1
|
Omasta B, Tomaskova J. Cellular Lipids-Hijacked Victims of Viruses. Viruses 2022; 14:1896. [PMID: 36146703 PMCID: PMC9501026 DOI: 10.3390/v14091896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Over the millions of years-long co-evolution with their hosts, viruses have evolved plenty of mechanisms through which they are able to escape cellular anti-viral defenses and utilize cellular pathways and organelles for replication and production of infectious virions. In recent years, it has become clear that lipids play an important role during viral replication. Viruses use cellular lipids in a variety of ways throughout their life cycle. They not only physically interact with cellular membranes but also alter cellular lipid metabolic pathways and lipid composition to create an optimal replication environment. This review focuses on examples of how different viruses exploit cellular lipids in different cellular compartments during their life cycles.
Collapse
Affiliation(s)
| | - Jana Tomaskova
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Nestić D, Božinović K, Pehar I, Wallace R, Parker AL, Majhen D. The Revolving Door of Adenovirus Cell Entry: Not All Pathways Are Equal. Pharmaceutics 2021; 13:1585. [PMID: 34683878 PMCID: PMC8540258 DOI: 10.3390/pharmaceutics13101585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Adenoviruses represent exceptional candidates for wide-ranging therapeutic applications, from vectors for gene therapy to oncolytics for cancer treatments. The first ever commercial gene therapy medicine was based on a recombinant adenovirus vector, while most recently, adenoviral vectors have proven critical as vaccine platforms in effectively controlling the global coronavirus pandemic. Here, we discuss factors involved in adenovirus cell binding, entry, and trafficking; how they influence efficiency of adenovirus-based vectors; and how they can be manipulated to enhance efficacy of genetically modified adenoviral variants. We focus particularly on endocytosis and how different adenovirus serotypes employ different endocytic pathways to gain cell entry, and thus, have different intracellular trafficking pathways that subsequently trigger different host antiviral responses. In the context of gene therapy, the final goal of the adenovirus vector is to efficiently deliver therapeutic transgenes into the target cell nucleus, thus allowing its functional expression. Aberrant or inefficient endocytosis can impede this goal, therefore, it should be considered when designing and constructing adenovirus-based vectors.
Collapse
Affiliation(s)
- Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| | - Isabela Pehar
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| | - Rebecca Wallace
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (R.W.); (A.L.P.)
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (R.W.); (A.L.P.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| |
Collapse
|
3
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Böhnke J, Pinkert S, Schmidt M, Binder H, Bilz NC, Jung M, Reibetanz U, Beling A, Rujescu D, Claus C. Coxsackievirus B3 Infection of Human iPSC Lines and Derived Primary Germ-Layer Cells Regarding Receptor Expression. Int J Mol Sci 2021; 22:1220. [PMID: 33513663 PMCID: PMC7865966 DOI: 10.3390/ijms22031220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
The association of members of the enterovirus family with pregnancy complications up to miscarriages is under discussion. Here, infection of two different human induced pluripotent stem cell (iPSC) lines and iPSC-derived primary germ-layer cells with coxsackievirus B3 (CVB3) was characterized as an in vitro cell culture model for very early human development. Transcriptomic analysis of iPSC lines infected with recombinant CVB3 expressing enhanced green fluorescent protein (EGFP) revealed a reduction in the expression of pluripotency genes besides an enhancement of genes involved in RNA metabolism. The initial distribution of CVB3-EGFP-positive cells within iPSC colonies correlated with the distribution of its receptor coxsackie- and adenovirus receptor (CAR). Application of anti-CAR blocking antibodies supported the requirement of CAR, but not of the co-receptor decay-accelerating factor (DAF) for infection of iPSC lines. Among iPSC-derived germ-layer cells, mesodermal cells were especially vulnerable to CVB3-EGFP infection. Our data implicate further consideration of members of the enterovirus family in the screening program of human pregnancies. Furthermore, iPSCs with their differentiation capacity into cell populations of relevant viral target organs could offer a reliable screening approach for therapeutic intervention and for assessment of organ-specific enterovirus virulence.
Collapse
Affiliation(s)
- Janik Böhnke
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (J.B.); (N.C.B.)
| | - Sandra Pinkert
- Institute of Biochemistry, Berlin Institute of Health (BIH) and Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.P.); (A.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Side, 10115 Berlin, Germany
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (M.S.); (H.B.)
| | - Nicole Christin Bilz
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (J.B.); (N.C.B.)
| | - Matthias Jung
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Martin Luther University Halle Wittenberg, Julius-Kuehn-Strasse 7, 06112 Halle (Saale), Germany; (M.J.); (D.R.)
| | - Uta Reibetanz
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany;
| | - Antje Beling
- Institute of Biochemistry, Berlin Institute of Health (BIH) and Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (S.P.); (A.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Side, 10115 Berlin, Germany
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Martin Luther University Halle Wittenberg, Julius-Kuehn-Strasse 7, 06112 Halle (Saale), Germany; (M.J.); (D.R.)
| | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany; (J.B.); (N.C.B.)
| |
Collapse
|
5
|
Naturally occurring variants in the transmembrane and cytoplasmic domains of the human Coxsackie- and adenovirus receptor have no impact on virus internalisation. Biochem Biophys Res Commun 2020; 527:401-405. [PMID: 32334832 DOI: 10.1016/j.bbrc.2020.03.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 11/21/2022]
Abstract
The Coxsackie- and adenovirus receptor (CAR) mediates homophilic cell-cell contacts and susceptibility to both human pathogenic viruses through its membrane-distal immunoglobulin domain. In the present study, we screened five missense variants of the human CAR gene for their influence on adenovector or Coxsackievirus entry into Chinese hamster ovary cells. The CAR variants facilitated virus internalisation to a similar extent as wild type CAR. This underlines CAR's presumed invariance and essential physiological role in embryogenesis.
Collapse
|
6
|
Carlin CR. New Insights to Adenovirus-Directed Innate Immunity in Respiratory Epithelial Cells. Microorganisms 2019; 7:microorganisms7080216. [PMID: 31349602 PMCID: PMC6723309 DOI: 10.3390/microorganisms7080216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) family of transcription factors is a key component of the host innate immune response to infectious adenoviruses and adenovirus vectors. In this review, we will discuss a regulatory adenoviral protein encoded by early region 3 (E3) called E3-RIDα, which targets NFκB through subversion of novel host cell pathways. E3-RIDα down-regulates an EGF receptor signaling pathway, which overrides NFκB negative feedback control in the nucleus, and is induced by cell stress associated with viral infection and exposure to the pro-inflammatory cytokine TNF-α. E3-RIDα also modulates NFκB signaling downstream of the lipopolysaccharide receptor, Toll-like receptor 4, through formation of membrane contact sites controlling cholesterol levels in endosomes. These innate immune evasion tactics have yielded unique perspectives regarding the potential physiological functions of host cell pathways with important roles in infectious disease.
Collapse
Affiliation(s)
- Cathleen R Carlin
- Department of Molecular Biology and Microbiology and the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Guzman E, Taylor G, Hope J, Herbert R, Cubillos-Zapata C, Charleston B. Transduction of skin-migrating dendritic cells by human adenovirus 5 occurs via an actin-dependent phagocytic pathway. J Gen Virol 2016; 97:2703-2718. [PMID: 27528389 PMCID: PMC5078831 DOI: 10.1099/jgv.0.000581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dendritic cells (DC) are central to the initiation of immune responses, and various approaches have been used to target vaccines to DC in order to improve immunogenicity. Cannulation of lymphatic vessels allows for the collection of DC that migrate from the skin. These migrating DC are involved in antigen uptake and presentation following vaccination. Human replication-deficient adenovirus (AdV) 5 is a promising vaccine vector for delivery of recombinant antigens. Although the mechanism of AdV attachment and penetration has been extensively studied in permissive cell lines, few studies have addressed the interaction of AdV with DC. In this study, we investigated the interaction of bovine skin-migrating DC and replication-deficient AdV-based vaccine vectors. We found that, despite lack of expression of Coxsackie B–Adenovirus Receptor and other known adenovirus receptors, AdV readily enters skin-draining DC via an actin-dependent endocytosis. Virus exit from endosomes was pH independent, and neutralizing antibodies did not prevent virus entry but did prevent virus translocation to the nucleus. We also show that combining adenovirus with adjuvant increases the absolute number of intracellular virus particles per DC but not the number of DC containing intracellular virus. This results in increased trans-gene expression and antigen presentation. We propose that, in the absence of Coxsackie B–Adenovirus Receptor and other known receptors, AdV5-based vectors enter skin-migrating DC using actin-dependent endocytosis which occurs in skin-migrating DC, and its relevance to vaccination strategies and vaccine vector targeting is discussed.
