1
|
Tahir F, Sadique U, Tahir F, Almutairi MH, Alrefaei AF, Naz S, Ullah Khan R, Khan Momand N, Ragni M. Molecular epidemiology of bovine leukemia virus in cattle and phylogenetic analysis for determining its prevailing genotype in Khyber Pukhtunkhwa, Pakistan. Anim Biotechnol 2025; 36:2486029. [PMID: 40243132 DOI: 10.1080/10495398.2025.2486029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
This research focused on assessing the molecular prevalence of Bovine Leukemia Virus (BLV) in different cattle farms throughout Khyber Pakhtunkhwa and characterizing the dominant BLV genotypes by analyzing partial sequences of the gp51 gene. A total of 1,250 blood samples were collected from cattle of both sexes, various age groups (<1 year, 1-3 years, 3-5 years, and >5 years), and different breeds (Friesian, Jersey, Sahiwal, Achai, and crossbred) from multiple cattle farms. Of the 1,250 samples tested, BLV was detected in 136 (10.88%) using nested PCR. Risk factor analysis revealed a significantly higher prevalence of BLV in exotic breeds and older cattle. To confirm the findings and genotype the BLV isolates, four PCR-positive samples were sequenced. Phylogenetic analysis identified the isolates as belonging to genotype I, closely related to GI BLV isolates from Japan. Furthermore, the isolates in this study formed a tightly clustered group, suggesting a common origin from an earlier virus introduced into the host population in the study area.
Collapse
Affiliation(s)
- Farida Tahir
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Umer Sadique
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Farkhanda Tahir
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shabana Naz
- Department of Zoology, Government College Univeristy, Faisalabad, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | | | - Marco Ragni
- Soil, Plant and Food, University of Bari, Aldomoro, Itay
| |
Collapse
|
2
|
Tomé-Poderti L, Olivero-Deibe N, Carrión F, Portela MM, Obal G, Cabrera G, Bianchi S, Lima A, Addiego A, Durán R, Moratorio G, Pritsch O. Characterization and application of recombinant Bovine Leukemia Virus Env protein. Sci Rep 2024; 14:12190. [PMID: 38806566 PMCID: PMC11133380 DOI: 10.1038/s41598-024-62811-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
The Bovine Leukemia Virus (BLV) Envelope (Env) glycoprotein complex is instrumental in viral infectivity and shapes the host's immune response. This study presents the production and characterization of a soluble furin-mutated BLV Env ectodomain (sBLV-EnvFm) expressed in a stable S2 insect cell line. We purified a 63 kDa soluble protein, corresponding to the monomeric sBLV-EnvFm, which predominantly presented oligomannose and paucimannose N-glycans, with a high content of core fucose structures. Our results demonstrate that our recombinant protein can be recognized from specific antibodies in BLV infected cattle, suggesting its potential as a powerful diagnostic tool. Moreover, the robust humoral immune response it elicited in mice shows its potential contribution to the development of subunit-based vaccines against BLV.
Collapse
Affiliation(s)
- Lorena Tomé-Poderti
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), INSERM Unit 1259, Université de Tours and CHRU de Tours, Tours, France.
| | | | - Federico Carrión
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Magdalena Portela
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Gonzalo Obal
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gleysin Cabrera
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Sergio Bianchi
- Laboratory of Molecular Biomarkers, Department of Physiopathology, University Hospital, Universidad de la República, 11600, Montevideo, Uruguay
- Functional Genomics Unit, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Analia Lima
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Addiego
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Rosario Durán
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable/Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Gonzalo Moratorio
- Experimental Evolution of Viruses, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Otto Pritsch
- Immunovirology Lab, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Immunobiology Department School of Medicine, Universidad de la República, 11800, Montevideo, Uruguay
| |
Collapse
|
3
|
Dakal TC. SARS-CoV-2 attachment to host cells is possibly mediated via RGD-integrin interaction in a calcium-dependent manner and suggests pulmonary EDTA chelation therapy as a novel treatment for COVID 19. Immunobiology 2021; 226:152021. [PMID: 33232865 PMCID: PMC7642744 DOI: 10.1016/j.imbio.2020.152021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/18/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a highly contagious virus that has caused serious health crisis world-wide resulting into a pandemic situation. As per the literature, the SARS-CoV-2 is known to exploit humanACE2 receptors (similar toprevious SARS-CoV-1) for gaining entry into the host cell for invasion, infection, multiplication and pathogenesis. However, considering the higher infectivity of SARS-CoV-2 along with the complex etiology and pathophysiological outcomes seen in COVID-19 patients, it seems that there may be an alternate receptor for SARS-CoV-2. I performed comparative protein sequence analysis, database based gene expression profiling, bioinformatics based molecular docking using authentic tools and techniques for unveiling the molecular basis of high infectivity of SARS-CoV-2 as compared to previous known coronaviruses. My study revealed that SARS-CoV-2 (previously known as 2019-nCoV) harbors a RGD motif in its receptor binding domain (RBD) and the motif is absent in all other previously known SARS-CoVs. The RGD motif is well known for its role in cell-attachment and cell-adhesion. My hypothesis is that the SARS-CoV-2 may be (via RGD) exploiting integrins, that have high expression in lungs and all other vital organs, for invading host cells. However, an experimental verification is required. The expression of ACE2, which is a known receptor for SARS-CoV-2, was found to be negligible in lungs. I assume that higher infectivity of SARS-CoV-2 could be due to this RGD-integrin mediated acquired cell-adhesive property. Gene expression profiling revealed that expression of integrins is significantly high in lung cells, in particular αvβ6, α5β1, αvβ8 and an ECM protein, ICAM1. The molecular docking experiment showed the RBD of spike protein binds with integrins precisely at RGD motif in a similar manner as a synthetic RGD peptide binds to integrins as found by other researchers. SARS-CoV-2 spike protein has a number of phosphorylation sites that can induce cAMP, PKC, Tyr signaling pathways. These pathways either activate calcium ion channels or get activated by calcium. In fact, integrins have calcium & metal binding sites that were predicted around and in vicinity of RGD-integrin docking site in our analysis which suggests that RGD-integrins interaction possibly occurs in calcium-dependent manner. The higher expression of integrins in lungs along with their previously known high binding affinity (~KD = 4.0 nM) for virus RGD motif could serve as a possible explanation for high infectivity of SARS-CoV-2. On the contrary, human ACE2 has lower expression in lungs and its high binding affinity (~KD = 15 nM) for spike RBD alone could not manifest significant virus-host attachment. This suggests that besides human ACE2, an additional or alternate receptor for SARS-CoV-2 is likely to exist. A highly relevant evidence never reported earlier which corroborate in favor of RGD-integrins mediated virus-host attachment is an unleashed cytokine storm which causes due to activation of TNF-α and IL-6 activation; and integrins role in their activation is also well established. Altogether, the current study has highlighted possible role of calcium and other divalent ions in RGD-integrins interaction for virus invasion into host cells and suggested that lowering divalent ion in lungs could avert virus-host cells attachment.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India.
| |
Collapse
|
4
|
Metwally S, Hamada R, Ali AO, Mahmoud HYAH, Baker NM, Mohamed AEA, Wada S, Matsumoto Y, Aida Y. Detection and molecular characterization of bovine leukemia virus in beef cattle presented for slaughter in Egypt. J Vet Med Sci 2020; 82:1676-1684. [PMID: 33087638 PMCID: PMC7719883 DOI: 10.1292/jvms.20-0477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most common neoplastic disease of cattle worldwide and a serious problem
for the cattle industry. Previous studies have shown the molecular prevalence of BLV and the coexistence of BLV genotype-1 and -4 in Egyptian dairy cattle;
however, the molecular characteristics of BLV in Egyptian beef cattle are unknown. Therefore, we collected blood samples of 168 beef cattle from slaughterhouses
in three governorates in Egypt. Based on BLV-CoCoMo-qPCR-2 targeting long terminal repeats and nested PCR targeting the
env-gp51 gene, the BLV provirus infection rates were found to be 47/168 (28.0%) and 42/168 (25.0%), respectively.
Phylogenetic analysis based on 501 bp of the BLV env-gp51 gene from 42 BLV isolates revealed that at least six distinctive strains (b, e, f, g,
x, and z) were prevalent in cattle across the examined regions. Furthermore, phylogenetic analysis of the 420 bp sequence of the BLV env-gp51
region of the six strains against 11 known genotypes showed that the strains b, e, f, and g were clustered into genotype-1, and strains x and z were clustered
into genotype-4. Our results also indicated that strains b and x exist in both dairy and beef cattle in Egypt. The present study is the first to detect and
genotype BLV among beef cattle in Egypt.
Collapse
Affiliation(s)
- Samy Metwally
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour city, El Beheira 22511, Egypt
| | - Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Nabil M Baker
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour city, El Beheira 22511, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Assi W, Hirose T, Wada S, Matsuura R, Takeshima SN, Aida Y. PRMT5 Is Required for Bovine Leukemia Virus Infection In Vivo and Regulates BLV Gene Expression, Syncytium Formation, and Glycosylation In Vitro. Viruses 2020; 12:E650. [PMID: 32560231 PMCID: PMC7354529 DOI: 10.3390/v12060650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle and is closely related to human T-cell leukemia viruses. We investigated the role of a new host protein, PRMT5, in BLV infection. We found that PRMT5 is overexpressed only in BLV-infected cattle with a high proviral load, but not in those with a low proviral load. Furthermore, this upregulation continued to the lymphoma stage. PRMT5 expression was upregulated in response to experimental BLV infection; moreover, PRMT5 upregulation began in an early stage of BLV infection rather than after a long period of proviral latency. Second, siRNA-mediated PRMT5 knockdown enhanced BLV gene expression at the transcript and protein levels. Additionally, a selective small-molecule inhibitor of PRMT5 (CMP5) enhanced BLV gene expression. Interestingly, CMP5 treatment, but not siRNA knockdown, altered the gp51 glycosylation pattern and increased the molecular weight of gp51, thereby decreasing BLV-induced syncytium formation. This was supported by the observation that CMP5 treatment enhanced the formation of the complex type of N-glycan more than the high mannose type. In conclusion, PRMT5 overexpression is related to the development of BLV infection with a high proviral load and lymphoma stage and PRMT5 inhibition enhances BLV gene expression. This is the first study to investigate the role of PRMT5 in BLV infection in vivo and in vitro and to reveal a novel function for a small-molecule compound in BLV-gp51 glycosylation processing.
