1
|
Song WW, Wan MY, She JY, Zhao SL, Liu DJ, Chang HY, Deng L. Sequential Immunizations with Influenza Neuraminidase Protein Followed by Peptide Nanoclusters Induce Heterologous Protection. Viruses 2024; 16:77. [PMID: 38257777 PMCID: PMC10819419 DOI: 10.3390/v16010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Enhancing cross-protections against diverse influenza viruses is desired for influenza vaccinations. Neuraminidase (NA)-specific antibody responses have been found to independently correlate with a broader influenza protection spectrum. Here, we report a sequential immunization regimen that includes priming with NA protein followed by boosting with peptide nanoclusters, with which targeted enhancement of antibody responses in BALB/c mice to certain cross-protective B-cell epitopes of NA was achieved. The nanoclusters were fabricated via desolvation with absolute ethanol and were only composed of composite peptides. Unlike KLH conjugates, peptide nanoclusters would not induce influenza-unrelated immunity. We found that the incorporation of a hemagglutinin peptide of H2-d class II restriction into the composite peptides could be beneficial in enhancing the NA peptide-specific antibody response. Of note, boosters with N2 peptide nanoclusters induced stronger serum cross-reactivities to heterologous N2 and even heterosubtypic N7 and N9 than triple immunizations with the prototype recombinant tetrameric (rt) N2. The mouse challenge experiments with HK68 H3N2 also demonstrated the strong effectiveness of the peptide nanocluster boosters in conferring heterologous protection.
Collapse
Affiliation(s)
- Wen-Wen Song
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Mu-Yang Wan
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Jia-Yue She
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Shi-Long Zhao
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - De-Jian Liu
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
| | - Hai-Yan Chang
- College of Life Sciences, Hunan Normal University, Changsha 410082, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Medical Virology, College of Biology, Hunan University, Changsha 410082, China; (W.-W.S.); (M.-Y.W.); (J.-Y.S.); (S.-L.Z.); (D.-J.L.)
- Beijing Weimiao Biotechnology Co., Ltd., Haidian District, Beijing 100093, China
| |
Collapse
|
2
|
Wang Y, Dong C, Ma Y, Zhu W, Gill HS, Denning TL, Kang SM, Wang BZ. Monophosphoryl lipid A-adjuvanted nucleoprotein-neuraminidase nanoparticles improve immune protection against divergent influenza viruses. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102614. [PMID: 36265560 PMCID: PMC9756393 DOI: 10.1016/j.nano.2022.102614] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Universal influenza vaccines are urgently needed to prevent recurrent influenza epidemics and inevitable pandemics. We generated double-layered protein nanoparticles incorporating two conserved influenza antigens-nucleoprotein and neuraminidase-through a two-step desolvation-crosslinking method. These protein nanoparticles displayed immunostimulatory properties to antigen-presenting cells by promoting inflammatory cytokine (IL-6 and TNF-α) secretion from JAWS II dendric cells. The nanoparticle immunization induced significant antigen-specific humoral and cellular responses, including antigen-binding and neutralizing antibodies, antibody- and cytokine (IFN-γ and IL-4)-secreting cells, and NP147-155 tetramer-specific cytotoxic T lymphocyte (CTL) responses. Co-administration of monophosphoryl lipid A (MPLA, a toll-like receptor 4 agonist) with the protein nanoparticles further improved immune responses and conferred heterologous and heterosubtypic influenza protection. The MPLA-adjuvanted nanoparticles reduced lung inflammation post-infection. The results demonstrated that the combination of MPLA and conserved protein nanoparticles could be developed into an improved universal influenza vaccine strategy.
Collapse
Affiliation(s)
- Ye Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, GA 30303, USA.
| |
Collapse
|
3
|
Verstegen NJM, Hagen RR, van den Dijssel J, Kuijper LH, Kreher C, Ashhurst T, Kummer LYL, Steenhuis M, Duurland M, de Jongh R, de Jong N, van der Schoot CE, Bos AV, Mul E, Kedzierska K, van Dam KPJ, Stalman EW, Boekel L, Wolbink G, Tas SW, Killestein J, van Kempen ZLE, Wieske L, Kuijpers TW, Eftimov F, Rispens T, van Ham SM, ten Brinke A, van de Sandt CE. Immune dynamics in SARS-CoV-2 experienced immunosuppressed rheumatoid arthritis or multiple sclerosis patients vaccinated with mRNA-1273. eLife 2022; 11:e77969. [PMID: 35838348 PMCID: PMC9337853 DOI: 10.7554/elife.77969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).
Collapse
Affiliation(s)
- Niels JM Verstegen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Ruth R Hagen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Jet van den Dijssel
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Lisan H Kuijper
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Christine Kreher
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Thomas Ashhurst
- Sydney Cytometry Core Research Facility, Charles Perkins Centre, Centenary Institute, and The University of SydneySydneyAustralia
- School of Medical Sciences, Faculty of Medicine and Health, The University of SydneySydneyAustralia
| | - Laura YL Kummer
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Mariel Duurland
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Rivka de Jongh
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Nina de Jong
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Amélie V Bos
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Erik Mul
- Department of Research Facilities, Sanquin ResearchAmsterdamNetherlands
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido UniversitySapporoJapan
| | - Koos PJ van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Gertjan Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Rheumatology, Amsterdam Rheumatology and immunology CenterAmsterdamNetherlands
| | - Sander W Tas
- Amsterdam Rheumatology and immunology Center, Department of Rheumatology and Clinical Immunology, University of AmsterdamAmsterdamNetherlands
| | - Joep Killestein
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Zoé LE van Kempen
- Amsterdam UMC, Vrije Universiteit, Department of NeurologyAmsterdamNetherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
- Department of Clinical Neurophysiology, St Antonius HospitalNieuwegeinNetherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, University of AmsterdamAmsterdamNetherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, University of AmsterdamAmsterdamNetherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
| | - Carolien E van de Sandt
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, University of AmsterdamAmsterdamNetherlands
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
4
|
Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release 2018; 295:1-12. [PMID: 30579981 DOI: 10.1016/j.jconrel.2018.12.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
The use of biologics (peptide and protein based drugs) has increased significantly over the past few decades. However, their development has been limited by their short half-life, immunogenicity and low membrane permeability, restricting most therapies to extracellular targets and administration by injection. Lipidation is a clinically-proven post-translational modification that has shown great promise to address these issues: improving half-life, reducing immunogenicity and enabling intracellular uptake and delivery across epithelia. Despite its great potential, lipidation remains an underutilized strategy in the clinical translation of lead biologics. We review how lipidation can overcome common challenges in biologics development as well as highlight gaps in our understanding of the effect of lipidation on therapeutic efficacy, where increased research and development efforts may lead to next-generation drugs.
Collapse
Affiliation(s)
| | - John S Decker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Michael D Lynch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Highly conserved hemagglutinin peptides of H1N1 influenza virus elicit immune response. 3 Biotech 2018; 8:492. [PMID: 30498665 DOI: 10.1007/s13205-018-1509-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 11/09/2018] [Indexed: 01/24/2023] Open
Abstract
In the current study, two highly conserved (> 90%) H1N1 hemagglutinin peptides STDTVDTVLEKNVTVTHSVNL (H1) and KVNSVIEKMNTQFTAVGKEF (H2) containing multiple T-cell epitopes have been assessed for their immunogenic potential in vitro, subjecting peripheral blood mononuclear cells from healthy volunteers to repetitive stimulation of chemically synthesised H1 and H2 peptides, and measuring their interferon (IFN)-γ level (ELISA) and proliferation (MTT assay). Further, these peptides were analysed for their binding affinity with 18 different human leukocyte antigen (HLA) class I and II by means of molecular docking. All seven samples tested for H1- and H2-induced IFN-γ secretion were found to have enhanced IFN-γ production. Six (H1) and five (H2) samples have shown proliferative response compared to unstimulated cells. Peptide-induced IFN-γ secretion and proliferation in healthy samples represent the immunogenic potential of these peptides. Further, molecular docking results reveal that the peptides have comparable binding energy to that of native bound peptide for both HLA classes which indicates that these peptides have the capability to be presented by different HLA molecules required for T-cell response. Hence, these conserved immunogenic hemagglutinin peptides are potential candidates for influenza vaccine development.
Collapse
|
6
|
Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the Power of T Cells: The Promising Hope for a Universal Influenza Vaccine. Vaccines (Basel) 2018; 6:vaccines6020018. [PMID: 29587436 PMCID: PMC6027237 DOI: 10.3390/vaccines6020018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Next-generation vaccines that utilize T cells could potentially overcome the limitations of current influenza vaccines that rely on antibodies to provide narrow subtype-specific protection and are prone to antigenic mismatch with circulating strains. Evidence from animal models shows that T cells can provide heterosubtypic protection and are crucial for immune control of influenza virus infections. This has provided hope for the design of a universal vaccine able to prime against diverse influenza virus strains and subtypes. However, multiple hurdles exist for the realisation of a universal T cell vaccine. Overall primary concerns are: extrapolating human clinical studies, seeding durable effective T cell resident memory (Trm), population human leucocyte antigen (HLA) coverage, and the potential for T cell-mediated immune escape. Further comprehensive human clinical data is needed during natural infection to validate the protective role T cells play during infection in the absence of antibodies. Furthermore, fundamental questions still exist regarding the site, longevity and duration, quantity, and phenotype of T cells needed for optimal protection. Standardised experimental methods, and eventually simplified commercial assays, to assess peripheral influenza-specific T cell responses are needed for larger-scale clinical studies of T cells as a correlate of protection against influenza infection. The design and implementation of a T cell-inducing vaccine will require a consensus on the level of protection acceptable in the community, which may not provide sterilizing immunity but could protect the individual from severe disease, reduce the length of infection, and potentially reduce transmission in the community. Therefore, increasing the standard of care potentially offered by T cell vaccines should be considered in the context of pandemic preparedness and zoonotic infections, and in combination with improved antibody vaccine targeting methods. Current pandemic vaccine preparedness measures and ongoing clinical trials under-utilise T cell-inducing vaccines, reflecting the myriad questions that remain about how, when, where, and which T cells are needed to fight influenza virus infection. This review aims to bring together basic fundamentals of T cell biology with human clinical data, which need to be considered for the implementation of a universal vaccine against influenza that harnesses the power of T cells.
