1
|
Kiemel D, Kroell ASH, Denolly S, Haselmann U, Bonfanti JF, Andres JI, Ghosh B, Geluykens P, Kaptein SJF, Wilken L, Scaturro P, Neyts J, Van Loock M, Goethals O, Bartenschlager R. Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation. Nat Commun 2024; 15:6080. [PMID: 39030239 PMCID: PMC11271582 DOI: 10.1038/s41467-024-50437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.
Collapse
Affiliation(s)
- Dominik Kiemel
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ann-Sophie Helene Kroell
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Jean-François Bonfanti
- Janssen Infectious Diseases Discovery, Janssen-Cilag, Val de Reuil, France
- Evotec, Toulouse, France
| | - Jose Ignacio Andres
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Toledo, Spain
| | - Brahma Ghosh
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Spring House, PA, USA
| | | | - Suzanne J F Kaptein
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
2
|
Wahaab A, Zhang Y, Rasgon JL, Kang L, Hameed M, Li C, Anwar MN, Zhang Y, Shoaib A, Liu K, Lee B, Wei J, Qiu Y, Ma Z. NS2B-D55E and NS2B-E65D Variations are Responsible for Differences in NS2B-NS3 Protease Activities Between Japanese Encephalitis Virus Genotype I and III in Fluorogenic Peptide Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570834. [PMID: 38105993 PMCID: PMC10723430 DOI: 10.1101/2023.12.08.570834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Japanese Encephalitis Virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and a NS2B cofactor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in E. coli and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases. The GI NS2B(H)-NS3(pro) was able to cleave the sites at internal C, NS2A/NS2B, NS2B/NS3 and NS3/NS4A junctions that were identical to the sites proteolytically processed by GIII NS2B(H)-NS3(pro). Analysis of the enzymatic activity of recombinant NS2B(H)-NS3(pro) proteases using a model of fluorogenic peptide substrate revealed that the proteolytical processing activity of GIII NS2B(H)-NS3(pro) was significantly higher than that of GI NS2B(H)-NS3(pro). There were eight amino acid variations between GI and GIII NS2B(H)-NS3(pro), which may be responsible for the difference in enzymatic activities between GI and GIII proteases. Therefore, recombinant mutants were generated by exchanging NS2B(H) and NS3(pro) domains between GI and GIII NS2B(H)-NS3(pro) and subjected to protease activity analysis. Substitution of NS2B(H) significantly altered the protease activities, as compared to the parental NS2B(H)-NS3(pro), suggesting that NS2B(H) played an essential role in regulation of NS3(pro) protease activity. To further identify the amino acids responsible for the difference in protease activities, multiple substitution mutants including the individual and combined mutations at the variant residue 55 and 65 of NS2B(H) were generated and subjected to protease activity analysis. Replacement of NS2B-55 and NS2B-65 of GI to GIII significantly increased the enzymatic activity of GI NS2B(H)-NS3(pro) protease, whereas mutation of NS2B-55 and NS2B-65 of GIII to GI remarkably reduced the enzymatic activity of GIII NS2B(H)-NS3(pro) protease. Overall, these data demonstrated that NS2B-55 and NS2B-65 variations in hydrophilic domain of NS2B co-contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII. These observations gain an insight into the role of NS2B in regulation of NS3 protease activities, which is useful for understanding the replication of JEV GI and GIII viruses.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jason L. Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Lei Kang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Department of Biomedical Science and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Chenxi Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Anam Shoaib
- School of Behavior and Brain Sciences, University of Texas at Dallas, TX, United States
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Beibei Lee
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| |
Collapse
|
3
|
Structural Insights into Plasticity and Discovery of Flavonoid Allosteric Inhibitors of Flavivirus NS2B–NS3 Protease. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flaviviruses are among the most critical pathogens in tropical regions; they cause various severe diseases in developing countries but are not restricted to these countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Ten proteins are encoded in the flavivirus RNA. The N2B–NS3pro protein complex plays a fundamental role in flavivirus replication and is a promising drug target; however, no flavivirus protease inhibitors have progressed to the preclinical stage. This study analyzed the structural models and plasticity of the NS2B–NS3pro protein complex of five medically important non-dengue flaviviruses (West Nile, Rocio, Ilhéus, yellow fever, and Saint Louis encephalitis). The flavonoids amentoflavone, tetrahydrorobustaflavone, and quercetin were selected for their exceptional binding energies as potential inhibitors of the NS2B–NS3pro protein complex. AutoDock Vina results ranged from −7.0 kcal/mol to −11.5 kcal/mol and the compounds preferentially acted non-competitively. Additionally, the first structural model for the NS2B–NS3pro protein complex was proposed for Ilhéus and Rocio viruses. The NS2B–NS3pro protease is an attractive molecular target for drug development. The three identified natural flavonoids showed great inhibitory potential against the viral species. Nevertheless, further in silico and in vitro studies are required to obtain more information regarding NS2B–NS3pro inhibition by these flavonoids and their therapeutic potential.
Collapse
|
4
|
Teramoto T, Choi KH, Padmanabhan R. Flavivirus proteases: The viral Achilles heel to prevent future pandemics. Antiviral Res 2023; 210:105516. [PMID: 36586467 PMCID: PMC10062209 DOI: 10.1016/j.antiviral.2022.105516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Flaviviruses are important human pathogens and include dengue (DENV), West Nile (WNV), Yellow fever virus (YFV), Japanese encephalitis (JEV) and Zika virus (ZIKV). DENV, transmitted by mosquitoes, causes diseases ranging in severity from mild dengue fever with non-specific flu-like symptoms to fatal dengue hemorrhagic fever and dengue shock syndrome. DENV infections are caused by four serotypes, DENV1-4, which interact differently with antibodies in blood serum. The incidence of DENV infection has increased dramatically in recent decades and the CDC estimates 400 million dengue infections occur each year, resulting in ∼25,000 deaths mostly among children and elderly people. Similarly, ZIKV infections are caused by infected mosquito bites to humans, can be transmitted sexually and through blood transfusions. If a pregnant woman is infected, the virus can cross the placental barrier and can spread to her fetus, causing severe brain malformations in the child including microcephaly and other birth defects. It is noteworthy that the neurological manifestations of ZIKV were also observed in DENV endemic regions, suggesting that pre-existing antibody response to DENV could augment ZIKV infection. WNV, previously unknown in the US (and known to cause only mild disease in Middle East), first arrived in New York city in 1999 (NY99) and spread throughout the US and Canada by Culex mosquitoes and birds. WNV is now endemic in North America. Thus, emerging and re-emerging flaviviruses are significant threat to human health. However, vaccines are available for only a limited number of flaviviruses, and antiviral therapies are not available for any flavivirus. Hence, there is an urgent need to develop therapeutics that interfere with essential enzymatic steps, such as protease in the flavivirus lifecycle as these viruses possess significant threat to future pandemics. In this review, we focus on our E. coli expression of NS2B hydrophilic domain (NS2BH) covalently linked to NS3 protease domain (NS3Pro) in their natural context which is processed by the combined action of both subunits of the NS2B-NS3Pro precursor. Biochemical activities of the viral protease such as solubility and autoproteolysis of NS2BH-NS3Pro linkage depended on the C-terminal portion of NS2BH linked to the NS3Pro domain. Since 2008, we also focus on the use of the recombinant protease in high throughput screens and characterization of small molecular compounds identified in these screens.
Collapse
Affiliation(s)
- Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| | - Kyung H Choi
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47406, USA.
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
5
|
Ng WC, Kwek SS, Sun B, Yousefi M, Ong EZ, Tan HC, Puschnik AS, Chan KR, Ooi YS, Ooi EE. A fast-growing dengue virus mutant reveals a dual role of STING in response to infection. Open Biol 2022; 12:220227. [PMID: 36514984 PMCID: PMC9748785 DOI: 10.1098/rsob.220227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The four dengue viruses (DENVs) have evolved multiple mechanisms to ensure its survival. Among these mechanisms is the ability to regulate its replication rate, which may contribute to avoiding premature immune activation that limit infection dissemination: DENVs associated with dengue epidemics have shown slower replication rate than pre-epidemic strains. Correspondingly, wild-type DENVs replicate more slowly than their clinically attenuated derivatives. To understand how DENVs 'make haste slowly', we generated and screened for DENV2 mutants with accelerated replication that also induced high type-I interferon (IFN) expression in infected cells. We chanced upon a single NS2B-I114T amino acid substitution, in an otherwise highly conserved amino acid residue. Accelerated DENV2 replication damaged host DNA as mutant infection was dependent on host DNA damage repair factors, namely RAD21, EID3 and NEK5. DNA damage induced cGAS/STING signalling and activated early type-I IFN response that inhibited infection dissemination. Unexpectedly, STING activation also supported mutant DENV replication in infected cells through STING-induced autophagy. Our findings thus show that DENV NS2B has multi-faceted role in controlling DENV replication rate and immune evasion and suggest that the dual role of STING in supporting virus replication within infected cells but inhibiting infection dissemination could be particularly advantageous for live attenuated vaccine development.
