1
|
Altan E, Avelin V, Aaltonen K, Korhonen E, Laine L, Lindh E, Julkunen I, Tammiranta N, Nokireki T, Gadd T, Kakkola L, Sironen T, Österlund P. Highly Pathogenic Avian Influenza (HPAI) H5N1 virus in Finland in 2021-2023 - Genetic diversity of the viruses and infection kinetics in human dendritic cells. Emerg Microbes Infect 2025; 14:2447618. [PMID: 39745171 PMCID: PMC11727053 DOI: 10.1080/22221751.2024.2447618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 is known for its virulence and zoonotic potential, infecting birds and mammals, thus raising public health concerns. Since 2021 its spread among birds has led to cross-species transmission causing epizootics among mammals, eventually impacting fur animal farms in Finland in 2023. To analyze the infectivity of the Finnish H5N1 isolates in human cells, representatives of diverse H5N1 isolates were selected based on the genetic differences, host animal species, and the year of occurrence. The infection kinetics of the selected H5N1 isolates from wild pheasant and fox, and fur animals blue fox and white mink were examined in human monocyte-derived dendritic cells (moDCs) with H5N1 human isolate as a control. Although the isolate from pheasant (a wild bird) showed weakly reduced replication and viral protein expression in human cells compared to mammalian isolates, no discernible differences in virus replication in moDCs was observed. This study revealed similar infectivity in human moDCs for all five H5N1 isolates, regardless of the observed genetic differences. While H5N1 human infections remain rare, the virus poses a risk for widespread epizootics in mammals such as fur animal farms and, more recently, dairy cattle.
Collapse
Affiliation(s)
- Eda Altan
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Veera Avelin
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Kirsi Aaltonen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Essi Korhonen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Larissa Laine
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Erika Lindh
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Tiina Nokireki
- Veterinary Virology, Finnish Food Authority, Helsinki, Finland
| | - Tuija Gadd
- Veterinary Virology, Finnish Food Authority, Helsinki, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Pamela Österlund
- Microbiology Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Virology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Pencheva M, Bozhkova M, Kalchev Y, Petrov S, Baldzhieva A, Kalfova T, Dichev V, Keskinova D, Genova S, Atanasova M, Murdzheva M. The Serum ACE2, CTSL, AngII, and TNFα Levels after COVID-19 and mRNA Vaccines: The Molecular Basis. Biomedicines 2023; 11:3160. [PMID: 38137381 PMCID: PMC10741205 DOI: 10.3390/biomedicines11123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 virus as well as the COVID-19 mRNA vaccines cause an increased production of proinflammatory cytokines. AIM We investigated the relationship between ACE2, CTSL, AngII, TNFα and the serum levels of IL-6, IL-10, IL-33, IL-28A, CD40L, total IgM, IgG, IgA and absolute count of T- and B-lymphocytes in COVID-19 patients, vaccinees and healthy individuals. METHODS We measured the serum levels ACE2, AngII, CTSL, TNFα and humoral biomarkers (CD40L, IL-28A, IL-10, IL-33) by the ELISA method. Immunophenotyping of lymphocyte subpopulations was performed by flow cytometry. Total serum immunoglobulins were analyzed by the turbidimetry method. RESULTS The results established an increase in the total serum levels for ACE2, CTSL, AngII and TNFα by severely ill patients and vaccinated persons. The correlation analysis described a positive relationship between ACE2 and proinflammatory cytokines IL-33 (r = 0.539) and CD40L (r = 0.520), a positive relationship between AngII and CD40L (r = 0.504), as well as between AngII and IL-33 (r = 0.416), and a positive relationship between CTSL, total IgA (r = 0.437) and IL-28A (r = 0.592). Correlation analysis confirmed only two of the positive relationships between TNFα and IL-28A (r = 0.491) and CD40L (r = 0.458). CONCLUSIONS In summary, the findings presented in this study unveil a complex web of interactions within the immune system in response to SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Martina Bozhkova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Yordan Kalchev
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Steliyan Petrov
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Teodora Kalfova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Valentin Dichev
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Department of Medical Biology, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Donka Keskinova
- Department of Applied and Institutional Sociology, Faculty of Philosophy and History, University of Plovdiv “Paisii Hilendarski”, 4000 Plovdiv, Bulgaria;
| | - Silvia Genova
- Department of General and Clinical Pathology, Medical Faculty, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Atanasova
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Laboratory of Virology, UMBAL “St. George” EAD, 4002 Plovdiv, Bulgaria
| | - Mariana Murdzheva
- Department of Medical Microbiology and Immunology, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (M.B.); (Y.K.); (S.P.); (A.B.); (T.K.); (M.A.); (M.M.)
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
3
|
He J, Zhao M, Ma X, Li D, Kong J, Yang F. The role and application of three IFN-related reactions in psoriasis. Biomed Pharmacother 2023; 167:115603. [PMID: 37776636 DOI: 10.1016/j.biopha.2023.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/16/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
The pathophysiology of psoriasis is a highly complicated one. Due to the disease's specificity, it not only affects the patient's skin negatively but also manifests systemic pathological changes. These clinical symptoms seriously harm the patient's physical and mental health. IFN, a common immunomodulatory factor, has been increasingly demonstrated to have a significant role in the development of psoriatic skin disease. Psoriasis is connected with a variety of immunological responses. New targets for the therapy of autoimmune skin diseases may emerge from further research on the mechanics of the associated IFN upstream and downstream pathways. Different forms of IFNs do not behave in the same manner in psoriasis, and understanding how different types of IFNs are involved in psoriasis may provide a better notion for future research. This review focuses on the involvement of three types of IFNs in psoriasis and related therapeutic investigations, briefly describing the three IFNs' production and signaling, as well as the dual effects of IFNs on the skin. It is intended that it would serve as a model for future research.