Collapse
Affiliation(s)
- Efrain Guzman
- The Pirbright Institute, Ash Road, Woking, Surrey GU240NF, UK
| | | | - Jayne Hope
- The Roslin Institute University of Edinburgh, Easter Bush, Midlothian EH259RG, UK
| | - Rebecca Herbert
- The Pirbright Institute, Ash Road, Woking, Surrey GU240NF, UK
| | | | | |
Collapse
|
8
|
Loustalot F, Kremer EJ, Salinas S. Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 322:331-62. [PMID: 26940522 DOI: 10.1016/bs.ircmb.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) belongs to the immunoglobulin superfamily and acts as a receptor for some adenovirus types and group B coxsackieviruses. Its role is best described in epithelia where CAR participates to tight junction integrity and maintenance. Recently, several studies aimed to characterize its potential interaction with intracellular signaling pathways and highlighted several features linking CAR to gene expression. In addition, the molecular mechanisms leading to CAR-specific membrane targeting via the secretory pathway in polarized cells and its internalization are starting to be unraveled. This chapter discusses the interaction between membrane dynamics, intracellular trafficking, and signaling of CAR.
Collapse
Affiliation(s)
- Fabien Loustalot
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Lovastatin enhances adenovirus-mediated TRAIL induced apoptosis by depleting cholesterol of lipid rafts and affecting CAR and death receptor expression of prostate cancer cells. Oncotarget 2015; 6:3055-70. [PMID: 25605010 PMCID: PMC4413637 DOI: 10.18632/oncotarget.3073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022] Open
Abstract
Oncolytic adenovirus and apoptosis inducer TRAIL are promising cancer therapies. Their antitumor efficacy, when used as single agents, is limited. Oncolytic adenoviruses have low infection activity, and cancer cells develop resistance to TRAIL-induced apoptosis. Here, we explored combining prostate-restricted replication competent adenovirus-mediated TRAIL (PRRA-TRAIL) with lovastatin, a commonly used cholesterol-lowering drug, as a potential therapy for advanced prostate cancer (PCa). Lovastatin significantly enhanced the efficacy of PRRA-TRAIL by promoting the in vivo tumor suppression, and the in vitro cell killing and apoptosis induction, via integration of multiple molecular mechanisms. Lovastatin enhanced PRRA replication and virus-delivered transgene expression by increasing the expression levels of CAR and integrins, which are critical for adenovirus 5 binding and internalization. Lovastatin enhanced TRAIL-induced apoptosis by increasing death receptor DR4 expression. These multiple effects of lovastatin on CAR, integrins and DR4 expression were closely associated with cholesterol-depletion in lipid rafts. These studies, for the first time, show correlations between cholesterol/lipid rafts, oncolytic adenovirus infection efficiency and the antitumor efficacy of TRAIL at the cellular level. This work enhances our understanding of the molecular mechanisms that support use of lovastatin, in combination with PRRA-TRAIL, as a candidate strategy to treat human refractory prostate cancer in the future.
Collapse
|
10
|
The Intracellular Domain of the Coxsackievirus and Adenovirus Receptor Differentially Influences Adenovirus Entry. J Virol 2015; 89:9417-26. [PMID: 26136571 DOI: 10.1128/jvi.01488-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a cell adhesion molecule used as a docking molecule by some adenoviruses (AdVs) and group B coxsackieviruses. We previously proposed that the preferential transduction of neurons by canine adenovirus type 2 (CAV-2) is due to CAR-mediated internalization. Our proposed pathway of CAV-2 entry is in contrast to that of human AdV type 5 (HAdV-C5) in nonneuronal cells, where internalization is mediated by auxiliary receptors such as integrins. We therefore asked if in fibroblast-like cells the intracellular domain (ICD) of CAR plays a role in the internalization of the CAV-2 fiber knob (FK(CAV)), CAV-2, or HAdV-C5 when the capsid cannot engage integrins. Here, we show that in fibroblast-like cells, the CAR ICD is needed for FK(CAV) entry and efficient CAV-2 transduction but dispensable for HAdV-C5 and an HAdV-C5 capsid lacking the RGD sequence (an integrin-interacting motif) in the penton. Moreover, the deletion of the CAR ICD further impacts CAV-2 intracellular trafficking, highlighting the crucial role of CAR in CAV-2 intracellular dynamics. These data demonstrate that the CAR ICD contains sequences important for the recruitment of the endocytic machinery that differentially influences AdV cell entry. IMPORTANCE Understanding how viruses interact with the host cell surface and reach the intracellular space is of crucial importance for applied and fundamental virology. Here, we compare the role of a cell adhesion molecule (CAR) in the internalization of adenoviruses that naturally infect humans and Canidae. We show that the intracellular domain of CAR differentially regulates AdV entry and trafficking. Our study highlights the mechanistic differences that a receptor can have for two viruses from the same family.
Collapse
|
11
|
Excoffon KJDA, Bowers JR, Sharma P. 1. Alternative splicing of viral receptors: A review of the diverse morphologies and physiologies of adenoviral receptors. RECENT RESEARCH DEVELOPMENTS IN VIROLOGY 2015; 9:1-24. [PMID: 25621323 PMCID: PMC4302334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the biology of cell surface proteins is important particularly when they are utilized as viral receptors for viral entry. By manipulating the expression of cell surface receptors that have been coopted by viruses, the susceptibility of an individual to virus-induced disease or, alternatively, the effectiveness of viral-based gene therapy can be modified. The most commonly studied vector for gene therapy is adenovirus. The majority of adenovirus types utilize the coxsackievirus and adenovirus receptor (CAR) as a primary receptor to enter cells. Species B adenovirus do not interact with CAR, but instead interact with the cell surface proteins desmoglein-2 (DSG-2) and cluster of differentiation 46 (CD46). These cell surface proteins exhibit varying degrees of alternative mRNA splicing, creating an estimated 20 distinct protein isoforms. It is likely that alternative splice forms have allowed these proteins to optimize their effectiveness in a plethora of niches, including roles as cell adhesion proteins and regulators of the innate immune system. Interestingly, there are soluble isoforms of these viral receptors, which lack the transmembrane domain. These soluble isoforms can potentially bind to the surface of a virus in the extracellular compartment, blocking the ability of the virus to bind to the host cell, reducing viral infectivity. Finally, the diversity of viral receptor isoforms appears to facilitate an assortment of interactions between viral receptor proteins and cytosolic proteins, leading to differential sorting in polarized cells. Using adenoviral receptors as a model system, the purpose of this review is to highlight the role that isoform-specific protein localization plays in the entry of pathogenic viruses from the apical surface of polarized epithelial cells.
Collapse
|
12
|
Paemka L, Mahajan VB, Skeie JM, Sowers LP, Ehaideb SN, Gonzalez-Alegre P, Sasaoka T, Tao H, Miyagi A, Ueno N, Takao K, Miyakawa T, Wu S, Darbro BW, Ferguson PJ, Pieper AA, Britt JK, Wemmie JA, Rudd DS, Wassink T, El-Shanti H, Mefford HC, Carvill GL, Manak JR, Bassuk AG. PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One 2013; 8:e80737. [PMID: 24312498 PMCID: PMC3849077 DOI: 10.1371/journal.pone.0080737] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.