Collapse
Affiliation(s)
- E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Carolien van de Sandt
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sook San Wong
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Sophie A Valkenburg
- HKU Pasteur Research Pole, School of Public Health, University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
7
|
Chua BY, Sekiya T, Jackson DC. Opinion: Making Inactivated and Subunit-Based Vaccines Work. Viral Immunol 2018; 31:150-158. [PMID: 29369750 DOI: 10.1089/vim.2017.0146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Empirically derived vaccines have in the past relied on the isolation and growth of disease-causing microorganisms that are then inactivated or attenuated before being administered. This is often done without prior knowledge of the mechanisms involved in conferring protective immunity. Recent advances in scientific technologies and in our knowledge of how protective immune responses are induced enable us to rationally design novel and safer vaccination strategies. Such advances have accelerated the development of inactivated whole-organism- and subunit-based vaccines. In this review, we discuss ideal attributes and criteria that need to be considered for the development of vaccines and some existing vaccine platforms. We focus on inactivated vaccines against influenza virus and ways by which vaccine efficacy can be improved with the use of adjuvants and Toll-like receptor-2 signaling.
Collapse
Affiliation(s)
- Brendon Y Chua
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - Toshiki Sekiya
- 2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| | - David C Jackson
- 1 Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne, Australia .,2 Research Center for Zoonosis Control, Hokkaido University , Sapporo, Japan .,3 Global Institution for Collaborative Research and Education, Hokkaido University , Sapporo, Japan
| |
Collapse
|
8
|
Hassan AO, Amen O, Sayedahmed EE, Vemula SV, Amoah S, York I, Gangappa S, Sambhara S, Mittal SK. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS One 2017; 12:e0186244. [PMID: 29023601 PMCID: PMC5638338 DOI: 10.1371/journal.pone.0186244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Omar Amen
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail: (SKM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (SKM); (SS)
| |
Collapse
|
9
|
Qiu X, Duvvuri VR, Gubbay JB, Webby RJ, Kayali G, Bahl J. Lineage-specific epitope profiles for HPAI H5 pre-pandemic vaccine selection and evaluation. Influenza Other Respir Viruses 2017; 11:445-456. [PMID: 28715148 PMCID: PMC5963872 DOI: 10.1111/irv.12466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Multiple highly pathogenic avian influenza (HPAI) H5 viruses continue to co-circulate. This has complicated pandemic preparedness and confounded effective vaccine candidate selection and evaluation. OBJECTIVES In this study, we aimed to predict and map the diversity of CD8+ T-cell epitopes among H5 hemagglutinin (HA) gene lineages to estimate CD8+ T-cell immunity in humans induced by vaccine candidates. METHODS A dataset consisting of 1125 H5 HA sequences collected between 1996 and 2017 from avian and humans was assembled for phylogenetic and lineage-specific epitope analyses. Conserved epitopes were predicted from WHO-endorsed vaccine candidates and representative clade-defining strains by pairwise comparison with Immune Epitope Database (IEDB). The distribution of predicted epitopes was mapped to each HPAI H5 lineage. We assume that high similarity and conservancy of predicted epitopes from vaccine candidates among all circulating HPAI H5 lineages is correlated with high immunity. RESULTS A total of 49 conserved CD8+ T-cell epitopes were predicted at 28 different amino acid positions of the HA protein. Mapping these epitopes to the phylogenetic tree allowed us to develop epitope profiles, or "fingerprints," for each HPAI H5 lineage. Vaccine epitope percentage analyses showed some epitope profiles were highly conserved for all H5 isolates and may be valuable for universal vaccine design. However, the positions with low coverage may explain why the vaccine candidates do not always function well. CONCLUSIONS These findings demonstrate that our analytical approach to evaluate conserved CD8+ T-cell epitope prediction in a phylogenetic framework may provide important insights for computational design of vaccine selection and future epitope-based design.
Collapse
MESH Headings
- Animals
- Birds
- CD8-Positive T-Lymphocytes/immunology
- Drug Design
- Epitope Mapping
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/virology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Pandemics/prevention & control
- Phylogeny
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Infectious DiseasesSchool of Public HealthUniversity of Texas Health Science CenterHoustonTXUSA
| | | | - Jonathan B. Gubbay
- Public Health OntarioTorontoONCanada
- University of TorontoTorontoONCanada
- Mount Sinai HospitalTorontoONCanada
- The Hospital for Sick ChildrenTorontoONCanada
| | - Richard J. Webby
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ghazi Kayali
- Center for Infectious DiseasesSchool of Public HealthUniversity of Texas Health Science CenterHoustonTXUSA
- Human LinkHazmiehLebanon
| | - Justin Bahl
- Center for Infectious DiseasesSchool of Public HealthUniversity of Texas Health Science CenterHoustonTXUSA
- Program in Emerging Infectious DiseasesDuke‐National University of Singapore Graduate Medical SchoolSingaporeSingapore
| |
Collapse
|
10
|
Bolton KJ, McCaw JM, Brown L, Jackson D, Kedzierska K, McVernon J. Prior population immunity reduces the expected impact of CTL-inducing vaccines for pandemic influenza control. PLoS One 2015; 10:e0120138. [PMID: 25811654 PMCID: PMC4374977 DOI: 10.1371/journal.pone.0120138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandemic control by limiting the transmission of novel influenza A viruses (IAV). We consider interventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopting a model linking epidemic progression to the emergence of IAV variants, the opportunity for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modifying population-level outcomes if influenza-specific T cells found widely in adults already suppress transmission and prove difficult to enhance. Administration of CTL-inducing vaccines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing population spread, indicating that CTL-inducing vaccines are best used against novel subtypes such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of enhanced benefit if naive hosts are typically intensively mixing children and when a subset of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift than previously suggested, and targeting adults may be the optimal strategy to achieve this when the vaccination campaign does not have the power to curtail the attack rate. Our results highlight the need to design interventions based on pre-existing cellular immunity and knowledge of the host determinants of vaccine efficacy, and provide a framework for assessing the performance requirements of high-impact CTL-inducing vaccines.
Collapse
Affiliation(s)
- Kirsty J. Bolton
- School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
- School of Community Health Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - James M. McCaw
- Vaccine and Immunisation Research Group, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Lorena Brown
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - David Jackson
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Jodie McVernon
- Vaccine and Immunisation Research Group, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Murdoch Childrens Research Institute, Melbourne, Australia
| |
Collapse
|
11
|
Cobbin JCA, Zeng W, Jackson DC, Brown LE. Different arms of the adaptive immune system induced by a combination vaccine work in concert to provide enhanced clearance of influenza. PLoS One 2014; 9:e115356. [PMID: 25522323 PMCID: PMC4270762 DOI: 10.1371/journal.pone.0115356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/21/2014] [Indexed: 11/19/2022] Open
Abstract
Current split influenza virus vaccines that induce strain-specific neutralising antibodies provide some degree of protection against influenza infection but there is a clear need to improve their effectiveness. The constant antigenic drift of influenza viruses means that vaccines are often not an exact match to the circulating strain and so levels of relevant antibodies may not be sufficiently high to afford protection. In the situation where the emergent influenza virus is completely novel, as is the case with pandemic strains, existing vaccines may provide no benefit. In this study we tested the concept of a combination vaccine consisting of sub-optimal doses of split influenza virus vaccine mixed with a cross-protective T-cell inducing lipopeptide containing the TLR2 ligand Pam2Cys. Mice immunised with combination vaccines showed superior levels of lung viral clearance after challenge compared to either split virus or lipopeptide alone, mediated through activation of enhanced humoral and/or additional cellular responses. The mechanism of action of these vaccines was dependent on the route of administration, with intranasal administration being superior to subcutaneous and intramuscular routes, potentially through the induction of memory CD8+ T cells in the lungs. This immunisation strategy not only provides a mechanism for minimising the dose of split virus antigen but also, through the induction of cross-protective CD8+ T cells, proves a breadth of immunity to provide potential benefit upon encounter with serologically diverse influenza isolates.