Collapse
Affiliation(s)
- Jiaming He
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Minghui Zhao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Ma
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dilong Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyan Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Fan Yang
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Jiang M, Väisänen E, Kolehmainen P, Huttunen M, Ylä-Herttuala S, Meri S, Österlund P, Julkunen I. COVID-19 adenovirus vector vaccine induces higher interferon and pro-inflammatory responses than mRNA vaccines in human PBMCs, macrophages and moDCs. Vaccine 2023:S0264-410X(23)00463-2. [PMID: 37142461 PMCID: PMC10126225 DOI: 10.1016/j.vaccine.2023.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND During the COVID-19 pandemic multiple vaccines were rapidly developed and widely used throughout the world. At present there is very little information on COVID-19 vaccine interactions with primary human immune cells such as peripheral blood mononuclear cells (PBMCs), monocyte-derived macrophages and dendritic cells (moDCs). METHODS Human PBMCs, macrophages and moDCs were stimulated with different COVID-19 vaccines, and the expression of interferon (IFN-λ1, IFN-α1), pro-inflammatory (IL-1β, IL-6, IL-8, IL-18, CXCL-4, CXCL-10, TNF-α) and Th1-type cytokine mRNAs (IL-2, IFN-γ) were analyzed by qPCR. In addition, the expression of vaccine induced spike (S) protein and antiviral molecules were studied in primary immune cells and in A549 lung epithelial cells. RESULTS Adenovirus vector (Ad-vector) vaccine AZD1222 induced high levels of IFN-λ1, IFN-α1, CXCL-10, IL-6, and TNF-α mRNAs in PBMCs at early time points of stimulation while the expression of IFN-γ and IL-2 mRNA took place at later times. AZD1222 also induced IFN-λ1, CXCL-10 and IL-6 mRNA expression in monocyte-derived macrophages and DCs in a dose-dependent fashion. AZD1222 also activated the phosphorylation of IRF3 and induced MxA expression. BNT162b2 and mRNA-1273 mRNA vaccines failed to induce or induced very weak cytokine gene expression in all cell models. None of the vaccines enhanced the expression of CXCL-4. AZD1222 and mRNA-1273 vaccines induced high expression of S protein in all studied cells. CONCLUSIONS Ad-vector vaccine induces higher IFN and pro-inflammatory responses than the mRNA vaccines in human immune cells. This data shows that AZD1222 readily activates IFN and pro-inflammatory cytokine gene expression in PBMCs, macrophages and DCs, but fails to further enhance CXCL-4 mRNA expression.
Collapse
Affiliation(s)
- Miao Jiang
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 00300 Helsinki, Finland; Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Elina Väisänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 00300 Helsinki, Finland; Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Pekka Kolehmainen
- Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Moona Huttunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute, Department of Molecular Medicine, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Seppo Meri
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 00300 Helsinki, Finland.
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Turku University Hospital, Clinical Microbiology, 20520 Turku, Finland.
| |
Collapse
|
5
|
Moyo NA, Westcott D, Simmonds R, Steinbach F. Equine Arteritis Virus in Monocytic Cells Suppresses Differentiation and Function of Dendritic Cells. Viruses 2023; 15:255. [PMID: 36680295 PMCID: PMC9862904 DOI: 10.3390/v15010255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Equine viral arteritis is an infectious disease of equids caused by equine arteritis virus (EAV), an RNA virus of the family Arteriviridae. Dendritic cells (DC) are important modulators of the immune response with the ability to present antigen to naïve T cells and can be generated in vitro from monocytes (MoDC). DC are important targets for many viruses and this interaction is crucial for the establishment-or rather not-of an anti-viral immunity. Little is known of the effect EAV has on host immune cells, particularly DC. To study the interaction of eqDC with EAV in vitro, an optimized eqMoDC system was used, which was established in a previous study. MoDC were infected with strains of different genotypes and pathogenicity. Virus replication was determined through titration and qPCR. The effect of the virus on morphology, phenotype and function of cells was assessed using light microscopy, flow cytometry and in vitro assays. This study confirms that EAV replicates in monocytes and MoDC. The replication was most efficient in mature MoDC, but variable between strains. Only the virulent strain caused a significant down-regulation of certain proteins such as CD14 and CD163 on monocytes and of CD83 on mature MoDC. Functional studies conducted after infection showed that EAV inhibited the endocytic and phagocytic capacity of Mo and mature MoDC with minimal effect on immature MoDC. Infected MoDC showed a reduced ability to stimulate T cells. Ultimately, EAV replication resulted in an apoptosis-mediated cell death. Thus, EAV evades the host anti-viral immunity both by inhibition of antigen presentation early after infection and through killing infected DC during replication.
Collapse
Affiliation(s)
- Nathifa A. Moyo
- Animal and Plant Health Agency, Virology Department, Addlestone KT15 3NB, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Dave Westcott
- Animal and Plant Health Agency, Virology Department, Addlestone KT15 3NB, UK
| | - Rachel Simmonds
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Falko Steinbach
- Animal and Plant Health Agency, Virology Department, Addlestone KT15 3NB, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
6
|
Influenza Virus Infection during Pregnancy as a Trigger of Acute and Chronic Complications. Viruses 2022; 14:v14122729. [PMID: 36560733 PMCID: PMC9786233 DOI: 10.3390/v14122729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infection during pregnancy disrupts maternal and fetal health through biological mechanisms, which are to date poorly characterised. During pregnancy, the viral clearance mechanisms from the lung are sub-optimal and involve hyperactive innate and adaptive immune responses that generate wide-spread inflammation. Pregnancy-related adaptations of the immune and the cardiovascular systems appear to result in delayed recovery post-viral infection, which in turn promotes a prolonged inflammatory phenotype, increasing disease severity, and causing maternal and fetal health problems. This has immediate and long-term consequences for the mother and fetus, with complications including acute cardiopulmonary distress syndrome in the mother that lead to perinatal complications such as intrauterine growth restriction (IUGR), and birth defects; cleft lip, cleft palate, neural tube defects and congenital heart defects. In addition, an increased risk of long-term neurological disorders including schizophrenia in the offspring is reported. In this review we discuss the pathophysiology of IAV infection during pregnancy and its striking similarity to other well-established complications of pregnancy such as preeclampsia. We discuss general features of vascular disease with a focus on vascular inflammation and define the "Vascular Storm" that is triggered by influenza infection during pregnancy, as a pivotal disease mechanism for short and long term cardiovascular complications.
