1
|
Li Z, Fang P, Duan P, Chen J, Fang L, Xiao S. Porcine Deltacoronavirus Infection Cleaves HDAC2 to Attenuate Its Antiviral Activity. J Virol 2022; 96:e0102722. [PMID: 35916536 PMCID: PMC9400482 DOI: 10.1128/jvi.01027-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Protein acetylation plays an important role during virus infection. Thus, it is not surprising that viruses always evolve elaborate mechanisms to regulate the functions of histone deacetylases (HDACs), the essential transcriptional and epigenetic regulators for deacetylation. Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes severe diarrhea in suckling piglets and has the potential to infect humans. In this study, we found that PDCoV infection inhibited cellular HDAC activity. By screening the expressions of different HDAC subfamilies after PDCoV infection, we unexpectedly found that HDAC2 was cleaved. Ectopic expression of HDAC2 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC2 inhibitor (CAY10683) or the knockdown of HDAC2 expression by specific siRNA. Furthermore, we demonstrated that PDCoV-encoded nonstructural protein 5 (nsp5), a 3C-like protease, was responsible for HDAC2 cleavage through its protease activity. Detailed analyses showed that PDCoV nsp5 cleaved HDAC2 at glutamine 261 (Q261), and the cleaved fragments (amino acids 1 to 261 and 262 to 488) lost the ability to inhibit PDCoV replication. Interestingly, the Q261 cleavage site is highly conserved in HDAC2 homologs from other mammalian species, and the nsp5s encoded by seven tested mammalian coronaviruses also cleaved HDAC2, suggesting that cleaving HDAC2 may be a common strategy used by different mammalian coronaviruses to antagonize the antiviral role of HDAC2. IMPORTANCE As an emerging porcine enteropathogenic coronavirus that possesses the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. In this work, we found that PDCoV infection downregulated cellular histone deacetylase (HDAC) activity. Of particular interest, the viral 3C-like protease, encoded by the PDCoV nonstructural protein 5 (nsp5), cleaved HDAC2, and this cleavage could be observed in the context of PDCoV infection. Furthermore, the cleavage of HDAC2 appears to be a common strategy among mammalian coronaviruses, including the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), to antagonize the antiviral role of HDAC2. To our knowledge, PDCoV nsp5 is the first identified viral protein that can cleave cellular HDAC2. Results from our study provide new targets to develop drugs combating coronavirus infection.
Collapse
Affiliation(s)
- Zhuang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Panpan Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
Tesoriere A, Dinarello A, Argenton F. The Roles of Post-Translational Modifications in STAT3 Biological Activities and Functions. Biomedicines 2021; 9:956. [PMID: 34440160 PMCID: PMC8393524 DOI: 10.3390/biomedicines9080956] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
STAT3 is an important transcription factor that regulates cell growth and proliferation by regulating gene transcription of a plethora of genes. This protein also has many roles in cancer progression and several tumors such as prostate, lung, breast, and intestine cancers that are characterized by strong STAT3-dependent transcriptional activity. This protein is post-translationally modified in different ways according to cellular context and stimulus, and the same post-translational modification can have opposite effects in different cellular models. In this review, we describe the studies performed on the main modifications affecting the activity of STAT3: phosphorylation of tyrosine 705 and serine 727; acetylation of lysine 49, 87, 601, 615, 631, 685, 707, and 709; and methylation of lysine 49, 140, and 180. The extensive results obtained by different studies demonstrate that post-translational modifications drastically change STAT3 activities and that we need further analysis to properly elucidate all the functions of this multifaceted transcription factor.
Collapse
Affiliation(s)
| | | | - Francesco Argenton
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy; (A.T.); (A.D.)
| |
Collapse
|
3
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Salman AA, Waheed MH, Ali-Abdulsahib AA, Atwan ZW. Low type I interferon response in COVID-19 patients: Interferon response may be a potential treatment for COVID-19. Biomed Rep 2021; 14:43. [PMID: 33786172 PMCID: PMC7995242 DOI: 10.3892/br.2021.1419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFN) are antiviral cytokines that mitigate the effects of invading viruses early on during the infection process. SARS-CoV and MERS induce weak IFN responses; hence, the clinical trials which included recombinant IFN accompanied with other antiviral drugs exhibited improved results in terms of shortening the duration of illness. The aim of the present study was to evaluate the type I IFN response in COVID-19 patients to determine whether it is sufficient to eliminate or reduce the severity of the infection, and whether it can be recommended as a potential therapy. Total RNA samples were converted to cDNA and used as templates to evaluate the gene expression levels of IFN regulatory factor (IRF)3 and IFN-β in COVID-19 patients or control. The results showed that IRF3 gene expression was upregulated ~250-fold compared with the negative samples. In contrast, IFN-β expression increased slightly in COVID-19 patients. Consistent with other coronaviruses, such as SARS-CoV and MERS, COVID-19 infection does not induce an efficient IFN response to reduce the severity of the virus. This may be attributed to an incomplete response of IRF3 in activating the IFN-β promoter in the infected patients. The results suggest IFN-β or α may be used as potential treatments.
Collapse
Affiliation(s)
| | | | | | - Zeenah Weheed Atwan
- Genetic Engineering Laboratory, Biology Department, College of Science, Basrah University, Basrah, Iraq
| |
Collapse
|
5
|
Wei L, Zhang R, Zhang J, Li J, Kong D, Wang Q, Fang J, Wang L. PRKAR2A deficiency protects mice from experimental colitis by increasing IFN-stimulated gene expression and modulating the intestinal microbiota. Mucosal Immunol 2021; 14:1282-1294. [PMID: 34349238 PMCID: PMC8528707 DOI: 10.1038/s41385-021-00426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Protein kinase A (PKA) plays an important role in regulating inflammation via its catalytic subunits. Recently, PKA regulatory subunits have been reported to directly modulate some signaling pathways and alleviate inflammation. However, the role of PKA regulatory subunits in colonic inflammation remains unclear. Therefore, we conducted this study to investigate the role of the PKA regulatory subunit PRKAR2A in colitis. We observed that PRKAR2A deficiency protected mice from dextran sulfate sodium (DSS)-induced experimental colitis. Our experiments revealed that the intestinal epithelial cell-specific deletion of Prkar2a contributed to this protection. Mechanistically, the loss of PRKAR2A in Prkar2a-/- mice resulted in an increased IFN-stimulated gene (ISG) expression and altered gut microbiota. Inhibition of ISGs partially reversed the protective effects against DSS-induced colitis in Prkar2a-/- mice. Antibiotic treatment and cross-fostering experiments demonstrated that the protection against DSS-induced colitis in Prkar2a-/- mice was largely dependent on the gut microflora. Altogether, our work demonstrates a previously unidentified function of PRKAR2A in promoting DSS-induced colitis.