Collapse
Affiliation(s)
- Lily Paemka
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Vinit B. Mahajan
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jessica M. Skeie
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
| | - Levi P. Sowers
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Salleh N. Ehaideb
- The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Pedro Gonzalez-Alegre
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program of Neuroscience, The University of Iowa, Iowa City, Iowa, United States of America
| | - Toshikuni Sasaoka
- Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirotaka Tao
- Hospital for Sick Kids, University of Toronto, Toronto, Canada
| | - Asuka Miyagi
- Developmental Biology Department, National Institute for Basic Biology, Okazaki City, Japan
| | - Naoto Ueno
- Developmental Biology Department, National Institute for Basic Biology, Okazaki City, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior National Institute for Physiological Sciences, Okazaki, Japan
- Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior National Institute for Physiological Sciences, Okazaki, Japan
- Japan Science and Technology Agency, Kawaguchi-shi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Shu Wu
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin W. Darbro
- The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Polly J. Ferguson
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew A. Pieper
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jeremiah K. Britt
- The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - John A. Wemmie
- The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program of Neuroscience, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Danielle S. Rudd
- The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas Wassink
- The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hatem El-Shanti
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Shafallah Medical Genetics Center, Doha, Qatar
| | - Heather C. Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Gemma L. Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - J. Robert Manak
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander G. Bassuk
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
13
|
Salinas S, Zussy C, Loustalot F, Henaff D, Menendez G, Morton PE, Parsons M, Schiavo G, Kremer EJ. Disruption of the coxsackievirus and adenovirus receptor-homodimeric interaction triggers lipid microdomain- and dynamin-dependent endocytosis and lysosomal targeting. J Biol Chem 2013; 289:680-95. [PMID: 24273169 DOI: 10.1074/jbc.m113.518365] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The coxsackievirus and adenovirus receptor (CAR) serves as a docking factor for some adenovirus (AdV) types and group B coxsackieviruses. Its role in AdV internalization is unclear as studies suggest that its intracellular domain is dispensable for some AdV infection. We previously showed that in motor neurons, AdV induced CAR internalization and co-transport in axons, suggesting that CAR was linked to endocytic and long-range transport machineries. Here, we characterized the mechanisms of CAR endocytosis in neurons and neuronal cells. We found that CAR internalization was lipid microdomain-, actin-, and dynamin-dependent, and subsequently followed by CAR degradation in lysosomes. Moreover, ligands that disrupted the homodimeric CAR interactions in its D1 domains triggered an internalization cascade involving sequences in its intracellular tail.
Collapse
Affiliation(s)
- Sara Salinas
- From the Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Montpellier, Universités de Montpellier I & II, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dickey DD, Excoffon KJDA, Young KR, Parekh KR, Zabner J. Hoechst increases adeno-associated virus-mediated transgene expression in airway epithelia by inducing the cytomegalovirus promoter. J Gene Med 2012; 14:366-73. [PMID: 22610695 DOI: 10.1002/jgm.2632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND In airway epithelia, the kinetics of recombinant adeno-associated virus (AAV) transgene expression is slow. This has negative practical implications for research, as well as for translation into therapy. The DNA minor groove-binding agent Hoechst-33342 has been shown to enhance AAV transgene expression. In the present study, we investigated the mechanism of Hoechst-related augmentation of AAV-mediated transgene expression. METHODS We investigated the effect of Hoechst-33342 on HT1080, COS-7, mouse and human airway epithelia transduced with different AAV serotypes encoding enhanced green fluorescent protein (eGFP). We exposed cells to increasing concentrations of Hoechst-33342 at different time points. We evaluated the effect on second-strand DNA synthesis using AAV with a self-complementary genome. We also investigated the effect on expression from transfected plasmids with and without AAV2 inverted terminal repeats (ITRs). RESULTS We found that Hoechst-33342 significantly accelerated AAV transgene expression for all serotypes tested. Hoechst-33342 only had an effect when the treatment was given during or after transduction, even 120 days post-transduction, suggesting an effect on transgene expression regulation. Hoechst-33342 increased transgene expression when cells were transduced with a self-complementary AAV with the cytomegalovirus promoter, although there was no effect on cells transduced with conventional single-stranded AAV encoding the Rous sarcoma virus promoter. Finally, Hoechst-33342 increases gene expression from transfected plasmids regardless of the presence of AAV2 ITRs. CONCLUSIONS Hoechst dramatically augments and accelerates AAV-mediated transgene expression in airway epithelia without altering AAV-mediated gene transfer. Hoechst activation of the cytomegalovirus promoter is seen in plasmids, although it is drastically enhanced in the context of AAV.
Collapse
Affiliation(s)
- David D Dickey
- Department of Internal Medicine and Molecular and Cellular Biology Program, Roy J, Lucille A. Carver College of Medicine, University of Iowa, IA, USA
| | | | | | | | | |
Collapse
|
15
|
Coxsackievirus and adenovirus receptor (CAR) mediates trafficking of acid sensing ion channel 3 (ASIC3) via PSD-95. Biochem Biophys Res Commun 2012; 425:13-8. [PMID: 22809504 DOI: 10.1016/j.bbrc.2012.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 01/14/2023]
Abstract
We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid sensing ion channel (ASIC3), a H(+)-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex.
Collapse
|
16
|
Lütschg V, Boucke K, Hemmi S, Greber UF. Chemotactic antiviral cytokines promote infectious apical entry of human adenovirus into polarized epithelial cells. Nat Commun 2011; 2:391. [PMID: 21750545 PMCID: PMC7091692 DOI: 10.1038/ncomms1391] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/15/2011] [Indexed: 01/21/2023] Open
Abstract
Mucosal epithelia provide strong barriers against pathogens. For instance, the outward facing apical membrane of polarized epithelial cells lacks receptors for agents, such as hepatitis C virus, herpesvirus, reovirus, poliovirus or adenovirus. In addition, macrophages eliminate pathogens from the luminal space. Here we show that human adenovirus type 5 engages an antiviral immune response to enter polarized epithelial cells. Blood-derived macrophages co-cultured apically on polarized epithelial cells facilitate epithelial infection. Infection also occurs in the absence of macrophages, if virus-conditioned macrophage-medium containing the chemotactic cytokine CXCL8 (interleukin-8), or recombinant CXCL8 are present. In polarized cells, CXCL8 activates a Src-family tyrosine kinase via the apical CXCR1 and CXCR2 receptors. This activation process relocates the viral co-receptor ανβ3 integrin to the apical surface, and enables apical binding and infection with adenovirus depending on the primary adenovirus receptor CAR. This paradigm may explain how other mucosal pathogens enter epithelial cells. Studying how pathogens enter polarized epithelial cells is important for understanding infection. Here, activation of chemokine receptors on the apical membrane of epithelial cells, is shown to engage Src family tyrosine signalling, resulting in relocation of the viral co-receptor αvβ3 to the apical membrane and adenovirus entry.![]()
Collapse
Affiliation(s)
- Verena Lütschg
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
17
|
Henaff D, Salinas S, Kremer EJ. An adenovirus traffic update: from receptor engagement to the nuclear pore. Future Microbiol 2011; 6:179-92. [PMID: 21366418 DOI: 10.2217/fmb.10.162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adenoviruses have a bipolar nature: they are ubiquitous pathogens that occasionally cause life-threatening diseases or they can be engineered into powerful gene transfer vectors. The goal of this article is to summarize the most recent advances in adenovirus receptor engagement, internalization, endosomal maturation, endosomal escape and trafficking to the nuclear pore. A better understanding of this initial part of the adenovirus lifecycle may identify new mechanistic-based treatments for adenovirus-induced diseases and help in the engineering of more efficient vectors.