Collapse
|
7
|
Laine L, Skön M, Väisänen E, Julkunen I, Österlund P. SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant. Front Immunol 2022; 13:1016108. [PMID: 36248817 PMCID: PMC9561549 DOI: 10.3389/fimmu.2022.1016108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 11/15/2022] Open
Abstract
Since the start of the pandemic at the end of 2019, arising mutations in SARS-CoV-2 have improved its transmission and ability to circumvent the immunity induced by vaccination and previous COVID-19 infection. Studies on the effects of SARS-CoV-2 genomic mutations on replication and innate immunity will give us valuable insight into the evolution of the virus which can aid in further development of vaccines and new treatment modalities. Here we systematically analyzed the kinetics of virus replication, innate immune activation, and host cell antiviral response patterns in Alpha, Beta, Delta, Kappa, Omicron and two early pandemic SARS-CoV-2 variant-infected human lung epithelial Calu-3 cells. We observed overall comparable replication patterns for these variants with modest variations. Particularly, the sublineages of Omicron BA.1, BA.2 and a recombinant sublineage, XJ, all showed attenuated replication in Calu-3 cells compared to Alpha and Delta. Furthermore, there was relatively weak activation of primary innate immune signaling pathways, however, all variants produced enough interferons to induce the activation of STAT2 and production of interferon stimulated genes (ISGs). While interferon mRNA expression and STAT2 activation correlated with cellular viral RNA levels, ISG production did not. Although clear cut effects of specific SARS-CoV-2 genomic mutations could not be concluded, the variants of concern, including Omicron, showed a lower replication efficiency and a slower interferon response compared to an early pandemic variant in the study.
Collapse
Affiliation(s)
- Larissa Laine
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- *Correspondence: Larissa Laine,
| | - Marika Skön
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Elina Väisänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilkka Julkunen
- Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
8
|
Li Q, Tan F, Wang Y, Liu X, Kong X, Meng J, Yang L, Cen S. The gamble between oncolytic virus therapy and IFN. Front Immunol 2022; 13:971674. [PMID: 36090998 PMCID: PMC9453641 DOI: 10.3389/fimmu.2022.971674] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Various studies are being conducted on oncolytic virotherapy which one of the mechanisms is mediating interferon (IFN) production by it exerts antitumor effects. The antiviral effect of IFN itself has a negative impact on the inhibition of oncolytic virus or tumor eradication. Therefore, it is very critical to understand the mechanism of IFN regulation by oncolytic viruses, and to define its mechanism is of great significance for improving the antitumor effect of oncolytic viruses. This review focuses on the regulatory mechanisms of IFNs by various oncolytic viruses and their combination therapies. In addition, the exerting and the producing pathways of IFNs are briefly summarized, and some current issues are put forward.
Collapse
Affiliation(s)
- Qingbo Li
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengxian Tan
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Jingyan Meng
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
- *Correspondence: Xianbin Kong, ; Jingyan Meng, ; Long Yang, ; Shan Cen,
| |
Collapse
|
9
|
Zarkesh K, Entezar-Almahdi E, Ghasemiyeh P, Akbarian M, Bahmani M, Roudaki S, Fazlinejad R, Mohammadi-Samani S, Firouzabadi N, Hosseini M, Farjadian F. Drug-based therapeutic strategies for COVID-19-infected patients and their challenges. Future Microbiol 2021; 16:1415-1451. [PMID: 34812049 PMCID: PMC8610072 DOI: 10.2217/fmb-2021-0116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Emerging epidemic-prone diseases have introduced numerous health and economic challenges in recent years. Given current knowledge of COVID-19, herd immunity through vaccines alone is unlikely. In addition, vaccination of the global population is an ongoing challenge. Besides, the questions regarding the prevalence and the timing of immunization are still under investigation. Therefore, medical treatment remains essential in the management of COVID-19. Herein, recent advances from beginning observations of COVID-19 outbreak to an understanding of the essential factors contributing to the spread and transmission of COVID-19 and its treatment are reviewed. Furthermore, an in-depth discussion on the epidemiological aspects, clinical symptoms and most efficient medical treatment strategies to mitigate the mortality and spread rates of COVID-19 is presented.
Collapse
Affiliation(s)
- Khatereh Zarkesh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Entezar-Almahdi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Ghasemiyeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Bahmani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrzad Roudaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinejad
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Hosseini
- Department of Manufacturing & Industrial Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Roßmann L, Bagola K, Stephen T, Gerards AL, Walber B, Ullrich A, Schülke S, Kamp C, Spreitzer I, Hasan M, David-Watine B, Shorte SL, Bastian M, van Zandbergen G. Distinct single-component adjuvants steer human DC-mediated T-cell polarization via Toll-like receptor signaling toward a potent antiviral immune response. Proc Natl Acad Sci U S A 2021; 118:e2103651118. [PMID: 34561306 PMCID: PMC8488681 DOI: 10.1073/pnas.2103651118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses. In contrast to commonly used adjuvants, such as aluminum hydroxide, Toll-like receptor (TLR) agonists induced robust phenotypic and functional DC maturation. In a DC-lymphocyte coculture system, we investigated the ensuing immune reactions. While monophosphoryl lipid A synthetic, a TLR4 ligand, induced checkpoint inhibitors indicative for immune exhaustion, the TLR7/8 agonist Resiquimod (R848) induced prominent type-1 interferon and interleukin 6 responses and robust CTL, B-cell, and NK-cell proliferation, which is particularly suited for antiviral immune responses. The recently licensed COVID-19 vaccines, BNT162b and mRNA-1273, are both based on single-stranded RNA. Indeed, we could confirm that the cytokine profile induced by lipid-complexed RNA was almost identical to the pattern induced by R848. Although this awaits further investigation, our results suggest that their efficacy involves the highly efficient antiviral response pattern stimulated by the RNAs' TLR7/8 activation.
