1
|
Kim CU, Lim D, Kim YS, Ku B, Kim DJ. Influenza viral matrix 1 protein aggravates viral pathogenicity by inducing TLR4-mediated reactive oxygen species production and apoptotic cell death. Cell Death Dis 2023; 14:228. [PMID: 36990977 PMCID: PMC10060384 DOI: 10.1038/s41419-023-05749-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Influenza virus is one of the most challenging viruses threating human health. Since infection with influenza virus triggers inflammatory responses and induces cell death, the molecular and cellular mechanisms by which the virus-infected cells undergo apoptotic and necrotic cell death have been widely studied. However, most of the studies have focused on the molecular events occurring in the cytosol and there is limited information on the physiological correlation between virus-induced cell death and the viral pathogenesis in vivo. In this study, we demonstrate that the influenza virus matrix 1 (M1) protein is released from virus-infected cells and triggers apoptotic cell death of lung epithelial and pulmonary immune cells, through the activation of Toll-like receptor 4 (TLR4) signaling. Treatment with M1 protein led to robust cellular inflammatory responses, such as the production of proinflammatory cytokines and cellular reactive oxygen species (ROS), and induction of cell death. When M1 protein was administered in vivo, it induced the activation of inflammatory responses and cell death in the lungs. Furthermore, the administration of M1 aggravated lung pathology and mortality of the virus-infected mice in a TLR4-dependent manner. These results demonstrate that M1 is an important pathogenic factor contributing to influenza virus pathogenicity by enhancing cell death in the lungs, thereby expanding our understanding of the molecular mechanism of influenza virus-induced cell death through the interaction with an innate immune receptor.
Collapse
Affiliation(s)
- Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Dahwan Lim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young Sang Kim
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
- University of Science and Technology (UST), Daejeon, South Korea.
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
- Department of Biochemistry, Chungnam National University, Daejeon, South Korea.
- University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
2
|
Inflammatory cell death: how macrophages sense neighbouring cell infection and damage. Biochem Soc Trans 2023; 51:303-313. [PMID: 36695550 PMCID: PMC9987993 DOI: 10.1042/bst20220807] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Programmed cell death is a critical host defence strategy during viral infection. Neighbouring cells deal with this death in distinct ways depending on how the infected cell dies. While apoptosis is considered immunologically silent, the lytic pathways of necroptosis and pyroptosis trigger inflammatory responses by releasing inflammatory host molecules. All these pathways have been implicated in influenza A virus infection. Here, we review how cells sense neighbouring infection and death and how sensing shapes ensuing inflammatory responses.
Collapse
|
3
|
Kelly JN, Laloli L, V’kovski P, Holwerda M, Portmann J, Thiel V, Dijkman R. Comprehensive single cell analysis of pandemic influenza A virus infection in the human airways uncovers cell-type specific host transcriptional signatures relevant for disease progression and pathogenesis. Front Immunol 2022; 13:978824. [PMID: 36268025 PMCID: PMC9576848 DOI: 10.3389/fimmu.2022.978824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022] Open
Abstract
The respiratory epithelium constitutes the first line of defense against invading respiratory pathogens, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), and plays a crucial role in the host antiviral response to infection. Despite its importance, however, it remains unknown how individual cell types within the respiratory epithelium respond to IAV infection or how the latter may influence IAV disease progression and pathogenesis. Here, we used single cell RNA sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to influenza virus infection in its natural target cells – namely, the human respiratory epithelium.
Collapse
Affiliation(s)
- Jenna N. Kelly
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philip V’kovski
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Jasmine Portmann
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Ronald Dijkman
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center (EVBC), Jena, Germany
- *Correspondence: Ronald Dijkman,
| |
Collapse
|
4
|
Harris J, Borg NA. The multifaceted roles of NLRP3-modulating proteins in virus infection. Front Immunol 2022; 13:987453. [PMID: 36110852 PMCID: PMC9468583 DOI: 10.3389/fimmu.2022.987453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune response to viruses is critical for the correct establishment of protective adaptive immunity. Amongst the many pathways involved, the NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3)] inflammasome has received considerable attention, particularly in the context of immunity and pathogenesis during infection with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19. Activation of the NLRP3 inflammasome results in the secretion of the proinflammatory cytokines IL-1β and IL-18, commonly coupled with pyroptotic cell death. While this mechanism is protective and key to host defense, aberrant NLRP3 inflammasome activation causes a hyperinflammatory response and excessive release of cytokines, both locally and systemically. Here, we discuss key molecules in the NLRP3 pathway that have also been shown to have significant roles in innate and adaptive immunity to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and macrophage migration inhibitory factor (MIF). We also discuss the clinical opportunities to suppress NLRP3-mediated inflammation and reduce disease severity.
Collapse
Affiliation(s)
- James Harris
- Cell Biology Assays Team, Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Xu X, Nie Y, Wang W, Ullah I, Tung WT, Ma N, Lendlein A. Generation of 2.5D lung bud organoids from human induced pluripotent stem cells. Clin Hemorheol Microcirc 2021; 79:217-230. [PMID: 34487028 DOI: 10.3233/ch-219111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70% confluence (SC_70%_hom) or a clump seeding group with heterogeneously distributed cells at 90% confluence (CL_90%_het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.
Collapse
Affiliation(s)
- Xun Xu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Yan Nie
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Weiwei Wang
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Imran Ullah
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Wing Tai Tung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nan Ma
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Hereon, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| |
Collapse
|
6
|
Harpur CM, Le Page MA, Tate MD. Too young to die? How aging affects cellular innate immune responses to influenza virus and disease severity. Virulence 2021; 12:1629-1646. [PMID: 34152253 PMCID: PMC8218692 DOI: 10.1080/21505594.2021.1939608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Influenza is a respiratory viral infection that causes significant morbidity and mortality worldwide. The innate immune cell response elicited during influenza A virus (IAV) infection forms the critical first line of defense, which typically is impaired as we age. As such, elderly individuals more commonly succumb to influenza-associated complications, which is reflected in most aged animal models of IAV infection. Here, we review the important roles of several major innate immune cell populations in influenza pathogenesis, some of which being deleterious to the host, and the current knowledge of how age-associated numerical, phenotypic and functional cell changes impact disease development. Further investigation into age-related modulation of innate immune cell responses, using appropriate animal models, will help reveal how immunity to IAV may be compromised by aging and inform the development of novel therapies, tailored for use in this vulnerable group.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Todros T, Paulesu L, Cardaropoli S, Rolfo A, Masturzo B, Ermini L, Romagnoli R, Ietta F. Role of the Macrophage Migration Inhibitory Factor in the Pathophysiology of Pre-Eclampsia. Int J Mol Sci 2021; 22:1823. [PMID: 33673075 PMCID: PMC7917653 DOI: 10.3390/ijms22041823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory cytokines are produced in pregnancy in response to the invading pathogens and/or nonmicrobial causes such as damage-associated molecules and embryonic semi-allogenic antigens. While inflammation is essential for a successful pregnancy, an excessive inflammatory response is implicated in several pathologies including pre-eclampsia (PE). This review focuses on the proinflammatory cytokine macrophage migration inhibitory factor (MIF), a critical regulator of the innate immune response and a major player of processes allowing normal placental development. PE is a severe pregnancy-related syndrome characterized by exaggerated inflammatory response and generalized endothelial damage. In some cases, usually of early onset, it originates from a maldevelopment of the placenta, and is associated with intrauterine growth restriction (IUGR) (placental PE). In other cases, usually of late onset, pre-pregnancy maternal diseases represent risk factors for the development of the disease (maternal PE). Available data suggest that low MIF production in early pregnancy could contribute to the abnormal placentation. The resulting placental hypoxia in later pregnancy could produce high release of MIF in maternal serum typical of placental PE. More studies are needed to understand the role of MIF, if any, in maternal PE.