Collapse
Affiliation(s)
- Daniel Henaff
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier, France
| | | | | |
Collapse
|
18
|
Maitland N, Chambers K, Georgopoulos L, Simpson-Holley M, Leadley R, Evans H, Essand M, Danielsson A, van Weerden W, de Ridder C, Kraaij R, Bangma CH. Gene Transfer Vectors Targeted to Human Prostate Cancer: Do We Need Better Preclinical Testing Systems? Hum Gene Ther 2010; 21:815-27. [DOI: 10.1089/hum.2009.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Norman Maitland
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Karen Chambers
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Lindsay Georgopoulos
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Martha Simpson-Holley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Regina Leadley
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Helen Evans
- Yorkshire Cancer Research Unit, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | - Magnus Essand
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Angelika Danielsson
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | - Wytske van Weerden
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Corrina de Ridder
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Robert Kraaij
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| | - Chris H. Bangma
- Department of Urology, Josephine Nefkens Institute, Erasmus MC, 3000CA Rotterdam, The Netherlands
| |
Collapse
|
19
|
Granio O, Ashbourne Excoffon KJD, Henning P, Melin P, Norez C, Gonzalez G, Karp PH, Magnusson MK, Habib N, Lindholm L, Becq F, Boulanger P, Zabner J, Hong SS. Adenovirus 5-fiber 35 chimeric vector mediates efficient apical correction of the cystic fibrosis transmembrane conductance regulator defect in cystic fibrosis primary airway epithelia. Hum Gene Ther 2010; 21:251-69. [PMID: 19788389 DOI: 10.1089/hum.2009.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In vivo gene transfer to the human respiratory tract by adenovirus serotype 5 (Ad5) vectors has revealed their limitations related to inefficient gene transfer, host antiviral response, and innate adenoviral toxicity. In the present work, we compared the cytotoxicity and efficiency of Ad5 and a chimeric Ad5F35 vector with respect to CFTR gene transfer to cystic fibrosis (CF) and non-CF human airway epithelial cells. We found that high doses of Ad5 vector had an adverse effect on the function of exogenous and endogenous CFTR. Results obtained with Ad5 capsid mutants suggested that the RGD motifs on the penton base capsomers were responsible for the negative effect on CFTR function. This negative interference did not result from a lower level of biosynthesis and/or altered cellular trafficking of the CFTR protein, but rather from an indirect mechanism of functional blockage of CFTR, related to the RGD integrin-mediated endocytic pathway of Ad5. No negative interference with CFTR was observed for Ad5F35, an Ad5-based vector pseudotyped with fibers from Ad35, a serotype that uses another cell entry pathway. In vitro, Ad5F35 vector expressing the GFP-tagged CFTR (Ad5F35-GFP-CFTR) showed a 30-fold higher efficiency of transduction and chloride channel correction in CFTR-deficient cells, compared with Ad5GFP-CFTR. Ex vivo, Ad5F35-GFP-CFTR had the capacity to transduce efficiently reconstituted airway epithelia from patients with CF (CF-HAE) via the apical surface, restored chloride channel function at relatively low vector doses, and showed relatively stable expression of GFP-CFTR for several weeks.
Collapse
Affiliation(s)
- Ophélia Granio
- Université Lyon I, Faculté de Médecine Claude Bernard and IFR Laennec, Laboratoire de Virologie et Pathologie Humaine, CNRS FRE 3011, 69372 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kayali G, Ortiz EJ, Chorazy ML, Gray GC. Lack of evidence of avian adenovirus infection among turkey workers. J Agromedicine 2010; 14:299-305. [PMID: 19657879 DOI: 10.1080/10599240903041737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zoonotic infections constitute a major public health concern. Outbreaks of the SARS (severe acute respiratory syndrome) and avian influenza viruses are but recent examples. Although there are many animal-specific adenoviruses and occasionally they have been noted to infect man, rarely have they been studied as potential zoonotic pathogens. In this study, the authors hypothesized that the hemorrhagic enteritis virus (HEV), an avian adenovirus that causes illness among turkeys, might infect humans. Using an enzyme immunosorbent assay, the authors compared sera from 95 turkey-exposed individuals with sera from 82 nonexposed controls for serologic evidence of infection with HEV. Multivariate modeling revealed no statistical difference in elevated antibody titers against HEV between the two groups. These data do not support the hypothesis that avian adenoviruses cross the species barrier to infect humans.
Collapse
Affiliation(s)
- Ghazi Kayali
- Center for Emerging Infectious Diseases, Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|
21
|
Excoffon KJDA, Gansemer ND, Mobily ME, Karp PH, Parekh KR, Zabner J. Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia. PLoS One 2010; 5:e9909. [PMID: 20361046 PMCID: PMC2845650 DOI: 10.1371/journal.pone.0009909] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 03/05/2010] [Indexed: 12/25/2022] Open
Abstract
Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR) to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7) and CAR(Ex8)). We found low-level expression of the CAR(Ex8) isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7), CAR(Ex8) localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7), CAR(Ex8) differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8) providing a potential mechanism for the apical localization of CAR(Ex8) in airway epithelial. In summary, apical localization of CAR(Ex8) may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.
Collapse
Affiliation(s)
| | - Nicholas D. Gansemer
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Matthew E. Mobily
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Philip H. Karp
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa, Iowa City, Iowa, United States of America
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Farmer C, Morton PE, Snippe M, Santis G, Parsons M. Coxsackie adenovirus receptor (CAR) regulates integrin function through activation of p44/42 MAPK. Exp Cell Res 2009; 315:2637-47. [PMID: 19527712 DOI: 10.1016/j.yexcr.2009.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 01/19/2023]
Abstract
The coxsackie B virus and adenovirus receptor (CAR) is an attachment receptor for Adenovirus serotype 5 (Ad5) and in many cell types forms homodimers with neighbouring cells as part of a cell adhesion complex. CAR co-operates with cell surface integrin receptors to enable efficient viral entry, but little is known about the mechanism of crosstalk between these two receptor types. Here we show that overexpression of CAR in human epithelial cells leads to increased basal activation of p44/42 MAPK and this is required for efficient Ad5 infection. We demonstrate that CAR forms homodimers in cis and that this dimerisation is enhanced in the presence of Ad5 in a phospho-p44/42-dependent manner. CAR-induced p44/42 activation also leads to increased activation of beta1 and beta3 integrins. Analysis of CAR mutants demonstrates that the cyto domain of CAR is required for CAR-induced p44/42 activation, integrin activation and localisation to cell junctions. This data for the first time demonstrates that signalling downstream of CAR can have a dual effect on integrins and CAR itself in order to promote efficient viral binding to cell membranes.
Collapse
Affiliation(s)
- Charlotte Farmer
- Division of Asthma, Allergy and Lung Biology, King's College London School of Medicine, 5th Floor Tower Wing, Guy's Hospital Campus, London, UK
| | | | | | | | | |
Collapse
|
23
|
Marchant D, Sall A, Si X, Abraham T, Wu W, Luo Z, Petersen T, Hegele RG, McManus BM. ERK MAP kinase-activated Arf6 trafficking directs coxsackievirus type B3 into an unproductive compartment during virus host-cell entry. J Gen Virol 2009; 90:854-862. [PMID: 19264606 DOI: 10.1099/vir.0.005868-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clathrin- and caveolae-mediated endocytosis have been implicated in the productive entry of many viruses into host cells. ADP-ribosylation factor 6 (Arf6)-dependent endocytosis is another endocytosis pathway that traffics from the cell surface and it is the only Arf that traffics at the plasma membrane. However, little is known about Arf6-dependent trafficking during virus entry. This study showed that coxsackievirus type B3 (CVB3) associated with decay-accelerating factor in non-polarized HeLa cells can be redirected into non-productive compartments by Arf6-dependent internalization, thus restricting infection. Overexpression of wild-type (WT) and constitutively active (CA) Arf6 in HeLa cells resulted in a 2.3- and 3.6-fold decrease in infection, respectively. A dominant-negative inhibitor of Arf6 recovered restriction of infection by WT-Arf6 and CA-Arf6. RNA interference of endogenous Arf6 resulted in a 3.3-fold increase in CVB3 titre in HeLa cells. It was shown that coxsackie-adenovirus receptor (CAR) ligation by virus or CAR-specific antibody could activate extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase family and lead to Arf6-mediated viral restriction. In the absence of ERK activation, CVB3 internalization into early endosomes was inhibited and subsequent infection was reduced, but Arf6-mediated restriction was also abolished. In conclusion, receptor-mediated signalling enhances CVB3 entry whilst also activating non-productive pathways of virus entry; thus, virus infection is an equilibrium of productive and non-productive pathways of entry.