Collapse
Affiliation(s)
- Lumin Wei
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjing Zhang
- grid.9227.e0000000119573309Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jinzhao Zhang
- grid.9227.e0000000119573309Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Li
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Deping Kong
- grid.9227.e0000000119573309Shanghai Institute for Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Qi Wang
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Fang
- grid.412521.10000 0004 1769 1119Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lifu Wang
- grid.412277.50000 0004 1760 6738Department of Gastroenterology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Marié IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 2018; 215:3194-3212. [PMID: 30463877 PMCID: PMC6279398 DOI: 10.1084/jem.20180520] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
In contrast to the common role of histone deacetylases (HDACs) for gene repression, HDAC activity provides a required positive function for IFN-stimulated gene (ISG) expression. Here, we show that HDAC1/2 as components of the Sin3A complex are required for ISG transcriptional elongation but not for recruitment of RNA polymerase or transcriptional initiation. Transcriptional arrest by HDAC inhibition coincides with failure to recruit the epigenetic reader Brd4 and elongation factor P-TEFb due to sequestration of Brd4 on hyperacetylated chromatin. Brd4 availability is regulated by an equilibrium cycle between opposed acetyltransferase and deacetylase activities that maintains a steady-state pool of free Brd4 available for recruitment to inducible promoters. An ISG expression signature is a hallmark of interferonopathies and other autoimmune diseases. Combined inhibition of HDAC1/2 and Brd4 resolved the aberrant ISG expression detected in cells derived from patients with two inherited interferonopathies, ISG15 and USP18 deficiencies, defining a novel therapeutic approach to ISG-associated autoimmune diseases.
Collapse
Affiliation(s)
- Isabelle J Marié
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Hao-Ming Chang
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - David E Levy
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
7
|
Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 2018; 7:48788-48812. [PMID: 27166190 PMCID: PMC5217051 DOI: 10.18632/oncotarget.9195] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Key factors contributing to early stages of atherosclerosis and plaque development include the pro-inflammatory cytokines Interferon (IFN)α, IFNγ and Interleukin (IL)-6 and Toll-like receptor 4 (TLR4) stimuli. Together, they trigger activation of Signal Transducer and Activator of Transcription (STAT) and Interferon Regulatory Factor (IRF) families. In particular, STAT1, 2 and 3; IRF1 and 8 have recently been recognized as prominent modulators of inflammation, especially in immune and vascular cells during atherosclerosis. Moreover, inflammation-mediated activation of these STATs and IRFs coordinates a platform for synergistic amplification leading to pro-atherogenic responses. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules including natural products. Only a few inhibitors for other STATs, but none for IRFs, are described. Promising results for several STAT3 inhibitors in recent clinical trials predicts STAT3-inhibiting strategies may find their way to the clinic. However, many of these inhibitors do not seem STAT-specific, display toxicity and are not very potent. This illustrates the need for better models, and screening and validation tools for novel STAT and IRF inhibitors. This review presents a summary of these findings. It postulates STAT1, STAT2 and STAT3 and IRF1 and IRF8 as interesting therapeutic targets and targeted inhibition could be a potential treatment strategy in CVDs. In addition, it proposes a pipeline approach that combines comparative in silico docking of STAT-SH2 and IRF-DBD models with in vitro STAT and IRF activation inhibition validation, as a novel tool to screen multi-million compound libraries and identify specific inhibitors for STATs and IRFs.
Collapse
|
8
|
Sengupta I, Das D, Singh SP, Chakravarty R, Das C. Host transcription factor Speckled 110 kDa (Sp110), a nuclear body protein, is hijacked by hepatitis B virus protein X for viral persistence. J Biol Chem 2017; 292:20379-20393. [PMID: 29046350 DOI: 10.1074/jbc.m117.796839] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy.
Collapse
Affiliation(s)
- Isha Sengupta
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata-700064
| | - Dipanwita Das
- the Indian Council of Medical Research (ICMR) Virus Unit, Kolkata, Infectious Diseases and Beliaghata General Hospital Campus, Kolkata 700010, and
| | - Shivaram Prasad Singh
- the Kalinga Gastroenterology Foundation, Beam Diagnostics Premises, Cuttack-753001, India
| | - Runu Chakravarty
- the Indian Council of Medical Research (ICMR) Virus Unit, Kolkata, Infectious Diseases and Beliaghata General Hospital Campus, Kolkata 700010, and
| | - Chandrima Das
- From the Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata-700064,
| |
Collapse
|
9
|
Potentiation and tolerance of toll-like receptor priming in human endothelial cells. Transl Res 2017; 180:53-67.e4. [PMID: 27567430 PMCID: PMC5253081 DOI: 10.1016/j.trsl.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/21/2022]
Abstract
Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells (HUVECs) and neonatal human dermal microvascular endothelial cells (HMVECs). Cells were primed with a combination of Poly I:C (10 μg/ml), Pam3Csk4 (10 μg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to HUVECs. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response.
