprae 65-kDa heat shock protein (DNA-hsp65) in experimental murine tuberculosis. However, high homology of the vaccine to the corresponding mammalian hsp60, together with the CpG motifs in the plasmidial vector, could trigger or exacerbate an autoimmune disease. In the present study, we evaluate the potential of DNA-hsp65 vaccination to induce or modulate arthritis in mice genetically selected for acute inflammatory reaction (AIR), either maximal (AIRmax) or minimal (AIRmin). Mice immunized with DNA-hsp65 or injected with the corresponding DNA vector (DNAv) developed no arthritis, whereas pristane injection resulted in arthritis in 62% of AIRmax mice and 7.3% of AIRmin mice. Administered after pristane, DNA-hsp65 downregulated arthritis induction in AIRmax animals. Levels of interleukin (IL)-12 were significantly lower in mice receiving pristane plus DNA-hsp65 or DNAv than in mice receiving pristane alone. However, when mice previously injected with pristane were inoculated with DNA-hsp65 or DNAv, the protective effect was significantly correlated with lower IL-6 and IL-12 levels and higher IL-10 levels. Our results strongly suggest that DNA-hsp65 has no arthritogenic potential and is actually protective against experimentally induced arthritis in mice.
Collapse
Affiliation(s)
- Rubens R Santos-Junior
- Centro de Pesquisas em Tuberculose, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fadel SA, Cowell LG, Cao S, Ozaki DA, Kepler TB, Steeber DA, Sarzotti M. Neonate-primed CD8+ memory cells rival adult-primed memory cells in antigen-driven expansion and anti-viral protection. Int Immunol 2006; 18:249-57. [PMID: 16418189 DOI: 10.1093/intimm/dxh360] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunizations early in life, when the host is most susceptible to infection, allow protective immunological memory to develop. Decreasing the dose of Cas-Br-E murine leukemia virus when priming neonatal mice results in adult-like, Type 1 protective responses, but the resulting memory cell populations are smaller than after adult priming. After secondary challenge, virus-specific CD8+ memory cell populations expand twice as much in neonate-primed mice as in adult-primed mice. We found that when equivalent numbers of virus-specific cells were transferred into virus-susceptible mice, protection from disease was similar whether donor, immune mice were primed as neonates or adults, and IL-4 did not alter in vivo virus-specific CD8+ memory cell effector function. Hence, neonate-primed CD8+ cells develop into memory cells that rival adult-primed cells in proliferation and effector function.
Collapse
Affiliation(s)
- Shaza A Fadel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Talaat AM, Stemke-Hale K. Expression library immunization: a road map for discovery of vaccines against infectious diseases. Infect Immun 2005; 73:7089-98. [PMID: 16239502 PMCID: PMC1273844 DOI: 10.1128/iai.73.11.7089-7098.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Adel M Talaat
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA.
| | | |
Collapse
|
30
|
Aggarwal P, Kumar S, Vajpayee M, Seth P. Adjuvant Action of MurineIL-2/IgPlasmid After Intramuscular Immunization With Indian HIV-1 Subtype C Recombinantenv.gp120 Construct. Viral Immunol 2005; 18:649-56. [PMID: 16359231 DOI: 10.1089/vim.2005.18.649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The human immunodeficiency virus (HIV) epidemic is probably the greatest scourge to affect mankind in the 20th century. Containment of the acquired immunodeficiency syndrome (AIDS) epidemic will require an effective vaccine. Of various vaccine approaches, immunization with DNA plasmids containing HIV-1 structural genes is the most popular approach. However, an important limitation of DNA immunization is that these responses are relatively weak and are often only transient in their nature. The use of immunologic adjuvants together with DNA vaccines is a promising way to enhance and to optimize DNA-derived immunity. Cytokines have been widely used to enhance the immune responses of DNA vaccines. In the present investigation, we studied the in vivo immunomodulation of HIV-1 Indian subtype C plasmid construct (pJWSK3, encoding envgp120 gene) by plasmid-based murine IL-2/Ig construct. Subcloning of mIL-2/Ig gene from pVRCmIL-2/Ig construct into pJW4304 vector was done followed by its in vitro expression study on the COS-7 cell line. Co-immunization of the recombinant HIV-1 env-gp120 construct with the IL-2/Ig construct in the female Balb/c mice by the intramuscular route resulted in induction of significantly higher levels of both HIV-1-specific antibody response and cell mediated immune response than by DNA plasmid construct alone (p < 0.001 and p < 0.05, respectively). The induced HIV-1-specific murine IFN-gamma response was robust, broad based, and seen even at the end of 6 months after immunization. Taken together these results indicate that the strategy of using IL-2/Ig plasmid can be highly effective when used along with recombinant DNA constructs and serve as the potential tool for the development of more rationally designed vaccines against HIV-1.