Collapse
Affiliation(s)
- Laura Roßmann
- Division of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Katrin Bagola
- Division of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Tharshana Stephen
- Cytometry and Biomarkers UTechS, Institut Pasteur, 75015 Paris, France
| | - Anna-Lisa Gerards
- Division of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Bianca Walber
- Division of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Anja Ullrich
- Division of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Stefan Schülke
- Molecular Allergology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christel Kamp
- Division of Microbiology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ingo Spreitzer
- Division of Microbiology, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, 75015 Paris, France
| | | | | | - Max Bastian
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul-Ehrlich-Institut, 63225 Langen, Germany;
- Institute of Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
11
|
SARS-CoV-2 Isolates Show Impaired Replication in Human Immune Cells but Differential Ability to Replicate and Induce Innate Immunity in Lung Epithelial Cells. Microbiol Spectr 2021; 9:e0077421. [PMID: 34378952 PMCID: PMC8552721 DOI: 10.1128/spectrum.00774-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.
Collapse
|
12
|
Alavi Darazam I, Hatami F, Mahdi Rabiei M, Amin Pourhoseingholi M, Shabani M, Shokouhi S, Mardani M, Moradi O, Javandoust Gharehbagh F, Mirtalaee N, Negahban H, Amirdosara M, Zangi M, Hajiesmaeili M, Kazempour M, Shafigh N. An investigation into the beneficial effects of high-dose interferon beta 1-a, compared to low-dose interferon beta 1-a in severe COVID-19: The COVIFERON II randomized controlled trial. Int Immunopharmacol 2021; 99:107916. [PMID: 34224994 PMCID: PMC8238656 DOI: 10.1016/j.intimp.2021.107916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Introduction Coronavirus disease 2019 (COVID-19) has been a serious obstacle in front of public health. Interferon-beta 1a (IFN-β 1a) has been used to treat patients with COVID-19. We aimed to compare the effectiveness of high-dose IFN-β 1a compared to low dose IFN-β 1a in severe COVID-19 cases. Methods In this randomized, controlled, and clinical trial, eligible patients with confirmed SARS-CoV-2 infections were randomly assigned to receive one of the two following therapeutic regimens: The intervention group was treated with high-dose IFN-β 1a (Recigen) (Subcutaneous injections of 88 μg (24 million IU) on days 1, 3, 6) + lopinavir /ritonavir (Kaletra) (400 mg/100 mg twice a day for 10 days, orally) and the control group was treated with low-dose IFN-β 1a (Recigen) (Subcutaneous injections of 44 μg (12 million IU) on days 1, 3, 6) + lopinavir /ritonavir (Kaletra) (400 mg/100 mg twice a day for 10 days, orally). Result A total of 168 COVID- 19 confirmed patients underwent randomization; 83 were assigned to the intervention group and 85 were assigned to the control group. Median Time To Clinical Improvement (TTIC) for cases treated with low-dose IFN-β1a was shorter than that for cases treated with high-dose IFN-β1a (6 vs 10 days; P = 0.018). The mortality rates in intervention and control group were 41% and 36.5%, respectively. Conclusion The use of high-dose IFN-β 1a did not improve TTCI in hospitalized patients with moderate to severe COVID-19. Also, it did not have any significant effect on mortality reduction compared with treating with low-dose IFN-β 1a. Trial registration: This trial has been registered as ClinicalTrials.gov, NCT04521400.
Collapse
Affiliation(s)
- Ilad Alavi Darazam
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON.
| | - Firouze Hatami
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Mohammad Mahdi Rabiei
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Mohamad Amin Pourhoseingholi
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Minoosh Shabani
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Shervin Shokouhi
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Masoud Mardani
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Omid Moradi
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farid Javandoust Gharehbagh
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Nasrinsadat Mirtalaee
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Halimeh Negahban
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON
| | - Mahdi Amirdosara
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Anesthesiology Research Center Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Zangi
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Anesthesiology Research Center Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Muhanna Kazempour
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Navid Shafigh
- SBMU (Shahid Beheshti University of Medical Sciences) Task Force on the COVIFERON; Anesthesiology Research Center Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
14
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
15
|
Major J, Crotta S, Llorian M, McCabe TM, Gad HH, Priestnall SL, Hartmann R, Wack A. Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science 2020; 369:712-717. [PMID: 32527928 PMCID: PMC7292500 DOI: 10.1126/science.abc2061] [Citation(s) in RCA: 332] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022]
Abstract
Interferons (IFNs) are central to antiviral immunity. Viral recognition elicits IFN production, which in turn triggers the transcription of IFN-stimulated genes (ISGs), which engage in various antiviral functions. Type I IFNs (IFN-α and IFN-β) are widely expressed and can result in immunopathology during viral infections. By contrast, type III IFN (IFN-λ) responses are primarily restricted to mucosal surfaces and are thought to confer antiviral protection without driving damaging proinflammatory responses. Accordingly, IFN-λ has been proposed as a therapeutic in coronavirus disease 2019 (COVID-19) and other such viral respiratory diseases (see the Perspective by Grajales-Reyes and Colonna). Broggi et al. report that COVID-19 patient morbidity correlates with the high expression of type I and III IFNs in the lung. Furthermore, IFN-λ secreted by dendritic cells in the lungs of mice exposed to synthetic viral RNA causes damage to the lung epithelium, which increases susceptibility to lethal bacterial superinfections. Similarly, using a mouse model of influenza infection, Major et al. found that IFN signaling (especially IFN-λ) hampers lung repair by inducing p53 and inhibiting epithelial proliferation and differentiation. Complicating this picture, Hadjadj et al. observed that peripheral blood immune cells from severe and critical COVID-19 patients have diminished type I IFN and enhanced proinflammatory interleukin-6– and tumor necrosis factor-α–fueled responses. This suggests that in contrast to local production, systemic production of IFNs may be beneficial. The results of this trio of studies suggest that the location, timing, and duration of IFN exposure are critical parameters underlying the success or failure of therapeutics for viral respiratory infections. Science, this issue p. 706, p. 712, p. 718; see also p. 626 Excessive cytokine signaling frequently exacerbates lung tissue damage during respiratory viral infection. Type I (IFN-α and IFN-β) and III (IFN-λ) interferons are host-produced antiviral cytokines. Prolonged IFN-α and IFN-β responses can lead to harmful proinflammatory effects, whereas IFN-λ mainly signals in epithelia, thereby inducing localized antiviral immunity. In this work, we show that IFN signaling interferes with lung repair during influenza recovery in mice, with IFN-λ driving these effects most potently. IFN-induced protein p53 directly reduces epithelial proliferation and differentiation, which increases disease severity and susceptibility to bacterial superinfections. Thus, excessive or prolonged IFN production aggravates viral infection by impairing lung epithelial regeneration. Timing and duration are therefore critical parameters of endogenous IFN action and should be considered carefully for IFN therapeutic strategies against viral infections such as influenza and coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Jack Major