Collapse
|
10
|
Ellerhoff TP, Berchtold S, Venturelli S, Burkard M, Smirnow I, Wulff T, Lauer UM. Novel epi-virotherapeutic treatment of pancreatic cancer combining the oral histone deacetylase inhibitor resminostat with oncolytic measles vaccine virus. Int J Oncol 2016; 49:1931-1944. [DOI: 10.3892/ijo.2016.3675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/22/2016] [Indexed: 11/05/2022] Open
|
11
|
Virus Multiplicity of Infection Affects Type I Interferon Subtype Induction Profiles and Interferon-Stimulated Genes. J Virol 2015; 89:11534-48. [PMID: 26355085 DOI: 10.1128/jvi.01727-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/31/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Type I interferons (IFNs) are induced upon viral infection and important mediators of innate immunity. While there is 1 beta interferon (IFN-β) protein, there are 12 different IFN-α subtypes. It has been reported extensively that different viruses induce distinct patterns of IFN subtypes, but it has not been previously shown how the viral multiplicity of infection (MOI) can affect IFN induction. In this study, we discovered the novel finding that human U937 cells infected with 2 different concentrations of Sendai virus (SeV) induce 2 distinct type I IFN subtype profiles. Cells infected at the lower MOI induced more subtypes than cells infected at the higher MOI. We found that this was due to the extent of signaling through the IFN receptor (IFNAR). The cells infected at the lower viral MOI induced the IFNAR2-dependent IFN-α subtypes 4, 6, 7, 10, and 17, which were not induced in cells infected at higher virus concentrations. IFN-β and IFN-α1, -2, and -8 were induced in an IFNAR-independent manner in cells infected at both virus concentrations. IFN-α5, -14, -16, and -21 were induced in an IFNAR-dependent manner in cells infected at lower virus concentrations and in an IFNAR-independent manner in cells infected at higher virus concentrations. These differences in IFN subtype profiles in the 2 virus concentrations also resulted in distinct interferon-stimulated gene induction. These results present the novel finding that different viral MOIs differentially activate JAK/STAT signaling through the IFNAR, which greatly affects the profile of IFN subtypes that are induced. IMPORTANCE Type I IFNs are pleiotropic cytokines that are instrumental in combating viral diseases. Understanding how the individual subtypes are induced is important in developing strategies to block viral replication. Many studies have reported that different viruses induce distinct type I IFN subtype profiles due to differences in the way viruses are sensed in different cell types. However, we report in our study the novel finding that the amount of virus used to infect a system can also affect which type I IFN subtypes are induced due to the extent of activation of certain signaling pathways. These distinct IFN subtype profiles in cells infected at different MOIs are correlated with differences in interferon-stimulated gene induction, indicating that the same virus can induce distinct antiviral responses depending on the MOI. Because type I IFNs are used as therapeutic agents to treat viral diseases, understanding their antiviral mechanisms can enhance clinical treatments.
Collapse
|
12
|
Nguyen A, Ho L, Wan Y. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer. Front Oncol 2014; 4:145. [PMID: 24967214 PMCID: PMC4052116 DOI: 10.3389/fonc.2014.00145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/28/2014] [Indexed: 01/10/2023] Open
Abstract
Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements, we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses (OVs) are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy) and elicit adaptive antitumor immune responses (oncolytic immunotherapy). However, administration of these modified OVs alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of OVs. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use.
Collapse
Affiliation(s)
- Andrew Nguyen
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| | - Louisa Ho
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
13
|
Yang H, Lee SM, Gao B, Zhang J, Fang D. Histone deacetylase sirtuin 1 deacetylates IRF1 protein and programs dendritic cells to control Th17 protein differentiation during autoimmune inflammation. J Biol Chem 2013; 288:37256-66. [PMID: 24214980 DOI: 10.1074/jbc.m113.527531] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The type III histone deacetylase Sirt1 has recently emerged as a critical immune regulator by suppressing T cell immunity and macrophage activation during inflammation, but its role in dendritic cells (DCs) remains unknown. Here, we show that mice with genetic Sirt1 deletion specifically in DCs are resistant to MOG-induced experimental autoimmune encephalomyelitis. Loss of Sirt1 functions in DCs enhances their ability to produce IL-27 and interferon β (IFN-β). Co-cultivation of Sirt1-null DCs with CD4(+) T cells inhibited Th17 differentiation, which is reversed by anti-IL27 and anti-IFN-β neutralization antibodies. Sirt1 antagonizes acetylation of IRF1, a transcription factor that drives IL-27 production. Genetic deletion of IRF1 in Sirt1-null DCs abolishes IL-27 production and suppresses Th17 differentiation. Our results show that the histone deacetylase Sirt1 programs DCs to regulate Th17 differentiation during inflammation.
Collapse
Affiliation(s)
- Heeyoung Yang
- From the Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | | | | | | | | |
Collapse
|
14
|
Akita H, Ishii S, Miura N, Shaheen SM, Hayashi Y, Nakamura T, Kaji N, Baba Y, Harashima H. A DNA microarray-based analysis of immune-stimulatory and transcriptional responses of dendritic cells to KALA-modified nanoparticles. Biomaterials 2013; 34:8979-90. [DOI: 10.1016/j.biomaterials.2013.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/01/2013] [Indexed: 01/05/2023]
|
15
|
Forbes NE, Abdelbary H, Lupien M, Bell JC, Diallo JS. Exploiting tumor epigenetics to improve oncolytic virotherapy. Front Genet 2013; 4:184. [PMID: 24062768 PMCID: PMC3778850 DOI: 10.3389/fgene.2013.00184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/29/2013] [Indexed: 12/20/2022] Open
Abstract
Oncolytic viruses (OVs) comprise a versatile and multi-mechanistic therapeutic platform in the growing arsenal of anticancer biologics. These replicating therapeutics find favorable conditions in the tumor niche, characterized among others by increased metabolism, reduced anti-tumor/antiviral immunity, and disorganized vasculature. Through a self-amplification that is dependent on multiple cancer-specific defects, these agents exhibit remarkable tumor selectivity. With several OVs completing or entering Phase III clinical evaluation, their therapeutic potential as well as the challenges ahead are increasingly clear. One key hurdle is tumor heterogeneity, which results in variations in the ability of tumors to support productive infection by OVs and to induce adaptive anti-tumor immunity. To this end, mounting evidence suggests tumor epigenetics may play a key role. This review will focus on the epigenetic landscape of tumors and how it relates to OV infection. Therapeutic strategies aiming to exploit the epigenetic identity of tumors in order to improve OV therapy are also discussed.