Collapse
Affiliation(s)
- David Marchant
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Alhousseynou Sall
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Xiaoning Si
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Thomas Abraham
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Winnie Wu
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Zongshu Luo
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Tamar Petersen
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Richard G Hegele
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bruce M McManus
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Departments of Pathology and Laboratory Medicine, The University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
24
|
Internalization of swine vesicular disease virus into cultured cells: a comparative study with foot-and-mouth disease virus. J Virol 2009; 83:4216-26. [PMID: 19225001 DOI: 10.1128/jvi.02436-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We performed a comparative analysis of the internalization mechanisms used by three viruses causing important vesicular diseases in animals. Swine vesicular disease virus (SVDV) internalization was inhibited by treatments that affected clathrin-mediated endocytosis and required traffic through an endosomal compartment. SVDV particles were found in clathrin-coated pits by electron microscopy and colocalized with markers of early endosomes by confocal microscopy. SVDV infectivity was significantly inhibited by drugs that raised endosomal pH. When compared to foot-and-mouth disease virus (FMDV), which uses clathrin-mediated endocytosis, the early step of SVDV was dependent on the integrity of microtubules. SVDV-productive endocytosis was more sensitive to plasma membrane cholesterol extraction than that of FMDV, and differential cell signaling requirements for virus infection were also found. Vesicular stomatitis virus, a model virus internalized by clathrin-mediated endocytosis, was included as a control of drug treatments. These results suggest that different clathrin-mediated routes are responsible for the internalization of these viruses.
Collapse
|
25
|
Biswas S, Yin SR, Blank PS, Zimmerberg J. Cholesterol promotes hemifusion and pore widening in membrane fusion induced by influenza hemagglutinin. J Gen Physiol 2008; 131:503-13. [PMID: 18443361 PMCID: PMC2346574 DOI: 10.1085/jgp.200709932] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 04/02/2008] [Indexed: 01/01/2023] Open
Abstract
Cholesterol-specific interactions that affect membrane fusion were tested for using insect cells; cells that have naturally low cholesterol levels (< 4 mol %). Sf9 cells were engineered (HAS cells) to express the hemagglutinin (HA) of the influenza virus X-31 strain. Enrichment of HAS cells with cholesterol reduced the delay between triggering and lipid dye transfer between HAS cells and human red blood cells (RBC), indicating that cholesterol facilitates membrane lipid mixing prior to fusion pore opening. Increased cholesterol also increased aqueous content transfer between HAS cells and RBC over a broad range of HA expression levels, suggesting that cholesterol also favors fusion pore expansion. This interpretation was tested using both trans-cell dye diffusion and fusion pore conductivity measurements in cholesterol-enriched cells. The results of this study support the hypothesis that host cell cholesterol acts at two stages in membrane fusion: (1) early, prior to fusion pore opening, and (2) late, during fusion pore expansion.
Collapse
Affiliation(s)
- Subrata Biswas
- Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
26
|
Campos SK, Barry MA. Current advances and future challenges in Adenoviral vector biology and targeting. Curr Gene Ther 2007; 7:189-204. [PMID: 17584037 PMCID: PMC2244792 DOI: 10.2174/156652307780859062] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting.
Collapse
Affiliation(s)
- Samuel K. Campos
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michael A. Barry
- Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA
- *Address correspondence to this author at the Department of Internal Medicine, Department of Immunology, Division of Infectious Diseases, Translational Immunovirology Program, Molecular Medicine Program, Mayo Clinic, Rochester, MN 55902, USA; E-mail:
| |
Collapse
|
27
|
Suzuki T, Aizaki H, Murakami K, Shoji I, Wakita T. Molecular biology of hepatitis C virus. J Gastroenterol 2007; 42:411-23. [PMID: 17671755 DOI: 10.1007/s00535-007-2030-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 02/10/2007] [Indexed: 02/04/2023]
Abstract
Infection with hepatitis C virus (HCV), which is distributed worldwide, often becomes persistent, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. For many years, the characterization of the HCV genome and its products has been done by heterologous expression systems because of the lack of a productive cell culture system. The development of the HCV replicon system is a highlight of HCV research and has allowed examination of the viral RNA replication in cell culture. Recently, a robust system for production of recombinant infectious HCV has been established, and classical virological techniques are now able to be applied to HCV. This development of reverse genetics-based experimental tools in HCV research can bring a greater understanding of the viral life cycle and pathogenesis of HCV-induced diseases. This review summarizes the current knowledge of cell culture systems for HCV research and recent advances in the investigation of the molecular virology of HCV.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Tokyo, Japan
| | | | | | | | | |
Collapse
|
28
|
Xie J, Chiang L, Contreras J, Wu K, Garner JA, Medina-Kauwe L, Hamm-Alvarez SF. Novel fiber-dependent entry mechanism for adenovirus serotype 5 in lacrimal acini. J Virol 2006; 80:11833-51. [PMID: 16987972 PMCID: PMC1642591 DOI: 10.1128/jvi.00857-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to alpha(v) integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.
Collapse
Affiliation(s)
- Jiansong Xie
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Excoffon KJDA, Avenarius MR, Hansen MR, Kimberling WJ, Najmabadi H, Smith RJH, Zabner J. The Coxsackievirus and Adenovirus Receptor: a new adhesion protein in cochlear development. Hear Res 2006; 215:1-9. [PMID: 16678988 DOI: 10.1016/j.heares.2006.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 02/10/2006] [Accepted: 02/16/2006] [Indexed: 11/23/2022]
Abstract
The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Department of Internal Medicine, Division of Pulmonary Medicine, University of Iowa, 440 EMRB, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Majhen D, Ambriović-Ristov A. Adenoviral vectors--how to use them in cancer gene therapy? Virus Res 2006; 119:121-33. [PMID: 16533542 DOI: 10.1016/j.virusres.2006.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 02/01/2006] [Accepted: 02/01/2006] [Indexed: 01/02/2023]
Abstract
Gene therapy is most often described as a technique for introducing the foreign genetic material into cells with a correction of a dysfunctional gene as its final goal. Today, it is well known that cancer is one of the leading causes of mortality in the world. Besides classical methods for cancer treatment new strategies against cancer are needed. Although originally being designed as a treatment for monogenetic illness, soon after, gene therapy appeared as a potential new strategy in cancer therapy. One of the widely used vectors for cancer gene therapy is adenovirus. In this review we have described molecular biology of adenoviruses and basis for construction of adenoviral vectors. We have also described concepts for cancer gene therapy including their in vitro and in vivo application. Special attention is drawn toward retargeting of adenovirus as a new approach in vector design for cancer gene therapy, in order to restrict transgene expression in tumor tissue. This approach uses biophysical as well as genetic characteristics of tumor itself and its supporting tissue, allowing new "bypass" in cancer gene therapy.