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Miriam Llorian
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Teresa M McCabe
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK.,Experimental Histopathology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
16
|
Dastan F, Nadji SA, Saffaei A, Marjani M, Moniri A, Jamaati H, Hashemian SM, Baghaei P, Abedini A, Varahram M, Yousefian S, Tabarsi P. Subcutaneous administration of interferon beta-1a for COVID-19: A non-controlled prospective trial. Int Immunopharmacol 2020; 85:106688. [PMID: 32544867 PMCID: PMC7275997 DOI: 10.1016/j.intimp.2020.106688] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/25/2020] [Accepted: 06/05/2020] [Indexed: 02/02/2023]
Abstract
Background Recently, a new coronavirus spreads rapidly throughout the countries and resulted in a worldwide epidemic. Interferons have direct antiviral and immunomodulatory effects. Antiviral effects may include inhibition of viral replication, protein synthesis, virus maturation, or virus release from infected cells. Previous studies have shown that some coronaviruses are susceptible to interferons. The aim of this study was to evaluate the therapeutic effects of IFN-β-1a administration in COVID-19. Methods In this prospective non-controlled trial, 20 patients included. They received IFN-β-1a at a dose of 44 µg subcutaneously every other day up to 10 days. All patients received conventional therapy including Hydroxychloroquine, and lopinavir/ritonavir. Demographic data, clinical symptoms, virological clearance, and imaging findings recorded during the study. Results The mean age of the patients was 58.55 ± 13.43 years. Fever resolved in all patients during first seven days. Although other symptoms decreased gradually. Virological clearance results showed a significant decrease within 10 days. Imaging studies showed significant recovery after 14-day period in all patients. The mean time of hospitalization was 16.8 ± 3.4 days. There were no deaths or significant adverse drug reactions in the 14-day period. Conclusions Our findings support the use of IFN-β-1a in combination with hydroxychloroquine and lopinavir/ritonavir in the management of COVID-19. Clinical trial registration number: IRCT20151227025726N12.
Collapse
Affiliation(s)
- Farzaneh Dastan
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Nadji
- Virology Research Center, National Institutes of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Saffaei
- Student Research Committee, Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Virology Research Center, National Institutes of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvaneh Baghaei
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Abedini
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Disease Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Yousefian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Vlachiotis S, Andreakos E. Lambda interferons in immunity and autoimmunity. J Autoimmun 2019; 104:102319. [DOI: 10.1016/j.jaut.2019.102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/23/2023]
|
18
|
Österlund P, Jiang M, Westenius V, Kuivanen S, Järvi R, Kakkola L, Lundberg R, Melén K, Korva M, Avšič-Županc T, Vapalahti O, Julkunen I. Asian and African lineage Zika viruses show differential replication and innate immune responses in human dendritic cells and macrophages. Sci Rep 2019; 9:15710. [PMID: 31673117 PMCID: PMC6823455 DOI: 10.1038/s41598-019-52307-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) infections in humans are considered to be mild or subclinical. However, during the recent epidemics in the Pacific Islands and the Americas, the infection was associated with Quillain-Barré syndrome and congenital infections with fetal brain abnormalities, including microcephaly. Thus, more detailed understanding of ZIKV-host cell interactions and regulation of innate immune responses by strains of differential evolutionary origin is required. Here, we characterized the infection and immune responses triggered by two epidemic Asian/American lineage viruses, including an isolate from fetal brains, and a historical, low passage 1947 African lineage virus in human monocyte-derived dendritic cells (DCs) and macrophages. The epidemic Asian/American ZIKV replicated well and induced relatively good antiviral responses in human DCs whereas the African strain replicated less efficiently and induced weaker immune responses. In macrophages both the African and Asian strains showed limited replication and relatively weak cytokine gene expression. Interestingly, in macrophages we observed host protein degradation, especially IRF3 and STAT2, at early phases of infection with both lineage viruses, suggesting an early proteasomal activation in phagocytic cells. Our data indicates that ZIKV evolution has led to significant phenotypic differences in the replication characteristics leading to differential regulation of host innate immune responses.
Collapse
Affiliation(s)
- Pamela Österlund
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland.
| | - Miao Jiang
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland
| | - Veera Westenius
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, University of Helsinki, 00290, Helsinki, Finland
| | - Riia Järvi
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland
| | - Laura Kakkola
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Rickard Lundberg
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Krister Melén
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, 00300, Helsinki, Finland.,Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| | - Miša Korva
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Olli Vapalahti
- Department of Virology, University of Helsinki, 00290, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku and Turku University Hospital, 20520, Turku, Finland
| |
Collapse
|
19
|
Grzegorzewska AE. Genetic Polymorphisms within Interferon-λ Region and Interferon-λ3 in the Human Pathophysiology: Their Contribution to Outcome, Treatment, and Prevention of Infections with Hepatotropic Viruses. Curr Med Chem 2019; 26:4832-4851. [DOI: 10.2174/0929867325666180719121142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 03/21/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
:
Genetic polymorphisms within the interferon λ (IFN-λ) chromosomal region,
mainly rs12979860 of IFN-λ4 gene (IFNL4), are known as associated with spontaneous hepatitis
C virus (HCV) resolution and sustained viral response to therapy with pegylated interferon-
α and ribavirin. Strong linkage disequilibrium of IFNL4 rs12979860 with IFNL4
rs368234815, which is casually associated with HCV spontaneous and therapeutical eradication,
at least partially explains favorable HCV outcomes attributed to major homozygosity in
rs12979860. Effects of IFN-based antiviral treatment are associated with pretreatment expression
of the IFN-λ1 receptor, expression of hepatic IFN-stimulated genes, production of IFN-
λ4, and preactivation of the JAK-STAT signaling. Nowadays direct-acting antivirals (DAAs)
became a potent tool in the treatment of hepatitis C, but IFN-λs are still under investigation as
potential antivirals and might be an option in HCV infection (DAA resistance, recurrent viremia,
adverse effects).