Collapse
Affiliation(s)
- Nicole E. Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| | - Hesham Abdelbary
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| | - Mathieu Lupien
- Ontario Cancer Institute, Princess Margaret Cancer Center/University Health NetworkToronto, ON, Canada
- Ontario Institute for Cancer ResearchToronto, ON, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| | - John C. Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research InstituteOttawa, ON, Canada
- Faculty of Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
16
|
Steen HC, Gamero AM. STAT2 phosphorylation and signaling. JAKSTAT 2013; 2:e25790. [PMID: 24416652 PMCID: PMC3876438 DOI: 10.4161/jkst.25790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
STAT2 is an essential transcription factor in type I IFN mediated anti-viral and anti-proliferative signaling. STAT2 function is regulated by tyrosine phosphorylation, which is the trigger for STAT-dimerization, subsequent nuclear translocation, and transcriptional activation of IFN stimulated genes. Evidence of additional STAT2 phosphorylation sites has emerged as well as novel roles for STAT2 separate from the classical ISGF3-signaling. This review aims to summarize knowledge of phosphorylation-mediated STAT2-regulation and future avenues of related STAT2 research.
Collapse
Affiliation(s)
- Håkan C Steen
- Department of Biochemistry; Temple University School of Medicine; Philadelphia, PA USA
| | - Ana M Gamero
- Department of Biochemistry; Temple University School of Medicine; Philadelphia, PA USA
| |
Collapse
|
17
|
Regulation of STAT signaling by acetylation. Cell Signal 2013; 25:1924-31. [PMID: 23707527 DOI: 10.1016/j.cellsig.2013.05.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/12/2023]
Abstract
Signal transducers and activators of transcription (STAT) belong to a family of latent cytoplasmic factors that can be activated by tyrosine phosphorylation by the members of the Jak tyrosine kinase family in response to a variety of cytokines and growth factors. Activated STATs form dimers and translocate into nucleus to induce expression of critical genes essential for normal cellular events. In the past several years, significant progress has been made in the characterization of STAT acetylation, which is dependent on the balance between histone deacetylases (HDACs) and histone acetyltransferases (HATs) such as CBP/p300. Acetylation of STAT1, STAT2, STAT3, STAT5b and STAT6 has been identified. This review will highlight acetylation on the modulation of STAT activation.
Collapse
|
18
|
Abstract
Acetylation of signal transducer and activator of transcription (STAT) proteins has been recognized as a significant mechanism for the regulation of their cellular functions. Site-specific antibodies are available only for a minority of STATs. The detection of acetylated STATs by immunoprecipitation (IP) followed by western blot (WB) will be described in the following chapter. Defined conditions for cell lysis and IP will be elucidated on the basis of STAT1 acetylation.
Collapse
|
19
|
Ezell SA, Tsichlis PN. Akt1, EMSY, BRCA2 and type I IFN signaling: a novel arm of the IFN response. Transcription 2012; 3:305-9. [PMID: 23117821 DOI: 10.4161/trns.21904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interferon-stimulated transcription is thought to occur mainly through the action of the JAK/STAT pathway. However, recent findings revealed an additional PI3K/Akt-dependent pathway, which contributes to the induction of a set of interferon-stimulated genes (ISGs) through the regulation of the transcriptional repressor EMSY.
Collapse
Affiliation(s)
- Scott A Ezell
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | | |
Collapse
|
20
|
Icardi L, De Bosscher K, Tavernier J. The HAT/HDAC interplay: multilevel control of STAT signaling. Cytokine Growth Factor Rev 2012; 23:283-91. [PMID: 22989617 DOI: 10.1016/j.cytogfr.2012.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
Besides the transcription-promoting role of histone acetyltransferases (HATs) and the transcription-delimiting function of histone deacetylases (HDACs) through histone acetylation and deacetylation respectively, HATs and HDACs also regulate the activity of several non-histone proteins. This includes signal transducers and activators of transcription (STATs), key proteins in cytokine signaling. Unlike Tyr phosphorylation/dephosphorylation, which mainly acts as an on/off switch of STAT activity, the control exerted by HATs and HDACs appears multifaceted and far more complex than initially imagined. Our review focuses on the latest trends and novel hypotheses to explain differential context-dependent STAT regulation by complex posttranslational modification patterns. We chart the knowledge on how STATs interact with HATs and HDACs, and additionally bring a transcriptional regulatory and gene-set specific role for HDACs in the picture. Indeed, a growing amount of evidence demonstrates, paradoxically, that not only HAT but also HDAC activity can be required for STAT-dependent transcription, in a STAT subtype- and cell type-dependent manner. Referring to recent reports, we review and discuss the various molecular mechanisms that have recently been proposed to account for this peculiar regulation, in an attempt to shed more light on the difficult yet important question on how STAT specificity is being generated.
Collapse
Affiliation(s)
- Laura Icardi
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|
21
|
Wieczorek M, Ginter T, Brand P, Heinzel T, Krämer OH. Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev 2012; 23:293-305. [PMID: 22795479 DOI: 10.1016/j.cytogfr.2012.06.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
A fascinating question of modern biology is how a limited number of signaling pathways generate biological diversity and crosstalk phenomena in vivo. Well-defined posttranslational modification patterns dictate the functions and interactions of proteins. The signal transducers and activators of transcription (STATs) are physiologically important cytokine-induced transcription factors. They are targeted by a multitude of posttranslational modifications that control and modulate signaling responses and gene expression. Beyond phosphorylation of serine and tyrosine residues, lysine acetylation has recently emerged as a critical modification regulating STAT functions. Interestingly, acetylation can determine STAT signaling codes by various molecular mechanisms, including the modulation of other posttranslational modifications. Here, we provide an overview on the acetylation of STATs and how this protein modification shapes cellular cytokine responses. We summarize recent advances in understanding the impact of STAT acetylation on cell growth, apoptosis, innate immunity, inflammation, and tumorigenesis. Furthermore, we discuss how STAT acetylation can be targeted by small molecules and we consider the possibility that additional molecules controlling STAT signaling are regulated by acetylation. Our review also summarizes evolutionary aspects and we show similarities between the acetylation-dependent control of STATs and other important molecules. We propose the concept that, similar to the 'histone code', distinct posttranslational modifications and their crosstalk orchestrate the functions and interactions of STAT proteins.