Collapse
Affiliation(s)
- Wlaa Assi
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (W.A.); (T.H.); (R.M.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Tomoya Hirose
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (W.A.); (T.H.); (R.M.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Ryosuke Matsuura
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (W.A.); (T.H.); (R.M.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shin-nosuke Takeshima
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (W.A.); (T.H.); (R.M.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama 352-8510, Japan
| | - Yoko Aida
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (W.A.); (T.H.); (R.M.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Butler MD, Griffin K, Brewster CD, Kapuscinski ML, Stenglein MD, Tripp DW, Quackenbush SL, Fox KA. A Novel Retrovirus (Gunnison's Prairie Dog Retrovirus) Associated With Thymic Lymphoma in Gunnison's Prairie Dogs in Colorado, USA. Viruses 2020; 12:E606. [PMID: 32498297 PMCID: PMC7354474 DOI: 10.3390/v12060606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 11/29/2022] Open
Abstract
As part of research and wildlife disease surveillance efforts, we performed necropsy examinations of 125 free-ranging (n = 114) and captive (n = 11) prairie dogs in Colorado from 2009 to 2017. From these cases, we identified three cases of thymic lymphoma in free-ranging Gunnison's prairie dogs (Cynomys gunnisoni), and we identified a novel retroviral sequence associated with these tumors. The viral sequence is 7700 nucleotides in length and exhibits a genetic organization that is consistent with the characteristics of a type D betaretrovirus. The proposed name of this virus is Gunnison's prairie dog retrovirus (GPDRV). We screened all 125 prairie dogs for the presence of GPDRV using PCR with envelope-specific primers and DNA extracted from spleen samples. Samples were from Gunnison's prairie dogs (n = 59), black-tailed prairie dogs (Cynomys ludovicianus) (n = 40), and white-tailed prairie dogs (Cynomys leucurus) (n = 26). We identified GPDRV in a total of 7/125 (5.6%) samples including all three of the prairie dogs with thymic lymphoma, as well as spleen from an additional four Gunnison's prairie dogs with no tumors recognized at necropsy. None of the GPDRV-negative Gunnison's prairie dogs had thymic lymphomas. We also identified a related, apparently endogenous retroviral sequence in all prairie dog samples. These results suggest that GPDRV infection may lead to development of thymic lymphoma in Gunnison's prairie dogs.
Collapse
Affiliation(s)
- Molly D. Butler
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.D.B.); (C.D.B.); (M.L.K.); (M.D.S.)
| | - Karen Griffin
- Colorado Division of Parks and Wildlife, Wildlife Health Laboratory, Fort Collins, CO 80521, USA; (K.G.); (D.W.T.)
| | - Connie D. Brewster
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.D.B.); (C.D.B.); (M.L.K.); (M.D.S.)
| | - Marylee L. Kapuscinski
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.D.B.); (C.D.B.); (M.L.K.); (M.D.S.)
| | - Mark D. Stenglein
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.D.B.); (C.D.B.); (M.L.K.); (M.D.S.)
| | - Daniel W. Tripp
- Colorado Division of Parks and Wildlife, Wildlife Health Laboratory, Fort Collins, CO 80521, USA; (K.G.); (D.W.T.)
| | - Sandra L. Quackenbush
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (M.D.B.); (C.D.B.); (M.L.K.); (M.D.S.)
| | - Karen A. Fox
- Colorado Division of Parks and Wildlife, Wildlife Health Laboratory, Fort Collins, CO 80521, USA; (K.G.); (D.W.T.)
| |
Collapse
|
7
|
LE DT, Yamashita-Kawanishi N, Okamoto M, Nguyen SV, Nguyen NH, Sugiura K, Miura T, Haga T. Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. J Vet Med Sci 2020; 82:1042-1050. [PMID: 32475959 PMCID: PMC7399327 DOI: 10.1292/jvms.20-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) belongs to the genus, Deltaretrovirus of the family, Retroviridae and it is the causative agent of enzootic bovine leukosis. The prevalence of BLV in three provinces in the Red River Delta Region in the North of Vietnam, Hanoi, Vinhphuc and Bacninh was studied from April 2017 to June 2018. A total of 275 blood samples collected from cattle were used for serum isolation and DNA extraction. Of these samples, 266 sera were subjected to ELISA test for detecting antibody against BLV gp51 protein and 152 DNA samples were used to detect the 444 bp fragment corresponding to a part of the gp51 region of the env by nested PCR. The results showed that 16.5% (n=44) and 21.1% (n=32) of samples were positive for BLV gp51 antibody and BLV proviral DNA, respectively. Phylogenetic analysis of the partial (423 bp) and complete (913 bp) BLV env-gp51 gene indicated that Vietnamese strains were clustered into genotypes 1, 6 and 10 (G1, G6 and G10). Of those genotypes, G1 genotype was dominant; G6 strains were designated as G6e and G6f subgenotypes; the existence of genotype 10 was confirmed for the first time in Vietnam. The present study provides important information regarding the prevalence of BLV infection and genetic characteristics of BLV strains identified in Vietnam, contributing to promote the establishment of disease control and eradication strategies in Vietnam.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nanako Yamashita-Kawanishi
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mari Okamoto
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Son Vu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Nam Huu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Katsuaki Sugiura
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoyuki Miura
- Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Moe KK, Polat M, Borjigin L, Matsuura R, Hein ST, Moe HH, Aida Y. New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization. PLoS One 2020; 15:e0229126. [PMID: 32084185 PMCID: PMC7034883 DOI: 10.1371/journal.pone.0229126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/30/2020] [Indexed: 11/29/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and causes serious problems for the cattle industry. In this study, we examined the prevalence of BLV infection and the distribution of BLV genotypes in cattle in the northern, central, and southern parts of Myanmar. The prevalence of BLV infection among Myanmar cattle (37.04%) in this study was markedly higher than the prevalence (9.1%) observed in our earlier study in which BLV was detected from the limited number of cattle only from a small area of Myanmar. Phylogenetic analysis of partial env-gp51 sequence of the isolated BLV strains revealed that there are at least three BLV genotypes (genotype-1, genotype-6, and genotype-10) in Myanmar, which have also been detected in the neighboring countries. We performed this study to estimate the BLV proviral load, which is a major diagnosis index for determining the virus transmission risk. The cattle of the three test regions with warm, wet, and humid climatic conditions (upper Sagaing, Yangon, and Kayin) exhibited a high mean proviral load, while cattle of three other regions with low annual rainfall and very high temperature (Mandalay, Magway, and upper Bago) exhibited a low mean proviral load. Further, the level of proviral load and the prevalence of BLV infection in Myanmar native cattle (N = 235) were lower than that in the hybrid cattle (Holstein Friesian × Myanmar native) (N = 62). We also observed that the cattle with high risk for BLV transmission, which have high proviral load, may enhance the BLV infection rate. Hence, to control BLV transmission, it is necessary to eliminate these cattle with high-risk for BLV transmission and to diagnose BLV provirus in cattle in the remaining regions/states of Myanmar sharing a boundary with neighboring countries.
Collapse
Affiliation(s)
- Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Ryosuke Matsuura
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
9
|
Matsuura R, Inabe K, Otsuki H, Kurokawa K, Dohmae N, Aida Y. Three YXXL Sequences of a Bovine Leukemia Virus Transmembrane Protein are Independently Required for Fusion Activity by Controlling Expression on the Cell Membrane. Viruses 2019; 11:E1140. [PMID: 31835517 PMCID: PMC6950344 DOI: 10.3390/v11121140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia viruses, is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. The transmembrane subunit of the BLV envelope glycoprotein, gp30, contains three completely conserved YXXL sequences that fit an endocytic sorting motif. The two N-terminal YXXL sequences are reportedly critical for viral infection. However, their actual function in the viral life cycle remains undetermined. Here, we identified the novel roles of each YXXL sequence. Syncytia formation ability was upregulated by a single mutation of the tyrosine (Tyr) residue in any of the three YXXL sequences, indicating that each YXXL sequence is independently able to regulate the fusion event. The alteration resulted from significantly high expression of gp51 on the cell surface, thereby decreasing the amount of gp51 in early endosomes and further revealing that the three YXXL sequences are independently required for internalization of the envelope (Env) protein, following transport to the cell surface. Moreover, the 2nd and 3rd YXXL sequences contributed to Env protein incorporation into the virion by functionally distinct mechanisms. Our findings provide new insights regarding the three YXXL sequences toward the BLV viral life cycle and for developing new anti-BLV drugs.