Collapse
Affiliation(s)
- Joanna C. A. Cobbin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
| | - Weiguang Zeng
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
| | - David C. Jackson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
| | - Lorena E. Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
12
|
Abstract
Influenza is a major health problem worldwide. Both seasonal influenza and pandemics take a major toll on the health and economy of our country. The present review focuses on the virology and complex immunology of this RNA virus in general and in relation to pregnancy. The goal is to attempt to explain the increased morbidity and mortality seen in infection during pregnancy. We discuss elements of innate and adaptive immunity as well as placental cellular responses to infection. In addition, we delineate findings in animal models as well as human disease. Increased knowledge of maternal and fetal immunologic responses to influenza is needed. However, enhanced understanding of nonimmune, pregnancy-specific factors influencing direct interaction of the virus with host cells is also important for the development of more effective prevention and treatment options in the future.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Disease Models, Animal
- Female
- Host-Pathogen Interactions
- Humans
- Immune System/immunology
- Immune System/virology
- Immunity, Innate
- Immunization
- Influenza Vaccines/therapeutic use
- Influenza, Human/immunology
- Influenza, Human/mortality
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Orthomyxoviridae/immunology
- Orthomyxoviridae/pathogenicity
- Pregnancy
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/mortality
- Pregnancy Complications, Infectious/prevention & control
- Pregnancy Complications, Infectious/virology
- Prognosis
- Risk Factors
Collapse
Affiliation(s)
- Renju S Raj
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| | - Mark Phillippe
- Department of Obstetrics & Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Sckisel GD, Tietze JK, Zamora AE, Hsiao HH, Priest SO, Wilkins DEC, Lanier LL, Blazar BR, Baumgarth N, Murphy WJ. Influenza infection results in local expansion of memory CD8(+) T cells with antigen non-specific phenotype and function. Clin Exp Immunol 2014; 175:79-91. [PMID: 23937663 DOI: 10.1111/cei.12186] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2013] [Indexed: 12/30/2022] Open
Abstract
Primary viral infections induce activation of CD8(+) T cells responsible for effective resistance. We sought to characterize the nature of the CD8(+) T cell expansion observed after primary viral infection with influenza. Infection of naive mice with different strains of influenza resulted in the rapid expansion of memory CD8(+) T cells exhibiting a unique bystander phenotype with significant up-regulation of natural killer group 2D (NKG2D), but not CD25, on the CD44(high) CD8(+) T cells, suggesting an antigen non-specific phenotype. We further confirmed the non-specificity of this phenotype on ovalbumin-specific (OT-I) CD8(+) T cells, which are not specific to influenza. These non-specific CD8(+) T cells also displayed increased lytic capabilities and were observed primarily in the lung. Thus, influenza infection was shown to induce a rapid, antigen non-specific memory T cell expansion which is restricted to the specific site of inflammation. In contrast, CD8(+) T cells of a similar phenotype could be observed in other organs following administration of systemic agonistic anti-CD40 and interleukin-2 immunotherapy, demonstrating that bystander expansion in multiple sites is possible depending on whether the nature of activation is either acute or systemic. Finally, intranasal blockade of NKG2D resulted in a significant increase in viral replication early during the course of infection, suggesting that NKG2D is a critical mediator of anti-influenza responses prior to the initiation of adaptive immunity. These results characterize further the local bystander expansion of tissue-resident, memory CD8(+) T cells which, due to their early induction, may play an important NKG2D-mediated, antigen non-specific role during the early stages of viral infection.
Collapse
Affiliation(s)
- Gail D Sckisel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, USA; Graduate Group in Immunology, University of California, Davis, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wei H, Lenz SD, Thompson DH, Pogranichniy RM. DNA-epitope vaccine provided efficient protection to mice against lethal dose of influenza A virus H1N1. Viral Immunol 2014; 27:14-9. [PMID: 24405102 DOI: 10.1089/vim.2013.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Swine influenza virus (SIV) is a fast-evolving viral pathogen in pig populations. However, commercial vaccines, based on inactivated viruses, cannot provide complete protection with induced humoral immunity only and require frequent updates to fight against current isolates. A DNA vaccine delivering conservative epitopes was designed in this study in the hope of meeting the need. In this study, a B-cell epitope (HA2.30-130), a quadruplicated Th-cell epitope (NP55-69), and a quadruplicated CTL epitope (NP147-158) were fused separately to the C-terminal of VP22c gene in the modified pcDNA3.1 plasmid. The expression of epitopes was confirmed by in vitro transfection of 293FT cells. The DNA vaccine administered intramuscularly stimulated epitope-specific immunity against the two T-cell epitopes in all ten mice before the virus challenge. Only two out of ten mice were ELISA positive against the B-cell epitope. All vaccinated mice survived a lethal dose of virus challenge, while all mice in the challenge control group died. The DNA vaccine delivering epitopes in this study showed promising protection against influenza virus in an animal model; however, more work needs to be done to evaluate the best conserved protective epitopes which can be applied in developing a universal DNA vaccine.
Collapse
Affiliation(s)
- Huiling Wei
- 1 Department of Comparative Pathobiology, Purdue University , West Lafayette, Indiana
| | | | | | | |
Collapse
|
15
|
Baz A, Jackson DC, Kienzle N, Kelso A. Memory cytolytic T-lymphocytes: induction, regulation and implications for vaccine design. Expert Rev Vaccines 2014; 4:711-23. [PMID: 16221072 DOI: 10.1586/14760584.4.5.711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The design of vaccines that protect against intracellular infections or cancer remains a challenge. In many cases, immunity depends on the development of antigen-specific memory CD8+ T-cells that can express cytokines and kill antigen-bearing cells when they encounter the pathogen or tumor. Here, the authors review current understanding of the signals and cells that lead to memory CD8+ T-cell differentiation, the relationship between the primary CD8+ T-cell response and the memory response and the regulation of memory CD8+ T-cell survival and function. The implications of this new knowledge for vaccine design are discussed, and recent progress in the development of lipidated peptide vaccines as a promising approach for vaccination against intracellular infections and cancer is reviewed.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
16
|
Zaman M, Toth I. Immunostimulation by synthetic lipopeptide-based vaccine candidates: structure-activity relationships. Front Immunol 2013; 4:318. [PMID: 24130558 PMCID: PMC3793171 DOI: 10.3389/fimmu.2013.00318] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/19/2013] [Indexed: 12/23/2022] Open
Abstract
Peptide-based vaccines offer several advantages over conventional whole organism or protein approaches by offering improved purity and specificity in inducing immune response. However, peptides alone are generally non-immunogenic. Concerns remain about the toxicity of adjuvants which are critical for immunogenicity of synthetic peptides. The use of lipopeptides in peptide vaccines is currently under intensive investigation because potent immune responses can be generated without the use of adjuvant (thus are self-adjuvanting). Several lipopeptides derived from microbial origin, and their synthetic versions or simpler fatty acid moieties impart this self-adjuvanting activity by signaling via Toll-like receptor 2 (TLR2). Engagement of this innate immune receptor on antigen-presenting cell leads to the initiation and development of potent immune responses. Therefore optimization of lipopeptides to enhance TLR2-mediated activation is a promising strategy for vaccine development. Considerable structure-activity relationships that determine TLR2 binding and consequent stimulation of innate immune responses have been investigated for a range of lipopeptides. In this mini review we address the development of lipopeptide vaccines, mechanism of TLR2 recognition, and immune activation. An overview is provided of the best studied lipopeptide vaccine systems.
Collapse
Affiliation(s)
- Mehfuz Zaman
- School of Chemistry and Molecular Biosciences, The University of Queensland , St Lucia, QLD , Australia
| | | |
Collapse
|
17
|
The design and proof of concept for a CD8(+) T cell-based vaccine inducing cross-subtype protection against influenza A virus. Immunol Cell Biol 2012; 91:96-104. [PMID: 23146941 DOI: 10.1038/icb.2012.54] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we examined the reactivity of human peripheral blood mononuclear cells to a panel of influenza A virus (IAV) CD8(+) T-cell epitopes that are recognised by the major human leukocyte antigen (HLA) groups represented in the human population. We examined the level of recognition in a sample of the human population and the potential coverage that could be achieved if these were incorporated into a T-cell epitope-based vaccine. We then designed a candidate influenza vaccine that incorporated three of the examined HLA-A2-restricted influenza epitopes into Pam2Cys-based lipopeptides. These lipopeptides do not require the addition of an adjuvant and can be delivered directly to the respiratory mucosa enabling the generation of local memory cell populations that are crucial for clearance of influenza. Intranasal administration of a mixture of three lipopeptides to HLA-A2 transgenic HHD mice elicited multiple CD8(+) T-cell specificities in the spleen and lung that closely mimicked the response generated following natural infection with influenza. These CD8(+) T cells were associated with viral reduction following H3N1 influenza virus challenge for as long as 3 months after lipopeptide administration. In addition, lipopeptides containing IAV-targeting epitopes conferred substantial benefit against death following infection with a virulent H1N1 strain. Because CD8(+) T cell epitopes are often derived from highly conserved regions of influenza viruses, such vaccines need not be reformulated annually and unlike current antibody-inducing vaccines could provide cross-protective immunity against newly emerging pandemic viruses.
Collapse
|
18
|
Seah SGK, Brady JL, Carrington EM, Ng WC, Sutherland RM, Hancock MS, La Gruta NL, Brown LE, Turner SJ, Lew AM, Zhan Y. Influenza-induced, helper-independent CD8+ T cell responses use CD40 costimulation at the late phase of the primary response. J Leukoc Biol 2012; 93:145-54. [PMID: 23108101 DOI: 10.1189/jlb.0612266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The helper-dependent pathway of priming CD8(+) T cells involves "licensing" of DCs by CD40L on CD4(+) T cells. The helper-independent ("helpless") pathways elicited by many viruses, including influenza, are less widely understood. We have postulated that CD40L can be up-regulated on DCs by such viruses, and this promotes priming of CD8(+) T cells via CD40. Most studies on costimulation have been performed in the presence of CD4(+) T cells, and so the role of CD40L costimulation under helpless circumstances has not been fully elucidated. Here, we investigated such a role for CD40L using CD40L KO mice. Although the number of influenza-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells, it was markedly decreased in the absence of CD40L. Proliferation (the number of CD44(+)BrdU(+) influenza-specific CD8(+) T cells) in the primary response was diminished in CD40L KO mice at Day 8 but not at Day 5 after infection. MLR studies indicated that CD40L expression on DCs was critical for CD8(+) T cell activation. Adoptive transfer of CD40 KO CD8(+) T cells compared with WT cells confirmed that CD40 on such cells was critical for the generation of primary anti-influenza CD8(+) T cell responses. The late effect also corresponded with the late expression of CD40 by influenza-specific CD8(+) T cells. We suggest that costimulation via CD40L on DCs and CD40 on CD8(+) T cells is important in optimizing primary CD8(+) T cell responses during influenza infection.