Collapse
Affiliation(s)
- Tullia Todros
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (T.T.); (A.R.)
| | - Luana Paulesu
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Simona Cardaropoli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy;
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Via Ventimiglia 3, 10126 Turin, Italy; (T.T.); (A.R.)
| | | | - Leonardo Ermini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Roberta Romagnoli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.E.); (R.R.); (F.I.)
| |
Collapse
|
8
|
Identification of potential mRNA panels for severe acute respiratory syndrome coronavirus 2 (COVID-19) diagnosis and treatment using microarray dataset and bioinformatics methods. 3 Biotech 2020; 10:422. [PMID: 33251083 PMCID: PMC7679428 DOI: 10.1007/s13205-020-02406-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
The goal of the present investigation is to identify the differentially expressed genes (DEGs) between SARS-CoV-2 infected and normal control samples to investigate the molecular mechanisms of infection with SARS-CoV-2. The microarray data of the dataset E-MTAB-8871 were retrieved from the ArrayExpress database. Pathway and Gene Ontology (GO) enrichment study, protein–protein interaction (PPI) network, modules, target gene–miRNA regulatory network, and target gene–TF regulatory network have been performed. Subsequently, the key genes were validated using an analysis of the receiver operating characteristic (ROC) curve. In SARS-CoV-2 infection, a total of 324 DEGs (76 up- and 248 down-regulated genes) were identified and enriched in a number of associated SARS-CoV-2 infection pathways and GO terms. Hub and target genes such as TP53, HRAS, MAPK11, RELA, IKZF3, IFNAR2, SKI, TNFRSF13C, JAK1, TRAF6, KLRF2, CD1A were identified from PPI network, target gene–miRNA regulatory network, and target gene–TF regulatory network. Study of the ROC showed that ten genes (CCL5, IFNAR2, JAK2, MX1, STAT1, BID, CD55, CD80, HAL-B, and HLA-DMA) were substantially involved in SARS-CoV-2 patients. The present investigation identified key genes and pathways that deepen our understanding of the molecular mechanisms of SARS-CoV-2 infection, and could be used for SARS-CoV-2 infection as diagnostic and therapeutic biomarkers.
Collapse
|
9
|
Hsieh IN, Deluna X, White MR, Hartshorn KL. Histone H4 directly stimulates neutrophil activation through membrane permeabilization. J Leukoc Biol 2020; 109:763-775. [PMID: 32803840 PMCID: PMC7461478 DOI: 10.1002/jlb.3a0620-342r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
Extracellular histones have been implicated as a cause of tissue inflammatory injury in a variety of disorders including sepsis, lung, and liver diseases. However, little is known about their interactions with neutrophils and how this might contribute to injury. Here, it is shown that histone H4 acts as neutrophil activator by inducing hydrogen peroxide production, degranulation, cell adhesion, and IL‐8 generation. Histone H4 caused permeabilization of the neutrophil membrane (a phenomenon described in other cell types) leading to accelerated cell death. H4 caused sustained rise in neutrophil intracellular calcium that is necessary for respiratory burst activation and degranulation. Convincing evidence was not found for TLRs or ATP receptors in H4 mediated activation. However, pertussis toxin and wortmannin (inhibitors of G protein and PI3K) inhibited H4‐induced hydrogen peroxide production and degranulation. These studies suggest that release of histone H4 in sites of infection or inflammation may potentiate neutrophil activation and promote additional inflammatory responses. These studies may provide a better basis for developing novel therapeutic strategies to block neutrophil extracellular trap (NET) and H4‐related pathology in sepsis and various forms of lung injury including that induced by viruses like influenza or SAR‐CoV2.
Collapse
Affiliation(s)
- I-Ni Hsieh
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xavier Deluna
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mitchell R White
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kevan L Hartshorn
- Department of Medicine, Section of Hematology Oncology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Lai YC, Chao CH, Yeh TM. Roles of Macrophage Migration Inhibitory Factor in Dengue Pathogenesis: From Pathogenic Factor to Therapeutic Target. Microorganisms 2020; 8:microorganisms8060891. [PMID: 32545679 PMCID: PMC7356240 DOI: 10.3390/microorganisms8060891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Dengue virus (DENV) infection is the most prevalent mosquito-borne viral infection and can lead to severe dengue hemorrhagic fever (DHF) and even life-threatening dengue shock syndrome (DSS). Although the cytokine storm has been revealed as a critical factor in dengue disease, the limited understanding of dengue immunopathogenesis hinders the development of effective treatments. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that mediates diverse immune responses, and the serum level of MIF positively correlates with disease severity in patients with dengue. MIF is involved in DENV replication and many pathological changes, such as vascular leakage, during DENV infection. In this paper, the pathogenic roles of MIF and the regulation of MIF secretion during DENV infection are reviewed. Furthermore, whether MIF is a potential therapeutic target against DENV infection is also discussed.
Collapse
Affiliation(s)
- Yen-Chung Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Chiao-Hsuan Chao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; (Y.-C.L.); (C.-H.C.)
| | - Trai-Ming Yeh
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5778)
| |
Collapse
|
11
|
Laghlali G, Lawlor KE, Tate MD. Die Another Way: Interplay between Influenza A Virus, Inflammation and Cell Death. Viruses 2020; 12:v12040401. [PMID: 32260457 PMCID: PMC7232208 DOI: 10.3390/v12040401] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023] Open
Abstract
Influenza A virus (IAV) is a major concern to human health due to the ongoing global threat of a pandemic. Inflammatory and cell death signalling pathways play important roles in host defence against IAV infection. However, severe IAV infections in humans are characterised by excessive inflammation and tissue damage, often leading to fatal disease. While the molecular mechanisms involved in the induction of inflammation during IAV infection have been well studied, the pathways involved in IAV-induced cell death and their impact on immunopathology have not been fully elucidated. There is increasing evidence of significant crosstalk between cell death and inflammatory pathways and a greater understanding of their role in host defence and disease may facilitate the design of new treatments for IAV infection.
Collapse
Affiliation(s)
- Gabriel Laghlali
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
- Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69007 Lyon, France
| | - Kate E. Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Michelle D. Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (G.L.); (K.E.L.)
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
- Correspondence: ; Tel.: +61-85722742
| |
Collapse
|
12
|
Smith CA, Tyrell DJ, Kulkarni UA, Wood S, Leng L, Zemans RL, Bucala R, Goldstein DR. Macrophage migration inhibitory factor enhances influenza-associated mortality in mice. JCI Insight 2019; 4:128034. [PMID: 31292300 PMCID: PMC6629144 DOI: 10.1172/jci.insight.128034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/30/2019] [Indexed: 01/24/2023] Open
Abstract
Influenza-associated mortality continues to occur annually despite available antiviral therapies. New therapies that improve host immunity could reduce influenza virus disease burden. Targeting macrophage migration inhibitory factor (MIF) has improved the outcomes of certain inflammatory diseases, but its role in influenza viral infection is unclear. Here, we showed that, during influenza viral infection, Mif-deficient mice have less inflammation, viral load, and mortality compared with WT control mice; conversely, Tg mice, overexpressing Mif in alveolar epithelial cells, had higher inflammation, viral load, and mortality. Antibody-mediated blockade of MIF in WT mice during influenza viral infection improved their survival. Mif-deficient murine lungs showed reduced levels of parkin, a mitophagy protein that negatively regulates antiviral signaling, prior to infection and augmented antiviral type I/III IFN levels in the airspaces after infection as compared with WT lungs. Additionally, in vitro assays with human lung epithelial cells showed that treatment with recombinant human MIF increased the percentage of influenza virus-infected cells. In conclusion, our study reveals that MIF impairs antiviral host immunity and increases inflammation during influenza infection and suggests that targeting MIF could be therapeutically beneficial during influenza viral infection.
Collapse
MESH Headings
- Alveolar Epithelial Cells/immunology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/pathology
- Alveolar Epithelial Cells/virology
- Animals
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Cell Line, Tumor
- Disease Models, Animal
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Influenza, Human/mortality
- Influenza, Human/virology
- Intramolecular Oxidoreductases/antagonists & inhibitors
- Intramolecular Oxidoreductases/genetics
- Intramolecular Oxidoreductases/immunology
- Intramolecular Oxidoreductases/metabolism
- Lung/immunology
- Lung/pathology
- Macrophage Migration-Inhibitory Factors/antagonists & inhibitors
- Macrophage Migration-Inhibitory Factors/genetics
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Primary Cell Culture
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Survival Analysis
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Ubiquitin-Protein Ligases/metabolism
- Viral Load
Collapse
Affiliation(s)
- Candice A. Smith
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J. Tyrell
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Upasana A. Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sherri Wood
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lin Leng
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Program in Cellular and Molecular Biology and
| | - Richard Bucala
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
de Souza GF, Muraro SP, Santos LD, Monteiro APT, da Silva AG, de Souza APD, Stein RT, Bozza PT, Porto BN. Macrophage migration inhibitory factor (MIF) controls cytokine release during respiratory syncytial virus infection in macrophages. Inflamm Res 2019; 68:481-491. [PMID: 30944975 DOI: 10.1007/s00011-019-01233-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE AND DESIGN Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.