Collapse
Affiliation(s)
- Wy Ching Ng
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Swee Sen Kwek
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Bo Sun
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Meisam Yousefi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eugenia Z. Ong
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore,Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | | | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Yaw Shin Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore,Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
6
|
Saqallah FG, Abbas MA, Wahab HA. Recent advances in natural products as potential inhibitors of dengue virus with a special emphasis on NS2b/NS3 protease. PHYTOCHEMISTRY 2022; 202:113362. [PMID: 35948138 DOI: 10.1016/j.phytochem.2022.113362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Dengue virus (DENV) is an arbovirus widespread through tropical and subtropical areas. It is transmitted to humans through Aedes mosquitoes. Infections with DENV can lead to a series of complications, including dengue fever, dengue haemorrhagic fever, or dengue shock syndrome, which might manifest through secondary infections because of a vulnerable immune system. To date, only one tetravalent DENV vaccine is approved to be administered to children whom have been previously DENV-infected and between 9 and 16 years of age. One of the key targets in discovering DENV antiviral agents is the NS2b/NS3 protease. This protease is a crucial enzyme complex for the proteolytic and cleavage activities of the translated polyprotein during DENV life cycle. Several studies were conducted to discover potential antivirals from natural sources or synthetic compounds and peptides. In this review, we describe the recent studies from the past five years dealing with isolated natural products as potential inhibitors of DENV with a greater focus on inhibiting the NS2b/NS3 protease. This review describes recent discoveries in anti-DENV potential of isolated phytochemicals belonging to different groups including fatty acids, glucosides, terpenes and terpenoids, flavonoids, phenolics, chalcones, acetamides, and peptides. Curcumin, quercetin, and myricetin were found to act as non-competitive inhibitors for the NS2b/NS3 protease enzyme. In some studies, the molecular targets of some of these compounds are yet to be identified using in-silico and in-vitro approaches. So far, none of the isolated natural products was tested clinically for the management of DENV infections. The discussed studies demonstrate that natural products are a rich source of potential anti-DENV compounds. However, not all of these compounds were studied for their kinetic molecular mechanism and type of inhibition. In-silico studies provided an ample number of phytochemical hits to be tested experimentally as DENV protease inhibitors. In conclusion, derivatives of these natural products can be designed and synthesised, which could enhance their specificity and efficacy towards the protease. Other sources of natural products, such as fungi, bacterial toxins, marine organisms, and animals, should also be explored towards discovering more potential and effective DENV NS2b/NS3 protease inhibitors.
Collapse
Affiliation(s)
- Fadi G Saqallah
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328, Amman, Jordan; Pharmacological and Diagnostic Research Lab, Al-Ahliyya Amman University, 19328, Amman, Jordan.
| | - Habibah A Wahab
- Pharmaceutical Design and Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
7
|
Wu Z, Hu T, Chen W, Cheng Y, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Cheng A, Chen S. The autophagy-related degradation of MDA5 by Tembusu virus nonstructural 2B disrupts IFNβ production. FASEB J 2022; 36:e22417. [PMID: 35713934 DOI: 10.1096/fj.202101916rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
Duck Tembusu virus (TMUV) is a serious avian pathogen causing a decline in egg production, but the mechanism of the virus that breaks through the innate immune system is poorly understood. Here, we show that TMUV inhibits poly(I:C)-induced interferon (IFN) production. Because poly(I:C) transfection can specifically activate the MDA5 pathway in duck primary cells, we found that infection with TMUV can specifically target MDA5 and lead to its degradation. MDA5 downregulation could be blocked by the autophagy inhibitor 3-methyladenine (3-MA) but not a proteasome inhibitor, strongly implicating MDA5 degradation as an autophagy-related degradation pathway. Pretreatment with 3-MA enhanced the expression of MDA5 and inhibited TMUV replication. To screen TMUV proteins that degraded MDA5, the TMUV replicon and MDA5-Flag were cotransfected into cells, and the western blot analysis showed that nonstructural 2B (NS2B) can degrade MDA5 in a dose-dependent manner. Dual-luciferase assays indicate that NS2B alone inhibits MDA5- or poly(I:C)-mediated IFN production. NS2B binds MDA5 in the presence of 3-MA. The deletion of the amino acids of NS2B from residues 51 to 92 (hydrophilic area) restored the expression of MDA5 and relieved the MDA5-mediated IFNβ production inhibition by NS2B, indicating that the hydrophilic area of NS2B is important for its interaction with host innate immunity.
Collapse
Affiliation(s)
- Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Hu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiqiong Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yao Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Animal venoms as a source of antiviral peptides active against arboviruses: a systematic review. Arch Virol 2022; 167:1763-1772. [PMID: 35723756 DOI: 10.1007/s00705-022-05494-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Arthropod-borne viruses (arboviruses), such as Zika virus (ZIKV), chikungunya virus (CHIKV), dengue virus (DENV), yellow fever virus (YFV), and West Nile virus (WNV), are pathogens of global importance. Therefore, there has been an increasing need for new drugs for the treatment of these viral infections. In this context, antimicrobial peptides (AMPs) obtained from animal venoms stand out as promising compounds because they exhibit strong antiviral activity against emerging arboviral pathogens. Thus, we systematically searched and critically analyzed in vitro and in vivo studies that evaluated the anti-arbovirus effect of peptide derivatives from toxins produced by vertebrates and invertebrates. Thirteen studies that evaluated the antiviral action of 10 peptides against arboviruses were included in this review. The peptides were derived from the venom of scorpions, spiders, wasps, snakes, sea snails, and frogs and were tested against DENV, ZIKV, YFV, WNV, and CHIKV. Despite the high structural variety of the peptides included in this study, their antiviral activity appears to be associated with the presence of positive charges, an excess of basic amino acids (mainly lysine), and a high isoelectric point (above 8). These peptides use different antiviral mechanisms, the most common of which is the inhibition of viral replication, release, entry, or fusion. Moreover, peptides with virucidal and cytoprotective (pre-treatment) effects were also identified. In conclusion, animal-venom-derived peptides stand out as a promising alternative in the search and development of prototype antivirals against arboviruses.
Collapse
|
9
|
Lin X, Cheng J, Wu Y, Zhang Y, Jiang H, Wang J, Wang X, Cheng M. Identification and In Silico Binding Study of a Highly Potent DENV NS2B-NS3 Covalent Inhibitor. ACS Med Chem Lett 2022; 13:599-607. [PMID: 35450371 PMCID: PMC9014507 DOI: 10.1021/acsmedchemlett.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV), an arthropod-borne flavivirus, has developed rapidly in the past few decades and becoming the most widespread arbovirus in the world. The vital role of NS2B-NS3 in virus replication and maturation of viral proteins makes it the most promising target for anti-DENV drug discovery. In the current work, a potent NS2B-NS3 covalent inhibitor 23 (IC50 = 6.0 nM, k inac/K i = 1581 M-1 s-1) was discovered through the chemical modification of a published covalent inhibitor 1 (IC50 = 500 nM, k inac/K i = 156.1 M-1 s-1), followed by in vitro assay. Further comprehensive structure-activity relationship analysis through covalent docking and molecular dynamics simulation provides informative understanding of the binding modes of covalent inhibitors targeting NS2B-NS3.
Collapse
Affiliation(s)
- Xincheng Lin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiawei Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuming Wu
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yaoliang Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hailun Jiang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xuejun Wang
- Department of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Wu Z, Hu T, Chen W, Cheng Y, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Gao Q, Sun D, Cheng A, Chen S. The G92 NS2B mutant of Tembusu virus is involved in severe defects in progeny virus assembly. Vet Microbiol 2022; 267:109396. [DOI: 10.1016/j.vetmic.2022.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022]
|
11
|
Agback P, Lesovoy DM, Han X, Sun R, Sandalova T, Agback T, Achour A, Orekhov VY. 1H, 13C and 15N resonance assignment of backbone and IVL-methyl side chain of the S135A mutant NS3pro/NS2B protein of Dengue II virus reveals unique secondary structure features in solution. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:135-145. [PMID: 35149939 PMCID: PMC9068680 DOI: 10.1007/s12104-022-10071-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The serotype II Dengue (DENV 2) virus is the most prevalent of all four known serotypes. Herein, we present nearly complete 1H, 15N, and 13C backbone and 1H, 13C isoleucine, valine, and leucine methyl resonance assignment of the apo S135A catalytically inactive variant of the DENV 2 protease enzyme folded as a tandem formed between the serine protease domain NS3pro and the cofactor NS2B, as well as the secondary structure prediction of this complex based on the assigned chemical shifts using the TALOS-N software. Our results provide a solid ground for future elucidation of the structure and dynamic of the apo NS3pro/NS2B complex, key for adequate development of inhibitors, and a thorough molecular understanding of their function(s).