Collapse
Affiliation(s)
- Priya Aggarwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
31
|
Pal S, Peterson EM, de la Maza LM. Vaccination of newborn mice induces a strong protective immune response against respiratory and genital challenges with Chlamydia trachomatis. Vaccine 2005; 23:5351-8. [PMID: 16085340 DOI: 10.1016/j.vaccine.2005.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 06/20/2005] [Indexed: 11/21/2022]
Abstract
Chlamydia trachomatis infections can occur early in life and may result in long-term sequelae. To assess the feasibility of implementing a vaccine in newborns, groups of 2-day-old BALB/c mice were immunized intranasally (i.n.) with 1x10(4) inclusion forming units (IFU) of C. trachomatis mouse pneumonitis (MoPn). As a control, newborn mice were sham-immunized i.n. with minimal essential medium. In the vaccinated animals, strong Chlamydia-specific humoral and cell-mediated immune responses were observed. Six weeks after immunization, mice were challenged with MoPn i.n. or intravaginally (i.vag.). For the i.n. challenge, mice were inoculated with 10(4) or 10(5)IFU of MoPn per mouse, and in the case of the i.vag. challenge, each animal received 10(6)IFU. By day 10 post-infection (p.i.), the vaccinated mice challenged i.n. with 10(4)IFU, had gained an average of 6.7+/-1% of their body weight. In contrast, the sham-immunized mice had lost 14.9+/-1% of their weight (P<0.05). The mean number of IFU/lungs in the vaccinated animals was 800+/-300, while for the sham-immunized mice was 211+/-49x10(6) (P<0.05). Significant differences between the Chlamydia-vaccinated and the sham-immunized mice were also found in the groups challenged with 10(5)IFU. In the mice challenged i.vag., a significant decrease in the number of mice with positive cultures, and the intensity and duration of vaginal shedding was noted in the vaccinated mice compared to the sham-immunized mice (P<0.05). In conclusion, these results indicate that vaccination of neonatal mice can result in a protective response against a subsequent pulmonary or genital challenge with Chlamydia.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology, Medical Sciences, Room D440, University of California, Irvine, CA 92697-4800, USA.
| | | | | |
Collapse
|
32
|
Lohman BL, Slyker JA, Richardson BA, Farquhar C, Mabuka JM, Crudder C, Dong T, Obimbo E, Mbori-Ngacha D, Overbaugh J, Rowland-Jones S, John-Stewart G. Longitudinal assessment of human immunodeficiency virus type 1 (HIV-1)-specific gamma interferon responses during the first year of life in HIV-1-infected infants. J Virol 2005; 79:8121-30. [PMID: 15956557 PMCID: PMC1143755 DOI: 10.1128/jvi.79.13.8121-8130.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection results in different patterns of viral replication in pediatric compared to adult populations. The role of early HIV-1-specific responses in viral control has not been well defined, because most studies of HIV-1-infected infants have been retrospective or cross-sectional. We evaluated the association between HIV-1-specific gamma interferon (IFN-gamma) release from the cells of infants of 1 to 3 months of age and peak viral loads and mortality in the first year of life among 61 Kenyan HIV-1-infected infants. At 1 month, responses were detected in 7/12 (58%) and 6/21 (29%) of infants infected in utero and peripartum, respectively (P = 0.09), and in approximately 50% of infants thereafter. Peaks of HIV-specific spot-forming units (SFU) increased significantly with age in all infants, from 251/10(6) peripheral blood mononuclear cells (PBMC) at 1 month of age to 501/10(6) PBMC at 12 months of age (P = 0.03), although when limited to infants who survived to 1 year, the increase in peak HIV-specific SFU was no longer significant (P = 0.18). Over the first year of life, infants with IFN-gamma responses at 1 month had peak plasma viral loads, rates of decline of viral load, and mortality risk similar to those of infants who lacked responses at 1 month. The strength and breadth of IFN-gamma responses at 1 month were not significantly associated with viral containment or mortality. These results suggest that, in contrast to HIV-1-infected adults, in whom strong cytotoxic T lymphocyte responses in primary infection are associated with reductions in viremia, HIV-1-infected neonates generate HIV-1-specific CD8+-T-cell responses early in life that are not clearly associated with improved clinical outcomes.