Collapse
Affiliation(s)
- Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazunori Inabe
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Otsuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Nakamura Laboratory, Baton Zone program, Riken Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
10
|
Bai L, Sato H, Kubo Y, Wada S, Aida Y. CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection. FASEB J 2019; 33:14516-14527. [PMID: 31648581 PMCID: PMC6894071 DOI: 10.1096/fj.201901528r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle, which is closely related to human T-cell leukemia viruses. BLV has spread worldwide and causes a serious problem for the cattle industry. The cellular receptor specifically binds with viral envelope glycoprotein (Env), and this attachment mediates cell fusion to lead virus entry. BLV Env reportedly binds to cationic amino acid transporter 1 (CAT1)/solute carrier family 7 member 1 (SLC7A1), but whether the CAT1/SLC7A1 is an actual receptor for BLV remains unknown. Here, we showed that CAT1 functioned as an infection receptor, interacting with BLV particles. Cells expressing undetectable CAT1 levels were resistant to BLV infection but became highly susceptible upon CAT1 overexpression. CAT1 exhibited specific binding to BLV particles on the cell surface and colocalized with the Env in endomembrane compartments and membrane. Knockdown of CAT1 in permissive cells significantly reduced binding to BLV particles and BLV infection. Expression of CAT1 from various species demonstrated no species specificity for BLV infection, implicating CAT1 as a functional BLV receptor responsible for its broad host range. These findings provide insights for BLV infection and for developing new strategies for treating BLV and preventing its spread.-Bai, L., Sato, H., Kubo, Y., Wada, S., Aida, Y. CAT1/SLC7A1 acts as a cellular receptor for bovine leukemia virus infection.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Disease Unit, RIKEN.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics
| | - Hirotaka Sato
- Viral Infectious Disease Unit, RIKEN.,Nakamura Laboratory, RIKEN Cluster for Science, Technology, and Innovation Hub, Wako, Japan; and
| | - Yoshinao Kubo
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics
| | - Yoko Aida
- Viral Infectious Disease Unit, RIKEN.,Nakamura Laboratory, RIKEN Cluster for Science, Technology, and Innovation Hub, Wako, Japan; and
| |
Collapse
|
11
|
Serroni A, Forti K, De Giuseppe A. Role of conserved cysteine residues in the CAIC motif of the SU glycoprotein in the maturation and fusion activity of bovine leukaemia virus. Arch Virol 2019; 164:2309-2314. [PMID: 31172288 DOI: 10.1007/s00705-019-04294-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
The surface (SU) and transmembrane (TM) glycoproteins of many retroviruses are linked by disulphide bonds, and the interaction of SU with a cellular receptor results in disulphide bond isomerisation triggered by the CXXC motif in SU. This reaction leads to the fusion of viral and host cell membranes. In this work, we show that the cysteine at amino acid position 212 in the CAIC motif of the SU glycoprotein of bovine leukaemia virus has a free thiol group. A C-to-A mutation at position 212, either individually or in combination with a C-to-A mutation at position 215, was found to inhibit the maturation process, suggesting its involvement in the formation of the covalent bond with TM.
Collapse
Affiliation(s)
- Anna Serroni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Katia Forti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy.
| | - Antonio De Giuseppe
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| |
Collapse
|
12
|
Gautam S, Mishra N, Kalaiyarasu S, Jhade SK, Sood R. Molecular Characterization of Bovine Leukaemia Virus (BLV) Strains Reveals Existence of Genotype 6 in Cattle in India with evidence of a new subgenotype. Transbound Emerg Dis 2018; 65:1968-1978. [PMID: 30044055 DOI: 10.1111/tbed.12979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023]
Abstract
Bovine leukaemia virus (BLV) causes enzootic leucosis in cattle and is prevalent worldwide. Although recent studies have shown that BLV strains can be classified into 10 distinct genotypes, no information is available regarding the BLV genotype prevalent in cattle in India. To determine the genetic variability in BLV, in this study, 118 adult dairy cows from three states of India were screened for BLV infection by env gp51-specific ELISA and nested PCR. Of the 33 cows found positive by both PCR and ELISA, 10 selected BLV strains were subjected to molecular characterization. Phylogenetic analyses of partial and full-length env gp51 gene sequences of Indian BLV strains and other geographical diverse BLV strains representing all the 10 genotypes revealed that Indian strains belonged to BLV genotype 6. Although Indian strains showed close genetic proximity with the strains circulating in South America, they were classified into a new subgenotype within genotype 6. Alignment of deduced amino acid sequences in gp51 demonstrated substitutions mainly in conformational epitope G, neutralizing domain 2 and linear epitope D, with a novel mutation (threonine to alanine at residue 252) found in D-epitope of all the Indian BLV strains. Although serological evidence of BLV infection in India has been reported earlier, this study on molecular characterization of BLV strains established the existence of BLV genotype 6 in India. Additionally, the results of this study highlight the importance of genetic analysis of geographically diverse BLV strains to understand BLV global genetic diversity and further studies are required to determine BLV genetic diversity and extent of BLV infection in cattle in India.
Collapse
Affiliation(s)
- Siddharth Gautam
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Kumar Jhade
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
13
|
Corredor AP, González J, Baquero LA, Curtidor H, Olaya-Galán NN, Patarroyo MA, Gutiérrez MF. In silico and in vitro analysis of boAP3d1 protein interaction with bovine leukaemia virus gp51. PLoS One 2018; 13:e0199397. [PMID: 29928016 PMCID: PMC6013181 DOI: 10.1371/journal.pone.0199397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/06/2018] [Indexed: 11/19/2022] Open
Abstract
The envelope glycoprotein 51 (gp51) is essential for bovine leukaemia virus (BLV) entry to bovine B-lymphocytes. Although the bovine adaptor protein 3 complex subunit delta-1 (boAP3D1) has been proposed as the potential receptor, the specific ligand-receptor interaction has not yet been completely defined and boAP3D1 receptor and gp51 3D structures have not been determined. This study was thus aimed at a functional annotation of boAP3D1 cellular adaptor protein and BLV gp51 and, proposing a reliable model for gp51-AP3D1 interaction using bioinformatics tools. The boAP3D1 receptor interaction patterns were calculated based on models of boAP3D1 receptor and gp51 complexes’ 3D structures, which were constructed using homology techniques and data-driven docking strategy. The results showed that the participation of 6 key amino acids (aa) on gp51 (Asn170, Trp127, His115, Ala97, Ser98 and Glu128) and 4 aa on AP3D1 (Lys925, Asp807, Asp695 and Arg800) was highly probable in the interaction between gp51 and BLVR domains. Three gp51 recombinant peptides were expressed and purified to validate these results: the complete domain (rgp51), the N-terminal portion (rNgp51) and the C-terminal fragment (rCgp51); and binding assays to Madin-Darby bovine kidney (MDBK) cells were then carried out with each recombinant. It was found that rNgp51 preferentially bound to MDBK cells, suggesting this domain’s functional role during invasion. The rNgp51-MDBK cell interaction was sensitive to trypsin (98% reduction) and chymotrypsin treatment (80% reduction). These results highlighted that the N-terminal portion of gp51 interacted in vitro with the AP3D1 receptor and provides a plausible in silico interaction model.
Collapse
Affiliation(s)
| | - Janneth González
- Nutrition and Biochemistry Department, Science Faculty, Universidad Javeriana, Bogotá DC, Colombia
- * E-mail: (MFG); (JG)
| | - Luis Alfredo Baquero
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia
| | - Hernando Curtidor
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Nury Nathalia Olaya-Galán
- Virology Laboratory, Universidad Javeriana, Bogotá DC, Colombia
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá DC, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | | |
Collapse
|
14
|
Pluta A, Albritton LM, Rola-Łuszczak M, Kuźmak J. Computational analysis of envelope glycoproteins from diverse geographical isolates of bovine leukemia virus identifies highly conserved peptide motifs. Retrovirology 2018; 15:2. [PMID: 29310678 PMCID: PMC5759284 DOI: 10.1186/s12977-017-0383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis. The SU or surface subunit, gp51, of its envelope glycoprotein is involved in receptor recognition and virion attachment. It contains the major neutralizing and CD4+ and CD8+ T cell epitopes found in naturally infected animals. In this study, we aimed to determine global variation and conservation within gp51 in the context of developing an effective global BLV vaccine. RESULTS A total of 256 sequences extracted from the NCBI database and collected in different parts of the world, were studied to identify conserved segments along the env gene sequences that encode the gp51 protein. Using the MEME server and the conserved DNA Region module for analysis within DnaSP, we identified six conserved segments, referred to as A-F, and five semi-conserved segments, referred to as G-K. The amino acid conservation ranged from 98.8 to 99.8% in conserved segments A to F, while segments G to K had 89.6-95.2% conserved amino acid sequence. Selection analysis of individual segments revealed that residues of conserved segments had undergone purifying selection, whereas, particular residues in the semi-conserved segments are currently undergoing positive selection, specifically at amino acid positions 48 in segment K, 74 in segment G, 82 in segment I, 133 and 142 in segment J, and residue 291 in segment H. Each of the codons for these six residues contain the most highly variable nucleotides within their respective semi-conserved segments. CONCLUSIONS The data described here show that the consensus amino acid sequence constitutes a strong candidate from which a global vaccine can be derived for use in countries where eradication by culling is not economically feasible. The most conserved segments overlap with amino acids in known immunodeterminants, specifically in epitopes D-D', E-E', CD8+ T-cell epitopes, neutralizing domain 1 and CD4+ T-cell epitopes. Two of the segments reported here represent unique segments that do not overlap with previously identified antigenic determinants. We propose that evidence of positive selection in some residues of the semi-conserved segments suggests that their variation is involved in viral strategy to escape immune surveillance of the host.