Collapse
Affiliation(s)
- Dragomira Majhen
- Laboratory for Genotoxic Agents, Division of Molecular Biology, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | |
Collapse
|
31
|
Wong J, Zhang J, Gao G, Esfandiarei M, Si X, Wang Y, Yanagawa B, Suarez A, McManus B, Luo H. Liposome-mediated transient transfection reduces cholesterol-dependent coxsackievirus infectivity. J Virol Methods 2005; 133:211-8. [PMID: 16375979 DOI: 10.1016/j.jviromet.2005.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 11/24/2022]
Abstract
Liposome-mediated gene delivery provides a powerful strategy for the study of gene function and for gene therapy. Coxsackievirus B3 is an important human pathogen associated with various diseases. Here we reported that liposome-mediated transient transfection of plasmid cDNA inhibited coxsackieviral replication at the levels of RNA, protein and viral progeny release. These inhibitory effects were observed in various cell types and by using different liposome reagents. We further showed that the inhibition was likely due to the lack of virus attachment. Moreover, we showed that addition of cholesterol restored, at least in part, the viral infectivity. Interestingly, we found that membrane cholesterol levels were unchanged during transfection, indicating that disruption rather than depletion of membrane cholesterol contributes to the inhibitory effects of transfection. Our data suggest that liposome-mediated cDNA transient transfection inhibits coxsackievirus infectivity via inhibition of viral attachment, which is likely occurring through the changes of membrane cholesterol integrity.
Collapse
Affiliation(s)
- Jerry Wong
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, University of British Columbia-St. Paul's Hospital, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hauwel M, Furon E, Gasque P. Molecular and cellular insights into the coxsackie-adenovirus receptor: role in cellular interactions in the stem cell niche. ACTA ACUST UNITED AC 2005; 48:265-72. [PMID: 15850666 DOI: 10.1016/j.brainresrev.2004.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 11/21/2022]
Abstract
In recent years, progress has been made in characterizing the molecular and cellular elements that are responsible for the regeneration in the damaged brain and highlighting the key role of the stromal-vascular 'environment' to orchestrate secondary neurogenesis and repair. Indeed, the ability of the stem cells to self-renew and differentiate is tightly regulated by stromal ependymal cells and endothelial cells expressing molecular cues that constitute the extracellular stem cell 'niche'. Several soluble growth factors such as EGF, TGFbeta, FGF2, SDF-1alpha and Noggin are important signals for the stem cell niche but little is known about the role of membrane-bound molecules in intercellular communications between the niche and the stem cells. In this mini-review, we highlight the emerging role of a family of adhesion molecules in the control of secondary neurogenesis. The coxsackie-adenovirus receptor (CAR) is a 46 kDa transmembrane protein and a member of the immunoglobulin super family. It is close structurally and evolutionary to other adhesion molecules involved in cell-cell interactions during embryogenesis, broadly expressed in the developing central nervous system but restricted to ependymal cells in the adult brain. This unique location and its newly established signalling properties further support the role of CAR in intercellular communications. Elucidating the other signalling molecules and manipulating the stromal-vascular niche for example by adenovirus gene therapy remain important goals for future clinical applications.
Collapse
Affiliation(s)
- Mathieu Hauwel
- Department of Medical biochemistry and Immunology, Brain Inflammation and Immunity Group (BIIG), Cardiff University, Heath Park, UK.
| | | | | |
Collapse
|
33
|
Chung SK, Kim JY, Kim IB, Park SI, Paek KH, Nam JH. Internalization and trafficking mechanisms of coxsackievirus B3 in HeLa cells. Virology 2005; 333:31-40. [PMID: 15708590 DOI: 10.1016/j.virol.2004.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/22/2004] [Accepted: 12/02/2004] [Indexed: 11/21/2022]
Abstract
Coxsackievirus B3 (CVB3) is nonenveloped and has a single-stranded positive-sense RNA genome. CVB3 induces myocarditis and ultimately dilated cardiomyopathy. Although there are mounting evidences of an interaction between CVB3 particles and the cellular receptors, coxsackievirus and adenovirus receptor (CAR) and decay-accelerating factor (DAF), very little is known about the mechanisms of internalization and trafficking. In the present study, we used the CVB3 H3 strain, which is CAR-dependent but DAF-independent Woodruff variant and found that during entry, CVB3 particles were colocalized in clathrin, after interacting primarily with CAR, which was not recycled to the plasma membrane. We also found that CVB3 internalization was dependent on the function of dynamin, a large GTPase that has an essential role in endocytosis. Heat-shock cognate protein, Hsc70, which acts as a chaperone in the release of coat proteins from clathrin-coated vesicles (CCV), played a role in CVB3 trafficking processes. Moreover, endosomal acidification was crucial for CVB3 endocytosis. Finally, CVB3 was colocalized in early endosome autoantigen 1 (EEA1) molecules, which are involved in endosome-endosome tethering and fusion. In conclusion, these data together indicate that CVB3 uses clathrin-mediated endocytosis and is transcytosed to early endosomes.
Collapse
Affiliation(s)
- Sun-Ku Chung
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul, 122-701 Korea
| | | | | | | | | | | |
Collapse
|
34
|
Excoffon KJDA, Traver GL, Zabner J. The role of the extracellular domain in the biology of the coxsackievirus and adenovirus receptor. Am J Respir Cell Mol Biol 2005; 32:498-503. [PMID: 15778494 PMCID: PMC2715320 DOI: 10.1165/rcmb.2005-0031oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Coxsackievirus B and Adenovirus Receptor (CAR) plays a dual role as a homotypic junctional adhesion protein and as a viral receptor. CAR is a transmembrane protein and a member of the Immunoglobulin (Ig) superfamily with two extracellular Ig-like domains. The most distal Ig-like domain (D1) mediates the homophilic interaction and is also responsible for the high-affinity binding of the adenovirus (Ad) fiber protein. Currently, no activity has been ascribed to the proximal Ig-like domain (D2). To further understand the function of the extracellular domain in the biological activities of CAR, we created extracellular deletion mutants and evaluated cellular localization, adhesion, and viral infection. Deletion of any segment of the extracellular domain results in loss of adhesion and mislocalization as explained by a model, termed "diffusion trapping," that suggests adhesion is the driving force in junctional localization. Loss of junctional localization and adhesion was particularly apparent in polarized human airway epithelia, where mutant CAR expression was basolateral but not limited to the lateral junctions between cells. Surprisingly, the D2 domain was required for adenovirus fiber-knob binding and infection. In summary, the entire extracellular domain of CAR is of vital importance to the biology of this highly conserved and important protein.