Collapse
Affiliation(s)
- Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, 750 07, Uppsala, Sweden.
| | - Dmitry M Lesovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RA, 117997, Moscow, Russia
| | - Xiao Han
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Renhua Sun
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, 750 07, Uppsala, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE‑171 76, Stockholm, Sweden
| | - Vladislav Yu Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 465, 40530, Gothenburg, Sweden
| |
Collapse
|
12
|
Samrat SK, Xu J, Li Z, Zhou J, Li H. Antiviral Agents against Flavivirus Protease: Prospect and Future Direction. Pathogens 2022; 11:293. [PMID: 35335617 PMCID: PMC8955721 DOI: 10.3390/pathogens11030293] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses cause a significant amount of mortality and morbidity, especially in regions where they are endemic. A recent example is the outbreak of Zika virus throughout the world. Development of antiviral drugs against different viral targets is as important as the development of vaccines. During viral replication, a single polyprotein precursor (PP) is produced and further cleaved into individual proteins by a viral NS2B-NS3 protease complex together with host proteases. Flavivirus protease is one of the most attractive targets for development of therapeutic antivirals because it is essential for viral PP processing, leading to active viral proteins. In this review, we have summarized recent development in drug discovery targeting the NS2B-NS3 protease of flaviviruses, especially Zika, dengue, and West Nile viruses.
Collapse
Affiliation(s)
- Subodh K. Samrat
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; (J.X.); (J.Z.)
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson, AZ 85721, USA; (S.K.S.); (Z.L.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Review of -omics studies on mosquito-borne viruses of the Flavivirus genus. Virus Res 2022; 307:198610. [PMID: 34718046 DOI: 10.1016/j.virusres.2021.198610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Arboviruses are transmitted by arthropods (arthropod-borne virus) which can be mosquitoes or other hematophagous arthropods, in which their life cycle occurs before transmission to other hosts. Arboviruses such as Dengue, Zika, Saint Louis Encephalitis, West Nile, Yellow Fever, Japanese Encephalitis, Rocio and Murray Valley Encephalitis viruses are some of the arboviruses transmitted biologically among vertebrate hosts by blood-taking vectors, mainly Aedes and Culex sp., and are associated with neurological, viscerotropic, and hemorrhagic reemerging diseases, posing as significant health and socioeconomic concern, as they become more and more adaptive to new environments, to arthropods vectors and human hosts. One of the main families that include mosquito-borne viruses is Flaviviridae, and here, we review the case of the Flavivirus genus, which comprises the viruses cited above, using a variety of research approaches published in literature, including genomics, transcriptomics, proteomics, metabolomics, etc., to better understand their structures as well as virus-host interactions, which are essential for development of future antiviral therapies.
Collapse
|
14
|
Wahaab A, Mustafa BE, Hameed M, Stevenson NJ, Anwar MN, Liu K, Wei J, Qiu Y, Ma Z. Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-flavivirus Drug Discovery Employing Animal Cells and Models: A Review. Viruses 2021; 14:44. [PMID: 35062249 PMCID: PMC8781031 DOI: 10.3390/v14010044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Flaviviruses are known to cause a variety of diseases in humans in different parts of the world. There are very limited numbers of antivirals to combat flavivirus infection, and therefore new drug targets must be explored. The flavivirus NS2B-NS3 proteases are responsible for the cleavage of the flavivirus polyprotein, which is necessary for productive viral infection and for causing clinical infections; therefore, they are a promising drug target for devising novel drugs against different flaviviruses. This review highlights the structural details of the NS2B-NS3 proteases of different flaviviruses, and also describes potential antiviral drugs that can interfere with the viral protease activity, as determined by various studies. Moreover, optimized in vitro reaction conditions for studying the NS2B-NS3 proteases of different flaviviruses may vary and have been incorporated in this review. The increasing availability of the in silico and crystallographic/structural details of flavivirus NS2B-NS3 proteases in free and drug-bound states can pave the path for the development of promising antiflavivirus drugs to be used in clinics. However, there is a paucity of information available on using animal cells and models for studying flavivirus NS2B-NS3 proteases, as well as on the testing of the antiviral drug efficacy against NS2B-NS3 proteases. Therefore, on the basis of recent studies, an effort has also been made to propose potential cellular and animal models for the study of flavivirus NS2B-NS3 proteases for the purposes of exploring flavivirus pathogenesis and for testing the efficacy of possible drugs targets, in vitro and in vivo.
Collapse
Affiliation(s)
- Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Bahar E Mustafa
- Sub Campus Toba Tek Singh, University of Agriculture, Faisalabad 36050, Pakistan;
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute, State University, Fralin Life Sciences Building, 360 W Campus Blacksburg, Blacksburg, VA 24061, USA
| | - Nigel J. Stevenson
- Royal College of Surgeons in Ireland, Medical University of Bahrain, Busaiteen, Adliya 15503, Bahrain;
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 R590 Dublin, Ireland
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (A.W.); (M.H.); (M.N.A.); (K.L.); (J.W.)
| |
Collapse
|
15
|
The Future of Carica papaya Leaf Extract as an Herbal Medicine Product. Molecules 2021; 26:molecules26226922. [PMID: 34834014 PMCID: PMC8622926 DOI: 10.3390/molecules26226922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022] Open
Abstract
Carica papaya (papaya) leaf extract has been used for a long time in a traditional medicine to treat fever in some infectious diseases such as dengue, malaria, and chikungunya. The development of science and technology has subsequently made it possible to provide evidence that this plant is not only beneficial as an informal medication, but also that it has scientifically proven pharmacological and toxicological activities, which have led to its formal usage in professional health care systems. The development of formulations for use in nutraceuticals and cosmeceuticals has caused this product to be more valuable nowadays. The use of good manufacturing practice (GMP) standards, along with the ease of registering this product facilitated by policies of the national government, will absolutely increase the value of papaya leaf extract as a vital nutraceutical and cosmeceutical products in the near future. In this article, we review the potential of papaya leaf extract to be a high-value commodity in terms of its health effects as well as its industrial benefits.
Collapse
|
16
|
In Silico Prediction of the Phosphorylation of NS3 as an Essential Mechanism for Dengue Virus Replication and the Antiviral Activity of Quercetin. BIOLOGY 2021; 10:biology10101067. [PMID: 34681164 PMCID: PMC8570334 DOI: 10.3390/biology10101067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Dengue is a mosquito-borne virus that infects up to 400 million people worldwide annually. Dengue infection triggers high fever, severe body aches, rash, low platelet count, and could lead to Dengue hemorrhagic fever (DHF) in some cases. There is currently no cure, nor a broadly effective vaccine. The interaction of two viral proteins, nonstructural Proteins 3 and 5 (NS3 and NS5), is required for viral replication in the infected host’s cells. Our computational modeling of NS3 suggested that phosphorylation of a serine residue at position 137 of NS3 by a specific c-Jun N-terminal kinase (JNK) enhances viral replication by increasing the interaction of NS3 and NS5 through structural changes in amino acid residues 49–95. Experimental studies have shown that inhibition of JNK prevents viral replication and have suggested that the plants’ flavonoid Quercetin, Agathis flavone, and Myricetin inhibit Dengue infection. Our molecular simulations revealed that Quercetin binds NS3 and obstructs serine 137 phosphorylation, which may decrease viral replication. This work offers a molecular mechanism that can be used for anti-Dengue drug development. Abstract Dengue virus infection is a global health problem for which there have been challenges to obtaining a cure. Current vaccines and anti-viral drugs can only be narrowly applied in ongoing clinical trials. We employed computational methods based on structure-function relationships between human host kinases and viral nonstructural protein 3 (NS3) to understand viral replication inhibitors’ therapeutic effect. Phosphorylation at each of the two most evolutionarily conserved sites of NS3, serine 137 and threonine 189, compared to the unphosphorylated state were studied with molecular dynamics and docking simulations. The simulations suggested that phosphorylation at serine 137 caused a more remarkable structural change than phosphorylation at threonine 189, specifically located at amino acid residues 49–95. Docking studies supported the idea that phosphorylation at serine 137 increased the binding affinity between NS3 and nonstructural Protein 5 (NS5), whereas phosphorylation at threonine 189 decreased it. The interaction between NS3 and NS5 is essential for viral replication. Docking studies with the antiviral plant flavonoid Quercetin with NS3 indicated that Quercetin physically occluded the serine 137 phosphorylation site. Taken together, these findings suggested a specific site and mechanism by which Quercetin inhibits dengue and possible other flaviviruses.
Collapse
|
17
|
Gandikota C, Gandhi L, Maisnam D, Kesavulu MM, Billoria A, Prasad VSV, Venkataramana M. A novel anti-NS2BNS3pro antibody-based indirect ELISA test for the diagnosis of dengue virus infections. J Med Virol 2021; 93:3312-3321. [PMID: 32418268 DOI: 10.1002/jmv.26024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/13/2020] [Indexed: 11/06/2022]
Abstract
Dengue virus reportedly circulates as four genetically distinct serotypes for which there is no widely accepted vaccine or drug at present. Morbidity and mortality caused by this virus are alarming for the possible increased threat to human health. A suitable diagnostic test is the prerequisite for designing and developing control measures. But, the tests being employed at present possess one or the other drawback for this disease diagnosis. During the dengue virus infections, NS2B is essential for the stability and catalytic activity of the NS3 protease. N-terminal 185 amino acids of NS3 protease domain along with hydrophilic portion of NS2B (NS2BNS3pro) is being used to screen dengue inhibitors but not for diagnosis until now. In the present study, we have used purified NS2BNS3pro as an antigen to trap anti-NS2BNS3pro antibodies of the clinical samples. Antibodies were detected successfully in both Western blot analysis and enzyme-linked immunosorbent assay (ELISA) tests. In ELISA, antibodies were detected in both primary and secondary infections of all serotypes. Interestingly, 17 samples declared as other febrile infections by NS1 and IgM/IgG tests were found to be positive in present test, which were further confirmed by reverse-transcription polymerase chain reaction. In silico studies suggested the absence of conserved epitopes between NS2BNS3pro and the counterpart in JEV, Zika, and CHIKV, indicating less possibility of crossreaction, which was in turn confirmed by using synthetic peptides representing the above epitopes. Statistical analysis with 76% specificity, 87% sensitivity, and 95% concordance also supported the present test as a suitable test for large scale diagnosis of dengue virus infections.