Collapse
Affiliation(s)
- Aneta Pluta
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Lorraine M. Albritton
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN USA
| | - Marzena Rola-Łuszczak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Kuźmak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
15
|
Molecular epidemiology and characterization of bovine leukemia virus in domestic yaks (Bos grunniens) on the Qinghai-Tibet Plateau, China. Arch Virol 2017; 163:659-670. [DOI: 10.1007/s00705-017-3658-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/09/2017] [Indexed: 11/27/2022]
|
16
|
Retroviral envelope proteins: Involvement in neuropathogenesis. J Neurol Sci 2017; 380:151-163. [DOI: 10.1016/j.jns.2017.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
|
17
|
Yang Y, Kelly PJ, Bai J, Zhang R, Wang C. First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean. PLoS One 2016; 11:e0168379. [PMID: 27977761 PMCID: PMC5158060 DOI: 10.1371/journal.pone.0168379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. To investigate the presence and genetic variability of BLV in the Caribbean for the first time, we preformed fluorescence resonance energy transfer (FRET)-PCR for the pol of BLV on DNA from whole blood of cattle from Dominica, Montserrat, Nevis and St. Kitts. Standard PCRs with primers for the env were used for phylogenetic analysis of BLV in positive animals. We found FRET-PCR positive cattle (12.6%, 41/325) on Dominica (5.2%; 4/77) and St. Kitts (19.2%; 37/193) but not on Montserrat (0%, 0/12) or Nevis (0%, 0/43). Positive animals were cows on farms where animals were raised intensively. Phylogenetic analysis using the neighbor-joining (NJ) method on partial and full-length env sequences obtained for strains from Dominica (n = 2) and St. Kitts (n = 5) and those available in GenBank (n = 90) (genotypes 1-10) revealed the Caribbean strains belonged to genotype 1 (98-100% sequence homology). Ours is the first molecular characterization of BLV infections in the Caribbean and the first description of genotype 1 in the region.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
- Department of Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Kansas, Kansas, United States of America
| | - Patrick John Kelly
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Jianfa Bai
- Department of Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Kansas, Kansas, United States of America
- * E-mail: (CW); (JB)
| | - Rong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Chengming Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- * E-mail: (CW); (JB)
| |
Collapse
|
18
|
Single N-glycosylation site of bovine leukemia virus SU is involved in conformation and viral escape. Vet Microbiol 2016; 197:21-26. [PMID: 27938679 DOI: 10.1016/j.vetmic.2016.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 11/23/2022]
Abstract
The bovine leukaemia virus (BLV) envelope protein (Env) is synthesized as a polyprotein precursor (gp72) proteolytically cleaved into the mature surface (SU) and transmembrane (TM) glycoproteins. The amino-terminal region of SU contains conformational epitopes F, G and H, which require a glycosylated SU to be recognized by monoclonal antibodies (MAbs) and antibodies from BLV-infected cattle. The SU contains eight asparagine (N) residues that are putative N-glycosylation sites. The N129, N203, N230 and N251 appear involved in carbohydrate binding, play an essential role in the in vitro infection. To determine which sites were actually glycosylated, we generated mutated SU forms, where each N-glycosylation site was changed to alanine (A). Subsequently, these N to A mutations were inserted into the env gene to generate Env mutants. The increase of electrophoretic mobility of EnvA256 and EnvA271 derived SU showed that the asparagine residues N256 and N271 were also glycosylated. ELISA revealed that only the N129 oligosaccharide determined the antigenic conformation of SU. The syncytium formation induced by EnvA129 showed that fusogenic capacity was independent of amino-terminal SU glycan conformational structure. Finally, anti-BLV serum inhibited syncytia formation even with the EnvA129 mutant. The latter inhibition was higher than Env, suggesting that the oligosaccharides could be also involved in the glycan shield for viral escape.
Collapse
|
19
|
Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima SN, Aida Y. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol 2016; 162:425-437. [PMID: 27771791 DOI: 10.1007/s00705-016-3118-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan
| | - Hla Hla Moe
- Department of Animal Science, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Takeshi Shimogiri
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kyaw Kyaw Moe
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
20
|
Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra Diaz V, Panei CJ, González ET, Kanemaki M, Onuma M, Giovambattista G, Aida Y. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 2016; 13:4. [PMID: 26754835 PMCID: PMC4709907 DOI: 10.1186/s12977-016-0239-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a member of retroviridae family, together with human T cell leukemia virus types 1 and 2 (HTLV-1 and -2) belonging to the genes deltaretrovirus, and infects cattle worldwide. Previous studies have classified the env sequences of BLV provirus from different geographic locations into eight genetic groups. To investigate the genetic variability of BLV in South America, we performed phylogenetic analyses of whole genome and partial env gp51 sequences of BLV strains isolated from Peru, Paraguay and Bolivia, for which no the molecular characteristics of BLV have previously been published, and discovered a novel BLV genotype, genotype-9, in Bolivia. RESULTS In Peru and Paraguay, 42.3 % (139/328) and over 50 % (76/139) of samples, respectively, were BLV positive. In Bolivia, the BLV infection rate was up to 30 % (156/507) at the individual level. In Argentina, 325/420 samples were BLV positive, with a BLV prevalence of 77.4 % at the individual level and up to 90.9 % at herd level. By contrast, relatively few BLV positive samples were detected in Chile, with a maximum of 29.1 % BLV infection at the individual level. We performed phylogenetic analyses using two different approaches, maximum likelihood (ML) tree and Bayesian inference, using 35 distinct partial env gp51 sequences from BLV strains isolated from Peru, Paraguay, and Bolivia, and 74 known BLV strains, representing eight different BLV genotypes from various geographical locations worldwide. The results indicated that Peruvian and Paraguayan BLV strains were grouped into genotypes-1, -2, and -6, while those from Bolivia were clustered into genotypes-1, -2, and -6, and a new genotype, genotype-9. Interestingly, these results were confirmed using ML phylogenetic analysis of whole genome sequences obtained by next generation sequencing of 25 BLV strains, assigned to four different genotypes (genotypes-1, -2, -6, and -9) from Peru, Paraguay, and Bolivia. Comparative analyses of complete genome sequences clearly showed some specific substitutions, in both structural and non-structural BLV genes, distinguishing the novel genotype-9 from known genotypes. CONCLUSIONS Our results demonstrate widespread BLV infection in South American cattle and the existence of a new BLV genotype-9 in Bolivia. We conclude that at least seven BLV genotypes (genotypes-1, -2, -4, -5, -6, -7, and -9) are circulating in South America.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan.
| | - Jiyun Kim
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Taku Miyasaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kazunori Yamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yuki Matsumoto
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | - Carlos Javier Panei
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina. .,IGEVET, CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Ester Teresa González
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Misao Kanemaki
- Institute for Animal Science, Shitara-cho, Aichi, 441-2433, Japan.
| | - Misao Onuma
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Guillermo Giovambattista
- IGEVET, CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
21
|
Salamango DJ, Johnson MC. Characterizing the Murine Leukemia Virus Envelope Glycoprotein Membrane-Spanning Domain for Its Roles in Interface Alignment and Fusogenicity. J Virol 2015; 89:12492-500. [PMID: 26446598 PMCID: PMC4665228 DOI: 10.1128/jvi.01901-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/28/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The membrane-proximal region of murine leukemia virus envelope (Env) is a critical modulator of its functionality. We have previously shown that the insertion of one amino acid (+1 leucine) within the membrane-spanning domain (MSD) abolished protein functionality in infectivity assays. However, functionality could be restored to this +1 leucine mutant by either inserting two additional amino acids (+3 leucine) or by deleting the cytoplasmic tail domain (CTD) in the +1 leucine background. We inferred that the ectodomain and CTD have protein interfaces that have to be in alignment for Env to be functional. Here, we made single residue deletions to the Env mutant with the +1 leucine insertion to restore the interface alignment (gain of functionality) and therefore define the boundaries of the two interfaces. We identified the glycine-proline pairs near the N terminus (positions 147 and 148) and the C terminus (positions 159 and 160) of the MSD as being the boundaries of the two interfaces. Deletions between these pairs restored function, but deletions outside of them did not. In addition, the vast majority of the single residue deletions regained function if the CTD was deleted. The exceptions were four hydroxyl-containing amino acid residues (T139, T140, S143, and T144) that reside in the ectodomain interface and the proline at position 148, which were all indispensable for functionality. We hypothesize that the hydroxyl-containing residues at positions T139 and S143 could be a driving force for stabilizing the ectodomain interface through formation of a hydrogen-bonding network. IMPORTANCE The membrane-proximal external region (MPER) and membrane-spanning domains (MSDs) of viral glycoproteins have been shown to be critical for regulating glycoprotein fusogenicity. However, the roles of these two domains are poorly understood. We report here that point deletions and insertions within the MPER or MSD result in functionally inactive proteins. However, when the C-terminal tail domain (CTD) is deleted, the majority of the proteins remain functional. The only residues that were found to be critical for function regardless of the CTD were four hydroxyl-containing amino acids located at the C terminus of the MPER (T139 and T140) and at the N terminus of the MSD (S143 and T144) and a proline near the beginning of the MSD (P148). We demonstrate that hydrogen-bonding at positions T139 and S143 is critical for protein function. Our findings provide novel insights into the role of the MPER in regulating fusogenic activity of viral glycoproteins.