Collapse
|
33
|
Rodriguez-Carreno MP, Nelson MS, Botten J, Smith-Nixon K, Buchmeier MJ, Whitton JL. Evaluating the immunogenicity and protective efficacy of a DNA vaccine encoding Lassa virus nucleoprotein. Virology 2005; 335:87-98. [PMID: 15823608 DOI: 10.1016/j.virol.2005.01.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 01/04/2005] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Several viruses in the Arenavirus genus of the family Arenaviridae cause severe, often fatal, hemorrhagic fever. One such virus, Lassa virus (LV), is a frequent cause of disease in Africa, and survivors often are left with substantial neurological impairment. The feasibility of protective immunization against LV infection, and the associated disease, has been demonstrated in animal models, using recombinant vaccinia viruses to deliver Lassa proteins. Circumstantial evidence implicates cellular immunity in this Lassa-induced protection, but this has not been confirmed. Here, we describe DNA vaccines that encode LV proteins. A single inoculation of a plasmid encoding full-length Lassa nucleoprotein (LNP) can induce CD8(+) T cell responses in mice and can protect against challenge with two arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Pichinde virus (PV). A DNA minigene vaccine encoding a 9 amino acid sequence from LNP also induces CD8(+) T cells and protects against arenavirus challenge, thus confirming prior speculation that protective cellular immunity is induced by LV proteins.
Collapse
Affiliation(s)
- Maria P Rodriguez-Carreno
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
34
|
Pack CD, Kumaraguru U, Suvas S, Rouse BT. Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with Herpes Simplex Virus. Vaccine 2005; 23:3526-34. [PMID: 15855011 DOI: 10.1016/j.vaccine.2005.01.152] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 12/17/2004] [Accepted: 01/31/2005] [Indexed: 11/21/2022]
Abstract
Immunization of the neonate is a highly desirable goal for vaccine developers, since the neonate is profoundly susceptible to a number of viral and bacterial pathogens. The neonatal immune system tends to generate Th2 recall responses, known as neonatal tolerance, which may not protect against viral challenge later in life. In this study we demonstrate that a potent immune proinflammatory stimulator, heat-shock protein 70 (hsp70), can act as an effective and safe adjuvant in neonates. Priming of neonates with hsp70 coupled to a viral MHC Class I-restricted epitope (gB498-505) and injection with recombinant gB generated strong cytotoxic T lymphocyte (CTL) responses and a Th1 primary T helper cell response during the neonatal period. In addition, enhanced CTL and predominant Th1 recall responses to viral antigens were observed following secondary challenge as adults. These responses were sufficient to allow protection against a lethal challenge with Herpes Simplex Virus Type-1 (HSV-1). Therefore, hsp70 in conjunction with viral epitopes and recombinant viral protein can perhaps prime protective immune responses to herpes viruses early in life when infection, which can be life-threatening, and the establishment of latency frequently occur.
Collapse
Affiliation(s)
- Christopher D Pack
- Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
35
|
Capozzo AVE, Cuberos L, Levine MM, Pasetti MF. Mucosally delivered Salmonella live vector vaccines elicit potent immune responses against a foreign antigen in neonatal mice born to naive and immune mothers. Infect Immun 2004; 72:4637-46. [PMID: 15271924 PMCID: PMC470595 DOI: 10.1128/iai.72.8.4637-4646.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of effective vaccines for neonates and very young infants has been impaired by their weak, short-lived, and Th-2 biased responses and by maternal antibodies that interfere with vaccine take. We investigated the ability of Salmonella enterica serovars Typhi and Typhimurium to mucosally deliver tetanus toxin fragment C (Frag C) as a model antigen in neonatal mice. We hypothesize that Salmonella, by stimulating innate immunity (contributing to adjuvant effects) and inducing Th-1 cytokines, can enhance neonatal dendritic cell maturation and T-cell activation and thereby prime humoral and cell-mediated immunity. We demonstrate for the first time that intranasal immunization of newborn mice with 10(9) CFU of S. enterica serovar Typhi CVD 908-htrA and S. enterica serovar Typhimurium SL3261 carrying plasmid pTETlpp on days 7 and 22 after birth elicits high titers of Frag C antibodies, previously found to protect against tetanus toxin challenge and similar to those observed in adult mice. Salmonella live vectors colonized and persisted primarily in nasal tissue. Mice vaccinated as neonates induced Frag C-specific mucosal and systemic immunoglobulin A (IgA)- and IgG-secreting cells, T-cell proliferative responses, and gamma interferon secretion. A mixed Th1- and Th2-type response to Frag C was established 1 week after the boost and was maintained thereafter. S. enterica serovar Typhi carrying pTETlpp induced Frag C-specific antibodies and cell-mediated immunity in the presence of high levels of maternal antibodies. This is the first report that demonstrates the effectiveness of Salmonella live vector vaccines in early life.