:
Patients with altered immunocompetence are especially prone to infections. In uremic subjects,
polymorphisms within the IFN-λ chromosomal region associate with spontaneous HCV
clearance, similarly like in the non-uremic population. Circulating IFN-λ3 shows a positive
correlation with plasma titers of antibodies to surface antigen of hepatitis B virus (anti-HBs),
which are crucial for protection against hepatitis B virus. More efficient anti-HBs production
in the presence of higher IFN-λ3 levels might occur due to IFN-λ3-induced regulation of indoleamine
2,3-dioxygenase (IDO) expression. IFN-stimulated response element is a part of
IDO gene promoter. It is worth further investigation whether IDO gene, circulating IDO, genetic
polymorphisms within the IFN-λ region, and circulating IFN-λ3 act in concordance in
immunological response to hepatotropic viruses.
Collapse
Affiliation(s)
- Alicja E. Grzegorzewska
- Chair and Department of Nephrology, Transplantology and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol 2019; 56:67-75. [PMID: 30399529 PMCID: PMC6541392 DOI: 10.1016/j.coi.2018.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
Lambda interferons (IFNλs, type III IFNs or interleukins-28/29) were described fifteen years ago as novel cytokines sharing structural and functional homology with IL-10 and type I IFNs, respectively. IFNλs engage a unique receptor complex comprising IFNLR1 and IL10R2, nevertheless they share signaling cascade and many functions with type I IFNs, questioning their possible non-redundant roles and overall biological importance. Here, we review the latest evidence establishing the primacy of IFNλs in front line protection at anatomical barriers, mediating antiviral immunity before type I IFNs. We also discuss their emerging role in regulating inflammation and limiting host damage, a major difference to type I IFNs. IFNλs come thus to light as dual function cytokines mediating antiviral immunity and damage control.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1NY, United Kingdom.
| | - Ivan Zanoni
- Division of Gastroenterology, Boston Children's Hospital, Harvard University, Boston, MA 02115, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Ioanna E Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
21
|
Negishi H, Taniguchi T, Yanai H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb Perspect Biol 2018; 10:a028423. [PMID: 28963109 PMCID: PMC6211389 DOI: 10.1101/cshperspect.a028423] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interferons (IFNs) are a broad class of cytokines elicited on challenge to the host defense and are essential for mobilizing immune responses to pathogens. Divided into three classes, type I, type II, and type III, all IFNs share in common the ability to evoke antiviral activities initiated by the interaction with their cognate receptors. The nine-member IFN regulatory factor (IRF) family, first discovered in the context of transcriptional regulation of type I IFN genes following viral infection, are pivotal for the regulation of the IFN responses. In this review, we briefly describe cardinal features of the three types of IFNs and then focus on the role of the IRF family members in the regulation of each IFN system.
Collapse
Affiliation(s)
- Hideo Negishi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Tadatsugu Taniguchi
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| | - Hideyuki Yanai
- Department of Molecular Immunology, Institute of Industrial Science, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Komaba 4-6-1, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
22
|
Shan Y, Liu ZQ, Li GW, Chen C, Luo H, Liu YJ, Zhuo XH, Shi XF, Fang WH, Li XL. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation. J Zhejiang Univ Sci B 2018; 19:570-580. [PMID: 29971995 PMCID: PMC6052364 DOI: 10.1631/jzus.b1700283] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a highly infectious pathogen that can cause severe diseases in pigs and result in enormous economic losses in the worldwide swine industry. Previous studies revealed that PEDV exhibits an obvious capacity for modulating interferon (IFN) signaling or expression. The newly discovered type III IFN, which plays a crucial role in antiviral immunity, has strong antiviral activity against PEDV proliferation in IPEC-J2 cells. In this study, we aimed to investigate the effect of PEDV nucleocapsid (N) protein on type III IFN-λ. We found that the N proteins of ten PEDV strains isolated between 2013 and 2017 from different local farms shared high nucleotide identities, while the N protein of the CV777 vaccine strain formed a monophyletic branch in the phylogenetic tree. The N protein of the epidemic strain could antagonize type III IFN, but not type I or type II IFN expression induced by polyinosinic-polycytidylic acid (poly(I:C)) in IPEC-J2 cells. Subsequently, we demonstrated that the inhibition of poly(I:C)-induced IFN-λ3 production by PEDV N protein was dependent on the blocking of nuclear factor-κB (NF-κB) nuclear translocation. These findings might help increase understanding of the pathogenesis of PEDV and its mechanisms for evading the host immune response.