Collapse
Affiliation(s)
- Chaitanya Gandikota
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Muppuru Muni Kesavulu
- Department of Biotechnology, SreeVidyanikethan Engineering College, Tirupati, Andhra Pradesh, India
| | - Arcy Billoria
- Department of Microbiology, Lotus Hospitals for Women and Children, Hyderabad, Telangana State, India
| | | | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
18
|
Shamim K, Xu M, Hu X, Lee EM, Lu X, Huang R, Shah P, Xu X, Chen CZ, Shen M, Guo H, Chen L, Itkin Z, Eastman RT, Shinn P, Klumpp-Thomas C, Michael S, Simeonov A, Lo DC, Ming GL, Song H, Tang H, Zheng W, Huang W. Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorg Med Chem Lett 2021; 40:127906. [PMID: 33689873 PMCID: PMC7936759 DOI: 10.1016/j.bmcl.2021.127906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
Zika virus has emerged as a potential threat to human health globally. A previous drug repurposing screen identified the approved anthelminthic drug niclosamide as a small molecule inhibitor of Zika virus infection. However, as antihelminthic drugs are generally designed to have low absorption when dosed orally, the very limited bioavailability of niclosamide will likely hinder its potential direct repurposing as an antiviral medication. Here, we conducted SAR studies focusing on the anilide and salicylic acid regions of niclosamide to improve physicochemical properties such as microsomal metabolic stability, permeability and solubility. We found that the 5-bromo substitution in the salicylic acid region retains potency while providing better drug-like properties. Other modifications in the anilide region with 2'-OMe and 2'-H substitutions were also advantageous. We found that the 4'-NO2 substituent can be replaced with a 4'-CN or 4'-CF3 substituents. Together, these modifications provide a basis for optimizing the structure of niclosamide to improve systemic exposure for application of niclosamide analogs as drug lead candidates for treating Zika and other viral infections. Indeed, key analogs were also able to rescue cells from the cytopathic effect of SARS-CoV-2 infection, indicating relevance for therapeutic strategies targeting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Khalida Shamim
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Xiao Lu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Richard T Eastman
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Sam Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3370, USA.
| |
Collapse
|
19
|
Identification of Cleavage Sites Proteolytically Processed by NS2B-NS3 Protease in Polyprotein of Japanese Encephalitis Virus. Pathogens 2021; 10:pathogens10020102. [PMID: 33494395 PMCID: PMC7911949 DOI: 10.3390/pathogens10020102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the proteolytic processing of polyprotein mediated by NS2B-NS3 protease contributes to the exploration of the mechanisms underlying infection of Japanese encephalitis virus (JEV), a zoonotic flavivirus. In this study, eukaryotic and prokaryotic cell models were employed to identify the cleavage sites mediated by viral NS2B-NS3 protease in JEV polyprotein. Artificial green fluorescent protein (GFP) substrates that contained the predicted cleavage site sequences of JEV polyprotein were expressed in swine testicle (ST) cells in the presence and absence of JEV infection, or co-expressed in E. coli with the recombinant NS2B-NS3 protease that was generated by fusing the N-terminal protease domain of NS3 to the central hydrophilic domain of NS2B. The cleavage of GFP substrates was examined by western blot. Among twelve artificial GFP substrates containing the cleavage site sequences predictively processed by host cell and/or NS2B-NS3 proteases, all sites were found to be cleaved by host cell proteases with different efficiencies. The sites at internal C, NS2A/NS2B, NS2B/NS3 and NS3/NS4A junctions, but not the sites at internal NS3, internal NS4A and NS4B/NS5 junctions were identified to be cleaved by JEV NS2B-NS3 protease. These data provide insight into the proteolytic processing of polyprotein, which is useful for understanding JEV replication and pathogenesis.
Collapse
|
20
|
Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target 2020; 29:403-419. [PMID: 33232192 DOI: 10.1080/1061186x.2020.1853759] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viral outbreaks have plagued the world since antiquity, including the most recent COVID-19 pandemic. The continuous spread and emergence of new viral diseases have urged the discovery of novel treatment options that can overcome the limitations of currently marketed antiviral drugs. Chalcones are natural open chain flavonoids that are found in various plants and can be synthesised in labs. Several studies have shown that these small organic molecules exert a number of pharmacological activities, including antiviral, anti-inflammatory, antimicrobial and anticancer. The purpose of this review is to provide a summary of the antiviral activities of chalcones and their derivatives on a set of human viral infections and their potential for targeting the most recent COVID-19 disease. Accordingly, we herein review chalcones activities on the following human viruses: Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus, human immunodeficiency, influenza, human rhinovirus, herpes simplex, dengue, human cytomegalovirus, hepatitis B and C, Rift Valley fever and Venezuelan equine encephalitis. We hope that this review will pave the way for the design and development of potentially potent and broad-spectrum chalcone based antiviral drugs.
Collapse
Affiliation(s)
- Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Li Z, Lang Y, Sakamuru S, Samrat S, Trudeau N, Kuo L, Rugenstein N, Tharappel A, D'Brant L, Koetzner CA, Hu S, Zhang J, Huang R, Kramer LD, Butler D, Xia M, Li H. Methylene blue is a potent and broad-spectrum inhibitor against Zika virus in vitro and in vivo. Emerg Microbes Infect 2020; 9:2404-2416. [PMID: 33078696 PMCID: PMC7646565 DOI: 10.1080/22221751.2020.1838954] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many flaviviruses including the Dengue virus (DENV), Zika virus (ZIKV), West Nile virus, Yellow Fever virus, and Japanese encephalitis virus are significant human pathogens, unfortunately without any specific therapy. Here, we demonstrate that methylene blue, an FDA-approved drug, is a broad-spectrum and potent antiviral against Zika virus and Dengue virus both in vitro and in vivo. We found that methylene blue can considerably inhibit the interactions between viral protease NS3 and its NS2B co-factor, inhibit viral protease activity, inhibit viral growth, protect 3D mini-brain organoids from ZIKV infection, and reduce viremia in a mouse model. Mechanistic studies confirmed that methylene blue works in both entry and post entry steps, reduces virus production in replicon cells and inhibited production of processed NS3 protein. Overall, we have shown that methylene blue is a potent antiviral for management of flavivirus infections, particularly for Zika virus. As an FDA-approved drug, methylene blue is well-tolerated for human use. Therefore, methylene blue represents a promising and easily developed therapy for management of infections by ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Zhong Li
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Yuekun Lang
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Srilatha Sakamuru
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Subodh Samrat
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Anil Tharappel
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Saiyang Hu
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ruili Huang
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - David Butler
- The Neural Stem Cell Institute, Rensselaer, NY, USA
| | - Menghang Xia
- Division of Preclinical Innovation, National Institutes of Health Chemical Genomics Center, National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| |
Collapse
|
22
|
Jiang B, Zhang W, Wu Y, Wang T, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, Pan L, Chen S, Cheng A. Determinants of duck Tembusu virus NS2A/2B polyprotein procession attenuated viral replication and proliferation in vitro. Sci Rep 2020; 10:12423. [PMID: 32709930 PMCID: PMC7381675 DOI: 10.1038/s41598-020-68271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/16/2020] [Indexed: 11/30/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a mosquito-borne Flavivirus, has caused serious economic losses for the Chinese poultry industry. The genome is translated into a polyprotein that is cleaved to mature protein by host and viral proteases in the host cell, and this proteolytic process is important for the viral life cycle. However, the cleavage mechanism of DTMUV polyprotein is still unclear. In this study, we identified that several amino acids (P1-R, P1′-G, P2-R, P3-T, and P4-V) were vital for NS2A/2B cleavage. Meanwhile, both NS2A and NS2B were essential in cis for polyprotein NS2A/2B intramolecular cleavage. Subsequently, a DTMUV replicon and an infectious clone showed that the P1 site is essential to viral replication, while a mutation in P1′ could boost viral RNA replication. Furthermore, a recombinant virus with P1 and P1′ site mutations named rDTMUV-NS2A/2B-P1P1′(AA) was rescued from transfected BHK21 cells. The maximum viral titers and viral genome copies of rDTMUV-NS2A/2B-P1P1′(AA) were much lower than those of rDTMUV-WT both in the intracellular and extracellular samples of transfected and infected BHK21 cells. Taken together, the NS2A/2B cleavage sites processed by the NS2B3 protease are vital for DTMUV proliferation and virulence.