Collapse
Affiliation(s)
- Alejandra V E Capozzo
- Center for Vaccine Development, Department of Medicine, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | |
Collapse
|
36
|
Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol 2004; 4:553-64. [PMID: 15229474 DOI: 10.1038/nri1394] [Citation(s) in RCA: 743] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Becky Adkins
- Department of Microbiology and Immunology, University of Miami Medical School, Miami, Florida 33136, USA.
| | | | | |
Collapse
|
37
|
Feuer R, Mena I, Pagarigan RR, Hassett DE, Whitton JL. Coxsackievirus replication and the cell cycle: a potential regulatory mechanism for viral persistence/latency. Med Microbiol Immunol 2004; 193:83-90. [PMID: 12925877 DOI: 10.1007/s00430-003-0192-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2003] [Indexed: 11/26/2022]
Abstract
Coxsackieviruses (CV) are characterized by their ability to cause cytopathic effects in tissue culture and by their capacity to initiate acute disease by inducing apoptosis within targeted organs in vivo. These viruses are considered highly cytolytic, but can establish persistence/latency in susceptible cells, indicating that a regulatory mechanism may exist to shut off viral protein synthesis and replication under certain situations. The persistence of coxsackieviral RNA is of particular medical interest due to its association with chronic human diseases such as dilated cardiomyopathy and chronic inflammatory myopathy. Here, we discuss the potential mechanisms regulating coxsackievirus replication, and the ability of viral RNA to remain in an apparent latent state within quiescent cells.
Collapse
Affiliation(s)
- Ralph Feuer
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
38
|
Van Loock M, Lambin S, Volckaert G, Goddeeris BM, Vanrompay D. Influence of maternal antibodies on Chlamydophila psittaci-specific immune responses in turkeys elicited by naked DNA. Vaccine 2004; 22:1616-23. [PMID: 15068843 DOI: 10.1016/j.vaccine.2003.10.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 10/13/2003] [Indexed: 10/26/2022]
Abstract
Plasmid DNA (pcDNA1::MOMP D) expressing the major outer membrane protein (MOMP) of an avian Chlamydophila psittaci serovar D strain was tested for its ability to induce protective immunity against C. psittaci challenge in the presence of maternal antibodies. A combined parenteral (intramuscular injection) and mucosal route (DNA drops administered to the nares) of DNA inoculation was used. Following pcDNA1::MOMP vaccination, both T helper and B cell memory were primed. However, high maternal antibodies titres affected the induction of vaccine-specific antibody responses as assessed by MOMP-specific antibody levels in enzyme-linked immunosorbent assay (ELISA). Cell-mediated immunity was unaltered as demonstrated by the significantly heightened proliferative responses of peripheral blood lymphocytes (PBL) following vaccination. DNA vaccination could significantly reduce clinical symptoms, pharyngeal and cloacal excretion as well as Chlamydophila replication, even in the presence of maternal antibodies.
Collapse
Affiliation(s)
- M Van Loock
- Department of Animal Sciences, Catholic University of Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|
39
|
Xiang Z, Li Y, Gao G, Wilson JM, Ertl HCJ. Mucosally delivered E1-deleted adenoviral vaccine carriers induce transgene product-specific antibody responses in neonatal mice. THE JOURNAL OF IMMUNOLOGY 2004; 171:4287-93. [PMID: 14530353 DOI: 10.4049/jimmunol.171.8.4287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
E1-deleted adenoviral vectors of the human serotype 5 (AdHu5) and the chimpanzee serotype 68 (AdC68) expressing the rabies virus glycoprotein (rab.gp) were tested for induction of transgene product-specific Abs upon intranasal or oral immunization of newborn mice. Both vectors induced Abs to rabies virus that could be detected in serum and from mucosal secretions. Serum rabies virus neutralizing Ab titers sufficed to protect neonatally vaccinated mice against a subsequent challenge with rabies virus. The efficacy of the AdHu5rab.gp vector given orally to newborn mice born to AdHu5 virus-immune dams was not impaired by maternally transferred Abs to the vaccine carrier.