Collapse
Affiliation(s)
- Gabriela F de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Stéfanie P Muraro
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Leonardo D Santos
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula T Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Amanda G da Silva
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Ana Paula D de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Renato T Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Bárbara N Porto
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
14
|
Downey J, Pernet E, Coulombe F, Divangahi M. Dissecting host cell death programs in the pathogenesis of influenza. Microbes Infect 2018; 20:560-569. [PMID: 29679740 PMCID: PMC7110448 DOI: 10.1016/j.micinf.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Influenza A virus (IAV) is a pulmonary pathogen, responsible for significant yearly morbidity and mortality. Due to the absence of highly effective antiviral therapies and vaccine, as well as the constant threat of an emerging pandemic strain, there is considerable need to better understand the host-pathogen interactions and the factors that dictate a protective versus detrimental immune response to IAV. Even though evidence of IAV-induced cell death in human pulmonary epithelial and immune cells has been observed for almost a century, very little is known about the consequences of cell death on viral pathogenesis. Recent study indicates that both the type of cell death program and its kinetics have major implications on host defense and survival. In this review, we discuss advances in our understanding of cell death programs during influenza virus infection, in hopes of fostering new areas of investigation for targeted clinical intervention.
Collapse
Affiliation(s)
- Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Erwan Pernet
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - François Coulombe
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
15
|
Atkin-Smith GK, Duan M, Chen W, Poon IKH. The induction and consequences of Influenza A virus-induced cell death. Cell Death Dis 2018; 9:1002. [PMID: 30254192 PMCID: PMC6156503 DOI: 10.1038/s41419-018-1035-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022]
Abstract
Infection with Influenza A virus (IAV) causes significant cell death within the upper and lower respiratory tract and lung parenchyma. In severe infections, high levels of cell death can exacerbate inflammation and comprise the integrity of the epithelial cell barrier leading to respiratory failure. IAV infection of airway and alveolar epithelial cells promotes immune cell infiltration into the lung and therefore, immune cell types such as macrophages, monocytes and neutrophils are readily exposed to IAV and infection-induced death. Although the induction of cell death through apoptosis and necrosis following IAV infection is a well-known phenomenon, the molecular determinants responsible for inducing cell death is not fully understood. Here, we review the current understanding of IAV-induced cell death and critically evaluate the consequences of cell death in aiding either the restoration of lung homoeostasis or the progression of IAV-induced lung pathologies.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Denney L, Ho LP. The role of respiratory epithelium in host defence against influenza virus infection. Biomed J 2018; 41:218-233. [PMID: 30348265 PMCID: PMC6197993 DOI: 10.1016/j.bj.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
The respiratory epithelium is the major interface between the environment and the host. Sophisticated barrier, sensing, anti-microbial and immune regulatory mechanisms have evolved to help maintain homeostasis and to defend the lung against foreign substances and pathogens. During influenza virus infection, these specialised structural cells and populations of resident immune cells come together to mount the first response to the virus, one which would play a significant role in the immediate and long term outcome of the infection. In this review, we focus on the immune defence machinery of the respiratory epithelium and briefly explore how it repairs and regenerates after infection.
Collapse
Affiliation(s)
- Laura Denney
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
17
|
Li X, Wang Y, Wei P, Shi D, Wen S, Wu F, Liu L, Ye N, Zhou H. Bisphenol A affects trophoblast invasion by inhibiting CXCL8 expression in decidual stromal cells. Mol Cell Endocrinol 2018; 470:38-47. [PMID: 28736254 DOI: 10.1016/j.mce.2017.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA), an environmental endocrine-disrupting organic chemical, has been positively associated with the rate of implantation failure of in vitro fertilization. However, the underlying mechanisms remain unclear. To reveal the impact and the underlying mechanism of BPA on the crosstalk between trophoblast and decidual stromal cells (DSCs), we determined whether BPA was able to affect trophoblast invasion in vitro. We found that BPA significantly inhibited CXCL8 expression in DSCs, which hindered trophoblast invasion, and activated the phosphorylation of ERK in DSCs. U0126, an inhibitor of ERK activation, remarkably rescued trophoblast invasion and the inhibition of CXCL8 expression caused by BPA treatment. Moreover, the nuclear estrogen receptor antagonist ICI 182,780 and transmembrane G protein-coupled receptor GPR30 (membrane estrogen receptor) antagonist G15 significantly blocked the phosphorylation of ERK and reversed the reduction of trophoblast invasion. In brief, BPA activated ERK through nuclear and membrane estrogen receptors and inhibited CXCL8 expression in DSCs, thereby affecting their regulation of trophoblast invasion.
Collapse
Affiliation(s)
- Xiaoqian Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yina Wang
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Pu Wei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Fengjiao Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Ninghe Ye
- Nanjing Maternity and Children Care Hospital, Nanjing, 210029, China
| | - Hong Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China; Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
18
|
Bhowmick R, Derakhshan T, Liang Y, Ritchey J, Liu L, Gappa-Fahlenkamp H. A Three-Dimensional Human Tissue-Engineered Lung Model to Study Influenza A Infection. Tissue Eng Part A 2018; 24:1468-1480. [PMID: 29732955 DOI: 10.1089/ten.tea.2017.0449] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) claims ∼250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (two-dimensional [2D] cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineered Lung Model (3D-HTLM), we describe the 3D culture of primary human small airway epithelial cells (HSAEpCs) and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2. The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.
Collapse
Affiliation(s)
- Rudra Bhowmick
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Tahereh Derakhshan
- 1 School of Chemical Engineering, Oklahoma State University , Stillwater, Oklahoma
| | - Yurong Liang
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Jerry Ritchey
- 3 Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | - Lin Liu
- 2 Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma
| | | |
Collapse
|
19
|
Zika virus preferentially replicates in the female reproductive tract after vaginal inoculation of rhesus macaques. PLoS Pathog 2017; 13:e1006537. [PMID: 28746373 PMCID: PMC5546709 DOI: 10.1371/journal.ppat.1006537] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/07/2017] [Accepted: 07/17/2017] [Indexed: 01/18/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that can cause severe defects in an infected fetus. ZIKV is also transmitted by sexual contact, although the relative importance of sexual transmission is unclear. To better understand the role of sexual transmission in ZIKV pathogenesis, a nonhuman primate (NHP) model of vaginal transmission was developed. ZIKV was readily transmitted to mature cycling female rhesus macaque (RM) by vaginal inoculation with 104–106 plaque-forming units (PFU). However, there was variability in susceptibility between the individual RM with 1–>8 vaginal inoculations required to establish infection. After treatment with Depoprovera, a widely used contraceptive progestin, two RM that initially resisted 8 vaginal ZIKV inoculations became infected after one ZIKV inoculation. Thus, Depoprovera seemed to enhance susceptibility to vaginal ZIKV transmission. Unexpectedly, the kinetics of virus replication and dissemination after intravaginal ZIKV inoculation were markedly different from RM infected with ZIKV by subcutaneous (SQ) virus inoculation. Several groups have reported that after SQ ZIKV inoculation vRNA is rapidly detected in blood plasma with vRNA less common in urine and saliva and only rarely detected in female reproductive tract (FRT) secretions. In contrast, in vaginally inoculated RM, plasma vRNA is delayed for several days and ZIKV replication in, and vRNA shedding from, the FRT was found in all 6 animals. Further, after intravaginal transmission ZIKV RNA shedding from FRT secretions was detected before or simultaneously with plasma vRNA, and persisted for at least as long. Thus, ZIKV replication in the FRT was independent of, and often preceded virus replication in the tissues contributing to plasma vRNA. These results support the conclusion that ZIKV preferentially replicates in the FRT after vaginal transmission, but not after SQ transmission, and raise the possibility that there is enhanced fetal infection and pathology after vaginal ZIKV transmission compared to a mosquito transmitted ZIKV. Zika virus was introduced to Brazil in 2015 and it rapidly spread to all of tropical America. Although Zika virus infection is usually mild in adults, it can cause severe birth defects in the developing fetus that makes it critical to prevent ZIKV infection in women who are pregnant or who could become pregnant. Although Zika virus is transmitted primarily by mosquito bite, it can also be transmitted by sex. To understand the role of sexual transmission in Zika virus disease, we inoculated rhesus monkeys intravaginally with the virus and monitored virus in blood and reproductive tract secretions. ZIKV was detected in the female reproductive tract before it was detected in plasma and replication levels in the female reproductive tract did not reflect ZIKV levels in other parts of the body. Thus ZIKV prefers the reproductive tract after vaginal transmission suggesting that fetal disease could be more common or severe after vaginal ZIKV transmission compared to a mosquito transmitted ZIKV infection.