Collapse
Affiliation(s)
- Daniel J Salamango
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
22
|
Bai L, Takeshima SN, Isogai E, Kohara J, Aida Y. Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle. Vaccine 2015; 33:7194-7202. [PMID: 26552001 DOI: 10.1016/j.vaccine.2015.10.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Abstract
Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T cell leukemia virus (HTLV). The cytotoxic T lymphocyte (CTL) plays a key role in suppressing the progression of disease caused by BLV. T and B cell epitopes in BLV have been studied, but CD8(+) CTL epitopes remain poorly understood. We used a library of 115 synthetic peptides covering the entirety of the Env proteins (gp51 and gp30), the Gag proteins (p15, p24, and p12), and the Tax protein of BLV to identify 11 novel CD8(+) T cell epitopes (gp51N5, gp51N11, gp51N12, gp30N5, gp30N6, gp30N8, gp30N16, tax16, tax18, tax19, and tax20) in four calves experimentally infected with BLV. The number of CD8(+) T cell epitopes that could be identified in each calf correlated with the BLV proviral load. Interestingly, among the 11 epitopes identified, only gp51N11 was capable of inducing CD8(+) T cell-mediated cytotoxicity in all four calves, but it is not a suitable vaccine target because it shows a high degree of polymorphism according to the Wu-Kabat variability index. By contrast, no CTL epitopes were identified from the Gag structural protein. In addition, several epitopes were obtained from gp30 and Tax, indicating that cellular immunity against BLV is strongly targeted to these proteins. CD8(+) CTL epitopes from gp30 and Tax were less polymorphic than epitopes from. Indeed, peptides tax16, tax18, tax19, and tax20 include a leucine-rich activation domain that encompasses a transcriptional activation domain, and the gp30N16 peptide contains a proline-rich region that interacts with a protein tyrosine phosphatase SHP1 to regulate B cell activation. Moreover, at least one CD8(+) CTL epitope derived from gp30 was identified in each of the four calves. These results indicate that BLV gp30 may be the best candidate for the development of a BLV vaccine.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | | | - Emiko Isogai
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
23
|
Polat M, Ohno A, Takeshima SN, Kim J, Kikuya M, Matsumoto Y, Mingala CN, Onuma M, Aida Y. Detection and molecular characterization of bovine leukemia virus in Philippine cattle. Arch Virol 2014; 160:285-96. [PMID: 25399399 DOI: 10.1007/s00705-014-2280-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/31/2014] [Indexed: 02/03/2023]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide, imposing a severe economic impact on the dairy cattle industry. However, there are no comprehensive studies on the distribution of BLV in the Philippines, and the genetic characteristics of Philippine BLV strains are unknown. Therefore, the aim of this study was to detect BLV infections in the Philippines and determined their genetic variability. Blood samples were obtained from 1116 cattle from different farms on five Philippine islands, and BLV provirus was detected by BLV-CoCoMo-qPCR-2 and nested PCR targeting BLV long terminal repeats. Out of 1116 samples, 108 (9.7 %) and 54 (4.8 %) were positive for BLV provirus, as determined by BLV-CoCoMo-qPCR-2 and nested PCR, respectively. Of the five islands, Luzon Island showed the highest prevalence of BLV infection (23.1 %). Partial env gp51 genes from 43 samples, which were positive for BLV provirus by both methods, were sequenced for phylogenetic analysis. Phylogenetic analysis based on a 423-bp fragment of the env gene revealed that Philippine BLV strains clustered into either genotype 1 or genotype 6. Substitutions were mainly found in antigenic determinants, such as the CD4(+) T-cell epitope, the CD8(+) T-cell epitope, the second neutralizing domain, B and E epitopes, and these substitutions varied according to genotype. This study provides comprehensive information regarding BLV infection levels in the Philippines and documents the presence of two BLV genotypes, genotypes 1 and 6, in this population.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Forti K, Rizzo G, Cagiola M, Ferrante G, Marini C, Feliziani F, Pezzotti G, De Giuseppe A. Identification of a novel overlapping sequential E epitope (E′) on the bovine leukaemia virus SU glycoprotein and analysis of immunological data. Vet Microbiol 2014; 172:157-67. [DOI: 10.1016/j.vetmic.2014.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/27/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
25
|
Retrovirus glycoprotein functionality requires proper alignment of the ectodomain and the membrane-proximal cytoplasmic tail. J Virol 2013; 87:12805-13. [PMID: 24049172 DOI: 10.1128/jvi.01847-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonnative viral glycoproteins, including Friend murine leukemia virus envelope (F-MLV Env) are actively recruited to HIV-1 assembly sites by an unknown mechanism. Because interactions with the lipid microenvironment at budding sites could contribute to recruitment, we examined the contribution of the hydrophobicity of the F-MLV Env membrane-spanning domain (MSD) to its incorporation into HIV-1 particles. A series of F-MLV Env mutants that added or deleted one, two, or three leucines in the MSD were constructed. All six mutants retained the ability to be incorporated into HIV-1 particles, but the -1L, -2L, -3L, +1L, and +2L mutants were not capable of producing infectious particles. Surprisingly, the +3L Env glycoprotein was able to produce infectious particles and was constitutively fusogenic. However, when the cytoplasmic tail domains (CTDs) in the Env constructs were deleted, all six of the MSD mutants were able to produce infectious particles. Further mutational analyses revealed that the first 10 amino acids of the CTD is a critical regulator of infectivity. A similar phenotype was observed in HIV-1 Env upon addition of leucines in the MSD, with +1 and +2 leucine mutations greatly reducing Env activity, but +3 leucine mutations behaving similar to the wild type. Unlike F-MLV Env (+1L and +2L), HIV-1 Env (+1L and +2L) infectivity was not restored by deletion of the CTD. We hypothesize that the CTD forms a coiled-coil that disrupts the protein's functionality if it is not in phase with the trimer interface of the ectodomain.
Collapse
|
26
|
Abstract
The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the ‘fossil record’ provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution.
Collapse
Affiliation(s)
- Jamie E Henzy
- Biology Department, Boston College, , Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
27
|
Betaretroviral envelope subunits are noncovalently associated and restricted to the mammalian class. J Virol 2012; 87:1937-46. [PMID: 23221553 DOI: 10.1128/jvi.01442-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structure of the transmembrane subunit (TM) of the retroviral envelope glycoprotein (Env) is highly conserved among most retrovirus genera and includes a pair of cysteines that forms an intramolecular disulfide loop within the ectodomain. Alpha-, gamma-, and deltaretroviruses have a third cysteine, adjacent to the loop, which forms a disulfide bond between TM and the surface subunit (SU) of Env, while lentiviruses, which have noncovalently associated subunits, lack this third cysteine. The Betaretrovirus genus includes Jaagsiekte sheep retrovirus (JSRV) and mouse mammary tumor virus (MMTV), as well as many endogenous retroviruses. Envelope subunit association had not been characterized in the betaretroviruses, but lack of a third cysteine in the TM ectodomain suggested noncovalently associated subunits. We tested the Env proteins of JSRV and MMTV, as well as human endogenous retrovirus K (HERV-K)108--a betaretrovirus-like human endogenous retrovirus--for intersubunit bonding and found that, as in the lentiviruses, the Env subunits lack an intersubunit disulfide bond. Since these results suggest that the number of cysteines in the TM loop region readily distinguishes between covalent and noncovalent structure, we surveyed endogenous retroviral TM sequences in the genomes of vertebrates represented in public databases and found that (i) retroviruses with noncovalently associated subunits have been present during all of anthropoid evolution and (ii) the noncovalent env motif is limited to mammals, while the covalent type is found among five vertebrate classes. We discuss implications of these findings for retroviral evolution, cross-species transmissions, and recombination events involving the env gene.
Collapse
|
28
|
Detection and molecular characterization of bovine leukemia viruses from Jordan. Arch Virol 2012; 157:2343-8. [PMID: 22914962 DOI: 10.1007/s00705-012-1447-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/10/2012] [Indexed: 10/28/2022]
Abstract
Bovine leukemia virus (BLV) is distributed worldwide. BLV has many effects on the health status and productivity of infected animals and is a potential risk for humans. In this study, we aimed to investigate the presence of and genotype bovine leukemia viruses on Jordanian dairy farms. Nested PCR coupled with RFLP and direct sequencing of a partial fragment of the env gene were carried out. Two BLV genotypes were found, genotypes 1 and 6. These genotypes were identified by nested PCR-RFLP of 444 bp of the env gene by restriction digestion with HaeIII, Bcl I and Pvu II. However, BLV-Jordan-10 seems to represent an entirely new genotype in our phylogenetic analysis. The nucleotide sequence identity between these two Jordanian BLV genotypes (1 and 6) was 96.2 %. The nucleotide sequence identity between Jordanian BLV genotype 1 and other reference BLV genotype 1 strains ranged from 99 % to 99.5 %. The nucleotide sequence similarity of the Jordanian BLV genotype 6 to other BLV genotypes ranged from 90 % to 96.7 %. A neutralizing motif and CD8(+) T-cell epitope were found in the env protein of both Jordanian isolates. In this study, we documented the presence of two BLV genotypes (1 and 6) on Jordanian dairy farms.
Collapse
|
29
|
Shinagawa M, Jinno-Oue A, Shimizu N, Roy BB, Shimizu A, Hoque SA, Hoshino H. Human T-cell leukemia viruses are highly unstable over a wide range of temperatures. J Gen Virol 2011; 93:608-617. [PMID: 22113012 DOI: 10.1099/vir.0.037622-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological properties of human T-cell leukemia virus type I (HTLV-I) and HTLV type II (HTLV-II) are not well elucidated as cell-free viruses. We established new assay systems to detect the infectivity of cell-free HTLVs and examined the stability of cell-free HTLVs at different temperatures. HTLVs lost infectivity more rapidly than did bovine leukemia virus (BLV), which is genetically related to HTLVs. The half-lives of three HTLV-I strains (two cosmopolitan strains and one Melanesian strain) at 37 °C were approximately 0.6 h, whereas the half-life of a BLV strain was 8.5 h. HTLV-I rapidly lost infectivity unexpectedly at 0 and 4 °C. We examined the stability of vesicular stomatitis virus pseudotypes with HTLV-I, HTLV-II or BLV Env proteins, and the Env proteins of HTLVs were found to be more unstable at 4 and 25 °C than the Env proteins of the BLV. Over the course of the viral life cycle, heat treatment inhibited HTLV-I infection at the phase of attachment to the host cells, and inhibition was more marked upon entry into the cells. The HTLV-I Env surface (SU) protein (gp46) was easily released from virions during incubation at 37 °C. However, this release was inhibited by pre-treatment of the virions with N-ethylmaleimide, suggesting that the inter-subunit bond between gp46 SU and gp21 transmembrane (TM) proteins is rearranged by disulfide bond isomerization. HTLVs are highly unstable over a wide range of temperatures because the disulfide bonds between the SU and TM proteins are labile.
Collapse
Affiliation(s)
- Masahiko Shinagawa
- 21st Century COE Program, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan.,Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Jinno-Oue
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Nobuaki Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Bibhuti Bhusan Roy
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akira Shimizu
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Sk Ariful Hoque
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Hiroo Hoshino
- 21st Century COE Program, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan.,Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
30
|
Inoue E, Matsumura K, Maekawa K, Nagatsuka K, Nobuta M, Hirata M, Minagawa A, Osawa Y, Okazaki K. Genetic heterogeneity among bovine leukemia viruses in Japan and their relationship to leukemogenicity. Arch Virol 2011; 156:1137-41. [PMID: 21387204 DOI: 10.1007/s00705-011-0955-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 02/18/2011] [Indexed: 10/18/2022]
Abstract
Bovine leukemia virus (BLV) infection in cattle causes persistent lymphocytosis, and a few percent of infected animals develop lymphoid tumors, namely enzootic bovine leukosis (EBL). In this study, a 440-bp fragment of the env gene was amplified from 204 tumor samples collected from different regions of Japan and analyzed by restriction fragment length polymorphism (RFLP) to determine the association of BLV with EBL. Of the seven RFLP types defined, types I, II, and III were dominant and found in 12.7, 75.0, and 8.3% of tumor samples, respectively. Cattle harboring type III virus were significantly older than other animals at the time of diagnosis of EBL. Type III viruses were found in approximately 33% and 5.5% of Japanese Black and Holstein cattle, respectively, with EBL. These findings indicate that genetically distinct BLV was associated with EBL in Japan and that the genetic profile may influence the leukemogenicity of the virus.