Collapse
MESH Headings
- Adenovirus E1 Proteins/genetics
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Administration, Intranasal
- Administration, Oral
- Animals
- Animals, Newborn/immunology
- Antibodies, Viral/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Female
- Genetic Vectors/immunology
- Immunity, Maternally-Acquired/genetics
- Immunity, Maternally-Acquired/immunology
- Male
- Mice
- Mice, Inbred ICR
- Mouth Mucosa/immunology
- Nasal Mucosa/immunology
- Pan troglodytes
- Pregnancy
- Rabies Vaccines/administration & dosage
- Rabies Vaccines/genetics
- Rabies Vaccines/immunology
- Serotyping
- Transgenes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
|
40
|
Premenko-Lanier M, Rota P, Rhodes G, Bellini W, McChesney M. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine. Vaccine 2004; 22:762-5. [PMID: 14741170 DOI: 10.1016/j.vaccine.2003.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.
Collapse
Affiliation(s)
- Mary Premenko-Lanier
- Department of Pathology, California National Primate Research Center, School of Medicine, University of California-Davis, County Road 98 and Hutchison Drive, Davis, CA 95616-8542, USA
| | | | | | | | | |
Collapse
|
41
|
Feuer R, Mena I, Pagarigan RR, Harkins S, Hassett DE, Whitton JL. Coxsackievirus B3 and the neonatal CNS: the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1379-93. [PMID: 14507646 PMCID: PMC1868316 DOI: 10.1016/s0002-9440(10)63496-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neonates are particularly susceptible to coxsackievirus infections of the central nervous system (CNS), which can cause meningitis, encephalitis, and long-term neurological deficits. However, viral tropism and mechanism of spread in the CNS have not been examined. Here we investigate coxsackievirus B3 (CVB3) tropism and pathology in the CNS of neonatal mice, using a recombinant virus expressing the enhanced green fluorescent protein (eGFP). Newborn pups were extremely vulnerable to coxsackievirus CNS infection, and this susceptibility decreased dramatically by 7 days of age. Twenty-four hours after intracranial infection of newborn mice, viral genomic RNA and viral protein expression were detected in the choroid plexus, the olfactory bulb, and in cells bordering the cerebral ventricles. Many of the infected cells bore the anatomical characteristics of type B stem cells, which can give rise to neurons and astrocytes, and expressed the intermediate filament protein nestin, a marker for progenitor cells. As the infection progressed, viral protein was identified in the brain parenchyma, first in cells expressing neuron-specific class III beta-tubulin, an early marker of neuronal differentiation, and subsequently in cells expressing NeuN, a marker of mature neurons. At later time points, viral protein expression was restricted to neurons in specific regions of the brain, including the hippocampus, the entorhinal and temporal cortex, and the olfactory bulb. Extensive neuronal death was visible, and appeared to result from virus-induced apoptosis. We propose that the increased susceptibility of the neonatal CNS to CVB infection may be explained by the virus' targeting neonatal stem cells; and that CVB is carried into the brain parenchyma by developing neurons, which continue to migrate and differentiate despite the infection. On full maturation, some or all of the infected neurons undergo apoptosis, and the resulting neuronal loss can explain the longer-term clinical picture.
Collapse
Affiliation(s)
- Ralph Feuer
- Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bell JJ, Min B, Gregg RK, Lee HH, Zaghouani H. Break of neonatal Th1 tolerance and exacerbation of experimental allergic encephalomyelitis by interference with B7 costimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1801-8. [PMID: 12902480 DOI: 10.4049/jimmunol.171.4.1801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig-PLP1 is an Ig chimera expressing proteolipid protein-1 (PLP1) peptide corresponding to aa residues 139-151 of PLP. Newborn mice given Ig-PLP1 in saline on the day of birth and challenged 7 wk later with PLP1 peptide in CFA develop an organ-specific neonatal immunity that confers resistance against experimental allergic encephalomyelitis. The T cell responses in these animals comprise Th2 cells in the lymph node and anergic Th1 lymphocytes in the spleen. Intriguingly, the anergic splenic T cells, although nonproliferative and unable to produce IFN-gamma or IL-4, secrete significant amounts of IL-2. In this work, studies were performed to determine whether costimulation through B7 molecules plays any role in the unusual form of splenic Th1 anergy. The results show that engagement of either B7.1 or B7.2 with anti-B7 Abs during induction of EAE in adult mice that were neonatally tolerized with Ig-PLP1 restores and exacerbates disease severity. At the cellular level, the anergic splenic T cells regain the ability to proliferate and produce IFN-gamma when stimulated with Ag in the presence of either anti-B7.1 or anti-B7.2 Ab. However, such restoration was abolished when both B7.1 and B7.2 molecules were engaged simultaneously, indicating that costimulation is necessary for reactivation. Surprisingly, both anti-B7.1 and anti-B7.2 Abs triggered splenic dendritic cells to produce IL-12, a key cytokine required for restoration of the anergic T cells. Thus, recovery from neonatally induced T cell anergy requires B7 molecules to serve double functions, namely, costimulation and induction of cytokine production by APCs.