Collapse
Affiliation(s)
- Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuanyuan Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - ShaQiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - YunYa Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
23
|
Zahid K, Shakoor S, Sajid HA, Afzal S, Ali L, Amin I, Shahid M, Idrees M. Advancements in developing an effective and preventive dengue vaccine. Future Virol 2020. [DOI: 10.2217/fvl-2019-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Every year millions of people in various tropical and subtropical regions encounter infection with dengue virus. Within the last few decades, its prevalence has increased up to 30-fold globally and presently these viruses have been transmitted in more than 100 countries. Scientists contributed to the development of tetravalent dengue vaccine by adopting numerous approaches including live vaccine, recombinant protein vaccine, DNA vaccine and virus-vectored vaccines. A vaccine should be genetically stable, equally effective against all serotypes, must be in-expensive and commercially available. Chimeric yellow fever virus-tetravalent dengue vaccine (CYD-TDV) is the first licensed vaccine developed by Sanofi Pasteur in December 2015, but this vaccine is not fully effective against different dengue virus serotypes (Sanofi Pasteur, Lyon, France). This review explores the advancements and challenges involved in the development of dengue vaccine.
Collapse
Affiliation(s)
- Khadija Zahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Sana Shakoor
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Hina Afzal Sajid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Modern Sciences, Rawalpindi, Pakistan
| | - Iram Amin
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology & Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
24
|
Zakaria II, Salin NH, Amanah A, Othman S, Khairuddin F, Khawory MH, Wahab RA, Rahaman MRA, Chern PP, Johari NA, Wahab H. Potential anti-viral compounds from Malaysian Plant Natural Product Repository and Database (MyNature50000) for DENV2. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1578184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Iffah Izzati Zakaria
- Natural Product and Drug Discovery Centre, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Gelugor, Malaysia
| | - Nurul Hanim Salin
- Natural Product and Drug Discovery Centre, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Gelugor, Malaysia
| | - Azimah Amanah
- Natural Product and Drug Discovery Centre, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Gelugor, Malaysia
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Farahayu Khairuddin
- Protein Expression and Purification Unit, Malaysia Genome Institute, Kajang, Malaysia
| | - Muhammad Hidhir Khawory
- Natural Product and Drug Discovery Centre, Malaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Gelugor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | - Pua Pei Chern
- Faculty of Biotechnology, International Manipal University, Nilai, Malaysia
| | - Nor Azfa Johari
- Protein Expression and Purification Unit, Malaysia Genome Institute, Kajang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
25
|
Zou C, Huang C, Zhang J, Wu Q, Ni X, Sun J, Dai J. Virulence difference of five type I dengue viruses and the intrinsic molecular mechanism. PLoS Negl Trop Dis 2019; 13:e0007202. [PMID: 30830907 PMCID: PMC6417740 DOI: 10.1371/journal.pntd.0007202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/14/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is the most important vector-borne virus globally. The safe and effective vaccines are still under development and there are no antiviral drugs for DENV induced diseases. In this study, we obtained five DENV1 isolates (DENV1 A to E) from the outbreak of dengue fever in 2014 of Guangzhou, China, and analyzed their replication efficiency and virulence in vitro and in vivo. The results suggested that among the five DENV1 strains, DENV1 B has the highest replication efficiency in both human and mosquito cells in vitro, also causes the highest mortality to suckling mice. Further study suggested that nonstructural proteins from DENV1B have higher capacity to suppress host interferon signaling. In addition, the NS2B3 protease from DENV1B has higher enzymatic activity compared with that from DENV1 E. Finally, we identified that the 64th amino acid of NS2A and the 55th amino acid of NS2B were two virulence determining sites for DENV1. This study provided new evidences of the molecular mechanisms of DENV virulence. Dengue is the most important vector-borne viral infection that endangers an estimated 2.5 billion people globally. The recently licensed dengue vaccine has major weaknesses and there are no antiviral drugs for the treatment of dengue related diseases. Identifying the virulence determinants is important for understanding the molecule bases of viral life cycle, also contributing to vaccine design and development. In this study, we analyzed the virulence differences among five DENV1 strains that obtained from the 2014 DENV outbreak in Guangzhou, China, and identified two novel virulence determining sites for DENV1. This study provides new ideas for investigation of DENV protein function, pathogenic mechanism and novel attenuated vaccine.
Collapse
Affiliation(s)
- Chunling Zou
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Chenxiao Huang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Jinyu Zhang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
| | - Xiaohua Ni
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, P.R. China
- * E-mail: (XN) ; (JS) ; (JD)
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, P.R. China
- * E-mail: (XN) ; (JS) ; (JD)
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, P. R. China
- * E-mail: (XN) ; (JS) ; (JD)
| |
Collapse
|
26
|
Norazharuddin H, Lai NS. Roles and Prospects of Dengue Virus Non-structural Proteins as Antiviral Targets: An Easy Digest. Malays J Med Sci 2018; 25:6-15. [PMID: 30914859 PMCID: PMC6419879 DOI: 10.21315/mjms2018.25.5.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/21/2018] [Indexed: 12/13/2022] Open
Abstract
Dengue is a neglected disease caused by the infection of dengue virus which is transmitted by Aedes mosquitoes and to some, it could be fatal. Regardless of the enormous work devoted to research for the treatment of dengue, to this day there is no cure, and treatment is solely limited to supportive care by treating the symptoms. The inhibition of the viral RNA non-structural enzymes has been the most popular approach amongst the strategies applied to the search and development of dengue antivirals. This review is a compact digest of what is already known of the roles and the prospects of the dengue virus non-structural proteins NS1, NS2BNS3, NS4A, NS4B and NS5 as the targets for antiviral studies including the recent progress that has been published regarding their roles.
Collapse
Affiliation(s)
- Hannah Norazharuddin
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
27
|
Gopala Reddy SB, Chin WX, Shivananju NS. Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem Pharmacol 2018; 154:54-63. [PMID: 29674002 DOI: 10.1016/j.bcp.2018.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022]
Abstract
Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design.
Collapse
Affiliation(s)
- Sindhoora Bhargavi Gopala Reddy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India
| | - Wei-Xin Chin
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS TEI Campus, Mysuru 57006, Karnataka, India.
| |
Collapse
|
28
|
Woestenenk E, Agback P, Unnerståle S, Henderson I, Agback T. Co-refolding of a functional complex of Dengue NS3 protease and NS2B co-factor domain and backbone resonance assignment by solution NMR. Protein Expr Purif 2017; 140:16-27. [PMID: 28751017 DOI: 10.1016/j.pep.2017.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023]
Abstract
A novel approach for separate expression of dengue virus NS3 protease and its NS2B cofactor domain is described in this paper. The two proteins are expressed in E.coli and purified separately and subsequently efficiently co-refolded to form a stable complex. This straightforward and robust method allows for separate isotope labeling of the two proteins, facilitating analysis by nuclear magnetic resonance (NMR) spectroscopy. Unlinked NS2B-NS3pro behaves better in NMR spectroscopy than linked NS2B-NS3pro, which has resulted in the backbone resonance assignment of the unlinked NS2B-NS3 complex bound to a peptidic boronic acid inhibitor.
Collapse
Affiliation(s)
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | | | - Ian Henderson
- Medivir AB, PO Box 1086, SE-141 22, Huddinge, Sweden
| | | |
Collapse
|
29
|
Li Z, Brecher M, Deng YQ, Zhang J, Sakamuru S, Liu B, Huang R, Koetzner CA, Allen CA, Jones SA, Chen H, Zhang NN, Tian M, Gao F, Lin Q, Banavali N, Zhou J, Boles N, Xia M, Kramer LD, Qin CF, Li H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 2017; 27:1046-1064. [PMID: 28685770 DOI: 10.1038/cr.2017.88] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/19/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
Recent outbreaks of Zika virus (ZIKV) highlight an urgent need for therapeutics. The protease complex NS2B-NS3 plays essential roles during flaviviral polyprotein processing, and thus represents an attractive drug target. Here, we developed a split luciferase complementation-based high-throughput screening assay to identify orthosteric inhibitors that directly target flavivirus NS2B-NS3 interactions. By screening a total of 2 816 approved and investigational drugs, we identified three potent candidates, temoporfin, niclosamide, and nitazoxanide, as flavivirus NS2B-NS3 interaction inhibitors with nanomolar potencies. Significantly, the most potent compound, temoporfin, not only inhibited ZIKV replication in human placental and neural progenitor cells, but also prevented ZIKV-induced viremia and mortality in mouse models. Structural docking suggests that temoporfin potentially binds NS3 pockets that hold critical NS2B residues, thus inhibiting flaviviral polyprotein processing in a non-competitive manner. As these drugs have already been approved for clinical use in other indications either in the USA or other countries, they represent promising and easily developed therapies for the management of infections by ZIKV and other flaviviruses.