Collapse
|
20
|
Camp JV, Jonsson CB. A Role for Neutrophils in Viral Respiratory Disease. Front Immunol 2017; 8:550. [PMID: 28553293 PMCID: PMC5427094 DOI: 10.3389/fimmu.2017.00550] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are immune cells that are well known to be present during many types of lung diseases associated with acute respiratory distress syndrome (ARDS) and may contribute to acute lung injury. Neutrophils are poorly studied with respect to viral infection, and specifically to respiratory viral disease. Influenza A virus (IAV) infection is the cause of a respiratory disease that poses a significant global public health concern. Influenza disease presents as a relatively mild and self-limiting although highly pathogenic forms exist. Neutrophils increase in the respiratory tract during infection with mild seasonal IAV, moderate and severe epidemic IAV infection, and emerging highly pathogenic avian influenza (HPAI). During severe influenza pneumonia and HPAI infection, the number of neutrophils in the lower respiratory tract is correlated with disease severity. Thus, comparative analyses of the relationship between IAV infection and neutrophils provide insights into the relative contribution of host and viral factors that contribute to disease severity. Herein, we review the contribution of neutrophils to IAV disease pathogenesis and to other respiratory virus infections.
Collapse
Affiliation(s)
- Jeremy V Camp
- Institute of Virology, University of Veterinary Medicine at Vienna, Vienna, Austria
| | - Colleen B Jonsson
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN, USA
| |
Collapse
|
21
|
Cong X, Hubmayr RD, Li C, Zhao X. Plasma membrane wounding and repair in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L371-L391. [PMID: 28062486 PMCID: PMC5374305 DOI: 10.1152/ajplung.00486.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Various pathophysiological conditions such as surfactant dysfunction, mechanical ventilation, inflammation, pathogen products, environmental exposures, and gastric acid aspiration stress lung cells, and the compromise of plasma membranes occurs as a result. The mechanisms necessary for cells to repair plasma membrane defects have been extensively investigated in the last two decades, and some of these key repair mechanisms are also shown to occur following lung cell injury. Because it was theorized that lung wounding and repair are involved in the pathogenesis of acute respiratory distress syndrome (ARDS) and idiopathic pulmonary fibrosis (IPF), in this review, we summarized the experimental evidence of lung cell injury in these two devastating syndromes and discuss relevant genetic, physical, and biological injury mechanisms, as well as mechanisms used by lung cells for cell survival and membrane repair. Finally, we discuss relevant signaling pathways that may be activated by chronic or repeated lung cell injury as an extension of our cell injury and repair focus in this review. We hope that a holistic view of injurious stimuli relevant for ARDS and IPF could lead to updated experimental models. In addition, parallel discussion of membrane repair mechanisms in lung cells and injury-activated signaling pathways would encourage research to bridge gaps in current knowledge. Indeed, deep understanding of lung cell wounding and repair, and discovery of relevant repair moieties for lung cells, should inspire the development of new therapies that are likely preventive and broadly effective for targeting injurious pulmonary diseases.
Collapse
Affiliation(s)
- Xiaofei Cong
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Rolf D Hubmayr
- Emerius, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; and
| | - Changgong Li
- Department of Pediatrics, University of Southern California, Los Angeles, California
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia;
| |
Collapse
|
22
|
Zhang H, Yue Y, Sun T, Wu X, Xiong S. Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis. Sci Rep 2017; 7:42162. [PMID: 28176833 PMCID: PMC5296968 DOI: 10.1038/srep42162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022] Open
Abstract
Infiltrating macrophages have been proven as a pivotal pathological inflammatory cell subset in coxsackievirus B3 (CVB3) induced viral myocarditis. However, the mechanisms underlying the initiation and promotion of macrophage pro-inflammatory responses are still blur. We previously reported that cardiac ER stress contributed to CVB3-induced myocarditis by augmenting inflammation. In this study, we focused on the influence of ER stress on the macrophage inflammatory responses in the viral myocarditis. We found that ER stress was robustly induced in the cardiac infiltrating macrophages from CVB3-infected mice, and robustly facilitated the production of pro-inflammatory cytokines (IL-6, IL-12, MCP-1 and IP-10). Consistently, adoptive transfer of ER stressed macrophages significantly worsened the viral myocarditis; while transfer of ER stress-inhibited macrophages obviously alleviated the myocarditis. To our surprise, this significantly activated ER stress was not directly caused by the virus stimulation, but was transferred from the CVB3-infected, ER stressed myocardiocytes via soluble molecules in a TLR2, 4-independent way. In the present study, we reported that the transmissible ER stress from the infected myocardiocytes to macrophages could augment the pro-inflammatory responses and promoted the pathogenesis of viral myocarditis. Blocking ER stress transmission, instead of inhibiting its initiation, may represent novel therapeutic strategies against viral myocarditis.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Tianle Sun
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Xuejie Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, P.R. China
| |
Collapse
|
23
|
Huang X, Huang T, Deng W, Yan G, Qiu H, Huang Y, Ke S, Hou Y, Zhang Y, Zhang Z, Fang S, Zhou L, Yang B, Ren J, Ai H, Huang L. Genome-wide association studies identify susceptibility loci affecting respiratory disease in Chinese Erhualian pigs under natural conditions. Anim Genet 2016; 48:30-37. [PMID: 27615547 DOI: 10.1111/age.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 11/28/2022]
Abstract
Prevalence of swine respiratory disease causes poor growth performance in and serious economic losses to the swine industry. In this study, a categorical trait of enzootic pneumonia-like (EPL) score representing the infection gradient of a respiratory disease, more likely enzootic pneumonia, was recorded in a herd of 332 Chinese Erhualian pigs. According to their EPL scores and the disease effect on weight gains, these pigs were grouped into controls (EPL score ≤ 1) and cases (EPL score > 1). The weight gain of the case group reduced significantly at days 180, 210, 240 and 300 as compared to the control group. The heritability of EPL score was estimated to be 0.24 based on the pedigree information using a linear mixed model. All 332 Erhualian pigs and their nine sire parents were genotyped with Illumina Porcine 60K SNP chips. Two genome-wide association studies were performed under a generalized linear mixed model and a case-control model respectively. In total, five loci surpassed the suggestive significance level (P = 2.98 × 10-5 ) on chromosomes 2, 8, 12 and 14. CXCL6, CXCL8, KIT and CTBP2 were highlighted as candidate genes that might play important roles in determining resistance/susceptibility to swine EP-like respiratory disease. The findings advance understanding of the genetic basis of resistance/susceptibility to respiratory disease in pigs.
Collapse
Affiliation(s)
- X Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - T Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - W Deng
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - G Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - H Qiu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - S Ke
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Hou
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Y Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Z Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - S Fang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - L Zhou
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - B Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - J Ren
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - H Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - L Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
24
|
Lee JPW, Foote A, Fan H, Peral de Castro C, Lang T, Jones SA, Gavrilescu N, Mills KHG, Leech M, Morand EF, Harris J. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy 2016; 12:907-16. [PMID: 27163877 DOI: 10.1080/15548627.2016.1164358] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Jacinta P W Lee
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Andrew Foote
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Huapeng Fan
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Celia Peral de Castro
- b Immune Regulation Research Group, Department of Biochemistry and Immunology, Trinity College , Dublin , Ireland
| | - Tali Lang
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Sarah A Jones
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Nichita Gavrilescu
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Kingston H G Mills
- b Immune Regulation Research Group, Department of Biochemistry and Immunology, Trinity College , Dublin , Ireland
| | - Michelle Leech
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - Eric F Morand
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| | - James Harris
- a Lupus Research Group, Center for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton , Victoria , Australia
| |
Collapse
|
25
|
Rivera A, Barr T, Rais M, Engelmann F, Messaoudi I. microRNAs Regulate Host Immune Response and Pathogenesis During Influenza Infection in Rhesus Macaques. Viral Immunol 2016; 29:212-27. [PMID: 27008411 DOI: 10.1089/vim.2015.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that are key regulators of biological processes, including the immune response to viral infections. Differential expression levels of cellular miRNAs and their predicted targets have been described in the lungs of H1N1-infected BALB/c mice, the lungs of H5N1 influenza-infected cynomolgus macaques, and in peripheral blood mononuclear cells (PBMCs) of critically ill patients infected with 2009 pandemic H1N1. However, a longitudinal analysis of changes in the expression of miRNAs and their targets during influenza infection and how they relate to viral replication and host response has yet to be carried out. In the present study, we conducted a comprehensive analysis of innate and adaptive immune responses as well as the expression of several miRNAs and their validated targets in both peripheral blood and bronchoalveolar lavage (BAL) collected from rhesus macaques over the course of infection with the 2009 H1N1 virus A/Mexico/4108/2009 (MEX4108). We describe a distinct set of differentially expressed miRNAs in BAL and PBMCs, which regulate the expression of genes involved in inflammation, immune response, and regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Andrea Rivera
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Tasha Barr
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Maham Rais
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Flora Engelmann
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California
| | - Ilhem Messaoudi
- 1 Division of Biomedical Sciences, University of California , Riverside, Riverside, California.,2 Oregon Primate Research Center , Beaverton, Oregon
| |
Collapse
|
26
|
Levin D, Forrest S, Banerjee S, Clay C, Cannon J, Moses M, Koster F. A spatial model of the efficiency of T cell search in the influenza-infected lung. J Theor Biol 2016; 398:52-63. [PMID: 26920246 DOI: 10.1016/j.jtbi.2016.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/08/2016] [Accepted: 02/12/2016] [Indexed: 11/16/2022]
Abstract
Emerging strains of influenza, such as avian H5N1 and 2009 pandemic H1N1, are more virulent than seasonal H1N1 influenza, yet the underlying mechanisms for these differences are not well understood. Subtle differences in how a given strain interacts with the immune system are likely a key factor in determining virulence. One aspect of the interaction is the ability of T cells to locate the foci of the infection in time to prevent uncontrolled expansion. Here, we develop an agent based spatial model to focus on T cell migration from lymph nodes through the vascular system to sites of infection. We use our model to investigate whether different strains of influenza modulate this process. We calibrate the model using viral and chemokine secretion rates we measure in vitro together with values taken from literature. The spatial nature of the model reveals unique challenges for T cell recruitment that are not apparent in standard differential equation models. In this model comparing three influenza viruses, plaque expansion is governed primarily by the replication rate of the virus strain, and the efficiency of the T cell search-and-kill is limited by the density of infected epithelial cells in each plaque. Thus for each virus there is a different threshold of T cell search time above which recruited T cells are unable to control further expansion. Future models could use this relationship to more accurately predict control of the infection.