Collapse
Affiliation(s)
- Katherine J D A Excoffon
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 440 EMRB, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
35
|
Chung CS, Huang CY, Chang W. Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts. J Virol 2005; 79:1623-34. [PMID: 15650188 PMCID: PMC544138 DOI: 10.1128/jvi.79.3.1623-1634.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the importance of plasma membrane lipid rafts in the mature intracellular vaccinia virus infection process by using biochemical and fluorescence imaging techniques. A raft-disrupting drug, methyl-beta-cyclodextrin, inhibited vaccinia virus uncoating without affecting virion attachment, indicating that cholesterol-containing lipid rafts are essential for virion penetration into mammalian cells. To provide direct evidence of a virus and lipid raft association, we isolated detergent-insoluble glycolipid-enriched membranes from cells immediately after virus infection and demonstrated that several viral envelope proteins, A14, A17L, and D8L, were present in the cell membrane lipid raft fractions, whereas the envelope H3L protein was not. Such an association did not occur after virions attached to cells at 4 degrees C and was only observed when virion penetration occurred at 37 degrees C. Immunofluorescence microscopy also revealed that cell surface staining of viral envelope proteins was colocalized with GM1, a lipid raft marker on the plasma membrane, consistent with biochemical analyses. Finally, mutant viruses lacking the H3L, D8L, or A27L protein remained associated with lipid rafts, indicating that the initial attachment of vaccinia virions through glycosaminoglycans is not required for lipid raft formation.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | |
Collapse
|
36
|
Excoffon KJDA, Hruska-Hageman A, Klotz M, Traver GL, Zabner J. A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci 2004; 117:4401-9. [PMID: 15304526 DOI: 10.1242/jcs.01300] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coxsackie and adenovirus receptor (CAR) plays a role in viral infection, maintenance of the junction adhesion complex in polarized epithelia, and modulation of cellular growth properties. As a viral receptor, the C-terminus appears to play no role indicating that the major function of CAR is to tether the virus to the cell. By contrast, the C-terminus is known to play a role in cellular localization and probably has a significant function in CAR-mediated adhesion and cell growth properties. We hypothesized that the CAR PDZ (PSD-95/Disc-large/ZO-1) binding motif interacts with PDZ-domain-containing proteins to modulate the cellular phenotype. CAR was modified by deleting the last four amino acids (CARΔGSIV) and evaluated for cell-cell adhesion in polarized primary human airway epithelia and growth characteristics in stably transfected L-cells. Although ablation of the CAR PDZ-binding motif did not affect adenoviral infection, it did have a significant effect both on cell-cell adhesion and on cell growth. Expression of CARΔGSIV failed to increase the transepithelial resistance in polarized epithelia to the same degree as wild-type CAR and failed to act as a growth modulator in L-cells. Furthermore, we provide evidence for three new CAR interacting partners, including MAGI-1b, PICK1 and PSD-95. CAR appears to interact with several distinct PDZ-domain-containing proteins and may exert its biological function through these interactions.
Collapse
Affiliation(s)
- Katherine J D Ashbourne Excoffon
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
37
|
Aizaki H, Lee KJ, Sung VMH, Ishiko H, Lai MMC. Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 2004; 324:450-61. [PMID: 15207630 DOI: 10.1016/j.virol.2004.03.034] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 02/25/2004] [Accepted: 03/24/2004] [Indexed: 11/17/2022]
Abstract
The mechanism and machinery of hepatitis C virus (HCV) RNA replication are still poorly characterized. Our previous study has shown that HCV RNA synthesis occurs on a lipid raft membrane structure [J. Virol. 77 (2003) 77 4160]. In this study, we further characterized these replication complexes (RCs) in Huh-7 cells that support active RNA replication of a subgenomic HCV replicon. Biochemical analysis showed that these membrane structures were resistant to Nonidet P-40 or Triton X-100 (TX-100) at 4 degrees C while solubilized by beta-octylglucoside at 4 degrees C or Triton TX-100 at 37 degrees C, characteristic of lipid rafts. Cholesterol sequestration assay further demonstrated the association between HCV nonstructural (NS) proteins and cholesterol-rich lipid rafts. The RCs contained both minus- and plus-strand HCV RNA, with the plus-stranded RNA being approximately 10-fold more abundant than the minus-strand. Furthermore, the HCV RNA and NS proteins were resistant to RNase and protease digestion, respectively, but became sensitive after treatment with the raft-disrupting agents. These results suggested that the HCV RCs are protected within lipid rafts. Detergent-resistant membrane (DRM) fractions containing NS proteins and viral RNA were capable of HCV RNA synthesis using the endogenous HCV RNA template. NS proteins were distributed in both the ER and the Golgi, but the majority of the active RCs were detected in the Golgi-derived membrane. Depletion of cellular cholesterol selectively reduced HCV RNA replication. These findings provide further insights into the mechanism of HCV replication in vivo.
Collapse
Affiliation(s)
- Hideki Aizaki
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
38
|
Awasthi V, Meinken G, Springer K, Srivastava SC, Freimuth P. Biodistribution of radioiodinated adenovirus fiber protein knob domain after intravenous injection in mice. J Virol 2004; 78:6431-8. [PMID: 15163736 PMCID: PMC416552 DOI: 10.1128/jvi.78.12.6431-6438.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The knob domains from the fiber proteins of adenovirus serotypes 2 and 12 were labeled with radioiodine and then injected into the bloodstreams of mice. Knob proteins with functional binding sites for the coxsackie and adenovirus receptor (CAR) were cleared rapidly from the circulation, with radioactivity appearing predominantly in the stomach, while knob mutants unable to bind to CAR remained in the blood circulation for a prolonged period. The clearance of radiolabeled wild-type knob from the blood was slowed by coinjecting an excess of unlabeled wild-type knob protein. An earlier study showed that (99m)Tc-labeled knob protein with intact CAR-binding activity also cleared rapidly from the blood circulation of mice, with radioactivity accumulating predominantly in the liver (K. R. Zinn et al., Gene Ther. 5:798-808, 1998). Together these results suggest that rapid clearance of knob protein from the blood results from specific binding to CAR in the liver and that the bound knob then enters a degradative pathway. The elevated levels of radioiodine in the stomach observed in our experiments are consistent with deiodination of labeled knob by dehalogenases in hepatocyte microsomes and uptake of the resultant free radioiodine by Na/I symporters in the gastric mucosa. Although CAR has been shown to localize in tight junctions of polarized epithelial cells, where it functions in intercellular adhesion, the results of our study suggest that a subset of CAR molecules in the liver is highly accessible to ligands in the blood and able to rapidly deliver bound ligand to an intracellular degradative compartment.
Collapse
Affiliation(s)
- Vibhudutta Awasthi
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | |
Collapse
|
39
|
Soong G, Reddy B, Sokol S, Adamo R, Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 2004; 113:1482-9. [PMID: 15146246 PMCID: PMC406530 DOI: 10.1172/jci20773] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 03/24/2004] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) mediate host responses to bacterial gene products. As the airway epithelium is potentially exposed to many diverse inhaled bacteria, TLRs involved in defense of the airways must be broadly responsive, available at the exposed apical surface of the cells, and highly regulated to prevent activation following trivial encounters with bacteria. We demonstrate that TLR2 is enriched in caveolin-1-associated lipid raft microdomains presented on the apical surface of airway epithelial cells after bacterial infection. These receptor complexes include myeloid differentiation protein (MyD88), interleukin-1 receptor-activated kinase-1, and TNF receptor-associated factor 6. The signaling capabilities of TLR2 are amplified through its association with the asialoganglioside gangliotetraosylceramide (Gal beta 1,2GalNAc beta 1,4Gal beta 1,4Glc beta 1,1Cer), which has receptor function itself for many pulmonary pathogens. Ligation of either TLR2 or asialoGM1 by ligands with specificity for either receptor, by Pseudomonas aeruginosa, or by Staphylococcus aureus stimulates IL-8 production through activation of NF-kappa B, as mediated by TLR2 and MyD88. Thus, TLR2 in association with asialo-glycolipids presented within the context of lipid rafts provides a broadly responsive signaling complex at the apical surfaces of airway cells to initiate the host response to potential bacterial infection.
Collapse
Affiliation(s)
- Grace Soong
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
40
|
Gonzalez-Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 2004; 24:2593-601. [PMID: 15028751 PMCID: PMC6729521 DOI: 10.1523/jneurosci.4461-03.2004] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Torsion dystonia-1 (DYT1) dystonia, the most common inherited form of dystonia, is caused by a three base pair deletion that eliminates a single amino acid from the disease protein, torsinA. TorsinA is an "AAA" protein thought to reside in the endoplasmic reticulum (ER), yet both its cellular function and the basis for neuronal dysfunction in DYT1 remain unknown. A clue to disease pathogenesis is the fact that mutant, but not wild-type, torsinA forms membranous inclusions in cell culture. To explore the pathobiology of DYT1 dystonia, we generated PC12 neural cell lines that inducibly express wild-type or mutant torsinA. Although in this model torsinA displays some properties consistent with ER localization, mutant torsinA also accumulates in the nuclear envelope (NE), a structure contiguous with cytoplasmic ER. Consistent with this, membranous inclusions formed by mutant torsinA are shown to derive not from the ER, as thought previously, but from the NE. We demonstrate further that torsinA forms different disulfide-linked complexes that may be linked functionally to subcellular localization in the NE versus cytoplasmic ER. Despite mutant TA accumulation in NE structures, nucleocytoplasmic transport of a reporter protein was unaffected. These findings, together with parallel studies failing to demonstrate perturbation of ER function, implicate the NE as a primary site of dysfunction in DYT1. DYT1 dystonia can be added to the growing list of inherited neurological disorders involving the NE.