Collapse
Affiliation(s)
- Zhong Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Matthew Brecher
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jing Zhang
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Binbin Liu
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.,Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524000, China
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Christina A Allen
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Susan A Jones
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA
| | - Haiying Chen
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Na-Na Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Min Tian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Fengshan Gao
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.,Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Dalian University, Dalian, Liaoning 116622, China
| | - Qishan Lin
- Center for Functional Genomics, University at Albany, Rensselaer, NY 12144, USA
| | - Nilesh Banavali
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 509, Empire State Plaza, Albany, NY 12201, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nathan Boles
- The Neural Stem Cell Institute, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 509, Empire State Plaza, Albany, NY 12201, USA
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, 120 New Scotland Ave, Albany, NY 12208, USA.,Department of Biomedical Sciences, School of Public Health, University at Albany, PO Box 509, Empire State Plaza, Albany, NY 12201, USA
| |
Collapse
|
30
|
A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog 2017; 13:e1006411. [PMID: 28542603 PMCID: PMC5462475 DOI: 10.1371/journal.ppat.1006411] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/07/2017] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis experiments unambiguously demonstrated an allosteric mechanism for inhibition of the viral protease by NSC135618.
Collapse
|
31
|
Aguilera-Pesantes D, Robayo LE, Méndez PE, Mollocana D, Marrero-Ponce Y, Torres FJ, Méndez MA. Discovering key residues of dengue virus NS2b-NS3-protease: New binding sites for antiviral inhibitors design. Biochem Biophys Res Commun 2017; 492:631-642. [PMID: 28343993 DOI: 10.1016/j.bbrc.2017.03.107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/01/2017] [Accepted: 03/19/2017] [Indexed: 12/24/2022]
Abstract
The NS2B-NS3 protease is essential for the Dengue Virus (DENV) replication process. This complex constitutes a target for efficient antiviral discovery because a drug could inhibit the viral polyprotein processing. Furthermore, since the protease is highly conserved between the four Dengue virus serotypes, it is probable that a drug would be equally effective against all of them. In this article, a strategy is reported that allowed us to identify influential residues on the function of the Dengue NS2b-NS3 Protease. Moreover, this is a strategy that could be applied to virtually any protein for the search of alternative influential residues, and for non-competitive inhibitor development. First, we incorporated several features derived from computational alanine scanning mutagenesis, sequence, structure conservation, and other structure-based characteristics. Second, these features were used as variables to obtain a multilayer perceptron model to identify defined groups (clusters) of key residues as possible candidate pockets for binding sites of new leads on the DENV protease. The identified residues included: i) amino acids close to the beta sheet-loop-beta sheet known to be important in its closed conformation for NS2b ii) residues close to the active site, iii) several residues evenly spread on the NS2b-NS3 contact surface, and iv) some inner residues most likely related to the overall stability of the protease. In addition, we found concordance on our list of residues with previously identified amino acids part of a highly conserved peptide studied for vaccine development.
Collapse
Affiliation(s)
- D Aguilera-Pesantes
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - L E Robayo
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - P E Méndez
- Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - D Mollocana
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - Y Marrero-Ponce
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av.Interoceánica Km 12 ½ y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador
| | - F J Torres
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador
| | - M A Méndez
- Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles sn y Vía Interoceánica, 17-1200-841, Quito, Ecuador; Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Av.Interoceánica Km 12 ½ y Av. Florencia, 17-1200-841, Cumbayá, Quito, Ecuador.
| |
Collapse
|
32
|
Product release is rate-limiting for catalytic processing by the Dengue virus protease. Sci Rep 2016; 6:37539. [PMID: 27897196 PMCID: PMC5126634 DOI: 10.1038/srep37539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Dengue Virus (DENV) is the most prevalent global arbovirus, yet despite an increasing burden to health care there are currently no therapeutics available to treat infection. A potential target for antiviral drugs is the two-component viral protease NS2B-NS3pro, which is essential for viral replication. Interactions between the two components have been investigated here by probing the effect on the rate of enzyme catalysis of key mutations in a mobile loop within NS2B that is located at the interface of the two components. Steady-state kinetic assays indicated that the mutations greatly affect catalytic turnover. However, single turnover and fluorescence experiments have revealed that the mutations predominantly affect product release rather than substrate binding. Fluorescence analysis also indicated that the addition of substrate triggers a near-irreversible change in the enzyme conformation that activates the catalytic centre. Based on this mechanistic insight, we propose that residues within the mobile loop of NS2B control product release and present a new target for design of potent Dengue NS2B-NS3 protease inhibitors.
Collapse
|
33
|
Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, Lee JC. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep 2016; 6:32176. [PMID: 27553177 PMCID: PMC4995454 DOI: 10.1038/srep32176] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/03/2016] [Indexed: 12/17/2022] Open
Abstract
Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection.
Collapse
Affiliation(s)
- Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Kuang Lin
- Doctoral Degree Program in Marine Biotechnology, College of Marine Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.,Center for Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kung-Chia Young
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Ulanday GEL, Okamoto K, Morita K. Development and utility of an in vitro, fluorescence-based assay for the discovery of novel compounds against dengue 2 viral protease. Trop Med Health 2016; 44:22. [PMID: 27551237 PMCID: PMC4979183 DOI: 10.1186/s41182-016-0025-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/18/2016] [Indexed: 11/27/2022] Open
Abstract
Background Dengue disease is one of the most significant vector-borne illnesses in the world. The emergence and re-emergence of dengue infections in many parts of the world affect millions annually and continue to burden public health systems especially in low-income populations. Advances in dengue vaccine development showed promising results; however, protection seems to be suboptimal. There is no licensed chemotherapeutic agent against dengue to date. An ideal scenario of combinatorial vaccination of high-risk individuals and chemotherapy of the diseased during outbreaks may compensate for the meager protection offered by the vaccine. The dengue virus protease is important to viral replication and, as such, has been identified as a potential target for antivirals. It is, therefore, our objective to establish and optimize an appropriate screening method for use during the early stages of drug development for dengue. Methods In this study, we developed and optimized a biochemical assay system for use in screening compound libraries against dengue virus protease. We tested the selected protease inhibitors with a cell-based assay to determine inhibition of viral replication. Results We have presented direct plots of substrate kinetics data showing an apparent inhibition of the protease at excessive substrate concentrations. The most common sources of interference that may have affected the said observation were elucidated. Finally, a screen was done on an existing compound library using the developed method. The compounds selected in this study showed inhibitory activity against both the recombinant dengue protease and cell-based infectivity assays. Conclusions Our study shows the practicality of a customized biochemical assay to find possible inhibitors of dengue viral protease during the initial stages of drug discovery. Electronic supplementary material The online version of this article (doi:10.1186/s41182-016-0025-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gianne Eduard L Ulanday
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kenta Okamoto
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ; Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan ; Leading Graduate School Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
35
|
Piccirillo E, Merget B, Sotriffer CA, do Amaral AT. Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence. J Comput Aided Mol Des 2016; 30:251-70. [DOI: 10.1007/s10822-016-9901-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/11/2016] [Indexed: 12/14/2022]
|
36
|
In Silico Screening, Alanine Mutation, and DFT Approaches for Identification of NS2B/NS3 Protease Inhibitors. Biochem Res Int 2016; 2016:7264080. [PMID: 27057355 PMCID: PMC4785246 DOI: 10.1155/2016/7264080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/13/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
To identify the ligand that binds to a target protein with high affinity is a nontrivial task in computer-assisted approaches. Antiviral drugs have been identified for NS2B/NS3 protease enzyme on the mechanism to cleave the viral protein using the computational tools. The consequence of the molecular docking, free energy calculations, and simulation protocols explores the better ligand. It provides in-depth structural insights with the catalytic triad of His51, Asp75, Ser135, and Gly133. The MD simulation was employed here to predict the stability of the complex. The alanine mutation has been performed and its stability was monitored by using the molecular dynamics simulation. The minimal RMSD value suggests that the derived complexes are close to equilibrium. The DFT outcome reveals that the HOMO-LUMO gap of Ligand19 is 2.86 kcal/mol. Among the considered ligands, Ligand19 shows the lowest gap and it is suggested that the HOMO of Ligand19 may transfer the electrons to the LUMO in the active regions. The calculated binding energy of Ligand19 using the DFT method is in good agreement with the docking studies. The pharmacological activity of ligand was performed and satisfies Lipinski rule of 5. Moreover, the computational results are compared with the available IC50 values of experimental results.