Collapse
Affiliation(s)
- Drew Levin
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA.
| | - Stephanie Forrest
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Soumya Banerjee
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Candice Clay
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Judy Cannon
- Department of Molecular Genetics & Microbiology, Department of Pathology, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| | - Melanie Moses
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
| | - Frederick Koster
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA; Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
27
|
Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, Richard M, Herold S, Becker C, Scott DP, Limpens RWAL, Koster AJ, Bárcena M, Fouchier RAM, Kirkpatrick CJ, Kuiken T. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J 2016; 47:954-66. [PMID: 26743480 DOI: 10.1183/13993003.01282-2015] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
A major cause of respiratory failure during influenza A virus (IAV) infection is damage to the epithelial-endothelial barrier of the pulmonary alveolus. Damage to this barrier results in flooding of the alveolar lumen with proteinaceous oedema fluid, erythrocytes and inflammatory cells. To date, the exact roles of pulmonary epithelial and endothelial cells in this process remain unclear.Here, we used an in vitro co-culture model to understand how IAV damages the pulmonary epithelial-endothelial barrier. Human epithelial cells were seeded on the upper half of a transwell membrane while human endothelial cells were seeded on the lower half. These cells were then grown in co-culture and IAV was added to the upper chamber.We showed that the addition of IAV (H1N1 and H5N1 subtypes) resulted in significant barrier damage. Interestingly, we found that, while endothelial cells mounted a pro-inflammatory/pro-coagulant response to a viral infection in the adjacent epithelial cells, damage to the alveolar epithelial-endothelial barrier occurred independently of endothelial cells. Rather, barrier damage was associated with disruption of tight junctions amongst epithelial cells, and specifically with loss of tight junction protein claudin-4.Taken together, these data suggest that maintaining epithelial cell integrity is key in reducing pulmonary oedema during IAV infection.
Collapse
Affiliation(s)
- Kirsty R Short
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Jennifer Kasper
- Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stijn van der Aa
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arno C Andeweg
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Marco Goeijenbier
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Susanne Herold
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University of Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Christin Becker
- University of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University of Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald W A L Limpens
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abraham J Koster
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Montserrat Bárcena
- Dept of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ron A M Fouchier
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thijs Kuiken
- Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
28
|
Abstract
Acute respiratory distress syndrome (ARDS) was first described in 1967, and since then there have been a large number of studies addressing its pathogenesis and therapies. Despite intense research efforts, very few therapies for ARDS have been shown to be effective other than the use of lung protection strategies. The scarcity of therapeutic choices is related to the intricate pathogenesis of the syndrome and to insensitive and aspecific criteria to diagnose this profound acute respiratory failure. The aim of this paper is to summarize advances of new ARDS definitions and provide an overview of new relevant signaling pathways that mediate acute lung injury.
Collapse
|
29
|
Petrie SM, Butler J, Barr IG, McVernon J, Hurt AC, McCaw JM. Quantifying relative within-host replication fitness in influenza virus competition experiments. J Theor Biol 2015; 382:259-71. [PMID: 26188087 DOI: 10.1016/j.jtbi.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 01/26/2023]
Abstract
Through accumulation of genetic mutations in the neuraminidase gene, the influenza virus can become resistant to antiviral drugs such as oseltamivir. Quantifying the fitness of emergent drug-resistant influenza viruses, relative to contemporary circulating viruses, provides valuable information to complement existing efforts in the surveillance of drug-resistance. We have previously developed a co-infection based method for the assessment of the relative in vivo fitness of two competing viruses. We have also introduced a model of within-host co-infection dynamics that enables relative within-host fitness to be quantified in these competitive-mixtures experiments. The model assumed that fitness differences between co-infecting strains were mediated by strain-dependent viral production rates from infected epithelial cells. Here we extend the model to enable a more complete exploration of biological processes that may differ between virus pairs and hence generate fitness differences. We use the extended model to re-analyse data from competitive-mixtures experiments that investigated the fitness of oseltamivir-resistant (OR) H1N1 pandemic 2009 ("H1N1pdm09") viruses that emerged during a community outbreak in Australia in 2011. Results are consistent with those of our previous analysis, suggesting that the within-host replication fitness of these OR viruses is not compromised relative to that of related oseltamivir-susceptible (OS) strains, and that potentially permissive mutations in the neuraminidase gene (V241I and N369K) significantly enhance the fitness of H1N1pdm09 OR viruses. These results are consistent regardless of the hypothesised biological cause of fitness difference.
Collapse
Affiliation(s)
- Stephen M Petrie
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Centre for Transformative Innovation, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jeff Butler
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; School of Applied Sciences, Monash University, Churchill, Victoria, Australia
| | - Jodie McVernon
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Murdoch Childrens Research Institute, The Royal Children׳s Hospital, Parkville, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; School of Applied Sciences, Monash University, Churchill, Victoria, Australia
| | - James M McCaw
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia; Murdoch Childrens Research Institute, The Royal Children׳s Hospital, Parkville, Victoria, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
30
|
White MR, Doss M, Boland P, Tecle T, Hartshorn KL. Innate immunity to influenza virus: implications for future therapy. Expert Rev Clin Immunol 2014; 4:497-514. [PMID: 19756245 DOI: 10.1586/1744666x.4.4.497] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Innate immunity is critical in the early containment of influenza virus infection. The innate response is surprisingly complex. A variety of soluble innate inhibitors in respiratory secretions provide an initial barrier to infection. Dendritic cells, phagocytes and natural killer cells mediate viral clearance and promote further innate and adaptive responses. Toll-like receptors 3 and 7 and cytoplasmic RNA sensors are critical for activating these responses. In general, the innate response restricts viral replication without injuring the lung; however, the 1918 pandemic and H5N1 strains cause more profound, possibly harmful, innate responses. In this review, we discuss the implications of burgeoning knowledge of innate immunity for therapy of influenza.
Collapse
Affiliation(s)
- Mitchell R White
- Boston University School of Medicine, Department of Medicine, EBRC 414, 650 Albany Street, Boston, MA, USA
| | | | | | | | | |
Collapse
|
31
|
Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. THE LANCET. INFECTIOUS DISEASES 2013; 14:57-69. [PMID: 24239327 DOI: 10.1016/s1473-3099(13)70286-x] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a fatal complication of influenza infection. In this Review we provide an integrated model for its pathogenesis. ARDS involves damage to the epithelial-endothelial barrier, fluid leakage into the alveolar lumen, and respiratory insufficiency. The most important part of the epithelial-endothelial barrier is the alveolar epithelium, strengthened by tight junctions. Influenza virus targets these epithelial cells, reducing sodium pump activity, damaging tight junctions, and killing infected cells. Infected epithelial cells produce cytokines that attract leucocytes--neutrophils and macrophages--and activate adjacent endothelial cells. Activated endothelial cells and infiltrated leucocytes stimulate further infiltration, and leucocytes induce production of reactive oxygen species and nitric oxide that damage the barrier. Activated macrophages also cause direct apoptosis of epithelial cells. This model for influenza-induced ARDS differs from the classic model, which is centred on endothelial damage, and provides a rationale for therapeutic intervention to moderate host response in influenza-induced ARDS.