Collapse
Affiliation(s)
- Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kirk K, Poh CL, Fecondo J, Pourianfar H, Shaw J, Grollo L. Cross-reactive neutralizing antibody epitopes against Enterovirus 71 identified by an in silico approach. Vaccine 2012; 30:7105-10. [PMID: 23022400 DOI: 10.1016/j.vaccine.2012.09.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/26/2022]
Abstract
Currently, infections of hand, foot and mouth disease (HFMD) due to Human Enterovirus 71 (EV71) cannot be prevented or treated, as there are no suitable vaccines or antiviral drugs. This study aimed to identify potential vaccine candidates for EV71 using in silico analysis of its viral capsid proteins. A combined in silico approach utilizing computational hidden Markov model (HMM), propensity scale algorithm, and artificial learning, identified three 15-mer structurally conserved B-cell epitope candidates lying within the EV71 capsid proteins. Peptide vaccine candidates incorporating a target B-cell epitope and a promiscuous T-cell epitope from the related polio virus were synthesized using solid-phase Fmoc chemistry. Inbred BALB/C mice which were inoculated with two 10μg doses of the synthetic peptide, generated anti-peptide antibodies. Purified IgG isolated from pooled sera of the inoculated mice neutralized EV71 infections in vitro. Furthermore, these neutralizing antibodies were cross-reactive against other members of the Picornaviridae family, demonstrating greater than 50% virus neutralization. This indicates that the current approach is promising for the development of synthetic peptide-based vaccine candidates against Picornaviridae. Development of effective vaccines is of paramount importance in managing the disease in the Asia Pacific regions where this virus is endemic and has significant social, economic and public health ramifications.
Collapse
Affiliation(s)
- K Kirk
- Environment and Biotechnology Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Zimmerman DH, Steiner H, Carmabula R, Talor E, Rosenthal KS. LEAPS therapeutic vaccines as antigen specific suppressors of inflammation in infectious and autoimmune diseases. JOURNAL OF VACCINES & VACCINATION 2012; 3:149. [PMID: 23400692 PMCID: PMC3567852 DOI: 10.4172/2157-7560.1000149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The L.E.A.P.S.(™) (Ligand Epitope Antigen Presentation System) technology platform has been used to develop immunoprotective and immunomodulating small peptide vaccines for infectious and autoimmune diseases. Several products are currently in various stages of development, at the pre-clinical stage (in animal challenge efficacy studies). Vaccine peptides can elicit protection of animals from lethal viral (herpes simplex virus [HSV-1] and influenza A) infection or can block the progression of autoimmune diseases (e.g. rheumatoid arthritis as in the collagen induced arthritis (CIA] or experimental autoimmune myocarditis (EAM) models). L.E.A.P.S. technology is a novel T-cell immunization technology that enables the design and synthesis of non-recombinant, proprietary peptide immunogens. Combination of a small peptide that activates the immune system with another small peptide from a disease-related protein, thus a conjugate containing both an Immune Cell Binding Ligand (ICBL) and a disease specific epitope, which allows the L.E.A.P.S. vaccines to activate precursors to differentiate and become more mature cells that can initiate and direct appropriate T cell responses. As such, readily synthesized, defined immunogens can be prepared to different diseases and are likely to elicit protection or therapy as applicable in humans as they are in mice. L.E.A.P.S. vaccines have promise for the treatment of rheumatoid arthritis and other inflammatory diseases and for infections, such as influenza and HSV1. The protective responses are characterized as Th1 immune and immunomodulatory responses with increased IL-12p70 and IFN-γ (Th1 cytokines) but reduced inflammatory cytokines TNF-α, IL-1 and IL-17 (Th2 and Th17 cytokines) and concomitant changes in antibody subtypes. LEAPS immunogens have been used directly in vivo or as ex vivo activators of DC which are then administered to the host.
Collapse
|
21
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
22
|
Tan ACL, Eriksson EMY, Kedzierska K, Deliyannis G, Valkenburg SA, Zeng W, Jackson DC. Polyfunctional CD8(+) T cells are associated with the vaccination-induced control of a novel recombinant influenza virus expressing an HCV epitope. Antiviral Res 2012; 94:168-78. [PMID: 22504097 DOI: 10.1016/j.antiviral.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/20/2012] [Accepted: 03/27/2012] [Indexed: 01/26/2023]
Abstract
In hepatitis C virus (HCV) infection, CD8(+) T cell responses have been shown to be important in viral clearance. Examining the efficacy of CD8(+) T cell vaccines against HCV has been limited by the lack of an HCV infectious model in mice and the differences between MHC restriction in humans and mice. Using HLA-A2 transgenic HHD mice, we demonstrate that intranasally delivered Pam2Cys-based lipopeptides containing HLA-A2-restricted HCV epitopes can induce polyfunctional CD8(+) T cell responses in several organs including the liver. To examine the activity of these responses in an infectious context, we developed a recombinant influenza virus that expresses the NS5B(2594-2602) epitope from non-structural protein 5B of hepatitis C virus (PR8-HCV(NS5B)). We showed that mice inoculated with a lipopeptide containing the NS5B epitope had reduced viral loads following challenge with the PR8-HCV(NS5B) virus. This reduction was associated with the induction of NS5B(2594-2602)-specific IFN-γ and TNF-α co-producing CD8(+) T cells. The T cell receptor usage in the NS5B(2594-2602) response was found to exhibit a Vβ8.1/8.2 bias that was characterized by a narrow repertoire and a common CDR3β motif. This work has identified CD8(+) T cell functions induced by lipopeptides that are associated with viral control and demonstrate the potential of lipopeptide-based vaccines as candidates for treatment of HCV infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
23
|
Ichihashi T, Yoshida R, Sugimoto C, Takada A, Kajino K. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model. PLoS One 2011; 6:e24626. [PMID: 21949735 PMCID: PMC3176274 DOI: 10.1371/journal.pone.0024626] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/15/2011] [Indexed: 11/25/2022] Open
Abstract
Background The virus-specific cytotoxic T lymphocyte (CTL) induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. Methodology/Principal Findings HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1) survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. Conclusions/Significance This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cross Protection/immunology
- Epitopes/immunology
- HLA-A24 Antigen/genetics
- HLA-A24 Antigen/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/enzymology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/enzymology
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A virus/enzymology
- Influenza A virus/immunology
- Influenza A virus/pathogenicity
- Influenza Vaccines/immunology
- Lung/virology
- Mice
- Mice, Transgenic
- Models, Animal
- Neuraminidase/immunology
- Reproducibility of Results
- T-Lymphocytes, Cytotoxic/immunology
- Time Factors
- Vaccination
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Toru Ichihashi
- Department of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Reiko Yoshida
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Chihiro Sugimoto
- Department of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Ayato Takada
- Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Kiichi Kajino
- Department of Collaboration and Education, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- * E-mail:
| |
Collapse
|
24
|
Watson B, Viner K. How the immune response to vaccines is created, maintained and measured: addressing patient questions about vaccination. Prim Care 2011; 38:581-93, vii. [PMID: 22094134 DOI: 10.1016/j.pop.2011.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article gives an overview of the immune response to vaccines, including ways in which it is measured and/or augmented to enhance its effectiveness. A brief description is given of the immune response, adaptive immunity, immunologic memory, antibodies, and adjuvants. Given that many young parents and physicians have never witnessed the ravages of vaccine-preventable diseases, it is hoped this article will aid the many people involved in the prevention of infectious disease to understand better the concepts and practicalities of immunization and vaccine development.
Collapse
|
25
|
Chua BY, Pejoski D, Turner SJ, Zeng W, Jackson DC. Soluble proteins induce strong CD8+ T cell and antibody responses through electrostatic association with simple cationic or anionic lipopeptides that target TLR2. THE JOURNAL OF IMMUNOLOGY 2011; 187:1692-701. [PMID: 21742967 DOI: 10.4049/jimmunol.1100486] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The low immunogenicity exhibited by most soluble proteins is generally due to the absence of molecular signatures that are recognized by the immune system as dangerous. In this study, we show that electrostatic binding of synthetic branched cationic or anionic lipopeptides that contain the TLR-2 agonist Pam(2)Cys markedly enhance a protein's immunogenicity. Binding of a charged lipopeptide to oppositely charged protein Ags resulted in the formation of stable complexes and occurs at physiologic pH and salt concentrations. The induction of cell-mediated responses is dependent on the electrostatic binding of lipopeptide to the protein, with no CD8(+) T cells being elicited when protein and lipopeptide possessed the same electrical charge. The CD8(+) T cells elicited after vaccination with lipopeptide-protein Ag complexes produced proinflammatory cytokines, exhibited in vivo lytic activity, and protected mice from challenge with an infectious chimeric influenza virus containing a single OVA epitope as part of the influenza neuraminidase protein. Induction of a CD8(+) T cell response correlated with the ability of lipopeptide to facilitate Ag uptake by DCs followed by trafficking of Ag-bearing cells into draining lymph nodes. Oppositely charged but not similarly charged lipopeptides were more effective in DC uptake and trafficking. Very high protein-specific Ab titers were also achieved by vaccination with complexes composed of oppositely charged lipopeptide and protein, whereas vaccination with similarly charged constituents resulted in significant but lower Ab titers. Regardless of whether similarly or oppositely charged lipopeptides were used in the induction of Ab, vaccination generated dominant IgG1 isotype Abs rather than IgG2a.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
26
|
Abstract
The mechanisms responsible for heterosubtypic immunity to influenza virus are not well understood but might hold the key for new vaccine strategies capable of providing lasting protection against both seasonal and pandemic strains. Memory CD4 T cells are capable of providing substantial protection against influenza both through direct effector mechanisms and indirectly through regulatory and helper functions. Here, we discuss the broad impact of memory CD4 T cells on heterosubtypic immunity against influenza and the prospects of translating findings from animal models into improved human influenza vaccines.