Collapse
MESH Headings
- Animals
- Animals, Newborn/immunology
- Antibodies, Blocking/administration & dosage
- Antibodies, Blocking/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacology
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD/immunology
- Antigens, CD/physiology
- B7-1 Antigen/immunology
- B7-1 Antigen/physiology
- B7-2 Antigen
- Cell Division/immunology
- Cells, Cultured
- Clonal Anergy/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Immune Tolerance/immunology
- Injections, Intraperitoneal
- Interleukin-12/biosynthesis
- Lymphocyte Activation/immunology
- Male
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/administration & dosage
- Myelin Proteolipid Protein/immunology
- Spleen/cytology
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J Jeremiah Bell
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|
43
|
Eisenberg JC, Czinn SJ, Garhart CA, Redline RW, Bartholomae WC, Gottwein JM, Nedrud JG, Emancipator SE, Boehm BB, Lehmann PV, Blanchard TG. Protective efficacy of anti-Helicobacter pylori immunity following systemic immunization of neonatal mice. Infect Immun 2003; 71:1820-7. [PMID: 12654796 PMCID: PMC152082 DOI: 10.1128/iai.71.4.1820-1827.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 11/26/2002] [Accepted: 01/09/2003] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori infection of the gastric mucosa is a significant cause of morbidity and mortality because of its etiologic role in symptomatic gastritis, peptic ulcer disease, and gastric adenocarcinoma. Infection occurs in young children; therefore, a prophylactic vaccine would have to be administered within the first year of life, a period thought to be immunologically privileged. We investigated vaccine formulations administered by different routes to confer protective anti-H. pylori immunity in neonatal mice. Neonatal mice immunized with a single dose of vaccine in complete Freund's adjuvant (CFA) generated antigen-specific gamma interferon-, interleukin-2 (IL-2)-, IL-4-, and IL-5-secreting T cells in numbers similar to those in immunized adult mice, while vaccine administered to neonates in incomplete Freund's adjuvant (IFA) induced such cells in reduced numbers compared to those in adult mice. Both IFA and CFA, however, provided partial protection from a challenge with infectious H. pylori when the vaccine was administered subcutaneously. Neonatal immunized mice also had reduced bacterial loads when immunized intraperitoneally with CFA. In all cases, protection was equivalent to that achieved when adult counterparts were immunized. These studies suggest that an efficacious vaccine might be successfully administered to very young children to prevent perinatal infection of H. pylori.