Collapse
Affiliation(s)
- Kirsty R Short
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
32
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954 DOI: 10.1186/2052-8426-1-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 01/09/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark ; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ; Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
33
|
Jalilian B, Christiansen SH, Einarsson HB, Pirozyan MR, Petersen E, Vorup-Jensen T. Properties and prospects of adjuvants in influenza vaccination - messy precipitates or blessed opportunities? MOLECULAR AND CELLULAR THERAPIES 2013; 1:2. [PMID: 26056568 PMCID: PMC4448954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 11/21/2023]
Abstract
Influenza is a major challenge to healthcare systems world-wide. While prophylactic vaccination is largely efficient, long-lasting immunity has not been achieved in immunized populations, at least in part due to the challenges arising from the antigen variation between strains of influenza A virus as a consequence of genetic drift and shift. From progress in our understanding of the immune system, the mode-of-action of vaccines can be divided into the stimulation of the adaptive system through inclusion of appropriate vaccine antigens and of the innate immune system by the addition of adjuvant to the vaccine formulation. A shared property of many vaccine adjuvants is found in their nature of water-insoluble precipitates, for instance the particulate material made from aluminum salts. Previously, it was thought that embedding of vaccine antigens in these materials provided a "depot" of antigens enabling a long exposure of the immune system to the antigen. However, more recent work points to a role of particulate adjuvants in stimulating cellular parts of the innate immune system. Here, we briefly outline the infectious medicine and immune biology of influenza virus infection and procedures to provide sufficient and stably available amounts of vaccine antigen. This is followed by presentation of the many roles of adjuvants, which involve humoral factors of innate immunity, notably complement. In a perspective of the ultrastructural properties of these humoral factors, it becomes possible to rationalize why these insoluble precipitates or emulsions are such a provocation of the immune system. We propose that the biophysics of particulate material may hold opportunities that could aid the development of more efficient influenza vaccines.
Collapse
Affiliation(s)
- Babak Jalilian
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Stig Hill Christiansen
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Halldór Bjarki Einarsson
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
- />Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehdi Rasoli Pirozyan
- />Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Eskild Petersen
- />Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- />Department of Infectious Medicine (Q), Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- />Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
34
|
Abstract
Enteroviruses can frequently target the human central nervous system to induce a variety of neurological diseases. Although enteroviruses are highly cytolytic, emerging evidence has shown that these viruses can establish persistent infections both in vivo and in vitro. Here, we investigated the susceptibility of three human brain cell lines, CCF-STTG1, T98G, and SK-N-SH, to infection with three enterovirus serotypes: coxsackievirus B3 (CVB3), enterovirus 71, and coxsackievirus A9. Persistent infection was observed in CVB3-infected CCF-STTG1 cells, as evidenced by prolonged detection of infectious virions, viral RNA, and viral antigens. Of note, infected CCF-STTG1 cells expressed the nonfunctional canonical viral receptors coxsackievirus-adenovirus receptor and decay-accelerating factor, while removal of cell surface chondroitin sulfate from CCF-STTG1 cells inhibited the replication of CVB3, suggesting that receptor usage was one of the major limiting factors in CVB3 persistence. In addition, CVB3 curtailed the induction of beta interferon in infected CCF-STTG1 cells, which likely contributed to the initiation of persistence. Furthermore, proinflammatory chemokines and cytokines, such as vascular cell adhesion molecule 1, interleukin-8 (IL-8), and IL-6, were upregulated in CVB3-infected CCF-STTG1 cells and human progenitor-derived astrocytes. Our data together demonstrate the potential of CCF-STTG1 cells to be a novel cell model for studying CVB3-central nervous system interactions, providing the basis toward a better understanding of CVB3-induced chronic neuropathogenesis.
Collapse
|
35
|
Gilpin SE, Lung K, de Couto GT, Cypel M, Sato M, Singer LG, Keshavjee S, Waddell TK. Bone marrow-derived progenitor cells in end-stage lung disease patients. BMC Pulm Med 2013; 13:48. [PMID: 23915095 PMCID: PMC3750607 DOI: 10.1186/1471-2466-13-48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/25/2013] [Indexed: 11/12/2022] Open
Abstract
Background Chronic lung diseases are marked by progressive inflammation, tissue damage and remodelling. Bone marrow-derived progenitor cells may contribute to these processes. The objectives of this study were to (1) to quantify CD45+Collagen-1+ fibrocytes and a novel epithelial-like population of bone marrow-derived cells, which express Clara Cell Secretory Protein, in patients at the time of lung transplant and (2) to evaluate mediators that may act to recruit these cells during injury. Methods Using an observational design, progenitor cells were quantified by flow cytometry from both bone marrow (BM) and peripheral blood (PB). Migration was tested using in vitro transwell assays. Multiplex bead-based assays were used to quantify plasma cytokines. Results An increase in CD45+Collagen-1+ fibrocytes was found in pulmonary fibrosis and bronchiolitis obliterans patients. Cystic fibrosis patients had an increase in CCSP+ cells in both the BM and PB. The proportion of CCSP+ cells in the BM and PB was correlated. CCSP+ cells express the chemokine receptors CCR2, CCR4, CXCR3, and CXCR4, and significantly migrated in vitro toward Stromal Derived Factor-1 (SDF-1) and Stem Cell Growth Factor-β (SCGF-β). Plasma cytokine levels differed between disease groups, with a significant correlation between SCGF-β and CCSP+ cells and between Monocyte Chemotactic Protein-1 and fibrocytes. Conclusions Different bone marrow-derived cells are found in various lung diseases. Increased fibrocytes were associated with fibrotic lung diseases. An increase in the novel CCSP+ epithelial-like progenitors in cystic fibrosis patients was found. These differences may be mediated by alterations in plasma cytokines responsible for cell recruitment.
Collapse
Affiliation(s)
- Sarah E Gilpin
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, University of Toronto, North Wing, 9N - 949, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Genetic characterization of H1N2 swine influenza virus isolated in China and its pathogenesis and inflammatory responses in mice. Arch Virol 2013; 158:1965-72. [PMID: 23591972 DOI: 10.1007/s00705-013-1685-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/20/2013] [Indexed: 12/13/2022]
Abstract
In 2009, two H1N2 influenza viruses were isolated from trachea swabs of pigs in Hubei in China. We compared these sequences with the other 18 complete genome sequences of swine H1N2 isolates from China during 2004 to 2010 and undertook extensive analysis of their evolutionary patterns. Six different genotypes - two reassortants between triple reassortant (TR) H3N2 and classical swine (CS) H1N1 virus, three reassortants between TR H1N2, Eurasian avian-like H1N1 swine virus and H9N2 swine virus, and one reassortant between H1N1, H3N2 human virus and CS H1N1 virus - were observed in these 20 swine H1N2 isolates. The TR H1N2 swine virus is the predominant genotype, and the two Hubei H1N2 isolates were located in this cluster. We also used a mouse model to examine the pathogenesis and inflammatory responses of the two isolates. The isolates replicated efficiently in the lung, and exhibited a strong inflammatory response, serious pathological changes and mortality in infected mice. Given the role that swine can play as putative "genetic mixing vessels" and the observed transmission of TR H1N2 in ferrets, H1N2 influenza surveillance in pigs should be increased to minimize the potential threat to public health.
Collapse
|
37
|
Uropathogenic Escherichia coli causes cortical tubular necrotic cell death and the release of macrophage migration inhibitory factor. Cytokine 2013; 61:945-52. [PMID: 23410506 DOI: 10.1016/j.cyto.2013.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/22/2012] [Accepted: 01/04/2013] [Indexed: 12/20/2022]
Abstract
The macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, is deregulated in acute kidney injury (AKI) through an unknown mechanism. In the present study, we used a previously described mouse model of ascending urinary tract infection in which uropathogenic Escherichia coli (UPEC) were transurethrally inoculated to induce kidney infections. Here, we show that urinary MIF was upregulated during AKI while MIF was abundantly expressed in the renal cortical tubules and that UPEC infection caused a decrease in tubular MIF. Infections with UPEC in vitro caused MIF release in a cell type-dependent manner, which was independent of receptor-mediated internalization, signal transduction, and transcription. Indeed, UPEC infection-induced necrotic cell death in vitro and in vivo correlated with extracellular acidification and processed MIF secretion. These data suggest that MIF is released by necrotic renal cortical tubular cells during UPEC infection.
Collapse
|
38
|
Macrophage migration inhibitory factor in fetoplacental tissues from preeclamptic pregnancies with or without fetal growth restriction. Clin Dev Immunol 2011; 2012:639342. [PMID: 22007254 PMCID: PMC3189467 DOI: 10.1155/2012/639342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 12/17/2022]
Abstract
The proinflammatory cytokine MIF (macrophage migration inhibitory factor) is involved in physiological and pathological processes in pregnancy. MIF maternal serum levels are increased in preeclampsia (PE). We hypothesize that pregnancy tissues are the source of MIF overexpression in PE. MIF protein was studied in maternal sera, placental tissues, fetal membranes, and umbilical cord of 8 control and 20 PE pregnancies: 10 with normal fetal growth (PE-AGA) and 10 with fetal growth restriction (PE-FGR). MIF levels were significantly higher in PE-AGA membranes than in controls and PE-FGR. In PE-FGR, MIF cord concentrations were higher than in PE-AGA while MIF placental levels were lower than in controls. MIF maternal serum levels were higher in PE, compared to controls, and the difference was mainly due to PE-FGR samples. These data support MIF involvement in PE pathogenesis and suggest that different pregnancy tissues contribute to MIF production in PE with and without fetoplacental compromise.