Collapse
Affiliation(s)
- Martin Wieczorek
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Jena, Germany
| | | | | | | | | |
Collapse
|
22
|
The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 2012; 86:4566-77. [PMID: 22318143 DOI: 10.1128/jvi.05545-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor virotherapy has been and continues to be used in clinical trials. One barrier to effective viral oncolysis, consisting of the interferon (IFN) response induced by viral infection, is inhibited by valproic acid (VPA) and other histone deacetylase inhibitors (HDACi). Innate immune cell recruitment and activation have been shown to be deleterious to the efficacy of oncolytic herpes simplex virus (oHSV) infection, and in this report we demonstrate that VPA limits this deleterious response. VPA, administered prior to oHSV inoculation in an orthotopic glioblastoma mouse model, resulted in a decline in NK and macrophage recruitment into tumor-bearing brains at 6 and 24 h post-oHSV infection. Interestingly, there was a robust rebound of recruitment of these cells at 72 h post-oHSV infection. The observed initial decline in immune cell recruitment was accompanied by a reduction in their activation status. VPA was also found to have a profound immunosuppressive effect on human NK cells in vitro. NK cytotoxicity was abrogated following exposure to VPA, consistent with downmodulation of cytotoxic gene expression of granzyme B and perforin at the mRNA and protein levels. In addition, suppression of gamma IFN (IFN-γ) production by VPA was associated with decreased STAT5 phosphorylation and dampened T-BET expression. Despite VPA-mediated immune suppression, mice were not at significantly increased risk for HSV encephalitis. These findings indicate that one of the avenues by which VPA enhances oHSV efficacy is through initial suppression of immune cell recruitment and inhibition of inflammatory cell pathways within NK cells.
Collapse
|
23
|
Komarova AV, Combredet C, Meyniel-Schicklin L, Chapelle M, Caignard G, Camadro JM, Lotteau V, Vidalain PO, Tangy F. Proteomic analysis of virus-host interactions in an infectious context using recombinant viruses. Mol Cell Proteomics 2011; 10:M110.007443. [PMID: 21911578 DOI: 10.1074/mcp.m110.007443] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RNA viruses exhibit small-sized genomes encoding few proteins, but still establish complex networks of interactions with host cell components to achieve replication and spreading. Ideally, these virus-host protein interactions should be mapped directly in infected cell culture, but such a high standard is often difficult to reach when using conventional approaches. We thus developed a new strategy based on recombinant viruses expressing tagged viral proteins to capture both direct and indirect physical binding partners during infection. As a proof of concept, we engineered a recombinant measles virus (MV) expressing one of its virulence factors, the MV-V protein, with a One-STrEP amino-terminal tag. This allowed virus-host protein complex analysis directly from infected cells by combining modified tandem affinity chromatography and mass spectrometry analysis. Using this approach, we established a prosperous list of 245 cellular proteins interacting either directly or indirectly with MV-V, and including four of the nine already known partners of this viral factor. These interactions were highly specific of MV-V because they were not recovered when the nucleoprotein MV-N, instead of MV-V, was tagged. Besides key components of the antiviral response, cellular proteins from mitochondria, ribosomes, endoplasmic reticulum, protein phosphatase 2A, and histone deacetylase complex were identified for the first time as prominent targets of MV-V and the critical role of the later protein family in MV replication was addressed. Most interestingly, MV-V showed some preferential attachment to essential proteins in the human interactome network, as assessed by centrality and interconnectivity measures. Furthermore, the list of MV-V interactors also showed a massive enrichment for well-known targets of other viruses. Altogether, this clearly supports our approach based on reverse genetics of viruses combined with high-throughput proteomics to probe the interaction network that viruses establish in infected cells.
Collapse
Affiliation(s)
- Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS URA 3015, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors. PLoS One 2010; 5:e14462. [PMID: 21283510 PMCID: PMC3012680 DOI: 10.1371/journal.pone.0014462] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.
Collapse
|
25
|
Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010; 5:521-32. [PMID: 20157787 PMCID: PMC3115474 DOI: 10.1007/s11481-010-9192-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/14/2010] [Indexed: 12/22/2022]
Abstract
Histone deacetylase inhibitors (HDACi) have been proposed as therapies for certain cancers and as an anti-reservoir therapy for HIV+ individuals with highly active anti-retroviral therapy, yet their roles in glial inflammatory and innate antiviral gene expression have not been defined. In this study, we examined the effects of two non-selective HDACi, trichostatin A and valproic acid, on antiviral and cytokine gene expression in primary human microglia and astrocytes stimulated with TLR3 or TLR4 ligand. HDACi potently suppressed the expression of innate antiviral molecules such as IFNβ, interferon-simulated genes, and proteins involved in TLR3/TLR4 signaling. HDACi also suppressed microglial and astrocytic cytokine and chemokine gene expression, but with different effects on different groups of cytokines. These results have important implications for the clinical use of HDACi.
Collapse
Affiliation(s)
- Hyeon-Sook Suh
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
26
|
Krämer OH, Heinzel T. Phosphorylation-acetylation switch in the regulation of STAT1 signaling. Mol Cell Endocrinol 2010; 315:40-8. [PMID: 19879327 DOI: 10.1016/j.mce.2009.10.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023]
Abstract
STAT1 signaling regulates the expression of important genes controlling cell growth, differentiation, apoptosis, and immune functions. Biochemical and genetic experiments have identified how this cascade is modulated. Phosphorylation of STAT1 tyrosine and serine moieties is induced rapidly by cytokines and growth factors. Upon nuclear translocation, phosphorylated STAT1 homo- and heterodimers activate gene expression. Inactivation of phosphorylated nuclear STAT1 has to be precisely regulated in order to allow signal transduction within limited time frames. Lysine acetylation has recently been appreciated as a novel mechanism regulating signal transduction events relying on STAT proteins. Here, we review these analyses and the finding that a switch from phosphorylated to acetylated STAT1 regulates acetylation-dependent dephosphorylation of STAT1 via the T cell tyrosine phosphatase. We discuss how these observations can be integrated into our current understanding of STAT-dependent cytokine signaling and its potential relevance for endocrine functions.