Collapse
|
37
|
Silveira GF, Strottmann DM, de Borba L, Mansur DS, Zanchin NIT, Bordignon J, dos Santos CND. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response. Clin Exp Immunol 2015; 183:114-28. [PMID: 26340409 DOI: 10.1111/cei.12701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 12/30/2022] Open
Abstract
Dengue is the most prevalent arboviral disease worldwide. The outcome of the infection is determined by the interplay of viral and host factors. In the present study, we evaluated the cellular response of human monocyte-derived DCs (mdDCs) infected with recombinant dengue virus type 1 (DV1) strains carrying a single point mutation in the NS3hel protein (L435S or L480S). Both mutated viruses infect and replicate more efficiently and produce more viral progeny in infected mdDCs compared with the parental, non-mutated virus (vBACDV1). Additionally, global gene expression analysis using cDNA microarrays revealed that the mutated DVs induce the up-regulation of the interferon (IFN) signalling and pattern recognition receptor (PRR) canonical pathways in mdDCs. Pronounced production of type I IFN were detected specifically in mdDCs infected with DV1-NS3hel-mutated virus compared with mdDCs infected with the parental virus. In addition, we showed that the type I IFN produced by mdDCs is able to reduce DV1 infection rates, suggesting that cytokine function is effective but not sufficient to mediate viral clearance of DV1-NS3hel-mutated strains. Our results demonstrate that single point mutations in subdomain 2 have important implications for adenosine triphosphatase (ATPase) activity of DV1-NS3hel. Although a direct functional connection between the increased ATPase activity and viral replication still requires further studies, these mutations speed up viral RNA replication and are sufficient to enhance viral replicative capacity in human primary cell infection and circumvent type I IFN activity. This information may have particular relevance for attenuated vaccine protocols designed for DV.
Collapse
Affiliation(s)
- G F Silveira
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | - D M Strottmann
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | - L de Borba
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | - D S Mansur
- Laboratório De Imunobiologia, Universidade Federal De Santa Catarina, Trindade, Florianópolis, Brasil
| | - N I T Zanchin
- Laboratório De Proteômica E Engenharia De Proteínas, Instituto Carlos Chagas, Curitiba, Brasil
| | - J Bordignon
- Laboratório De Virologia Molecular, Instituto Carlos Chagas, Curitiba, Brasil
| | | |
Collapse
|
38
|
Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target. Biosci Rep 2015; 31:399-409. [PMID: 21329491 DOI: 10.1042/bsr20100142] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Flaviviral NS3 serine proteases require the NS2B cofactor region (cNS2B) to be active. Recent crystal structures of WNV (West Nile virus) protease in complex with inhibitors revealed that cNS2B participates in the formation of the protease active site. No crystal structures of ternary complexes are currently available for DENV (dengue virus) to validate the role of cNS2B in active site formation. In the present study, a GST (glutathione transferase) fusion protein of DENV-2 cNS2B49-95 was used as a bait to pull down DENV-2 protease domain (NS3pro). The affinity of NS3pro for cNS2B was strong (equilibrium-binding constant <200 nM) and the heterodimeric complex displayed a catalytic efficiency similar to that of single-chain DENV-2 cNS2B/NS3pro. Various truncations and mutations in the cNS2B sequence showed that conformational integrity of the entire 47 amino acids is critical for protease activity. Furthermore, DENV-2 NS3 protease can be pulled down and transactivated by cNS2B cofactors from DENV-1, -3, -4 and WNV, suggesting that mechanisms for activation are conserved across the flavivirus genus. To validate NS2B as a potential target in allosteric inhibitor development, a cNS2B-specific human monoclonal antibody (3F10) was utilized. 3F10 disrupted the interaction between cNS2B and NS3 in vitro and reduced DENV viral replication in HEK (human embryonic kidney)-293 cells. This provides proof-of-concept for developing assays to find inhibitors that block the interaction between NS2B and NS3 during viral translation.
Collapse
|
39
|
Nitsche C, Holloway S, Schirmeister T, Klein CD. Biochemistry and medicinal chemistry of the dengue virus protease. Chem Rev 2014; 114:11348-81. [PMID: 25268322 DOI: 10.1021/cr500233q] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Steven Holloway
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Tanja Schirmeister
- Institut für Pharmazie und Biochemie, Johannes Gutenberg-Universität Mainz , Staudingerweg 5, D-55128 Mainz, Germany
| | - Christian D Klein
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
40
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
41
|
de la Cruz L, Chen WN, Graham B, Otting G. Binding mode of the activity-modulating C-terminal segment of NS2B to NS3 in the dengue virus NS2B-NS3 protease. FEBS J 2014; 281:1517-33. [PMID: 24472363 DOI: 10.1111/febs.12729] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
Abstract
The two-component dengue virus NS2B-NS3 protease (NS2B-NS3pro) is an established drug target but inhibitor design is hampered by uncertainties about its 3D structure in solution. Crystal structures reported very different conformations for the functionally important C-terminal segment of the NS2B cofactor (NS2Bc), indicating open and closed conformations in the absence and presence of inhibitors, respectively. An earlier NMR study in solution indicated that a closed state is the preferred conformation in the absence of an artificial linker engineered between NS2B and NS3pro. To obtain direct structural information on the fold of unlinked NS2B-NS3pro in solution, we tagged NS3pro with paramagnetic tags and measured pseudocontact shifts by NMR to position NS2Bc relative to NS3pro. NS2Bc was found to bind to NS3pro in the same way as reported in a previously published model and crystal structure of the closed state. The structure is destabilized, however, by high ionic strength and basic pH, showing the importance of electrostatic forces to tie NS2Bc to NS3pro. Narrow NMR signals previously thought to represent the open state are associated with protein degradation. In conclusion, the closed conformation of the NS2B-NS3 protease is the best model for structure-guided drug design.
Collapse
Affiliation(s)
- Laura de la Cruz
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
42
|
da Costa ECB, Amorim R, da Silva FC, Rocha DR, Papa MP, de Arruda LB, Mohana-Borges R, Ferreira VF, Tanuri A, da Costa LJ, Ferreira SB. Synthetic 1,4-pyran naphthoquinones are potent inhibitors of dengue virus replication. PLoS One 2013; 8:e82504. [PMID: 24376541 PMCID: PMC3869945 DOI: 10.1371/journal.pone.0082504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022] Open
Abstract
Dengue virus infection is a serious public health problem in endemic areas of the world where 2.5 billion people live. Clinical manifestations of the Dengue infection range from a mild fever to fatal cases of hemorrhagic fever. Although being the most rapidly spreading mosquito-borne viral infection in the world, until now no strategies are available for effective prevention or control of Dengue infection. In this scenario, the development of compounds that specifically inhibit viral replication with minimal effects to the human hosts will have a substantial effect in minimizing the symptoms of the disease and help to prevent viral transmission in the affected population. The aim of this study was to screen compounds with potential activity against dengue virus from a library of synthetic naphthoquinones. Several 1,2- and 1,4-pyran naphthoquinones were synthesized by a three-component reaction of lawsone, aldehyde (formaldehyde or arylaldehydes) and different dienophiles adequately substituted. These compounds were tested for the ability to inhibit the ATPase activity of the viral NS3 enzyme in in vitro assays and the replication of dengue virus in cultured cells. We have identified two 1,4-pyran naphthoquinones, which inhibited dengue virus replication in mammal cells by 99.0% and three others that reduced the dengue virus ATPase activity of NS3 by two-fold in in vitro assays.
Collapse
Affiliation(s)
- Emmerson C. B. da Costa
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Amorim
- Universidade Federal do Rio de Janeiro, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando C. da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Niterói, Rio de Janeiro, Brazil
| | - David R. Rocha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Niterói, Rio de Janeiro, Brazil
| | - Michelle P. Papa
- Universidade Federal do Rio de Janeiro, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B. de Arruda
- Universidade Federal do Rio de Janeiro, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vitor F. Ferreira
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Niterói, Rio de Janeiro, Brazil
| | - Amilcar Tanuri
- Universidade Federal do Rio de Janeiro, Departamento de Genética, Instituto de Biologia, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana J. da Costa
- Universidade Federal do Rio de Janeiro, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (LJC); (SBF)
| | - Sabrina B. Ferreira
- Universidade Federal do Rio de Janeiro, Departamento de Química Orgânica, Instituto de Química, Macaé, Rio de Janeiro, Brazil
- * E-mail: (LJC); (SBF)
| |
Collapse
|
43
|
Junaid M, Angsuthanasombat C, Wikberg JES, Ali N, Katzenmeier G. A straightforward experimental approach to expression, purification, refolding, and enzymatic analysis of recombinant dengue virus NS2B(H)-NS3pro protease. BIOCHEMISTRY. BIOKHIMIIA 2013; 78:920-4. [PMID: 24228881 DOI: 10.1134/s0006297913080099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dengue virus threatens around 2.5 billion people worldwide; about 50 million become infected every year, and yet no vaccine or drug is available for prevention and/or treatment. The flaviviral NS2B-NS3pro complex is indispensable for flaviviral replication and is considered to be an important drug target. The aim of this study was to develop a simple and generally applicable experimental strategy to construct, purify, and assay a highly active recombinant NS2B(H)-NS3pro complex that would be useful for high-throughput screening of potential inhibitors. The sequence of NS2B(H)-NS3pro was generated by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro complex was expressed in E. coli predominantly as insoluble protein and purified to >95% purity by single-step immobilized metal affinity chromatography. SDS-PAGE followed by immunoblotting of the purified enzyme demonstrated the presence of the NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 37, 21, and 10 kDa bands, respectively. Kinetic parameters, Km, kcat, and kcat/Km for the fluorophore-linked protease model substrate Ac-nKRR-amc were obtained using inner-filter effect correction. The kinetic parameters Km, kcat, and kcat/Km for Ac-nKRR-amc substrate were 100 µM, 0.112 s(-1), and 1120 M(-1)·s(-1), respectively. A simplified procedure for the cloning, overexpression, and purification of the NS2B(H)-NS3pro complex was applied, and a highly active recombinant NS2B(H)-NS3pro complex was obtained that could be useful for the design of high-throughput assays aimed at flaviviral inhibitor discovery.