Collapse
|
39
|
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine that has been implicated as playing a causative role in many disease states, including sepsis, pneumonia, diabetes, rheumatoid arthritis, inflammatory bowel disease, psoriasis and cancer. To inhibit the enzymatic and biologic activities of MIF, we and others have developed small-molecule MIF inhibitors. Most MIF inhibitors bind within the hydrophobic pocket that contains highly conserved amino acids known to be essential for MIF's proinflammatory activity. The best characterized of these small-molecule MIF inhibitors, (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) has been validated in scores of laboratories worldwide. Like neutralizing anti-MIF antibodies, ISO-1 significantly improves survival and reduces disease progression and/or severity in multiple murine models where MIF is implicated. This MIF inhibitor, its derivatives and other MIF-targeted compounds show great promise for future testing in disease states where increased MIF activity has been discovered.
Collapse
|
40
|
Patel JR, Vora KP, Tripathi S, Zeng H, Tumpey TM, Katz JM, Sambhara S, Gangappa S. Infection of lung epithelial cells with pandemic 2009 A(H1N1) influenza viruses reveals isolate-specific differences in infectivity and host cellular responses. Viral Immunol 2011; 24:89-99. [PMID: 21449719 DOI: 10.1089/vim.2010.0122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To better understand the early virus-host interactions of the pandemic 2009 A(H1N1) viruses in humans, we examined early host responses following infection of human epithelial cell cultures with three 2009 A(H1N1) viruses (A/California/08/2009, A/Mexico/4108/2009, and A/Texas/15/2009), or a seasonal H1N1 vaccine strain (A/Solomon Islands/3/2006). We report here that infection with pandemic A/California/08/2009 and A/Mexico/4108/2009 viruses resulted in differences in virus infectivity compared to either pandemic A/Texas/15/2009 or the seasonal H1N1 vaccine strain. In addition, IFN-β levels were decreased in cell cultures infected with either the A/California/08/2009 or the A/Mexico/4108/2009 virus. Furthermore, infection with A/California/08/2009 and A/Mexico/4108/2009 viruses resulted in lower expression of four key proinflammatory markers (IL-6, RANTES, IP-10, and MIP-1β) compared with infection with either A/Texas/15/2009 or A/Solomon Islands/3/2006. Taken together, our results demonstrate that 2009 A(H1N1) viruses isolated during the Spring wave induced varying degrees of early host antiviral and inflammatory responses in human respiratory epithelial cells, highlighting the strain-specific nature of these responses, which play a role in clinical disease.
Collapse
Affiliation(s)
- Jenish R Patel
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tate MD, Schilter HC, Brooks AG, Reading PC. Responses of mouse airway epithelial cells and alveolar macrophages to virulent and avirulent strains of influenza A virus. Viral Immunol 2011; 24:77-88. [PMID: 21449718 DOI: 10.1089/vim.2010.0118] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Influenza A virus (IAV) infection is associated with outcomes ranging from subclinical infection to severe pneumonia. In this study, we compared IAV strains BJx109 (H3N2), HKx31 (H3N2), and PR8 (H1N1), for their ability to elicit innate immune responses from mouse airway cells in vitro and their virulence in mice. The viruses differed markedly in their ability to induce disease in mice (PR8 > HKx31 > BJx109). In particular, PR8 infection was associated with high levels of virus replication and pulmonary inflammation. We next compared the ability of each virus strain to infect and induce inflammatory mediators from mouse airway cells. First, major differences were observed in the ability of viruses to infect and induce chemokines and cytokines from mouse alveolar macrophages (BJx109 > HKx31 > PR8), but not from airway epithelial cells (AEC) in vitro. Second, C-type lectins of the innate immune system in mouse lung fluids blocked the ability of BJx109, but not PR8, to infect mouse macrophages and AEC. The failure of the virulent PR8 virus to elicit responses from airway macrophages, combined with resistance to antiviral proteins in mouse airway fluids, likely contribute to virulence in mice. These findings provide insight into the mechanisms underlying disease severity in the mouse model of influenza infection.
Collapse
Affiliation(s)
- Michelle D Tate
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
42
|
Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A 2011; 108:12048-53. [PMID: 21730129 DOI: 10.1073/pnas.1101089108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arthrogenic alphaviruses, such as Ross River virus (RRV), chikungunya, Sindbis, mayaro and o'nyong-nyong viruses circulate endemically worldwide, frequently causing outbreaks of polyarthritis. The exact mechanisms of how alphaviruses induce polyarthritis remain ill defined, although macrophages are known to play a key role. Macrophage migration inhibitory factor (MIF) is an important cytokine involved in rheumatoid arthritis pathogenesis. Here, we characterize the role of MIF in alphavirus-induced arthritides using a mouse model of RRV-induced arthritis, which has many characteristics of RRV disease in humans. RRV-infected WT mice developed severe disease associated with up-regulated MIF expression in serum and tissues, which corresponded to severe inflammation and tissue damage. MIF-deficient (MIF(-/-)) mice developed mild disease accompanied by a reduction in inflammatory infiltrates and muscle destruction in the tissues, despite having viral titers similar to WT mice. In addition, reconstitution of MIF into MIF(-/-) mice exacerbated RRV disease and treatment of mice with MIF antagonist ameliorated disease in WT mice. Collectively, these findings suggest that MIF plays a critical role in determining the clinical severity of alphavirus-induced musculoskeletal disease and may provide a target for the development of antiviral pharmaceuticals. The prospect being that early treatment with MIF-blocking pharmaceuticals may curtail the debilitating arthritis associated with alphaviral infections.
Collapse
|
43
|
Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture. BMC Public Health 2011; 11 Suppl 1:S10. [PMID: 21356129 PMCID: PMC3317580 DOI: 10.1186/1471-2458-11-s1-s10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND For a typical influenza infection in vivo, viral titers over time are characterized by 1-2 days of exponential growth followed by an exponential decay. This simple dynamic can be reproduced by a broad range of mathematical models which makes model selection and the extraction of biologically-relevant infection parameters from experimental data difficult. RESULTS We analyze in vitro experimental data from the literature, specifically that of single-cycle viral yield experiments, to narrow the range of realistic models of infection. In particular, we demonstrate the viability of using a normal or lognormal distribution for the time a cell spends in a given infection state (e.g., the time spent by a newly infected cell in the latent state before it begins to produce virus), while exposing the shortcomings of ordinary differential equation models which implicitly utilize exponential distributions and delay-differential equation models with fixed-length delays. CONCLUSIONS By fitting published viral titer data from challenge experiments in human volunteers, we show that alternative models can lead to different estimates of the key infection parameters.
Collapse
|
44
|
Baron N, Deuster O, Noelker C, Stüer C, Strik H, Schaller C, Dodel R, Meyer B, Bacher M. Role of macrophage migration inhibitory factor in primary glioblastoma multiforme cells. J Neurosci Res 2011; 89:711-7. [PMID: 21360573 DOI: 10.1002/jnr.22595] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/24/2010] [Accepted: 12/14/2010] [Indexed: 11/11/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a protein that is overexpressed in many tumors, such as colon and prostate cancer, melanoma, and glioblastoma multiforme (GBM). In its function as a cytokine, MIF induces angiogenesis, promotes cell cycle progression, and inhibits apoptosis. Recently, the molecular signal transduction has been specified: MIF has been found to be a ligand to the CD74/CD44-receptor complex and to activate the ERK1/2 MAPK cascade. In addition MIF binds to the chemokine receptors CXCR2 and CXCR4. This effects an integrin-dependent leukocyte arrest and mediates leukocyte chemotaxis. Recent work has described a clearer role of MIF in GBM tumor cell lines. The current study used human primary GBM cells. We show that inhibition of MIF with ISO-1, an inhibitor of the D-dopachrome tautomerase site of MIF, reduced the growth rate of primary GBM cells in a dose-dependent manner, and in addition ISO-1 increased protein expression of MIF and its receptors CD74, CXCR2, and CXCR4 in vitro but decreased expression of CD44. Furthermore, hypoxia as cell stressor increases the protein expression of MIF in primary GBM cells. These results underscore the importance of MIF in GBM and show that MIF and its receptors may be a promising target for the treatment of malignant gliomas.