Collapse
Affiliation(s)
- Oliver H Krämer
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), University of Jena, Hans-Knöll-Str. 2, 07743 Jena, Germany.
| | | |
Collapse
|
27
|
Alvarez-Breckenridge C, Kaur B, Chiocca EA. Pharmacologic and chemical adjuvants in tumor virotherapy. Chem Rev 2009; 109:3125-40. [PMID: 19462957 DOI: 10.1021/cr900048k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher Alvarez-Breckenridge
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | |
Collapse
|
28
|
Types I and II interferons upregulate the costimulatory CD80 molecule in monocytes via interferon regulatory factor-1. Biochem Pharmacol 2009; 78:514-22. [PMID: 19433065 DOI: 10.1016/j.bcp.2009.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 11/20/2022]
Abstract
CD80/B7.1 expressed on monocytes plays a prominent role in the activation of T cell-mediated immunity and its level is reduced in monocytes from cancer patients. Type I (alpha/beta) and type II (gamma) IFNs are widely administered as adjuvant therapy. We show here that both classes of IFNs upregulate CD80 mRNA and protein in primary monocytes ex vivo. The stimulatory action of IFN-alpha/beta on CD80 is accompanied by the activation of both interferon regulatory factors IRF-1 and IRF-7, whereas IFN-gamma stimulating effect is associated only with IRF-1 induction. IFNs concomitantly upregulate the transcription of CD40 costimulatory molecule whose activation is known to require IRF-1. In monocytic U937 cells, IRF-1 is activated by IFN-gamma but not by IFN-alpha/beta, whereas it is the reverse for IRF-7; in the latter cells, only IFN-gamma is capable of stimulating CD80 transcription emphasizing the essential role of IRF-1. Moreover, siRNA against IRF-1 prevents IFN-gamma-mediated CD80 activation. In AML cells, IFNs upregulate CD40, CD80 and IRF-1 in the FAB-M4/M5 subtypes but not in the less differentiated M1/M2 subtypes. Monitoring the expression of CD80 on AML cells and its modulation by IFNs could help to predict the patients more susceptible to benefit from therapeutic strategies aimed at eliciting specific T cell responses to leukemia-associated antigens.
Collapse
|
29
|
Burns-Naas LA, Dearman RJ, Germolec DR, Kaminski NE, Kimber I, Ladics GS, Luebke RW, Pfau JC, Pruett SB. “Omics” Technologies and the Immune System. Toxicol Mech Methods 2008; 16:101-19. [DOI: 10.1080/15376520600558424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
30
|
Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A 2008; 105:14981-6. [PMID: 18815361 DOI: 10.1073/pnas.0803988105] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intratumoral innate immunity can play a significant role in blocking the effective therapeutic spread of a number of oncolytic viruses (OVs). Histone deacetylase inhibitors (HDIs) are known to influence epigenetic modifications of chromatin and can blunt the cellular antiviral response. We reasoned that pretreatment of tumors with HDIs could enhance the replication and spread of OVs within malignancies. Here, we show that HDIs markedly enhance the spread of vesicular stomatitis virus (VSV) in a variety of cancer cells in vitro, in primary tumor tissue explants and in multiple animal models. This increased oncolytic activity correlated with a dampening of cellular IFN responses and augmentation of virus-induced apoptosis. These results illustrate the general utility of HDIs as chemical switches to regulate cellular innate antiviral responses and to provide controlled growth of therapeutic viruses within malignancies. HDIs could have a profoundly positive impact on the clinical implementation of OV therapeutics.
Collapse
|
31
|
Antao-Menezes A, Turpin EA, Bost PC, Ryman-Rasmussen JP, Bonner JC. STAT-1 signaling in human lung fibroblasts is induced by vanadium pentoxide through an IFN-beta autocrine loop. THE JOURNAL OF IMMUNOLOGY 2008; 180:4200-7. [PMID: 18322232 DOI: 10.4049/jimmunol.180.6.4200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The inhalation of vanadium pentoxide (V(2)O(5)) results in bronchitis and airway fibrosis. The lung fibrotic response to V(2)O(5) partially resolves where fibroblasts first proliferate and deposit collagen, but then undergo growth arrest and apoptosis. STAT-1 mediates fibroblast growth arrest and apoptosis. We previously reported that STAT-1 is a protective factor and mice lacking STAT-1 are more susceptible to lung fibrosis. We also reported that V(2)O(5)-induced STAT-1 phosphorylation in lung fibroblasts requires H(2)O(2) and de novo protein synthesis. In this study, we identified IFN-beta as the protein that mediates STAT-1 activation by V(2)O(5) in normal human lung fibroblasts and identified NADPH and xanthine oxidase systems as sources of H(2)O(2) that drive IFN-beta gene expression. STAT-1 phosphorylation was decreased with neutralizing Abs to IFN-beta as well as an inhibitor of JAK. V(2)O(5) also increased transcription of an IFN-inducible and STAT-1-dependent chemokine, CXCL10. Inhibition of H(2)O(2)-generating enzyme systems NADPH oxidase by apocynin and xanthine oxidase by allopurinol individually reduced STAT-1 phosphorylation. Apocynin and allopurinol also decreased V(2)O(5)-induced IFN-beta mRNA levels and CXCL10 expression. IFN-alpha transcription was inhibited only by allopurinol. Taken together, these data indicate that fibroblasts play a role in the innate immune response to vanadium-induced oxidative stress by synthesizing IFN-beta and activating STAT-1 to cause growth arrest and increase levels of CXCL10, a potent antifibrotic factor. This mechanism is postulated to counterbalance profibrogenic mechanisms that follow V(2)O(5) injury.
Collapse
|
32
|
Bachmann A, Zawatzky R, Rösl F. Genetic redundancy in human cervical carcinoma cells: identification of cells with "normal" properties. Int J Cancer 2007; 120:2119-26. [PMID: 17266037 DOI: 10.1002/ijc.22524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although it is generally assumed that cancer arises from a singular cell, a tumor must be considered as a dynamic and emergent biological structure, whose organizing principle is determined by genetic and epigenetic modifications, occurring variably in response to microenvironmental selection conditions. As previously shown, HPV-positive cervical carcinoma cells have lost their ability to induce IFN-beta upon TNF-alpha treatment. However, regarding cancer as a non-linear system, which may, even in the absence of an apparent selection pressure, fluctuate between different "metastable" phenotypes, we demonstrate that TNF-alpha mediated IFN-beta induction is not irreversibly disturbed in all cells. Using the IFN-beta sensitive Encephalomyocarditis virus (EMCV) as a tool to monitor antiviral activity in long-term established malignant HeLa cells, rare IFN-beta expressing clones were rescued from a population of non-responsive and EMCV-sensitive cells. Antiviral activity was mediated by the re-expression of IRF-1 and p48 (IRF-9), both key regulatory molecules normally found to be suppressed in cervical carcinoma cells. Upon inoculating of selected clones into immunocompromised animals, a reduced or even an absence of tumorigenicity of initially highly malignant cells could be discerned. These data indicate that both the absence of interferon signaling and the ability to form tumors were reversed in a minority of cells. We provide a paradigm for the existence of innate genetic redundancy mechanisms, where a particular phenotype persists and can be isolated without application of drugs generally changing the epigenetic context.