Collapse
Affiliation(s)
- Ying Shan
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zi-Qi Liu
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guo-Wei Li
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong Chen
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Luo
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ya-Jie Liu
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xun-Hui Zhuo
- Institute of Parasitic Disease, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Xing-Fen Shi
- Animal Products Quality Testing Center of Zhejiang Province, Hangzhou 310020, China
| | - Wei-Huan Fang
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Liang Li
- Zhejiang Province Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterainary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
Westenius V, Mäkelä SM, Julkunen I, Österlund P. Highly Pathogenic H5N1 Influenza A Virus Spreads Efficiently in Human Primary Monocyte-Derived Macrophages and Dendritic Cells. Front Immunol 2018; 9:1664. [PMID: 30065728 PMCID: PMC6056608 DOI: 10.3389/fimmu.2018.01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022] Open
Abstract
Influenza A viruses cause recurrent epidemics and occasional global pandemics. Wild birds are the natural reservoir of influenza A virus from where the virus can be transmitted to poultry or to mammals including humans. Mortality among humans in the highly pathogenic avian influenza H5N1 virus infection is even 60%. Despite intense research, there are still open questions in the pathogenicity of the H5N1 virus in humans. To characterize the H5N1 virus infection in human monocyte-derived macrophages (Mɸs) and dendritic cells (DCs), we used human isolates of highly pathogenic H5N1/2004 and H5N1/1997 and low pathogenic H7N9/2013 avian influenza viruses in comparison with a seasonal H3N2/1989 virus. We noticed that the H5N1 viruses have an overwhelming ability to replicate and spread in primary human immune cell cultures, and even the addition of trypsin did not equalize the infectivity of H7N9 or H3N2 viruses to the level seen with H5N1 virus. H5N1 virus stocks contained more often propagation-competent viruses than the H7N9 or H3N2 viruses. The data also showed that human DCs and Mɸs maintain 1,000- and 10,000-fold increase in the production of infectious H5N1 virus, respectively. Both analyzed highly pathogenic H5N1 viruses showed multi-cycle infection in primary human DCs and Mɸs, whereas the H3N2 and H7N9 viruses were incapable of spreading in immune cells. Interestingly, H5N1 virus was able to spread extremely efficiently despite the strong induction of antiviral interferon gene expression, which may in part explain the high pathogenicity of H5N1 virus infection in humans.
Collapse
Affiliation(s)
- Veera Westenius
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanna M Mäkelä
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Pamela Österlund
- Expert Microbiology Unit, Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
24
|
Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S, Pleschka S. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems. Front Microbiol 2018; 9:526. [PMID: 29623073 PMCID: PMC5874506 DOI: 10.3389/fmicb.2018.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species.
Collapse
Affiliation(s)
- Henning Petersen
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.,Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo, Egypt
| | - Mohamed A Tantawy
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Azeem A Iqbal
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Aravind Tallam
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Balachandar Selvakumar
- Max-Planck Laboratory for Heart and Lung Research, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
He F, Melén K, Maljanen S, Lundberg R, Jiang M, Österlund P, Kakkola L, Julkunen I. Ebolavirus protein VP24 interferes with innate immune responses by inhibiting interferon-λ1 gene expression. Virology 2017; 509:23-34. [PMID: 28595092 DOI: 10.1016/j.virol.2017.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/25/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Ebolaviruses (EBOV) cause severe disease with a recent outbreak in West Africa in 2014-2015 leading to more than 28 000 cases and 11 300 fatalities. This emphasizes the urgent need for better knowledge on these highly pathogenic RNA viruses. Host innate immune responses play a key role in restricting the spread of a viral disease. In this study we systematically analyzed the effects of cloned EBOV genes on the main host immune response to RNA viruses: the activation of RIG-I pathway and type I and III interferon (IFN) gene expression. EBOV VP24, in addition of inhibiting IFN-induced antiviral responses, was found to efficiently inhibit type III IFN-λ1 gene expression. This inhibition was found to occur downstream of IRF3 activation and to be dependent on VP24 importin binding residues. These results emphasize the importance of VP24 in EBOV infection cycle, making VP24 as an excellent target for drug development.
Collapse
Affiliation(s)
- Felix He
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Krister Melén
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland; Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Sari Maljanen
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Rickard Lundberg
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Miao Jiang
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Pamela Österlund
- Expert Microbiology Unit, National Institute for Health and Welfare, Mannerheimintie 166, 00300 Helsinki, Finland.
| | - Laura Kakkola
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| | - Ilkka Julkunen
- Institute of Biomedicine/Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland.
| |
Collapse
|
26
|
Kotenko SV, Durbin JE. Contribution of type III interferons to antiviral immunity: location, location, location. J Biol Chem 2017; 292:7295-7303. [PMID: 28289095 PMCID: PMC5418032 DOI: 10.1074/jbc.r117.777102] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type I interferons (IFN-α/β) and the more recently identified type III IFNs (IFN-λ) function as the first line of defense against virus infection and regulate the development of both innate and adaptive immune responses. Type III IFNs were originally identified as a novel ligand-receptor system acting in parallel with type I IFNs, but subsequent studies have provided increasing evidence for distinct roles for each IFN family. In addition to their compartmentalized antiviral actions, these two systems appear to have multiple levels of cross-regulation and act coordinately to achieve effective antimicrobial protection with minimal collateral damage to the host.
Collapse
Affiliation(s)
- Sergei V Kotenko
- From the Departments of Microbiology, Biochemistry and Molecular Genetics and
- Center for Immunity and Inflammation, and
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey 07103
| | - Joan E Durbin
- Center for Immunity and Inflammation, and
- University Hospital Cancer Center, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers, Newark, New Jersey 07103
- Pathology and Laboratory Medicine
| |
Collapse
|
27
|
Muzammil, Jayanthi D, Faizuddin M, Noor Ahamadi HM. Association of interferon lambda-1 with herpes simplex viruses-1 and -2, Epstein-Barr virus, and human cytomegalovirus in chronic periodontitis. JOURNAL OF INVESTIGATIVE AND CLINICAL DENTISTRY 2017; 8. [PMID: 26677065 DOI: 10.1111/jicd.12200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Abstract
AIM Periodontal tissues facilitate the homing of herpes viruses that elicit the immune-inflammatory response releasing the interferons (IFN). IFN lambda-1 (λ1) can suppress the replication of viruses, and induces the antiviral mechanism. The aim of the present study was to evaluate the association between IFN-λ1 and periodontal herpes viruses in the immunoregulation of chronic periodontal disease. METHODS The cross-sectional study design included 30 chronic periodontitis patients with a mean age of 42.30 ± 8.63 years. Gingival crevicular fluid collected was assessed for IFN-λ1 using enzyme-linked immunosorbent assay and four herpes viruses were detected using multiplex polymerase chain reaction technique. IFN-λ1 levels were compared between virus-positive and -negative patients for individual and total viruses. RESULTS Fifty per cent (n = 15) of patients were positive for the four herpes viruses together; 50% (n = 15), 30% (n = 9), 26.7% (n = 8), and 40% (n = 12) were positive for herpes simplex virus (HSV)-1, Epstein-Barr virus, HSV-2, and human cytomegalovirus, respectively. The mean concentrations of IFN-λ1 in virus-positive patients (14.38 ± 13.95) were lower than those of virus-negative patients (228.26 ± 215.35). INF-λ1 levels in individual virus groups were also lower in virus-positive patients compared to virus-negative patients, with P < 0.001. CONCLUSIONS These results suggest that IFN-λ1 could have antiviral and therapeutic value against the viruses in the pathogenesis of chronic periodontitis.