Collapse
Affiliation(s)
- K K McKinstry
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
27
|
Ashraf S, Kong W, Wang S, Yang J, Curtiss R. Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 2011; 29:3990-4002. [PMID: 21466806 DOI: 10.1016/j.vaccine.2011.03.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/11/2011] [Accepted: 03/20/2011] [Indexed: 12/27/2022]
Abstract
Orally administered recombinant attenuated Salmonella vaccines (RASVs) elicit humoral and mucosal immune responses against the immunizing antigen. The challenge in developing an effective vaccine against a virus or an intracellular bacterium delivered by RASVs is to introduce the protective antigen inside the host cell cytoplasm for presentation to MHC-I molecules for an efficient cell mediated immune response. To target the influenza nucleoprotein (NP) into the host cell cytosol, we constructed a regulated delayed lysis in vivo RASV strain χ11246(pYA4858) encoding influenza NP with a chromosomal deletion of the sifA gene to enable it to escape from the endosome prior to lysis. Oral immunization of mice with χ11246(pYA4858) (SifA⁻) with 3 booster immunizations resulted in complete protection (100%) against a lethal influenza virus (rWSN) challenge (100 LD₅₀) compared to 25% survival of mice immunized with the isogenic χ11017(pYA4858) (SifA⁺) strain. Reducing the number of booster immunizations with χ11246(pYA4858) from 3 to 2 resulted in 66% survival of mice challenged with rWSN (100 LD₅₀). Immunization with χ11246(pYA4858) via different routes provided protection in 80% orally, 100% intranasally and 100% intraperitoneally immunized mice against rWSN (100 LD₅₀). A Th1 type immune response was elicited against influenza NP in all experiments. IFN-γ secreting NP₁₄₇₋₁₅₅ specific T cells were not found to be correlated with protection. The role of antigen-specific CD8⁺ T cells remains to be determined. To conclude, we showed that Salmonella can be designed to deliver antigen(s) to the host cell cytosol for presumably class I presentation for the induction of protective immune responses.
Collapse
Affiliation(s)
- Shamaila Ashraf
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
28
|
Luo M, Qu X, Pan R, Zhu D, Zhang Y, Wu J, Pan Z. The virus-induced signaling adaptor molecule enhances DNA-raised immune protection against H5N1 influenza virus infection in mice. Vaccine 2011; 29:2561-7. [PMID: 21303708 DOI: 10.1016/j.vaccine.2011.01.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 01/04/2011] [Accepted: 01/21/2011] [Indexed: 11/30/2022]
Abstract
As an adaptor molecule in the retinoic acid-inducible gene-I (RIG-I) signaling pathway, the virus-induced signaling adaptor (VISA) molecule activates NF-κB and IRF3 and thereby leads to the production of type I interferons (IFNs). To explore the potential of VISA as a genetic adjuvant for DNA vaccines, a eukaryotic expression plasmid, pVISA, was generated by cloning the VISA gene into the pVAX1vector. For comparison, the pTRIF plasmid was similarly constructed, encoding the known genetic adjuvant TRIF (TIR-domain-containing adapter-inducing interferon-β), an adapter in the Toll-like receptor (TLR) signaling pathway. Mice were immunized with the chimeric DNA vaccine pHA/NP(147-155), which encodes the HA (hemagglutinin) fused with NP (nucleoprotein) CTL epitope (NP(147-155)) of H5N1 influenza virus, either alone or in combination with pVISA or pTRIF. Antigen-specific immune responses were examined in immunized mice. Our results demonstrate that co-immunization of the pHA/NP(147-155) plasmid with the VISA adjuvant augmented DNA-raised cellular immune responses and provided protection against H5N1 influenza virus challenge in mice. In addition, our data suggest that VISA acts as a stronger adjuvant for DNA immunization than TRIF. We conclude that co-inoculation with a vector expressing the adaptor molecule VISA enhanced the protective immunity against H5N1 infection induced by pHA/NP(147-155) and that VISA could be developed as a novel genetic adjuvant for DNA vaccines.
Collapse
Affiliation(s)
- Mengcheng Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei Province, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Cong H, Mui EJ, Witola WH, Sidney J, Alexander J, Sette A, Maewal A, McLeod R. Human immunome, bioinformatic analyses using HLA supermotifs and the parasite genome, binding assays, studies of human T cell responses, and immunization of HLA-A*1101 transgenic mice including novel adjuvants provide a foundation for HLA-A03 restricted CD8+T cell epitope based, adjuvanted vaccine protective against Toxoplasma gondii. Immunome Res 2010; 6:12. [PMID: 21129215 PMCID: PMC3009956 DOI: 10.1186/1745-7580-6-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/03/2010] [Indexed: 11/17/2022] Open
Abstract
Background Toxoplasmosis causes loss of life, cognitive and motor function, and sight. A vaccine is greatly needed to prevent this disease. The purpose of this study was to use an immmunosense approach to develop a foundation for development of vaccines to protect humans with the HLA-A03 supertype. Three peptides had been identified with high binding scores for HLA-A03 supertypes using bioinformatic algorhythms, high measured binding affinity for HLA-A03 supertype molecules, and ability to elicit IFN-γ production by human HLA-A03 supertype peripheral blood CD8+ T cells from seropositive but not seronegative persons. Results Herein, when these peptides were administered with the universal CD4+T cell epitope PADRE (AKFVAAWTLKAAA) and formulated as lipopeptides, or administered with GLA-SE either alone, or with Pam2Cys added, we found we successfully created preparations that induced IFN-γ and reduced parasite burden in HLA-A*1101(an HLA-A03 supertype allele) transgenic mice. GLA-SE is a novel emulsified synthetic TLR4 ligand that is known to facilitate development of T Helper 1 cell (TH1) responses. Then, so our peptides would include those expressed in tachyzoites, bradyzoites and sporozoites from both Type I and II parasites, we used our approaches which had identified the initial peptides. We identified additional peptides using bioinformatics, binding affinity assays, and study of responses of HLA-A03 human cells. Lastly, we found that immunization of HLA-A*1101 transgenic mice with all the pooled peptides administered with PADRE, GLA-SE, and Pam2Cys is an effective way to elicit IFN-γ producing CD8+ splenic T cells and protection. Immunizations included the following peptides together: KSFKDILPK (SAG1224-232); AMLTAFFLR (GRA6164-172); RSFKDLLKK (GRA7134-142); STFWPCLLR (SAG2C13-21); SSAYVFSVK(SPA250-258); and AVVSLLRLLK(SPA89-98). This immunization elicited robust protection, measured as reduced parasite burden using a luciferase transfected parasite, luciferin, this novel, HLA transgenic mouse model, and imaging with a Xenogen camera. Conclusions Toxoplasma gondii peptides elicit HLA-A03 restricted, IFN-γ producing, CD8+ T cells in humans and mice. These peptides administered with adjuvants reduce parasite burden in HLA-A*1101 transgenic mice. This work provides a foundation for immunosense based vaccines. It also defines novel adjuvants for newly identified peptides for vaccines to prevent toxoplasmosis in those with HLA-A03 supertype alleles.
Collapse
Affiliation(s)
- Hua Cong
- Departments of Surgery (Ophthalmology and Visual Sciences) and Pediatrics (Infectious Disease), Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, and The College, The University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Brown LE. The role of adjuvants in vaccines for seasonal and pandemic influenza. Vaccine 2010; 28:8043-5. [DOI: 10.1016/j.vaccine.2010.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
|
31
|
The magnitude of local immunity in the lungs of mice induced by live attenuated influenza vaccines is determined by local viral replication and induction of cytokines. J Virol 2010; 85:76-85. [PMID: 20962087 DOI: 10.1128/jvi.01564-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While live attenuated influenza vaccines (LAIVs) have been shown to be efficacious and have been licensed for human use, the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA) have to be updated for optimal protective efficacy. Little is known about the effect of different HA and NA proteins on the immunogenicity of LAIVs developed using the same backbone. A panel of LAIVs that share the internal protein genes, with unique HA and NA gene segments from different influenza subtypes, was rescued by reverse genetics, and a comparative study of immune responses induced by these vaccines was conducted in mice. The results suggest that the magnitude of lung immunity, including pulmonary IgA antibody and memory CD8(+) T lymphocytes, induced by the vaccines depends on the replication efficiency of the LAIVs, as well as the induction of cytokines/chemokines in the lungs. However, these factors are not important in determining systemic immunity such as serum antibody titers and memory CD8(+) T cells in the spleen. A qualitative analysis of immune responses induced by a single dose of an H5N1 LAIV revealed that the vaccine induced robust systemic and mucosal immunity in mice. In addition, antibodies and memory lymphocytes established in the lungs following vaccination were required for protection against lethal challenge with homologous and heterologous H5N1 viruses. Our results highlight the different requirements for inducing systemic and lung immunity that can be explored for the development of pulmonary immunity for protection against respiratory pathogens.
Collapse
|
32
|
Abstract
Mice are still the most used model organism in initial phases of vaccine design. Bioinformatics is becoming increasingly more important in vaccine development, both for the design of novel simplified epitope-based vaccines and also in order to understand the specific immune response of selected vaccine formulations. Toxoplasma gondii, an intracellular parasite, causes severe neurologic and ocular disease in congenitally infected and immunocompromised individuals. No protective vaccine exists against human toxoplasmosis. However, studies with mice have revealed immunodominant cytotoxic T lymphocyte epitopes originating from type II strains. These verified epitopes might be useful in human vaccines as the peptide binding repertoire of H-2L(d) MHC and MHCs belonging to the HLA-B07 supertype are very similar. Here, the results obtained using these epitopes in BALB/c as well as transgenic HLA-B*0702 mice are discussed. The stunning results obtained from the use of refined computational methods for the prediction of cytotoxic T lymphocyte epitopes are also discussed. The results highlight some important issues regarding both the use of mice but also the choice of bioinformatics methods in vaccine development.