Collapse
Affiliation(s)
- Emi Inoue
- Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matsumura K, Inoue E, Osawa Y, Okazaki K. Molecular epidemiology of bovine leukemia virus associated with enzootic bovine leukosis in Japan. Virus Res 2011; 155:343-8. [DOI: 10.1016/j.virusres.2010.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/29/2022]
|
32
|
Lim SI, Jeong W, Tark DS, Yang DK, Kweon CH. Agar gel immunodiffusion analysis using baculovirus-expressed recombinant bovine leukemia virus envelope glycoprotein (gp51/gp30(T-)). J Vet Sci 2009; 10:331-6. [PMID: 19934599 PMCID: PMC2807270 DOI: 10.4142/jvs.2009.10.4.331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) envelope glycoprotein (gp51/ gp30(T-)), consisting of BLV gp51 and BLV gp30 that lacked its C-terminal transmembrane domain, was expressed in insect cells under the control of the baculovirus polyhedron promoter. Recombinant BLV gp51/gp30(T-) secreted from insect cells was determined by immunofluorescence, enzyme-linked immunosorbent and western blot assays using a BLV-specific monoclonal antibody and BLV-positive bovine antibodies. An agar gel immunodiffusion (AGID) test using gp51/gp30(T-) as the antigen for the detection of BLV antibodies in serum was developed and compared to traditional AGID, which uses wild type BLV antigen derived from fetal lamb kidney cells. AGID with the recombinant BLV gp51/gp30(T-) was relatively more sensitive than traditional AGID. When the two methods were tested with bovine sera from the field, the recombinant BLV gp51/gp30(T-) and traditional antigen had a relative sensitivity of 69.8% and 67.4%, respectively, and a relative specificity of 93.3% and 92.3%. These results indicated that the recombinant BLV gp51/gp30(T-) is an effective alternative antigen for the diagnosis of BLV infection in cattle.
Collapse
Affiliation(s)
- Seong In Lim
- National Veterinary Research and Quarantine Service, Anyang 430-757, Korea
| | | | | | | | | |
Collapse
|
33
|
Lamb D, Schüttelkopf AW, van Aalten DMF, Brighty DW. Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope. Retrovirology 2008; 5:70. [PMID: 18680566 PMCID: PMC2533354 DOI: 10.1186/1742-4690-5-70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 08/04/2008] [Indexed: 01/19/2023] Open
Abstract
Background Human T-cell leukaemia virus (HTLV-1) and bovine leukaemia virus (BLV) entry into cells is mediated by envelope glycoprotein catalyzed membrane fusion and is achieved by folding of the transmembrane glycoprotein (TM) from a rod-like pre-hairpin intermediate to a trimer-of-hairpins. For HTLV-1 and for several virus groups this process is sensitive to inhibition by peptides that mimic the C-terminal α-helical region of the trimer-of-hairpins. Results We now show that amino acids that are conserved between BLV and HTLV-1 TM tend to map to the hydrophobic groove of the central triple-stranded coiled coil and to the leash and C-terminal α-helical region (LHR) of the trimer-of-hairpins. Remarkably, despite this conservation, BLV envelope was profoundly resistant to inhibition by HTLV-1-derived LHR-mimetics. Conversely, a BLV LHR-mimetic peptide antagonized BLV envelope-mediated membrane fusion but failed to inhibit HTLV-1-induced fusion. Notably, conserved leucine residues are critical to the inhibitory activity of the BLV LHR-based peptides. Homology modeling indicated that hydrophobic residues in the BLV LHR likely make direct contact with a pocket at the membrane-proximal end of the core coiled-coil and disruption of these interactions severely impaired the activity of the BLV inhibitor. Finally, the structural predictions assisted the design of a more potent antagonist of BLV membrane fusion. Conclusion A conserved region of the HTLV-1 and BLV coiled coil is a target for peptide inhibitors of envelope-mediated membrane fusion and HTLV-1 entry. Nevertheless, the LHR-based inhibitors are highly specific to the virus from which the peptide was derived. We provide a model structure for the BLV LHR and coiled coil, which will facilitate comparative analysis of leukaemia virus TM function and may provide information of value in the development of improved, therapeutically relevant, antagonists of HTLV-1 entry into cells.
Collapse
Affiliation(s)
- Daniel Lamb
- The Biomedical Research Centre, College of Medicine, Ninewells Hospital, The University, Dundee, DD1 9SY, Scotland, UK.
| | | | | | | |
Collapse
|
34
|
Lavanya M, Kinet S, Montel-Hagen A, Mongellaz C, Battini JL, Sitbon M, Taylor N. Cell Surface Expression of the Bovine Leukemia Virus-Binding Receptor on B and T Lymphocytes Is Induced by Receptor Engagement. THE JOURNAL OF IMMUNOLOGY 2008; 181:891-8. [DOI: 10.4049/jimmunol.181.2.891] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Zhao X, Buehring GC. Natural genetic variations in bovine leukemia virus envelope gene: Possible effects of selection and escape. Virology 2007; 366:150-65. [PMID: 17498765 DOI: 10.1016/j.virol.2007.03.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/05/2007] [Accepted: 03/29/2007] [Indexed: 12/01/2022]
Abstract
Bovine leukemia virus (BLV) is an oncogenic virus widespread in cattle. It belongs to the genus Deltaretrovirus of the family Retroviridae along with human and simian T-lymphotropic viruses. Here we report the addition of 28 new sequences to the current literature of 16 full-length BLV envelope gene sequences. The phylogenetic clustering, genotyping, and geographic distribution of BLV env variations corresponded in most cases. Most natural variations are mapped to the surface of the proposed conformational models of BLV gp51 N-terminus and gp30 external domain, overlapping with or adjacent to immunogenic epitopes. Analyses for evidence of possible selection pressures suggest the BLV env is under stringent negative selection overall, while strong positive selection is indicated for immunogenic epitope G. Natural env deletions bounded by similar flanking sequences were observed in multiple isolates and would result in truncated signal peptides, missing gp51, and aberrant coding frames for other proteins.
Collapse
Affiliation(s)
- Xiangrong Zhao
- Graduate Program in Endocrinology, 3060 Valley Life Science Building, University of California, Berkeley, CA 94720-3140, USA.
| | | |
Collapse
|
36
|
Sjöberg M, Wallin M, Lindqvist B, Garoff H. Furin cleavage potentiates the membrane fusion-controlling intersubunit disulfide bond isomerization activity of leukemia virus Env. J Virol 2007; 80:5540-51. [PMID: 16699035 PMCID: PMC1472177 DOI: 10.1128/jvi.01851-05] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The membrane fusion protein of murine leukemia virus is a trimer of a disulfide-linked peripheral-transmembrane (SU-TM) subunit complex. The intersubunit disulfide bond is in SU linked to a disulfide bond isomerization motif, CXXC, with which the virus controls its fusion reaction (M. Wallin, M. Ekström, and H. Garoff, EMBO J. 23:54-65, 2004). Upon receptor binding the isomerase rearranges the intersubunit disulfide bond into a disulfide bond isomer within the motif. This facilitates SU dissociation and fusion activation in the TM subunit. In the present study we have asked whether furin cleavage of the Env precursor potentiates the isomerase to be triggered. To this end we accumulated the late form of the precursor, gp90, in the cell by incubation in the presence of a furin-inhibiting peptide. The isomerization was done by NP-40 incubation or by a heat pulse under alkylation-free conditions. The cells were lysed in the presence of alkylator, and the precursor was immunoprecipitated, gel isolated, deglycosylated, and subjected to complete trypsin digestion. Disulfide-linked peptide complexes were separated by sodium dodecyl sulfate-tricine-polyacrylamide gel electrophoresis under nonreducing conditions. This assay revealed the size of the characteristic major disulfide-linked peptide complex that differentiates the two isomers of the disulfide bond between Cys336 (or Cys339) and Cys563, i.e., the bond corresponding to the intersubunit disulfide bond. The analyses showed that the isomerase was five- to eightfold more resistant to triggering in the precursor than in the mature, cleaved form. This suggests that the isomerase becomes potentiated for triggering by a structural change in Env that is induced by furin cleavage in the cell.
Collapse
Affiliation(s)
- Mathilda Sjöberg
- Department of Biosciences at Novum, Karolinska Institute, S-141 57 Huddinge, Sweden
| | | | | | | |
Collapse
|
37
|
Camargos MF, Pereda A, Stancek D, Rocha MA, dos Reis JKP, Greiser-Wilke I, Leite RC. Molecular characterization of the env gene from Brazilian field isolates of Bovine leukemia virus. Virus Genes 2007; 34:343-50. [PMID: 16917740 DOI: 10.1007/s11262-006-0011-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 04/27/2006] [Indexed: 11/24/2022]
Abstract
Molecular characterization of Bovine leukemia virus (BLV) isolates from Brazil using the env gene sequences revealed a high conservation of this gene. In most cases the substitutions corresponded to silent transitions. In addition, cystein residues, potential glycosylation sites, neutralization domains and other critical residues involved with the envelope structural domains and viral infectivity were conserved. Most of the substitutions found in the aminoacid sequences of the gp51 protein were localized in the G and H epitopes. Using the SIFT software, it was predicted that they should not alter the protein functions. Phylogenetic analyses showed that partial or complete env gene sequences grouped in three or four phylogenetic clusters, respectively. The sequences from the Brazilian isolates had similar mutation rates as compared to samples from other countries, and belonged to at least two phylogenetic clusters.