Collapse
Affiliation(s)
- M Junaid
- Department of Pharmacy, University of Malakand, Chakdara, 18550 Pakistan.
| | | | | | | | | |
Collapse
|
44
|
The flavivirus protease as a target for drug discovery. Virol Sin 2013; 28:326-36. [PMID: 24242363 DOI: 10.1007/s12250-013-3390-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/01/2013] [Indexed: 01/27/2023] Open
Abstract
Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.
Collapse
|
45
|
de Almeida H, Bastos IMD, Ribeiro BM, Maigret B, Santana JM. New binding site conformations of the dengue virus NS3 protease accessed by molecular dynamics simulation. PLoS One 2013; 8:e72402. [PMID: 23991109 PMCID: PMC3749139 DOI: 10.1371/journal.pone.0072402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
Dengue fever is caused by four distinct serotypes of the dengue virus (DENV1-4), and is estimated to affect over 500 million people every year. Presently, there are no vaccines or antiviral treatments for this disease. Among the possible targets to fight dengue fever is the viral NS3 protease (NS3PRO), which is in part responsible for viral processing and replication. It is now widely recognized that virtual screening campaigns should consider the flexibility of target protein by using multiple active conformational states. The flexibility of the DENV NS3PRO could explain the relatively low success of previous virtual screening studies. In this first work, we explore the DENV NS3PRO conformational states obtained from molecular dynamics (MD) simulations to take into account protease flexibility during the virtual screening/docking process. To do so, we built a full NS3PRO model by multiple template homology modeling. The model comprised the NS2B cofactor (essential to the NS3PRO activation), a glycine flexible link and the proteolytic domain. MD simulations had the purpose to sample, as closely as possible, the ligand binding site conformational landscape prior to inhibitor binding. The obtained conformational MD sample was clustered into four families that, together with principal component analysis of the trajectory, demonstrated protein flexibility. These results allowed the description of multiple binding modes for the Bz-Nle-Lys–Arg–Arg-H inhibitor, as verified by binding plots and pair interaction analysis. This study allowed us to tackle protein flexibility in our virtual screening campaign against the dengue virus NS3 protease.
Collapse
Affiliation(s)
- Hugo de Almeida
- Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasília, Brazil
| | | | | | | | | |
Collapse
|
46
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Prusis P, Junaid M, Petrovska R, Yahorava S, Yahorau A, Katzenmeier G, Lapins M, Wikberg JES. Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of dengue virus NS2B-NS3 proteases. Biochem Biophys Res Commun 2013; 434:767-72. [PMID: 23587903 DOI: 10.1016/j.bbrc.2013.03.139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 12/13/2022]
Abstract
A series of 45 peptide inhibitors was designed, synthesized, and evaluated against the NS2B-NS3 proteases of the four subtypes of dengue virus, DEN-1-4. The design was based on proteochemometric models for Michaelis (Km) and cleavage rate constants (kcat) of protease substrates. This led first to octapeptides showing submicromolar or low micromolar inhibitory activities on the four proteases. Stepwise removal of cationic substrate non-prime side residues and variations in the prime side sequence resulted finally in an uncharged tetrapeptide, WYCW-NH2, with inhibitory Ki values of 4.2, 4.8, 24.4, and 11.2 μM for the DEN-1-4 proteases, respectively. Analysis of the inhibition data by proteochemometric modeling suggested the possibility for different binding poses of the shortened peptides compared to the octapeptides, which was supported by results of docking of WYCW-NH2 into the X-ray structure of DEN-3 protease.
Collapse
Affiliation(s)
- Peteris Prusis
- Department of Pharmaceutical Biosciences, Division of Pharmacology, Uppsala University, 75124 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Nitsche C, Klein CD. Fluorimetric and HPLC-based dengue virus protease assays using a FRET substrate. Methods Mol Biol 2013; 1030:221-236. [PMID: 23821272 DOI: 10.1007/978-1-62703-484-5_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The number of dengue virus infections is increasing and the dengue NS2B-NS3 protease is considered a promising target for the development of antiviral therapies. Therefore, reliable and fast screening systems are needed for the discovery of new lead structures. In this chapter, we describe two dengue virus protease assays based on an internally quenched, high-affinity Förster resonance energy transfer (FRET) substrate (Km = 105 μM). A fluorimetric assay using a microtiter fluorescence plate reader can be used for high-throughput screening of a large number of compounds. Alternatively, an HPLC-based assay with fluorescence detection can be applied to confirm the compound hits and to avoid false-positive results that may arise due to the inner filter effect of some compounds.
Collapse
Affiliation(s)
- Christoph Nitsche
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
49
|
Aravapalli S, Lai H, Teramoto T, Alliston KR, Lushington GH, Ferguson EL, Padmanabhan R, Groutas WC. Inhibitors of Dengue virus and West Nile virus proteases based on the aminobenzamide scaffold. Bioorg Med Chem 2012; 20:4140-8. [PMID: 22632792 PMCID: PMC3563422 DOI: 10.1016/j.bmc.2012.04.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/19/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Dengue and West Nile viruses (WNV) are mosquito-borne members of flaviviruses that cause significant morbidity and mortality. There is no approved vaccine or antiviral drugs for human use to date. In this study, a series of functionalized meta and para aminobenzamide derivatives were synthesized and subsequently screened in vitro against Dengue virus and West Nile virus proteases. Four active compounds were identified which showed comparable activity toward the two proteases and shared in common a meta or para(phenoxy)phenyl group. The inhibition constants (K(i)) for the most potent compound 7n against Dengue and West Nile virus proteases were 8.77 and 5.55 μM, respectively. The kinetics data support a competitive mode of inhibition of both proteases by compound 7n. This conclusion is further supported by molecular modeling. This study reveals a new chemical scaffold which is amenable to further optimization to yield potent inhibitors of the viral proteases via the combined utilization of iterative medicinal chemistry/structure-activity relationship studies and in vitro screening.
Collapse
Affiliation(s)
- Sridhar Aravapalli
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Huiguo Lai
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kevin R. Alliston
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - Gerald H. Lushington
- Molecular Graphics and Modeling Laboratory, The University of Kansas, Lawrence, KS 66045, USA
| | - Eron L. Ferguson
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| | - R. Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
50
|
Enzymatic analysis of recombinant Japanese encephalitis virus NS2B(H)-NS3pro protease with fluorogenic model peptide substrates. PLoS One 2012; 7:e36872. [PMID: 22615830 PMCID: PMC3352935 DOI: 10.1371/journal.pone.0036872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/09/2012] [Indexed: 01/29/2023] Open
Abstract
Background Japanese encephalitis virus (JEV), a member of the Flaviviridae family, causes around 68,000 encephalitis cases annually, of which 20–30% are fatal, while 30–50% of the recovered cases develop severe neurological sequelae. Specific antivirals for JEV would be of great importance, particularly in those cases where the infection has become persistent. Being indispensable for flaviviral replication, the NS2B-NS3 protease is a promising target for design of anti-flaviviral inhibitors. Contrary to related flaviviral proteases, the JEV NS2B-NS3 protease is structurally and mechanistically much less characterized. Here we aimed at establishing a straightforward procedure for cloning, expression, purification and biochemical characterization of JEV NS2B(H)-NS3pro protease. Methodology/Principal Findings The full-length sequence of JEV NS2B-NS3 genotype III strain JaOArS 982 was obtained as a synthetic gene. The sequence of NS2B(H)-NS3pro was generated by splicing by overlap extension PCR (SOE-PCR) and cloned into the pTrcHisA vector. Hexahistidine-tagged NS2B(H)-NS3pro, expressed in E. coli as soluble protein, was purified to >95% purity by a single-step immobilized metal affinity chromatography. SDS-PAGE and immunoblotting of the purified enzyme demonstrated NS2B(H)-NS3pro precursor and its autocleavage products, NS3pro and NS2B(H), as 36, 21, and 10 kDa bands, respectively. Kinetic parameters, Km and kcat, for fluorogenic protease model substrates, Boc-GRR-amc, Boc-LRR-amc, Ac-nKRR-amc, Bz-nKRR-amc, Pyr-RTKR-amc and Abz-(R)4SAG-nY-amide, were obtained using inner filter effect correction. The highest catalytic efficiency kcat/Km was found for Pyr-RTKR-amc (kcat/Km: 1962.96±85.0 M−1 s−1) and the lowest for Boc-LRR-amc (kcat/Km: 3.74±0.3 M−1 s−1). JEV NS3pro is inhibited by aprotinin but to a lesser extent than DEN and WNV NS3pro. Conclusions/Significance A simplified procedure for the cloning, overexpression and purification of the NS2B(H)-NS3pro was established which is generally applicable to other flaviviral proteases. Kinetic parameters obtained for a number of model substrates and inhibitors, are useful for the characterization of substrate specificity and eventually for the design of high-throughput assays aimed at antiviral inhibitor discovery.
Collapse
|