Collapse
Affiliation(s)
- Claus Lundegaard
- Center for Biological Sequence Analysis - CBS, Department of Systems Biology, Technical University of Denmark - DTU, Kemitorvet 208, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
33
|
Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P, BenMohamed L. Linear and branched glyco-lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity. PLoS One 2010; 5:e11216. [PMID: 20574522 PMCID: PMC2888579 DOI: 10.1371/journal.pone.0011216] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Accepted: 05/26/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Glyco-lipopeptides, a form of lipid-tailed glyco-peptide, are currently under intense investigation as B- and T-cell based vaccine immunotherapy for many cancers. However, the cellular and molecular mechanisms of glyco-lipopeptides (GLPs) immunogenicity and the position of the lipid moiety on immunogenicity and protective efficacy of GLPs remain to be determined. METHODS/PRINCIPAL FINDINGS We have constructed two structural analogues of HER-2 glyco-lipopeptide (HER-GLP) by synthesizing a chimeric peptide made of one universal CD4(+) epitope (PADRE) and one HER-2 CD8(+) T-cell epitope (HER(420-429)). The C-terminal end of the resulting CD4-CD8 chimeric peptide was coupled to a tumor carbohydrate B-cell epitope, based on a regioselectively addressable functionalized templates (RAFT), made of four alpha-GalNAc molecules. The resulting HER glyco-peptide (HER-GP) was then linked to a palmitic acid moiety, attached either at the N-terminal end (linear HER-GLP-1) or in the middle between the CD4+ and CD8+ T cell epitopes (branched HER-GLP-2). We have investigated the uptake, processing and cross-presentation pathways of the two HER-GLP vaccine constructs, and assessed whether the position of linkage of the lipid moiety would affect the B- and T-cell immunogenicity and protective efficacy. Immunization of mice revealed that the linear HER-GLP-1 induced a stronger and longer lasting HER(420-429)-specific IFN-gamma producing CD8(+) T cell response, while the branched HER-GLP-2 induced a stronger tumor-specific IgG response. The linear HER-GLP-1 was taken up easily by dendritic cells (DCs), induced stronger DCs maturation and produced a potent TLR- 2-dependent T-cell activation. The linear and branched HER-GLP molecules appeared to follow two different cross-presentation pathways. While regression of established tumors was induced by both linear HER-GLP-1 and branched HER-GLP-2, the inhibition of tumor growth was significantly higher in HER-GLP-1 immunized mice (p<0.005). SIGNIFICANCE These findings have important implications for the development of effective GLP based immunotherapeutic strategies against cancers.
Collapse
Affiliation(s)
- Olivier Renaudet
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ilham Bettahi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alda Shi
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pascal Dumy
- Département de Chimie Moléculaire, UMR-CNRS 5250 and ICMG FR 2607, Université Joseph Fourier, Grenoble, France
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Institute for Immunology, University of California Irvine Medical Center, Irvine, California, United States of America
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Irvine, California, United States of America
| |
Collapse
|
34
|
Tan TG, Mui E, Cong H, Witola WH, Montpetit A, Muench SP, Sidney J, Alexander J, Sette A, Grigg ME, Maewal A, McLeod R. Identification of T. gondii epitopes, adjuvants, and host genetic factors that influence protection of mice and humans. Vaccine 2010; 28:3977-89. [PMID: 20347630 DOI: 10.1016/j.vaccine.2010.03.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 11/19/2022]
Abstract
Toxoplasma gondii is an intracellular parasite that causes severe neurologic and ocular disease in immune-compromised and congenitally infected individuals. There is no vaccine protective against human toxoplasmosis. Herein, immunization of L(d) mice with HF10 (HPGSVNEFDF) with palmitic acid moieties or a monophosphoryl lipid A derivative elicited potent IFN-gamma production from L(d)-restricted CD8(+) T cells in vitro and protected mice. CD8(+) T cell peptide epitopes from T. gondii dense granule proteins GRA 3, 6, 7, and Sag 1, immunogenic in humans for HLA-A02(+), HLA-A03(+), and HLA-B07(+) cells were identified. Since peptide repertoire presented by MHC class I molecules to CD8(+) T cells is shaped by endoplasmic reticulum-associated aminopeptidase (ERAAP), polymorphisms in the human ERAAP gene ERAP1 were studied and associate with susceptibility to human congenital toxoplasmosis (p<0.05). These results have important implications for vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Aminopeptidases/genetics
- Animals
- Antigens, Protozoan/immunology
- CD8-Positive T-Lymphocytes/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Genetic Predisposition to Disease
- HLA-A Antigens/immunology
- HLA-B Antigens/immunology
- Humans
- Interferon-gamma/immunology
- Leukocytes, Mononuclear/immunology
- Lipopeptides/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Models, Molecular
- Polymorphism, Genetic
- Protozoan Proteins/immunology
- Protozoan Vaccines/immunology
- Toxoplasma/immunology
- Toxoplasmosis/genetics
- Toxoplasmosis/immunology
- Toxoplasmosis, Congenital/genetics
- Toxoplasmosis, Congenital/immunology
Collapse
Affiliation(s)
- Tze Guan Tan
- Department of Surgery, Committees on Immunology, Molecular Medicine, and Genetics, Institute of Genomics and Systems Biology, and The College, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pejoski D, Zeng W, Rockman S, Brown LE, Jackson DC. A lipopeptide based on the M2 and HA proteins of influenza A viruses induces protective antibody. Immunol Cell Biol 2010; 88:605-11. [PMID: 20177411 DOI: 10.1038/icb.2010.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A conserved 15 amino-acid residue sequence of the ectodomain of the M2 protein of influenza A virus (M2e) induces a strong antibody (Ab) response when incorporated into a synthetic lipopeptide vaccine candidate containing a T-helper epitope from influenza A hemagglutinin and the dendritic cell-targeting lipid moiety S-[2,3-bis(palmitoyloxy)propyl]cysteine (Pam2Cys). Abs elicited by the truncated M2e sequence were specific for the M2 protein of influenza A virus and were also capable of binding to cells that were infected with influenza A viruses of different subtypes. The Ab titres against the lipopeptide were similar in magnitude to those elicited by the full-length (23 residue) M2e peptide when administered in Freund's adjuvant. Abs to the truncated M2e sequence were also able to significantly reduce the viral load in airways of BALB/c mice after challenge with live influenza virus.
Collapse
Affiliation(s)
- David Pejoski
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
36
|
Kurokawa M, Watanabe W, Shimizu T, Sawamura R, Shiraki K. Modulation of cytokine production by 7-hydroxycoumarin in vitro and its efficacy against influenza infection in mice. Antiviral Res 2009; 85:373-80. [PMID: 19913056 DOI: 10.1016/j.antiviral.2009.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/24/2009] [Accepted: 11/03/2009] [Indexed: 12/25/2022]
Abstract
We previously demonstrated that 7-hydroxycoumarin (7HC) was effective in reducing proinflammatory cytokine production in lipopolysaccharide-exposed macrophage-like P388D1 cells and fever production by suppressing the increase in interleukin (IL)-1alpha production in an influenza virus-intranasal infection model in mice. In this study, we assessed the effects of modulation of cytokine production by 7HC on influenza virus infection in relation to its efficacy in influenza virus-infected mice. 7HC was confirmed to suppress proinflammatory cytokine levels in P388D1 cells due to influenza virus infection. In the murine infection model, oral administration of 7HC (30 mg/kg) was significantly effective in reducing the weight loss of infected mice and virus titers in the bronchoalveolar lavage fluid (BALF) of lungs and in prolonging survival times without toxicity. The rise of proinflammatory and Th1 cytokine (IL-12 and interferon-gamma) production in the BALF from infected mice was significantly suppressed by 7HC at two and four days post-infection, respectively. This suppression correlated with the reduction of virus titers and diminution of lung consolidation. Because 7HC did not exhibit direct anti-influenza virus activity in vitro, 7HC was suggested to suppress pneumonia in influenza virus-infected mice through suppression of the cytokine production induced by infection.
Collapse
Affiliation(s)
- Masahiko Kurokawa
- Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki 882-8508, Japan.
| | | | | | | | | |
Collapse
|
37
|
Ng WC, Gilbertson B, Lim B, Zeng W, Jackson DC, Brown LE. Lipopeptide vaccines illustrate the potential role of subtype-crossreactive T cells in the control of highly virulent influenza. Influenza Other Respir Viruses 2009; 3:177-82. [PMID: 19627375 PMCID: PMC4634688 DOI: 10.1111/j.1750-2659.2009.00087.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background The best form of protection against influenza is high‐titred virus‐neutralizing antibody specific for the challenge strain. However, this is not always possible to achieve by vaccination due to the need for predicting the emerging virus, whether it be a drift variant of existing human endemic influenza type A subtypes or the next pandemic virus, for incorporation into the vaccine. By activating additional arms of the immune system to provide heterosubtypic immunity, that is immunity active against all viruses of type A influenza regardless of subtype or strain, it should be possible to provide significant benefit in situations where appropriate antibody responses are not achieved. Although current inactivated vaccines are unable to induce heterosubtypic CD8+ T cell immunity, we have shown that lipopeptides are particularly efficient in this regard. Objectives To examine the role of vaccine‐induced CD8+ T cells in altering the course of disease due to highly virulent H1N1 influenza virus in the mouse model. Methods The induction of influenza‐specific CD8+ T cells following intranasal inoculation with lipopeptide vaccine was assessed by intracellular cytokine staining (ICS) and the capacity of these cells to reduce viral loads in the lungs and to protect against death after viral challenge was determined. Results and conclusions We show that CD8+ T cells are induced by a single intranasal vaccination with lipopeptide, they remain at substantial levels in the lungs and are efficiently boosted upon challenge with virulent virus to provide late control of pulmonary viral loads. Vaccinated mice are not only protected from death but remain active, indicative of less severe disease despite significant weight loss.