Collapse
Affiliation(s)
- Marcelo Fernandes Camargos
- Setor de Virologia do Laboratório Nacional Agropecuário de Minas Gerais, Av. Rômulo Joviano s/n Caixa Postal 50, Pedro Leopoldo, MG, Brasil CEP. 33.600-000.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mirsaliotis A, Nurkiyanova K, Lamb D, Woof JM, Brighty DW. Conformation-specific antibodies targeting the trimer-of-hairpins motif of the human T-cell leukemia virus type 1 transmembrane glycoprotein recognize the viral envelope but fail to neutralize viral entry. J Virol 2007; 81:6019-31. [PMID: 17376912 PMCID: PMC1900303 DOI: 10.1128/jvi.02544-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) entry into cells is dependent upon the viral envelope glycoprotein-catalyzed fusion of the viral and cellular membranes. Following receptor activation of the envelope, the transmembrane glycoprotein (TM) is thought to undergo a series of fusogenic conformational transitions through a rod-like prehairpin intermediate to a compact trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that TM is a valid target for antiviral therapy. To assess the utility of TM as a vaccine target and to explore further the function of TM in HTLV-1 pathogenesis, we have begun to examine the immunological properties of TM. Here we demonstrate that a recombinant trimer-of-hairpins form of the TM ectodomain is strongly immunogenic. Monoclonal antibodies raised against the TM immunogen specifically bind to trimeric forms of TM, including structures thought to be important for membrane fusion. Importantly, these antibodies recognize the envelope on virally infected cells but, surprisingly, fail to neutralize envelope-mediated membrane fusion or infection by pseudotyped viral particles. Our data imply that, even in the absence of overt membrane fusion, there are multiple forms of TM on virally infected cells and that some of these display fusion-associated structures. Finally, we demonstrate that many of the antibodies possess the ability to recruit complement to TM, suggesting that envelope-derived immunogens capable of eliciting a combination of neutralizing and complement-fixing antibodies would be of value as subunit vaccines for intervention in HTLV infections.
Collapse
Affiliation(s)
- Antonis Mirsaliotis
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
40
|
Mirsaliotis A, Nurkiyanova K, Lamb D, Kuo CWS, Brighty DW. An antibody that blocks human T-cell leukemia virus type 1 six-helix-bundle formation in vitro identified by a novel assay for inhibitors of envelope function. J Gen Virol 2007; 88:660-669. [PMID: 17251585 DOI: 10.1099/vir.0.82390-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fusion of the viral and cellular membranes is a critical step in the infection of cells by the human T-cell leukemia virus type 1 (HTLV-1) and this process is catalysed by the viral envelope glycoproteins. During fusion, the transmembrane glycoprotein (TM) is thought to undergo a transition from a rod-like pre-hairpin conformation that is stabilized by a trimeric coiled coil to a more compact six-helix-bundle or trimer-of-hairpins structure. Importantly, synthetic peptides that interfere with the conformational changes of TM are potent inhibitors of membrane fusion and HTLV-1 entry, suggesting that the pre-hairpin motif is a valid target for antiviral therapy. Here, a stable, trimeric TM derivative that mimics the coiled-coil structure of fusion-active TM has been used to develop a plate-based assay to identify reagents that interfere with the formation of the six-helix bundle. The assay discriminates effectively between strong, weak and inactive peptide inhibitors of membrane fusion and has been used to identify a monoclonal antibody (mAb) that disrupts six-helix-bundle formation efficiently in vitro. The mAb is reactive with the C-helical region of TM, indicating that this region of TM is immunogenic. However, the mAb failed to neutralize HTLV-1 envelope-mediated membrane fusion, suggesting that, on native viral envelope, the epitope recognized by the mAb is obscured during fusion. This novel mAb will be of value in the immunological characterization of fusion-active structures of HTLV-1 TM. Moreover, the assay developed here will aid the search for therapeutic antibodies, peptides and small-molecule inhibitors targeting envelope and the HTLV-1 entry process.
Collapse
Affiliation(s)
- Antonis Mirsaliotis
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - Kulpash Nurkiyanova
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - Daniel Lamb
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - Chien-Wen S Kuo
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| | - David W Brighty
- The Biomedical Research Centre, Ninewells Hospital and Medical School, The University, Dundee DD1 9SY, UK
| |
Collapse
|
41
|
Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S, Koscheck T, Fasching PA, Schild RL, Beckmann MW, Strissel PL. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med (Berl) 2006; 85:23-38. [PMID: 17066266 DOI: 10.1007/s00109-006-0104-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/26/2006] [Accepted: 08/10/2006] [Indexed: 12/17/2022]
Abstract
Endometrial carcinomas (EnCa) predominantly represent a steroid hormone-driven tumor initiated from prestages. The human endogenous retrovirus HERV-W envelope gene Syncytin-1 was significantly increased at the mRNA and protein levels in EnCa and prestages compared to controls. Steroid hormone treatment of primary EnCa cells and cell lines induced Syncytin-1 due to a new HERV-W estrogen response element and resulted in increased proliferation. Activation of the cAMP-pathway also resulted in Syncytin-1 upregulation, but in contrast to proliferation, classic cell-cell fusions similar to placental syncytiotrophoblasts occurred. Cell-cell fusions were also histologically identified in endometrioid EnCa tumors in vivo. Clonogenic soft agar experiments showed that Syncytin-1 is also involved in anchorage-independent colony growth as well as in colony fusions depending on steroid hormones or cAMP-activation. The posttranscriptional silencing of Syncytin-1 gene expression and a concomitant functional block of induced cell proliferation and cell-cell fusion with siRNAs proved the essential role of Syncytin-1 in these cellular processes. TGF-beta1 and TGF-beta3 were identified as main regulative factors, due to the finding that steroid hormone inducible TGF-beta1 and TGF-beta3 inhibited cell-cell fusion, whereas antibody-mediated TGF-beta neutralization induced cell-cell fusions. These results showed that induced TGF-beta could override Syncytin-1-mediated cell-cell fusions. Interactions between Syncytin-1 and TGF-beta may contribute to the etiology of EnCa progression and also help to clarify the regulation of cell-cell fusions occurring in development and in other syncytial cell tumors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cell Fusion
- Cell Proliferation
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Female
- Gene Expression Profiling
- Gene Products, env/antagonists & inhibitors
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Silencing/physiology
- Humans
- Immunoblotting
- Middle Aged
- Pregnancy Proteins/antagonists & inhibitors
- Pregnancy Proteins/genetics
- Pregnancy Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Transforming Growth Factor beta/pharmacology
- Tumor Cells, Cultured/drug effects
Collapse
Affiliation(s)
- Reiner Strick
- Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, University Clinic Erlangen, Universitaetsstr. 21-23, 91054, Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Novakovic S, Sawai ET, Radke K. Dileucine and YXXL motifs in the cytoplasmic tail of the bovine leukemia virus transmembrane envelope protein affect protein expression on the cell surface. J Virol 2004; 78:8301-11. [PMID: 15254202 PMCID: PMC446140 DOI: 10.1128/jvi.78.15.8301-8311.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/12/2004] [Indexed: 12/17/2022] Open
Abstract
Several retroviruses downmodulate the cell surface expression of envelope (Env) proteins through peptide sequences located in the cytoplasmic tail of the transmembrane (TM) subunit. We investigated whether cell surface expression of a chimeric protein containing the cytoplasmic domain of the TM protein (CTM) of bovine leukemia virus (BLV) was regulated by two membrane-proximal dileucine motifs or by tyrosine Y487 or Y498 in YXXL motifs. A chimeric protein composed of the extracellular and membrane-spanning portions of human CD8-alpha plus a wild-type (wt) BLV CTM was detectable on the surface of only 40% of the cells in which it was transiently expressed. Replacement of either dileucine pair with alanines increased the level of surface display of chimeric proteins. Nearly all cells became surface positive when both dileucine motifs were altered simultaneously and when either an N-terminal segment containing both dileucine motifs or a C-terminal segment containing all YXXL motifs was deleted. In contrast, replacement of Y487 or Y498 with alanine or phenylalanine enabled only small increases in surface display compared with wt levels. Chimeric proteins had similar stabilities but were downmodulated from the cell surface at three different rates. Point mutants segregated into each of the three groups of proteins categorized according to these different rates. Interestingly, Y487 mutants were downmodulated less efficiently than Y498 mutants, which behaved like wt. CD8-CTM chimeric proteins were phosphorylated on serine residues, but the native BLV Env protein was not phosphorylated either in transfected cells or in a lymphoid cell line constitutively producing BLV. Thus, both dileucine and YXXL motifs within the BLV CTM contribute to downmodulation of a protein containing this domain. Interactions with other proteins may influence surface exposure of Env protein complexes in virus-infected cells, assisting in viral evasion of adaptive immunity.