Collapse
Affiliation(s)
- Anastasia Bachmann
- Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung Virale Transformationsmechanismen, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, 69120 Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
33
|
Long JE, Cai X. Igf-2r expression regulated by epigenetic modification and the locus of gene imprinting disrupted in cloned cattle. Gene 2006; 388:125-34. [PMID: 17150312 DOI: 10.1016/j.gene.2006.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 01/29/2023]
Abstract
Epigenetic reprogramming has a crucial role in establishing nuclear totipotency in normal development and in cloned animals. Insulin-like growth factor-2 receptor (Igf-2r) is a tissue-specifically and species-dependently imprinted gene, regulated by epigenetic modifications. The diversity of Igf-2r imprinting suggests that the success of animal cloning may be species-dependent. To determine the relation between epigenetic modifications and Igf-2r expression in cattle, and explore whether this gene was correctly imprinted and reprogrammed after nuclear transfer, we quantified Igf-2r mRNA in a cattle cell line after treated with an inhibitor of DNA methylation transferase or an inhibitor of histone deacetylase, and confirmed that DNA methylation and histone acetylation could regulate this gene expression. CpG island searching showed that there is a conservative imprinting control region (ICR) within the second intron of Igf-2r in cattle, analogous to mice and sheep, regulating this gene imprinting. DNA methylation analysis in sperm and blood cells showed that DNA methylation at Igf-2r ICR2 was reprogrammed in normal cattle. The methylation at Igf-2r ICR2 showed significant variation in tissues, such as blood, liver, brain, heart and heart. It suggested that Igf-2r imprinting was tissue-specifically regulated. In cloned cattle, DNA methylation at Igf-2r ICR2 was markedly altered in comparison with normal fetus, while patterns of DNA methylation at Igf-2r 3'-UTR (3-terminal untranslated region) were similar to normal fetus, it indicated that 3'-UTR was not significantly altered by cloning procedures, but DNA methylation at the locus of gene imprinting was disrupted and not completely reprogrammed after nuclear transfer.
Collapse
Affiliation(s)
- Jian-Er Long
- Shanghai Institute of Medical Genetics, Shanghai Jiaotong University, 24/1400 West Beijing R., Shanghai 200040, PR China.
| | | |
Collapse
|
34
|
Vlasáková J, Nováková Z, Rossmeislová L, Kahle M, Hozák P, Hodny Z. Histone deacetylase inhibitors suppress IFNalpha-induced up-regulation of promyelocytic leukemia protein. Blood 2006; 109:1373-80. [PMID: 17062732 DOI: 10.1182/blood-2006-02-003418] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs), the structural domains of the eukaryotic cell nucleus, play a role in cancer and apoptosis, and their involvement in antiviral mechanisms mediated by interferons (IFNs) is proposed. IFNs dramatically increase the transcription of the PML gene. In this study, we have shown that the response of 2 structural PML NB components, PML and Sp100, to interferon-alpha (IFNalpha) was suppressed in cells simultaneously treated with histone deacetylase (HDAC) inhibitors (trichostatin A, sodium butyrate, MS-275, SAHA, and valproic acid). Trichostatin A (TSA) blocked the increase of PML NB number and suppressed up-regulation of PML mRNA and protein levels in several human cell lines and in normal diploid skin fibroblasts. Moreover, IFNalpha induction of IRF-1 was also inhibited by TSA, although incompletely. Analysis of cellular fractions did not show any defects in cytoplasmic-nuclear transport of STAT2, a component of transcription factor ISGF3 responsible for IFNalpha/beta-dependent gene transcription. Moreover, chromatin immunoprecipitation showed that after IFNalpha stimulation STAT2 binds to ISRE element of PML promoter even in the presence of TSA and thus excluded STAT2-dependent mechanism of TSA effect. These results indicate that the action of histone deacetylases is necessary for the full transcriptional activation of IFNalpha-stimulated genes.
Collapse
Affiliation(s)
- Jana Vlasáková
- Department of Cell Ultrastructure and Molecular Biology, Institute of Experimental Medicine, Department of Biology of the Cell Nucleus, Institute of Molecular Genetics [corrected] Academy Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
Rönnblom L, Eloranta ML, Alm GV. The type I interferon system in systemic lupus erythematosus. ACTA ACUST UNITED AC 2006; 54:408-20. [PMID: 16447217 DOI: 10.1002/art.21571] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lars Rönnblom
- Department of Medical Sciences, Uppsala University Hospital, Uppsala, Sweden.
| | | | | |
Collapse
|
36
|
Nusinzon I, Horvath CM. Unexpected Roles for Deacetylation in Interferon- and Cytokine-Induced Transcription. J Interferon Cytokine Res 2005; 25:745-8. [PMID: 16375602 DOI: 10.1089/jir.2005.25.745] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein acetylation is a reversible modification that has been implicated in epigenetic regulation of gene expression. It is widely accepted that acetylation enzymes are present at transcriptionally active promoters and deacetylation enzymes associate with transcriptionally silent loci. These results notwithstanding, recent findings indicate that positive regulation of gene expression by interferons and other cytokines requires both acetylation and deacetylation.