Collapse
Affiliation(s)
- Pedro Gonzalez-Alegre
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
41
|
Soong G, Reddy B, Sokol S, Adamo R, Prince A. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 2004. [DOI: 10.1172/jci200420773] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Thorp EB, Gallagher TM. Requirements for CEACAMs and cholesterol during murine coronavirus cell entry. J Virol 2004; 78:2682-92. [PMID: 14990688 PMCID: PMC353758 DOI: 10.1128/jvi.78.6.2682-2692.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports have documented that cholesterol supplementations increase cytopathic effects in tissue culture and also intensify in vivo pathogenicities during infection by the enveloped coronavirus murine hepatitis virus (MHV). To move toward a mechanistic understanding of these phenomena, we used growth media enriched with methyl-beta-cyclodextrin or cholesterol to reduce or elevate cellular membrane sterols, respectively. Cholesterol depletions reduced plaque development 2- to 20-fold, depending on the infecting MHV strain, while supplementations increased susceptibility 2- to 10-fold. These various cholesterol levels had no effect on the binding of viral spike (S) proteins to cellular carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors, rather they correlated directly with S-protein-mediated membrane fusion activities. We considered whether cholesterol was indirectly involved in membrane fusion by condensing CEACAMs into "lipid raft" membrane microdomains, thereby creating opportunities for simultaneous binding of multiple S proteins that subsequently cooperate in the receptor-triggered membrane fusion process. However, the vast majority of CEACAMs were solubilized by cold Triton X-100 (TX-100), indicating their absence from lipid rafts. Furthermore, engineered CEACAMs appended to glycosylphosphatidylinositol anchors partitioned with TX-100-resistant lipid rafts, but cells bearing these raft-associated CEACAMs were not hypersensitive to MHV infection. These findings argued against the importance of cholesterol-dependent CEACAM localizations into membrane microdomains for MHV entry, instead suggesting that cholesterol had a more direct role. Indeed, we found that cholesterol was required even for those rare S-mediated fusions taking place in the absence of CEACAMs. We conclude that cholesterol is an essential membrane fusion cofactor that can act with or without CEACAMs to promote MHV entry.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
43
|
Imelli N, Meier O, Boucke K, Hemmi S, Greber UF. Cholesterol is required for endocytosis and endosomal escape of adenovirus type 2. J Virol 2004; 78:3089-98. [PMID: 14990728 PMCID: PMC353764 DOI: 10.1128/jvi.78.6.3089-3098.2004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.
Collapse
Affiliation(s)
- Nicola Imelli
- Zoologisches Institut. Institut für Molekularbiologie, Universität Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Huang KC, Altinoz M, Wosik K, Larochelle N, Koty Z, Zhu L, Holland PC, Nalbantoglu J. Impact of the coxsackie and adenovirus receptor (CAR) on glioma cell growth and invasion: Requirement for the C-terminal domain. Int J Cancer 2004; 113:738-45. [PMID: 15499626 DOI: 10.1002/ijc.20623] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of the coxsackie and adenovirus receptor (CAR) is downregulated in malignant glioma cell lines and is barely detectable in high-grade primary astrocytoma (glioblastoma multiforme). We determined the effect of forced CAR expression on the invasion and growth of the human glioma cell line U87-MG, which does not express any CAR. Although retrovirally mediated expression of full-length CAR in U87-MG cells did not affect monolayer growth in vitro, it did reduce glioma cell invasion in a 3-dimensional spheroid model. Furthermore, in xenograft experiments, intracerebral implantation of glioma cells expressing full-length CAR resulted in tumors with a significantly reduced volume compared to tumors generated by control vector-transduced U87-MG cells. In contrast, U87-MG cells expressing transmembrane CAR with a deletion of the entire cytoplasmic domain (except for the first 2 intracellular juxtamembrane cysteine amino acids) had rates of invasion and tumor growth that were similar to those of the control cells. This difference in behavior between the 2 forms of CAR was not due to improper cell surface localization of the cytoplasmically deleted CAR as determined by comparable immunostaining of unpermeabilized cells, equivalent adenoviral transduction of the cells and similar extent of fractionation into lipid-rich domains. Taken together, these results suggest that the decrease or loss of CAR expression in malignant glioma may confer a selective advantage in growth and invasion to these tumors.
Collapse
Affiliation(s)
- Kuo-Cheng Huang
- Department of Neurology and Neurosurgery, McGill University and the Montreal Neurological Institute, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Popik W, Alce TM. CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4. J Biol Chem 2003; 279:704-12. [PMID: 14570906 DOI: 10.1074/jbc.m306380200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the preferential localization of CD4 to lipid rafts, the significance and role of these microdomains in HIV-1 entry is still controversial. The possibility that CD4, when localized to non-raft domains, might be able to support virus entry cannot be excluded. Because disintegration of rafts by extraction of cellular cholesterol with methyl-beta-cyclodextrin suffers from various adverse effects, we investigated molecular determinants controlling raft localization of the CD4 receptor. Extensive mutagenesis of the receptor showed that a raft-localizing marker, consisting of a short sequence of positively charged amino acid residues, RHRRR, was present in the membrane-proximal cytoplasmic domain of CD4. Substitution of the RHRRR sequence with alanine residues abolished raft localization of the CD4 mutant, RA5, as determined biochemically using solubilization in nonionic detergents and by confocal microscopy. The possible inhibitory effect of the introduced mutations on the adjacent CVRC palmitoylation site was ruled out because wild type (wt) CD4 and RA5, but not a palmitoylation-deficient mutant, were efficiently palmitoylated. Nonetheless, the RA5 mutant supported productive virus entry to levels equivalent to that of wild type (wt) CD4. Sucrose gradient analysis of Triton X-100 virus lysates showed that Gag and envelope gp120 proteins accumulated in low buoyant, high-density fractions. This pattern was changed after virus incubation with cells. Whereas Gag proteins localized to lipid rafts in cells expressing wt CD4 and RA5, gp120 accumulated in rafts in cells expressing wt CD4 but not RA5. We propose that raft localization of CD4 is not required for virus entry, however, post-binding fusion/entry steps may require lipid raft assembly.
Collapse
Affiliation(s)
- Waldemar Popik
- Oncology Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
46
|
Ostedgaard LS, Randak C, Rokhlina T, Karp P, Vermeer D, Ashbourne Excoffon KJ, Welsh MJ. Effects of C-terminal deletions on cystic fibrosis transmembrane conductance regulator function in cystic fibrosis airway epithelia. Proc Natl Acad Sci U S A 2003; 100:1937-42. [PMID: 12578973 PMCID: PMC149937 DOI: 10.1073/pnas.2627982100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2002] [Indexed: 11/18/2022] Open
Abstract
To better understand the function of the conserved C terminus of the cystic fibrosis (CF) transmembrane conductance regulator, we studied constructs containing deletions in the C-terminal tail. When expressed in well differentiated CF airway epithelia, each construct localized predominantly to the apical membrane and generated transepithelial Cl(-) current. The results suggested that neither the C-terminal PSD-95/Discs-large/ZO-1 (PDZ)-interacting motif nor other C-terminal sequences were absolutely required for apical expression in airway epithelia. Surprisingly, deleting an acidic cluster near the C terminus reduced both channel opening rate and transepithelial Cl(-) transport, indicating that it influences channel gating. These results may help explain the relative paucity of CF-associated mutations in the C terminus.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|