Collapse
Affiliation(s)
- Sinisa Novakovic
- Department of Animal Science, University of California, Davis, Davis, CA 95616-8521, USA
| | | | | |
Collapse
|
43
|
Wallin M, Ekström M, Garoff H. Isomerization of the intersubunit disulphide-bond in Env controls retrovirus fusion. EMBO J 2003; 23:54-65. [PMID: 14685283 PMCID: PMC1271652 DOI: 10.1038/sj.emboj.7600012] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/15/2003] [Indexed: 12/17/2022] Open
Abstract
The membrane fusion activity of murine leukaemia virus Env is carried by the transmembrane (TM) and controlled by the peripheral (SU) subunit. We show here that all Env subunits of the virus form disulphide-linked SU-TM complexes that can be disrupted by treatment with NP-40, heat or urea, or by Ca(2+) depletion. Thiol mapping indicated that these conditions induced isomerization of the disulphide-bond by activating a thiol group in a Cys-X-X-Cys (CXXC) motif in SU. This resulted in dissociation of SU from the virus. The active thiol was hidden in uninduced virus but became accessible for alkylation by either Ca(2+) depletion or receptor binding. The alkylation inhibited isomerization, virus fusion and infection. DTT treatment of alkylated Env resulted in cleavage of the SU-TM disulphide-bond and rescue of virus fusion. Further studies showed that virus fusion was specifically inhibited by high and enhanced by low concentrations of Ca(2+). These results suggest that Env is stabilized by Ca(2+) and that receptor binding triggers a cascade of reactions involving Ca(2+) removal, CXXC-thiol exposure, SU-TM disulphide-bond isomerization and SU dissociation, which lead to fusion activation.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antibodies, Monoclonal/metabolism
- Calcium/pharmacology
- Cell Line
- Cell Line, Tumor
- Chickens
- Cricetinae
- Cricetulus
- Disulfides/metabolism
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Human T-lymphotropic virus 1/metabolism
- Humans
- Kinetics
- Leukemia Virus, Murine/chemistry
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/metabolism
- Magnesium/pharmacology
- Membrane Fusion
- Mice
- Models, Biological
- Moloney murine leukemia virus/metabolism
- Rats
- Receptors, Virus/drug effects
- Receptors, Virus/metabolism
- Retroviridae/metabolism
- Stereoisomerism
Collapse
Affiliation(s)
- Michael Wallin
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | - Maria Ekström
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | - Henrik Garoff
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
- Molecular Biology Laboratory, Center of Biotechnology, Novum, S-141 57 Huddinge, Sweden. Tel.: +46 8 6089125; Fax: +46 8 7745538; E-mail:
| |
Collapse
|
44
|
Hamilton VT, Stone DM, Pritchard SM, Cantor GH. Bovine leukemia virus gp30 transmembrane (TM) protein is not tyrosine phosphorylated: examining potential interactions with host tyrosine-mediated signaling. Virus Res 2002; 90:155-69. [PMID: 12457971 DOI: 10.1016/s0168-1702(02)00149-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bovine leukemia virus (BLV) causes persistent lymphocytosis, a preneoplastic, polyclonal expansion of B lymphocytes. The expansion increases viral transmission to new hosts, but the mechanisms of this expansion have not been determined. We hypothesized that BLV infection contributes to B-cell expansion by signaling initiated via viral transmembrane protein motifs undergoing tyrosine phosphorylation. Viral mimicry of host cell proteins is a well-demonstrated mechanism by which viruses may increase propagation or decrease recognition by the host immune system. The cytoplasmic tail of BLV transmembrane protein gp30 (TM) has multiple areas of homology to motifs of host cell signaling proteins, including two immunoreceptor tyrosine-based activation motifs (ITAMs) and two immunoreceptor tyrosine-based inhibition motifs (ITIMs), which are homologous to B-cell receptor and inhibitory co-receptor motifs. Signaling by these motifs in B cells typically relies on tyrosine phosphorylation, followed by interactions with Src-homology-2 (SH2) domains of nonreceptor protein tyrosine kinases or phosphatases. Phosphorylation of tyrosine residues in the cytoplasmic tail of TM was tested in four systems including ex vivo cultured peripheral blood mononuclear cells from BLV infected cows, BLV-expressing fetal lamb kidney cell and bat lung cell lines, and DT40 B cells transfected with a fusion of mouse extracellular CD8alpha and cytoplasmic TM. No phosphorylation of TM was detected in our experiments in any of the cell types utilized, or with various stimulation methods. Detection was attempted by immunoblotting for phosphotyrosines, or by metabolic labeling of cells. Thus BLV TM is not likely to modify host signal pathways through interactions between phosphorylated tyrosines of the ITAM or ITIM motifs and host-cell tyrosine kinases or phosphatases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- B-Lymphocytes/immunology
- Cattle
- Cell Line
- Enzootic Bovine Leukosis/virology
- Leukemia Virus, Bovine/pathogenicity
- Lymphocyte Activation
- Mice
- Molecular Sequence Data
- Phosphorylation
- Receptors, Amino Acid/chemistry
- Receptors, Amino Acid/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/metabolism
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/metabolism
- Signal Transduction
- Tyrosine/metabolism
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Valerie T Hamilton
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040 USA
| | | | | | | |
Collapse
|
45
|
Johnston ER, Albritton LM, Radke K. Envelope proteins containing single amino acid substitutions support a structural model of the receptor-binding domain of bovine leukemia virus surface protein. J Virol 2002; 76:10861-72. [PMID: 12368329 PMCID: PMC136609 DOI: 10.1128/jvi.76.21.10861-10872.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Functional domains of the strikingly conserved envelope (Env) glycoproteins of bovine leukemia virus (BLV) and its close relative, human T-cell leukemia virus type 1 (HTLV-1), are still being defined. We have used BLV Env protein variants to gain insights into the structure and function of this important determinant of viral infectivity. Each of 23 different single amino acid variants found in cDNA clones of env transcripts present after short-term culture of peripheral blood mononuclear cells from BLV-infected sheep was expressed in COS-1 cells and tested for the ability to mediate cell fusion and to be cleaved to surface (SU) and transmembrane (TM) protein subunits. Of 11 Env variants that failed to induce syncytia or did so poorly, 7 contained changes in amino acids identical or chemically conserved in the HTLV-1 Env protein. These seven included the four variants that showed aberrant proteolytic cleavage and poor cell surface expression, underscoring their importance for Env structure. Ten of 12 variants that retained wild-type syncytium-inducing ability clustered in the N-terminal half of BLV SU, which forms the putative receptor-binding domain (RBD). Several variants in the RBD showed evidence of subtle misfolding, as judged by reduced binding to monoclonal antibodies recognizing conformational epitopes F, G, and H formed by the N terminus of SU. We modeled the BLV RBD by aligning putative structural elements with known elements of the ecotropic Friend murine leukemia virus RBD monomer. All the variant RBD residues but one are exposed on the surface of this BLV model. These variants as well as function-altering, antibody-reactive residues defined by other investigators group on one face of the molecular model. They are strikingly absent from the opposite face, implying that it is likely to face inward in Env complexes. This surface might interact with the C-terminal domain of SU or with an adjacent monomer in the Env oligomer. This location suggests an orientation for the monomer of ecotropic Friend murine leukemia virus RBD.
Collapse
Affiliation(s)
- Elizabeth R Johnston
- Department of Animal Science and Graduate Group in Biochemistry and Molecular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
46
|
Camargos MF, Stancek D, Rocha MA, Lessa LM, Reis JKP, Leite RC. Partial sequencing of env gene of bovine leukaemia virus from Brazilian samples and phylogenetic analysis. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2002; 49:325-31. [PMID: 12420867 DOI: 10.1046/j.1439-0450.2002.00582.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the partial bovine leukaemia virus (BLV) env gp51 gene sequences obtained from three BLV strains isolated in three different regions of Brazil was carried out. The Brazilian BLV env gp51 sequences were compared with seven other corresponding sequences of BLV strains isolated in different countries and with consensus sequence as well. The obtained data point on qualitative and quantitative differences among the analysed strains as far as the occurrence of single point mutations is concerned. Two Brazilian strains show significantly higher mutation rate than other analysed strains. Amino acid analysis did not show, however, any substantial changes of the primary protein structure coded by well conserved region of BLV env gp51 gene. Based on the obtained data, the putative dendogram image of possible phylogenetic relations among the studied BLV strains is presented as well.
Collapse
Affiliation(s)
- M F Camargos
- Faculty of Veterinary Medicine, Federal University of Minas Gerais Av. Antĵnio Carlos, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Gatot JS, Callebaut I, Van Lint C, Demonté D, Kerkhofs P, Portetelle D, Burny A, Willems L, Kettmann R. Bovine leukemia virus SU protein interacts with zinc, and mutations within two interacting regions differently affect viral fusion and infectivity in vivo. J Virol 2002; 76:7956-67. [PMID: 12134000 PMCID: PMC155115 DOI: 10.1128/jvi.76.16.7956-7967.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2002] [Accepted: 05/10/2002] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell lymphotropic virus type 1 (HTLV-1) belong to the genus of deltaretroviruses. Their entry into the host cell is supposed to be mediated by interactions of the extracellular (SU) envelope glycoproteins with cellular receptors. To gain insight into the mechanisms governing this process, we investigated the ability of SU proteins to interact with specific ligands. In particular, by affinity chromatography, we have shown that BLV SU protein specifically interacted with zinc ions. To identify the protein domains involved in binding, 16 peptides distributed along the sequence were tested. Two of them appeared to be able to interact with zinc. To unravel the role of these SU regions in the biology of the virus, mutations were introduced into the env gene of a BLV molecular clone in order to modify residues potentially interacting with zinc. The fusogenic capacity of envelope mutated within the first zinc-binding region (104 to 123) was completely abolished. Furthermore, the integrity of this domain was also required for in vivo infectivity. In contrast, mutations within the second zinc-binding region (218 to 237) did not hamper the fusogenic capacity; indeed, the syncytia were even larger. In sheep, mutations in region 218 to 237 did not alter infectivity or viral spread. Finally, we demonstrated that the envelope of the related HTLV-1 was also able to bind zinc. Interestingly, zinc ions were found to be associated with the receptor-binding domain (RBD) of Friend murine leukemia virus (Fr-MLV) SU glycoprotein, further supporting their relevance in SU structure. Based on the sequence similarities shared with the Fr-MLV RBD, whose three-dimensional structure has been experimentally determined, we located the BLV zinc-binding peptide 104-123 on the opposite side of the potential receptor-binding surface. This observation supports the hypothesis that zinc ions could mediate interactions of the SU RBD either with the C-terminal part of SU, thereby contributing to the SU structural integrity, or with a partner(s) different from the receptor.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites/genetics
- Cattle
- Cells, Cultured
- Cricetinae
- Cysteine/chemistry
- DNA, Viral/genetics
- Enzootic Bovine Leukosis/etiology
- Gene Products, env/genetics
- Gene Products, env/physiology
- Human T-lymphotropic virus 1/physiology
- Humans
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/pathogenicity
- Leukemia Virus, Bovine/physiology
- Membrane Fusion
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/physiology
- Transfection
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/physiology
- Virulence
- Zinc/metabolism
Collapse
Affiliation(s)
- Jean-Stéphane Gatot
- Unité de Biologie Cellulaire et Moléculaire, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|