Collapse
Affiliation(s)
- Nina Baron
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pathology in dogs with experimental canine H3N2 influenza virus infection. Res Vet Sci 2010; 88:523-7. [DOI: 10.1016/j.rvsc.2009.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 11/17/2022]
|
46
|
Regis EG, Barreto-de-Souza V, Morgado MG, Bozza MT, Leng L, Bucala R, Bou-Habib DC. Elevated levels of macrophage migration inhibitory factor (MIF) in the plasma of HIV-1-infected patients and in HIV-1-infected cell cultures: a relevant role on viral replication. Virology 2010; 399:31-38. [PMID: 20085845 DOI: 10.1016/j.virol.2009.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/09/2009] [Accepted: 12/14/2009] [Indexed: 01/06/2023]
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of inflammatory and infectious diseases, however its role in HIV-1 infection is unknown. Here we show that HIV-1-infected patients present elevated plasma levels of MIF, that HIV-1-infected peripheral blood mononuclear cells (PBMCs) release a greater amount of MIF, and that the HIV-1 envelope glycoprotein gp120 induces MIF secretion from uninfected PBMCs. The HIV-1 replication in PBMCs declines when these cells are treated with anti-MIF antibodies, and exposure of HIV-1-infected cells to the ABC-transporter inhibitor probenecid results in inhibition of MIF secretion. The addition of recombinant MIF (rhMIF) to HIV-1-infected PBMCs enhances viral replication of CCR5- or CXCR4-tropic HIV-1 isolates. Using a T CD4(+) cell lineage containing an HIV long terminal repeats (LTR)-Luciferase construct, we detected that rhMIF promotes transcription from HIV-1 LTR. Our results show that HIV-1 induces MIF secretion and suggest that MIF influences the HIV-1 biology through activation of HIV-1 LTR.
Collapse
Affiliation(s)
- Eduardo G Regis
- Laboratory on Thymus Research, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Mariza G Morgado
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcelo T Bozza
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, RJ, Brazil
| | - Lin Leng
- Yale School of Medicine, CT, USA
| | | | - Dumith C Bou-Habib
- Laboratory on Thymus Research, Oswaldo Cruz Institute/FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
47
|
Jiang-Shieh YF, Chien HF, Chang CY, Wei TS, Chiu MM, Chen HM, Wu CH. Distribution and expression of CD200 in the rat respiratory system under normal and endotoxin-induced pathological conditions. J Anat 2010; 216:407-16. [PMID: 20070425 DOI: 10.1111/j.1469-7580.2009.01190.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In vivo and in vitro studies have clearly demonstrated that signaling mediated by the interaction of CD200 and its cognate receptor, CD200R, results in an attenuation of inflammatory or autoimmune responses through multiple mechanisms. The present results have shown a differential expression of CD200 in the respiratory tract of intact rats. Along the respiratory passage, CD200 was specifically distributed at the bronchiolar epithelia with intense CD200 immunoreactivity localized at the apical surface of some ciliated epithelial cells; only a limited expression was detected on the Clara cells extending into the alveolar duct. In the alveolar septum, double immunofluorescence showed intense CD200 immunolabeling on the capillary endothelia. A moderate CD200 labeling was observed on the alveolar type II epithelial cells. It was, however, absent in the alveolar type I epithelial cells and the alveolar macrophages. Immunoelectron microscopic study has revealed a specific distribution of CD200 on the luminal front of the thin portion of alveolar endothelia. During endotoxemia, the injured lungs showed a dose- and time-dependent decline of CD200 expression accompanied by a vigorous infiltration of immune cells, some of them expressing ionized calcium binding adapter protein 1 or CD200. Ultrastructural examination further showed that the marked reduction of CD200 expression was mainly attributable to the loss of alveolar endothelial CD200. It is therefore suggested that CD200 expressed by different lung cells may play diverse roles in immune homeostasis of normal lung, in particular, the molecules on alveolar endothelia that may control regular recruitment of immune cells via CD200-CD200R interaction. Additionally, it may contribute to intense infiltration of immune cells following the loss or inefficiency of CD200 under pathological conditions.
Collapse
Affiliation(s)
- Ya-Fen Jiang-Shieh
- Department of Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
48
|
Yan Q. Systems biology of influenza: understanding multidimensional interactions for personalized prevention and treatment. Methods Mol Biol 2010; 662:285-302. [PMID: 20824477 DOI: 10.1007/978-1-60761-800-3_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Influenza virus infection is a public health threat worldwide. It is urgent to develop effective methods and tools for the prevention and treatment of influenza. Influenza vaccines have significant immune response variability across the population. Most of the current circulating strains of influenza A virus are resistant to anti-influenza drugs. It is necessary to understand how genetic variants affect immune responses, especially responses to the HA and NA transmembrane glycoproteins. The elucidation of the underlying mechanisms can help identify patient subgroups for effective prevention and treatment. New personalized vaccines, adjuvants, and drugs may result from the understanding of interactions of host genetic, environmental, and other factors. The systems biology approach is to simulate and model large networks of the interacting components, which can be excellent targets for antiviral therapies. The elucidation of host-influenza interactions may provide an integrative view of virus infection and host responses. Understanding the host-influenza-drug interactions may contribute to optimal drug combination therapies. Insight of the host-influenza-vaccine interactions, especially the immunogenetics of vaccine response, may lead to the development of better vaccines. Systemic studies of host-virus-vaccine-drug-environment interactions will enable predictive models for therapeutic responses and the development of individualized therapeutic strategies. A database containing such information on personalized and systems medicine for influenza is available at http://flu.pharmtao.com.
Collapse
|
49
|
Schrader J, Deuster O, Rinn B, Schulz M, Kautz A, Dodel R, Meyer B, Al-Abed Y, Balakrishnan K, Reese JP, Bacher M. Restoration of contact inhibition in human glioblastoma cell lines after MIF knockdown. BMC Cancer 2009; 9:464. [PMID: 20038293 PMCID: PMC2810303 DOI: 10.1186/1471-2407-9-464] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF) in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis. RESULTS Here we show that in vitro targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or anti-MIF antibody treatment reduced the growth rates of tumor cells. Of note is the marked decrease of proliferation under confluent and over-confluent conditions, implying a role of MIF in overcoming contact inhibition. Several proteins involved in contact inhibition including p27, p21, p53 and CEBPalpha are upregulated in the MIF antisense clones indicating a restoration of contact inhibition in the tumor cells. Correspondingly, we observed a marked increase in MIF mRNA and protein content under higher cell densities in LN18 cells. Furthermore, we showed the relevance of the enzymatic active site of MIF for the proliferation of glioblastoma cells by using the MIF-tautomerase inhibitor ISO-1. CONCLUSION Our study adds another puzzle stone to the role of MIF in tumor growth and progression by showing the importance of MIF for overcoming contact inhibition.
Collapse
Affiliation(s)
- Jörg Schrader
- Department of Neurology, University of Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Assunção-Miranda I, Amaral FA, Bozza FA, Fagundes CT, Sousa LP, Souza DG, Pacheco P, Barbosa-Lima G, Gomes RN, Bozza PT, Da Poian AT, Teixeira MM, Bozza MT. Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J 2009; 24:218-28. [PMID: 19776337 DOI: 10.1096/fj.09-139469] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dengue fever is an emerging viral disease transmitted by arthropods to humans in tropical countries. Dengue hemorrhagic fever (DHF) is escalating in frequency and mortality rates. Here we studied the involvement of macrophage migration inhibitory factor (MIF) in dengue virus (DENV) infection and its pathogenesis. Patients with DHF had elevated plasma concentrations of MIF. Both leukocytes from these patients and macrophages from healthy donors infected in vitro with DENV showed a substantial amount of MIF within lipid droplets. The secretion of MIF by macrophages and hepatocytes required a productive infection and occurred without an increase in gene transcription or cell death, thus indicating active secretion from preformed stocks. In vivo infection of wild-type and mif-deficient (Mif(-/-)) mice demonstrated a role of MIF in dengue pathogenesis. Clinical disease was less severe in Mif(-/-) mice, and they exhibited a significant delay in lethality, lower viremia, and lower viral load in the spleen than wild-type mice. This reduction in all parameters of severity on DENV infection in Mif(-/-) mice correlated with reduced proinflammatory cytokine concentrations. These results demonstrated the contribution of MIF to the pathogenesis of dengue and pointed to a possible beneficial role of neutralizing MIF as an adjunctive therapeutic approach to treat the severe forms of the disease.
Collapse
Affiliation(s)
- Iranaia Assunção-Miranda
- Programa de Biologia Estrutural, Departamento de Imunologia, Instituto de Microbiologia, CCS Bloco I, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro/RJ, 21941-902 Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|