Collapse
Affiliation(s)
- Julia C Eisenberg
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Premenko-Lanier M, Rota PA, Rhodes G, Verhoeven D, Barouch DH, Lerche NW, Letvin NL, Bellini WJ, McChesney MB. DNA vaccination of infants in the presence of maternal antibody: a measles model in the primate. Virology 2003; 307:67-75. [PMID: 12667815 DOI: 10.1016/s0042-6822(02)00036-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To eradicate measles in developing nations a vaccine capable of being administered at birth may be necessary. We immunized newborn rhesus macaques with naked DNA encoding the measles virus hemagglutinin, fusion and nucleoprotein genes. Prior to vaccination we passively transferred measles immunoglobulin to mimic maternal antibody. In the presence or absence of measles immunoglobulin, 23 of 25 infant macaques had detectable cell mediated immunity and 16 had protective levels of neutralizing antibody. The co-administration of an IL-2/IgG plasmid augmented the vaccine, increasing cell mediated immunity in all infants and increasing the antibody response in infants vaccinated without immunoglobulin. We show for the first time that DNA vaccination can protect a newborn primate from the high-level viremia that correlates with severe measles, even in the presence of maternal antibody. Further, the addition of a molecular IL-2 adjuvant augments this DNA vaccine.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/immunology
- Base Sequence
- California/epidemiology
- DNA Primers
- DNA, Viral/administration & dosage
- DNA, Viral/genetics
- DNA, Viral/immunology
- Disease Models, Animal
- Disease Outbreaks/veterinary
- Genes, Viral
- Immunity, Cellular
- Immunity, Maternally-Acquired
- Immunization, Passive
- Macaca mulatta
- Male
- Measles/immunology
- Measles/prevention & control
- Measles/veterinary
- Measles virus/immunology
- Plasmids/immunology
- Primate Diseases/epidemiology
- Primate Diseases/immunology
- Primate Diseases/prevention & control
- Vaccines, DNA
- Viral Structural Proteins/genetics
Collapse
Affiliation(s)
- Mary Premenko-Lanier
- California National Primate Research Center and Department of Pathology, School of Medicine, University of California-Davis, County Road 98, Davis, CA 95616-8542, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Laval F, Paillot R, Bollard S, Fischer L, Audonnet JC, Andreoni C, Juillard V. Quantitative analysis of the antigen-specific IFNgamma+ T cell-mediated immune response in conventional outbred pigs: kinetics and duration of the DNA-induced IFNgamma+ CD8+ T cell response. Vet Immunol Immunopathol 2002; 90:191-201. [PMID: 12459166 DOI: 10.1016/s0165-2427(02)00261-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is now well established that antigen-specific CD8(+) T cells play a major role in vaccine-induced immunity against intracellular pathogens and tumor cells. The detection of these immune cells in outbred animals has been hampered mainly by the need to generate individual autologous antigen-presenting cells (APCs) due to the high degree of polymorphism of the major histocompatibility complex (MHC) Class I loci. We used individually derived immature porcine dendritic cells infected with a pox-based recombinant viral vector to ex vivo stimulate PBMCs from vaccinated conventional pigs. The frequencies of antigen-specific T cells was determined by the number of IFNgamma-secreting cells in a quantitative enzyme-linked immune spot (ELISPOT) assay. Using this approach we were able to rank different pseudorabies virus (PRV) vaccines strategies for their ability to prime viral-specific IFNgamma(+) T cells. Plasmid DNA has recently emerged as a promising tool with multiple applications in the field of infectious diseases, allergy and cancer. We showed for the first time in this study that DNA immunization induced a long-lived antigen-specific IFNgamma(+) T cells response in conventional pigs. Additional studies allowed us to show that these virus-specific IFNgamma(+) responding cells detected in this ELISPOT assay were MHC-restricted and comprised in the CD8alpha(bright) pig T cell subset. These new data confirm the usefulness of DNA vaccines to control diseases requiring cellular immunity in pigs.
Collapse
Affiliation(s)
- F Laval
- Discovery Research, Merial, 254 Rue Marcel Mérieux, BP 7009, 63342 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang J, Silvestri N, Whitton JL, Hassett DE. Neonates mount robust and protective adult-like CD8(+)-T-cell responses to DNA vaccines. J Virol 2002; 76:11911-9. [PMID: 12414933 PMCID: PMC136875 DOI: 10.1128/jvi.76.23.11911-11919.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonates are thought to mount less vigorous adaptive immune responses than adults to antigens and infectious agents. This concept has led to a delay in the administration of many currently available vaccines until late infancy or early childhood. It has recently been shown that vaccines composed of plasmid DNA can induce both humoral and cell-mediated antimicrobial immunity when administered within hours of birth. In most of these studies, immune responses were measured weeks or months after the initial vaccination, and it is therefore questionable whether the observed responses were actually the result of priming of splenocytes within the neonatal period. Here we show that DNA vaccination at birth results in the rapid induction of antigen-specific CD8(+) T cells within neonatal life. Analyses of T-cell effector functions critical for the resolution of many viral infections revealed that neonatal and adult CD8(+) T cells produce similar arrays of cytokines. Furthermore, the avidities of neonatal and adult CD8(+) T cells for peptide and the rapidity with which they upregulate cytokine production after recall encounters with antigen are similar. Protective immunity against the arenavirus lymphocytic choriomeningitis virus, which is mediated by CD8(+) cytotoxic T cells, is also rapidly acquired within the neonatal period. Collectively these data imply that, at least in the case of CD8(+) T cells, neonates are not as immunodeficient as previously supposed and that DNA vaccines may be an effective and safe means of providing critical cell-mediated antiviral immunity extremely early in life.