Collapse
Affiliation(s)
- Wy Ching Ng
- The Department of Microbiology, The University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
38
|
Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 2009; 87:300-8. [PMID: 19308073 DOI: 10.1038/icb.2009.16] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Our approach to vaccination against influenza is unique. For no other pathogen do we construct and produce a new vaccine every year in the face of uncertainty about the strains that will be circulating when it is used. The huge global cooperative effort that underpins this process reflects our awareness of the need to control this major pathogen. Moreover, the threat of devastation by a pandemic due to a newly emerging viral subtype has triggered an intense effort to improve and accelerate the production of vaccines for use if a pandemic arises. However, type A influenza viruses responsible for seasonal epidemics and those with the potential to cause a pandemic share amino acid sequences that form the targets of cytotoxic T lymphocytes (CTL). CTL activated by currently circulating viruses, therefore, offer a possible means to limit the impact of infection with future variant seasonal strains and even new subtypes. This review examines how cross-protective CTL can be exploited to improve influenza vaccination and issues that need to be considered when attempting to induce this type of immunity. We discuss the role of CTL responses in viral control and review the current knowledge relating to specificity and longevity of memory CD8(+) T cells, how vaccine antigen can be loaded into antigen-presenting cells to prime these responses and factors influencing the class of response induced. Application of these principles to the next generation of influenza vaccines should lead to much greater control of infection.
Collapse
|
39
|
Tao P, Luo M, Pan R, Ling D, Zhou S, Tien P, Pan Z. Enhanced protective immunity against H5N1 influenza virus challenge by vaccination with DNA expressing a chimeric hemagglutinin in combination with an MHC class I-restricted epitope of nucleoprotein in mice. Antiviral Res 2009; 81:253-60. [DOI: 10.1016/j.antiviral.2008.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 11/24/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
|
40
|
Jenkins MR, Trapani JA, Doherty PC, Turner SJ. Granzyme K expressing cytotoxic T lymphocytes protects against influenza virus in granzyme AB-/- mice. Viral Immunol 2008; 21:341-6. [PMID: 18788942 DOI: 10.1089/vim.2008.0036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Granzyme (grz) AB(-/-) H2(b) mice generate numerically normal cytotoxic T lymphocyte (CTL) responses to the prominent influenza A virus D(b) NP(366) and D(b) PA(224) epitopes and terminate the infectious process in the pneumonic lung with the same kinetics as the WT controls. Though grz B protein expression is fully compromised, there is only a partial effect on the level of CTL activity measured in a classical, short-term (51)Cr release assay. Single-cell polymerase chain reaction (PCR) analysis of both highly activated effector and "resting" memory CD8(+) T cells from influenza A virus-infected grzAB(-/-) mice showed a high prevalence of grzK mRNA(+) expression in tetramer (tet)(+) CTLs as was found in WT mice. However, a marked reduction in cytotoxicity present in the primary splenic CTLs of grzAB(-/-) mice correlated with decreased grzK expression, as measured by real-time PCR. This suggests that grzK plays an important role in CD8(+) T-cell cytotoxicity both in the presence and absence of grzA and B.
Collapse
Affiliation(s)
- Misty R Jenkins
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
41
|
Jones KL, Brown LE, Eriksson EMY, Ffrench RA, Latour PA, Loveland BE, Wall DM, Roberts SK, Jackson DC, Gowans EJ. Human dendritic cells pulsed with specific lipopeptides stimulate autologous antigen-specific T cells without the addition of exogenous maturation factors. J Viral Hepat 2008; 15:761-72. [PMID: 18637077 DOI: 10.1111/j.1365-2893.2008.01003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Serum-free culture conditions to generate immature human monocyte-derived DC (Mo-DC) were optimized, and the parameters that influence their maturation after exposure to lipopeptides containing CD4(+) and CD8(+) T-cell epitopes were examined. The lipopeptides contained a single CD4(+) helper T-cell epitopes, one of a number of human leucocyte antigen (HLA)-A2-restricted cytotoxic T-cell epitope and the lipid Pam2Cys. To ensure complete maturation of the Mo-DC, we examined (i) the optimal lipopeptide concentration, (ii) the optimal Mo-DC density and (iii) the appropriate period of exposure of the Mo-DC to the lipopeptides. The results showed that a high dose of lipopeptide (30 microm) was no more efficient at upregulating maturation markers on Mo-DC than a low dose (6 microm). There was an inverse relationship between Mo-DC concentration and the mean fluorescence intensity of maturation markers. In addition, at the higher cell concentrations, the chemotactic capacity of the Mo-DC towards a cognate ligand, CCL21, was reduced. Thus, high cell concentrations during lipopeptide exposure were detrimental to Mo-DC maturation and function. The duration of exposure of Mo-DC to the lipopeptides had little effect on phenotype, although Mo-DC exposed to lipopeptides for 48 rather than 4 h showed an increased ability to stimulate autologous peripheral blood mononuclear cells to release interferon-gamma in the absence of exogenous maturation factors. These findings reveal conditions for generating mature antigen-loaded DC suitable for targeted immunotherapy.
Collapse
Affiliation(s)
- K L Jones
- Department of Immunology, Monash University, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chua BY, Eriksson EM, Brown LE, Zeng W, Gowans EJ, Torresi J, Jackson DC. A self-adjuvanting lipopeptide-based vaccine candidate for the treatment of hepatitis C virus infection. Vaccine 2008; 26:4866-75. [PMID: 18455278 DOI: 10.1016/j.vaccine.2008.03.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 03/04/2008] [Accepted: 03/12/2008] [Indexed: 12/24/2022]
Abstract
Effective CD8(+) T cell responses have been induced using totally synthetic self-adjuvanting lipopeptides containing the dipalmitoyl-S-glyceryl cysteine lipid moiety, which is a ligand for Toll-like receptor 2 (TLR2) on dendritic cells (DC). In this study, we evaluated the use of lipopeptide vaccine candidates containing HLA-A2-restricted epitopes for DC-based immunotherapy of HCV infection. Lipopeptides were able to induce specific CD8(+) T cell responses in HLA-A2 transgenic mice and consistently activated human monocyte-derived DC from both healthy individuals and HCV infected patients. Lipopeptide-pulsed human DC were also found to secrete the pro-inflammatory cytokine IL-12p70 and were able to activate antigen-specific IFN-gamma production by autologous CD8(+) T cells obtained from a hepatitis C patient. These results show that DC from HCV patients can be matured and antigen loaded with TLR2-targeting lipopeptides for effective presentation of CD8(+) T cell epitopes; the use of autologous lipopeptide-pulsed DC or direct lipopeptide vaccination may be successful approaches for the priming or boosting of anti-HCV CD8(+) T cell responses to aid in the clearance of the virus in chronically infected individuals.
Collapse
Affiliation(s)
- Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Baz A, Buttigieg K, Zeng W, Rizkalla M, Jackson DC, Groves P, Kelso A. Branched and linear lipopeptide vaccines have different effects on primary CD4+ and CD8+ T-cell activation but induce similar tumor-protective memory CD8+ T-cell responses. Vaccine 2008; 26:2570-9. [PMID: 18420312 DOI: 10.1016/j.vaccine.2008.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 11/18/2022]
Abstract
We compared murine T-cell responses to synthetic lipopeptide vaccines in which the TLR2 ligand Pam(2)Cys was attached to co-linear CD4+ and CD8+ T-cell epitopes of ovalbumin (OVA) in a linear or branched configuration. Mice received OVA-specific transgenic CD8+ and CD4+ T-cells followed by one injection of vaccine. Although the branched lipopeptide was more potent in activating OVA-specific CD4+ and CD8+ T-cells in the primary response, both vaccines induced cytolytic T lymphocytes (CTL) that expressed perforin, granzyme A-C, and IFN-gamma mRNAs and conferred long-term protection of most mice against challenge with OVA-expressing tumor cells. OVA epitope display was reduced in tumors that developed in some mice, suggesting CD8+ T-cell dependent selection.
Collapse
Affiliation(s)
- Adriana Baz
- Cooperative Research Centre for Vaccine Technology, Queensland Institute of Medical Research, Queensland 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Rangel-Moreno J, Carragher DM, Misra RS, Kusser K, Hartson L, Moquin A, Lund FE, Randall TD. B cells promote resistance to heterosubtypic strains of influenza via multiple mechanisms. THE JOURNAL OF IMMUNOLOGY 2008; 180:454-63. [PMID: 18097047 DOI: 10.4049/jimmunol.180.1.454] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Immunity to heterosubtypic strains of influenza is thought to be mediated primarily by memory T cells, which recognize epitopes in conserved proteins. However, the involvement of B cells in this process is controversial. We show in this study that influenza-specific memory T cells are insufficient to protect mice against a lethal challenge with a virulent strain of influenza in the absence of B cells. B cells contribute to protection in multiple ways. First, although non-neutralizing Abs by themselves do not provide any protection to challenge infection, they do reduce weight loss, lower viral titers, and promote recovery of mice challenged with a virulent heterosubtypic virus in the presence of memory T cells. Non-neutralizing Abs also facilitate the expansion of responding memory CD8 T cells. Furthermore, in cooperation with memory T cells, naive B cells also promote recovery from infection with a virulent heterosubtypic virus by generating new neutralizing Abs. These data demonstrate that B cells use multiple mechanisms to promote resistance to heterosubtypic strains of influenza and suggest that vaccines that elicit both memory T cells and Abs to conserved epitopes of influenza may be an effective defense against a wide range of influenza serotypes.
Collapse
|
45
|
Synthesis of toll-like receptor-2 targeting lipopeptides as self-adjuvanting vaccines. Methods Mol Biol 2008; 494:247-61. [PMID: 18726578 DOI: 10.1007/978-1-59745-419-3_14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Effective Th1- and Th2-type immune responses that result in protective immunity against pathogens can be induced by self-adjuvanting lipopeptides containing the lipid moiety dipalmitoyl-S-glyceryl cysteine (Pam2Cys). The potent immunogenicity of these lipopeptides is due to their ability to activate dendritic cells by targeting and signaling through Toll-like receptor-2 (TLR-2). In addition, the simplicity and flexibility in their design as well as their ease of chemical definition and characterisation makes them highly attractive vaccine candidates for humans and animals. We describe in this chapter the techniques involved in the synthesis of an immunocontraceptive lipopeptide vaccine as well as the experimental assays carried out to evaluate its efficiency.