Collapse
Affiliation(s)
- Inna Nusinzon
- Department of Medicine Northwestern University, 2200 Campus Drive, Evanston, IL 60208, USA.
| | | |
Collapse
|
37
|
Zhang J, Wang J, Wood C, Xu D, Zhang L. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 replication and transcription activator regulates viral and cellular genes via interferon-stimulated response elements. J Virol 2005; 79:5640-52. [PMID: 15827179 PMCID: PMC1082735 DOI: 10.1128/jvi.79.9.5640-5652.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (also called human herpesvirus 8 [HHV-8]) replication and transcription activator (RTA) is apparently necessary and sufficient for the switch from viral latency to lytic replication. RTA may regulate open reading frame (ORF) K14 (viral OX-2 homologue) and ORF74 (viral G-protein-coupled receptor homologue) genes through an interferon-stimulated response element (ISRE)-like sequence (K14 ISRE) in the promoter region. RTA strongly activated a K14 ISRE-containing K14-ORF74 promoter reporter construct and a heterologous promoter reporter construct containing K14 ISRE. RTA could bind to K14 ISRE and other ISREs, activate promoter reporter constructs from interferon-simulated genes (ISGs), and selectively induce three endogenous ISGs in primary endothelial cells: ISG-54, myxovirus resistance protein 1 (MxA), and stimulated trans-acting factor of 50 kDa. In addition, a region in the RTA DNA-binding domain has been identified with certain sequence similarity to the DNA-binding domains of the interferon regulatory factor (IRF) family. Mutation in one conserved amino acid within this region reduced the ability of RTA to bind to ISRE as well as other RTA response elements. Furthermore, the mutant failed to activate RTA-responsive promoters and to induce viral lytic gene expression. The mutation at the same conserved amino acid residue in IRF-7 drastically reduced its ability to bind to DNA and to activate the beta interferon promoter. The sequence and functional similarities between RTA and IRFs suggest that the HHV-8 RTA may usurp the cellular IRF pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Nebraska Center for Virology, University of Nebraska, 1901 Vine St., Lincoln, NE 68588, USA
| | | | | | | | | |
Collapse
|
38
|
O'Shea JJ, Kanno Y, Chen X, Levy DE. Cell signaling. Stat acetylation--a key facet of cytokine signaling? Science 2005; 307:217-8. [PMID: 15653493 DOI: 10.1126/science.1108164] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- John J O'Shea
- National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
39
|
Pruett SB, Schwab C, Zheng Q, Fan R. Suppression of innate immunity by acute ethanol administration: a global perspective and a new mechanism beginning with inhibition of signaling through TLR3. THE JOURNAL OF IMMUNOLOGY 2004; 173:2715-24. [PMID: 15294990 DOI: 10.4049/jimmunol.173.4.2715] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Excessive consumption of ethanol (EtOH) suppresses innate immunity, but the mechanisms have not been fully delineated. The present study was conducted to determine whether EtOH suppresses TLR signaling in vivo in mice and to characterize the downstream effects of such suppression. Degradation of IL-1R-associated kinase 1 induced by a TLR3 ligand in peritoneal cells ( approximately 90% macrophages) was suppressed by EtOH. Phosphorylation of p38 kinase in peritoneal macrophages (F4/80(+)) was suppressed, as was nuclear translocation of p-c-Jun and p65 in peritoneal cells. EtOH decreased IL-6 and IL-12 (p40), but did not significantly affect IL-10 in peritoneal lavage fluid or in lysates of peritoneal cells. Changes in cytokine mRNAs (by RNase protection assay) in macrophages isolated by cell sorting or using Ficoll were generally consistent with changes in protein levels in cell lysates and peritoneal lavage fluid. Thus, suppression of TLR signaling and cytokine mRNA occurred in the same cells, and this suppression generally corresponded to changes in i.p. and intracellular cytokine concentrations. DNA microarray analysis revealed the suppression of an IFN-related amplification loop in peritoneal macrophages, associated with decreased expression of numerous innate immune effector genes (including cytokines and a chemokine also suppressed at the protein level). These results indicate that EtOH suppresses innate immunity at least in part by suppressing TLR3 signaling, suppressing an IFN-related amplification loop, and suppressing the induction of a wide range of innate effector molecules in addition to proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Stephen B Pruett
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | | | |
Collapse
|
40
|
Pruett SB, Zheng Q, Fan R, Matthews K, Schwab C. Acute exposure to ethanol affects Toll-like receptor signaling and subsequent responses: an overview of recent studies. Alcohol 2004; 33:235-9. [PMID: 15596092 DOI: 10.1016/j.alcohol.2004.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 07/15/2004] [Accepted: 08/07/2004] [Indexed: 12/13/2022]
Abstract
Ethanol suppresses innate resistance to a variety of microbes, and findings of studies from both our laboratory and other laboratories indicate suppression of responses is mediated through two Toll-like receptors (TLRs): TLR3 and TLR4. In this article, we review recent findings from studies in our laboratory, indicating that ethanol also suppresses responses mediated through other TLRs. Considering the importance of TLR-mediated responses in innate immunity, this supports the possibility that suppression of these responses may constitute a major mechanism by which ethanol suppresses innate immunity. In addition, ethanol-induced changes in cellular signaling and in patterns of gene expression induced through TLR3 were examined in mouse peritoneal macrophages, and these results are reviewed in this article. Signaling through TLR3 was inhibited, and results of DNA microarray analysis supported the notion that inhibition of an interferon-related amplification loop might be responsible for suppression of gene expression for several effector molecules of innate immunity and inflammation not previously known to be altered by ethanol. Thus, ethanol alters responses through most or all mouse TLRs, and this suppresses expression of a wide range of innate immune mediators.
Collapse
Affiliation(s)
- Stephen B Pruett
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | | | | | |
Collapse
|
41
|
Chang HM, Paulson M, Holko M, Rice CM, Williams BRG, Marié I, Levy DE. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc Natl Acad Sci U S A 2004; 101:9578-83. [PMID: 15210966 PMCID: PMC470717 DOI: 10.1073/pnas.0400567101] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2004] [Accepted: 03/01/2004] [Indexed: 11/18/2022] Open
Abstract
Histone deacetylase (HDAC) activity, commonly correlated with transcriptional repression, was essential for transcriptional induction of IFN-stimulated genes (ISG). Inhibition of HDAC function led to global impairment of ISG expression, with little effect on basal expression. HDAC function was not required for signal transducer and activator of transcription tyrosine phosphorylation, nuclear translocation, or assembly on chromatin, but it was needed for full activity of the signal transducer and activator of transcription transactivation domain. HDAC function was also required for gene induction driven by the IFN regulatory factor 3 transcription factor activated by virus infection, and it was essential for establishment of an antiviral response against Flaviviridae, Rhabdoviridae, and Picornaviridae. Requirement for HDAC function in transcriptional activation may represent a general mechanism for rapid stimulation of ISG transcription.
Collapse
Affiliation(s)
- Hao-Ming Chang
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016,USA
| | | | | | | | | | | | | |
Collapse
|