Collapse
Affiliation(s)
- Jie Zhang
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
47
|
Rodrigues MM, Soares MBP, Vasconcelos JRC. Endogenous interleukin-4 downregulates the type 1 CD4 T cell-mediated immune response induced by intramuscular DNA immunization. J Interferon Cytokine Res 2002; 22:1137-41. [PMID: 12513913 DOI: 10.1089/10799900260442566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intramuscular (i.m.) administration of eukaryotic plasmid vectors containing foreign genes is a general immunization strategy capable of inducing protective type 1 immune responses against viral, bacterial, fungal, and parasitic infections. We have described that immunization with a plasmid containing a gene encoding a parasite antigen elicits specific type 1 protective immune responses against experimental infection with the human protozoan parasite Trypanosoma cruzi. However, we had evidence suggesting that DNA immunization concomitantly activated specific type 2 immune responses. To determine precisely the influence of the type 2 cytokine interleukin-4 (IL-4) during DNA immunization, we compared the immune responses of genetically modified IL-4-deficient or wild-type (wt) BALB/c mice. IL-4-deficient mice had a significantly lower ratio of specific serum IgG1/IgG2a, and on in vitro restimulation with antigen, their spleen cells secreted significantly higher amounts of interferon-gamma (IFN-gamma). In contrast, absence of IL-4 did not affect total serum antibody response, T cell proliferative responses, or activation of IFN-gamma-producing CD8(+) T cells. Our results suggested that in contrast to conventional adjuvants, such as alum and complete Freund's adjuvant, specific IgG1 in DNA-immunized BALB/c mice was highly dependent on IL-4. To our knowledge, our study provides the first evidence that endogenous IL-4 selectively downregulates the type 1 CD4(+) T cell-mediated immune response induced by i.m. genetic immunization, a fact that may have implications for the design of certain DNA vaccines.
Collapse
Affiliation(s)
- Mauricio M Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, São Paulo, SP, Brazil, 04023-062.
| | | | | |
Collapse
|
48
|
Abstract
Inoculation of naked DNA represents a novel approach to vaccine and immune therapeutic development. DNA vaccines or genetic immunization offers several advantages over the conventional vaccines for specific immune activation. Although a large number of vaccines have been made and are being used in the poultry industry, there have been no major advances in vaccine technology for this animal industry sector for decades. The potential advantages of DNA vaccines, such as over coming maternal immunity, in ovo delivery and absence of requirement for a cold-chain, combined with immunological efficacy make this new vaccine technology very attractive for the poultry industry. This review lists all of the published reports of experimental DNA vaccines developed for use in poultry and focuses on the trends, potentials and remaining barriers in the development of this new revolution in poultry vaccinology.
Collapse
Affiliation(s)
- G L Oshop
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742-3711, USA
| | | | | |
Collapse
|
49
|
Fadel SA, Ozaki DA, Sarzotti M. Enhanced type 1 immunity after secondary viral challenge in mice primed as neonates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3293-300. [PMID: 12218149 DOI: 10.4049/jimmunol.169.6.3293] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The goal of infant immunization against viral infection is to develop protective long term memory responses. Priming neonatal mice with a low dose of Cas-Br-E murine leukemia virus (Cas) results in adult-like, type 1 protective responses. However, other studies suggest that Ag priming of neonates leads to an increase in type 2 secondary responses even when primary responses were type 1. We assessed whether type 1 CD8+ T cell-mediated responses developed in murine neonates are maintained after secondary challenge with Cas in adulthood. Despite the induction of significant anti-viral CD8+-mediated cytotoxic T lymphocyte and IFN-gamma responses, initial neonatal priming led to a lower frequency of virus-specific T cells compared with adult priming. Adult frequencies were reached in mice primed as neonates only after secondary challenge in adulthood. A nonspecific and transient CD4+-mediated IL-4 response was present in all groups after secondary challenge with Cas or medium, indicating that this rise in type 2 cytokine production was not unique to mice that had been primed as neonates. Rather, type 1 anti-viral memory CD8+ T cell responses developed in neonatal mice are stable, protective, and enhanced after secondary challenge.
Collapse
Affiliation(s)
- Shaza A Fadel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
50
|
Affiliation(s)
- J L Whitton
- Department of Neuropharmacology, CVN-9, Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|