Collapse
|
46
|
Shata MT, Barrett A, Shire NJ, Abdelwahab SF, Sobhy M, Daef E, El-Kamary SS, Hashem M, Engle RE, Purcell RH, Emerson SU, Strickland GT, Sherman KE. Characterization of hepatitis E-specific cell-mediated immune response using IFN-gamma ELISPOT assay. J Immunol Methods 2007; 328:152-61. [PMID: 17905301 PMCID: PMC2094100 DOI: 10.1016/j.jim.2007.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/09/2007] [Accepted: 08/29/2007] [Indexed: 02/08/2023]
Abstract
In developing countries, hepatitis E (HEV) and hepatitis A (HAV) are the major causes of acute viral hepatitis with similar feco-oral modes of transmission. In contrast to the high seroprevalence of hepatitis A infection, a low seroprevalence of HEV among children in endemic areas has been reported. These data suggest the possibility that silent HEV infection is undiagnosed by the current available methods. Many of the serological tests used for HEV diagnosis have poor specificity and are unable to differentiate among different genotypes of HEV. Moreover, the RT-PCR used for HEV isolation is only valid for a brief period during the acute stage of infection. Cell-mediated immune (CMI) responses are highly sensitive, and long lasting after sub-clinical infections as shown in HCV and HIV. Our objective was to develop a quantitative assay for cell-mediated immune (CMI) responses in HEV infection as a surrogate marker for HEV exposure in silent infection. Quantitative assessment of the CMI responses in HEV will also help us to evaluate the role of CMI in HEV morbidity. In this study, an HEV-specific interferon-gamma (IFN-gamma) ELISPOT assay was optimized to analyze HEV-specific CMI responses. We used peripheral blood mononuclear cells (PBMC) and sera from experimentally infected chimpanzees and from seroconverted and control human subjects to validate the assay. The HEV-specific IFN-gamma ELISPOT responses correlated strongly and significantly with anti-HEV ELISA positive/negative results (rho=0.73, p=0.02). Moreover, fine specificities of HEV-specific T cell responses could be identified using overlapping HEV ORF2 peptides.
Collapse
Affiliation(s)
- M T Shata
- Internal Medicine, Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Day EB, Zeng W, Doherty PC, Jackson DC, Kedzierska K, Turner SJ. The Context of Epitope Presentation Can Influence Functional Quality of Recalled Influenza A Virus-Specific Memory CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:2187-94. [PMID: 17675478 DOI: 10.4049/jimmunol.179.4.2187] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipopeptide constructs offer a novel strategy for eliciting effective cellular and humoral immunity by directly targeting the vaccine Ag to dendritic cells. Importantly, it is not known how closely immunity generated after lipopeptide vaccination mimics that generated after natural infection. We have used a novel lipopeptide vaccine strategy to analyze both the quantity and quality of CD8(+) T cell immunity to an influenza A virus epitope derived from the acidic polymerase protein (PA(224)) in B6 mice. Vaccination with the PA(224) lipopeptide resulted in accelerated viral clearance after subsequent influenza virus infection. The lipopeptide was also effective at recalling secondary D(b)PA(224) responses in the lung. Lipopeptide recalled D(b)PA(224)-specific CTL produced lower levels of IFN-gamma and TNF-alpha, but produced similar levels of IL-2 when compared with D(b)PA(224)-specific CTL recalled after virus infection. Furthermore, lipopeptide- and virus-recalled CTL demonstrated similar TCR avidity. Interestingly, lipopeptide administration resulted in expansion of D(b)PA(224)-specific CTL using a normally subdominant TCRBV gene segment. Overall, these results demonstrate that protective CTL responses elicited by lipopeptide vaccines can be correlated with TCR avidity, IL-2 production, and broad TCR repertoire diversity. Furthermore, factors that impact the quality of immunity are discussed. These factors are important considerations when evaluating the efficacy of novel vaccine strategies that target dendritic cells for eliciting cellular immunity.
Collapse
Affiliation(s)
- E Bridie Day
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
48
|
Murphy A, Westwood JA, Brown LE, Teng MWL, Moeller M, Xu Y, Smyth MJ, Hwu P, Darcy PK, Kershaw MH. Antitumor activity of dual-specific T cells and influenza virus. Cancer Gene Ther 2007; 14:499-508. [PMID: 17332777 DOI: 10.1038/sj.cgt.7701034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation and expansion of T cells are important in disease resolution, but tumors do not usually satisfy these immune requirements. Therefore, we employed a novel strategy whereby dual-specific T cells were generated that could respond to both tumor and influenza virus, reasoning that immunization with influenza virus would activate and expand tumor-specific cells, and inhibit tumor growth. Dual-specific T cells were generated by gene modification of influenza virus-specific mouse T cells with a chimeric gene-encoding reactivity against the erbB2 tumor-associated antigen. Dual-specific T cells were demonstrated to respond against both tumor and influenza in vitro, and expanded in vitro in response to influenza to a much greater degree than in response to tumor cells. Following adoptive transfer and immunization of tumor-bearing mice with influenza virus, dual-specific T cells expanded greatly in numbers in the peritoneal cavity and spleen. This resulted in a significant increase in time of survival of mice. However, tumors were not eradicated, which may have been due to the observed poor penetration of tumor by T cells. This is the first demonstration that the potent immunogenic nature of an infectious agent can be utilized to directly impact on T-cell expansion and activity against tumor in vivo.
Collapse
Affiliation(s)
- A Murphy
- Cancer Immunology Research Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Grollo L, Torresi J, Drummer H, Zeng W, Williamson N, Jackson DC. Exploiting Information Inherent in Binding Sites of Virus-Specific Antibodies: Design of An HCV Vaccine Candidate Cross-Reactive with Multiple Genotypes. Antivir Ther 2006. [DOI: 10.1177/135965350601100809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background/Aims The role of antibody in hepatitis C virus (HCV) infection remains unclear although many reports attest to its role in viral clearance. Here we describe epitopes that are recognized by antibody present in the serum of infected patients and show that such epitopes can induce neutralizing antibodies. Methods Human serum containing hyperimmune anti-HCV IgG was used to extract epitopes from a library of synthetic peptides that encompassed the sequences of the E1 and E2 proteins of HCV genotype 1a H77. Peptides that were bound by IgG were identified by mass spectrometry. Assembly of these epitopes with a helper T cell determinant was then carried out in order to construct candidate epitope-based vaccines. Results Three distinct antigenic sites were defined in the E1E2 glycoproteins by epitopes identified by antibody present in infected individuals. Four of the peptide epitopes identified are conserved in at least three HCV genotypes and are bound by antibody present in the sera of chronically infected and convalescent individuals. Synthetic vaccines based on these epitopes elicited antibodies that are capable of (i) capturing HCV virions from the serum of viraemic patients and (ii) inhibiting HCV pseudovirus particle entry into Huh7 cells. Conclusions This approach exploits the information inherent in the binding sites of virus-specific antibodies and represents a novel method for the design of synthetic epitope-based vaccines.
Collapse
Affiliation(s)
- Lara Grollo
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph Torresi
- Department of Medicine and Center for Clinical Research Excellence, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi Drummer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - Weiguang Zeng
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas Williamson
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC, Australia
| | - David C Jackson
- Cooperative Research Centre for Vaccine Technology, Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Bettahi I, Zhang X, Afifi RE, BenMohamed L. Protective immunity to genital herpes simplex virus type 1 and type 2 provided by self-adjuvanting lipopeptides that drive dendritic cell maturation and elicit a polarized Th1 immune response. Viral Immunol 2006; 19:220-36. [PMID: 16817765 DOI: 10.1089/vim.2006.19.220] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genital herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections are a significant health problem worldwide. While it is believed that CD4+ Th1 cells are among the effectors to herpes immunity, developing an epitope-based clinical vaccine capable of inducing an effective anti-herpes CD4+ Th1-mediated protection is still under investigation. Few molecules achieve this target without the aid of external immuno-adjuvant. The present study was undertaken to examine the immunogenicity in mice of five CD4+ T cell epitope peptides (gD1-29, gD49-82, gD146-179, gD228-257, and gD332-358), recently identified from the HSV-1 glycoprotein D (gD), covalently linked to a palmitic acid moiety (lipopeptides) using the high-yielding chemoselective ligation method and delivered subcutaneously in free-adjuvant saline. Their protective efficacy was evaluated in a progestin-induced susceptibility mouse model of genital herpes following intravaginal challenge with either HSV-1 or HSV-2. Four out of five gD lipopeptides effectively induced virus-specific CD4+ Th1 responses associated with a reduction of virus replication in the genital tract and protection from overt signs of genital disease. A cocktail of three highly immunogenic lipopeptides provoked maturation of dendritic cells, induced interferon gamma (IFN-gamma)-producing CD4+ T cells, and protected against both HSV- 1 and HSV-2 infections. Depletion of specific T cell subsets from lipopeptideimmunized mice before intravaginal HSV challenges demonstrated that CD4+ T cells were primarily responsible for this protection. The strength of induced T cell immunity, together with the ease of construction and safety of these totally synthetic self-adjuvanting lipopeptides, provide a molecularly defined formulation that could combat genital herpes and other human viral infections for which induction of Th1 immunity is crucial.
Collapse
Affiliation(s)
- Ilham Bettahi
- Cellular and Molecular Immunology Laboratory, The Eye Institute, University of California Irvine, School of Medicine, Irvine, California, USA
| | | | | | | |
Collapse
|