Collapse
Affiliation(s)
- Muzammil
- Division of Periodontics, Department of Preventive Dental Sciences, Buraydah College of Pharmacy and Dentistry, Buraydah Private Colleges, Buraydah, Al-Qassim, Saudi Arabia
| | - D Jayanthi
- Department of Periodontics, M.R. Ambedkar Dental College and Hospital, Bangalore, Karnataka, India
| | - Mohamed Faizuddin
- Department of Periodontics, M.R. Ambedkar Dental College and Hospital, Bangalore, Karnataka, India
| | - H M Noor Ahamadi
- Department of Management, PES University, Bangalore, Karnataka, India
| |
Collapse
|
28
|
Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2017; 7:41886. [PMID: 28157199 PMCID: PMC5291100 DOI: 10.1038/srep41886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV.
Collapse
|
29
|
Park A, Hong P, Won ST, Thibault PA, Vigant F, Oguntuyo KY, Taft JD, Lee B. Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16057. [PMID: 27606350 PMCID: PMC4996130 DOI: 10.1038/mtm.2016.57] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/19/2022]
Abstract
The advent of RNA-guided endonuclease (RGEN)-mediated gene editing, specifically via CRISPR/Cas9, has spurred intensive efforts to improve the efficiency of both RGEN delivery and targeted mutagenesis. The major viral vectors in use for delivery of Cas9 and its associated guide RNA, lentiviral and adeno-associated viral systems, have the potential for undesired random integration into the host genome. Here, we repurpose Sendai virus, an RNA virus with no viral DNA phase and that replicates solely in the cytoplasm, as a delivery system for efficient Cas9-mediated gene editing. The high efficiency of Sendai virus infection resulted in high rates of on-target mutagenesis in cell lines (75–98% at various endogenous and transgenic loci) and primary human monocytes (88% at the ccr5 locus) in the absence of any selection. In conjunction with extensive former work on Sendai virus as a promising gene therapy vector that can infect a wide range of cell types including hematopoietic stem cells, this proof-of-concept study opens the door to using Sendai virus as well as other related paramyxoviruses as versatile and efficient tools for gene editing.
Collapse
Affiliation(s)
- Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Patrick Hong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Sohui T Won
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Patricia A Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Frederic Vigant
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Justin D Taft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| |
Collapse
|
30
|
Söderholm S, Kainov DE, Öhman T, Denisova OV, Schepens B, Kulesskiy E, Imanishi SY, Corthals G, Hintsanen P, Aittokallio T, Saelens X, Matikainen S, Nyman TA. Phosphoproteomics to Characterize Host Response During Influenza A Virus Infection of Human Macrophages. Mol Cell Proteomics 2016; 15:3203-3219. [PMID: 27486199 DOI: 10.1074/mcp.m116.057984] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses cause infections in the human respiratory tract and give rise to annual seasonal outbreaks, as well as more rarely dreaded pandemics. Influenza A viruses become quickly resistant to the virus-directed antiviral treatments, which are the current main treatment options. A promising alternative approach is to target host cell factors that are exploited by influenza viruses. To this end, we characterized the phosphoproteome of influenza A virus infected primary human macrophages to elucidate the intracellular signaling pathways and critical host factors activated upon influenza infection. We identified 1675 phosphoproteins, 4004 phosphopeptides and 4146 nonredundant phosphosites. The phosphorylation of 1113 proteins (66%) was regulated upon infection, highlighting the importance of such global phosphoproteomic profiling in primary cells. Notably, 285 of the identified phosphorylation sites have not been previously described in publicly available phosphorylation databases, despite many published large-scale phosphoproteome studies using human and mouse cell lines. Systematic bioinformatics analysis of the phosphoproteome data indicated that the phosphorylation of proteins involved in the ubiquitin/proteasome pathway (such as TRIM22 and TRIM25) and antiviral responses (such as MAVS) changed in infected macrophages. Proteins known to play roles in small GTPase-, mitogen-activated protein kinase-, and cyclin-dependent kinase- signaling were also regulated by phosphorylation upon infection. In particular, the influenza infection had a major influence on the phosphorylation profiles of a large number of cyclin-dependent kinase substrates. Functional studies using cyclin-dependent kinase inhibitors showed that the cyclin-dependent kinase activity is required for efficient viral replication and for activation of the host antiviral responses. In addition, we show that cyclin-dependent kinase inhibitors protect IAV-infected mice from death. In conclusion, we provide the first comprehensive phosphoproteome characterization of influenza A virus infection in primary human macrophages, and provide evidence that cyclin-dependent kinases represent potential therapeutic targets for more effective treatment of influenza infections.
Collapse
Affiliation(s)
- Sandra Söderholm
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; §Unit of Systems Toxicology, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland
| | - Denis E Kainov
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tiina Öhman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland
| | - Oxana V Denisova
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Bert Schepens
- ‖Medical Biotechnology Center, VIB, B-9052 Ghent (Zwijnaarde), Belgium; **Department of Biomedical Molecular Biology, B-9052 Ghent University, Ghent, Belgium
| | - Evgeny Kulesskiy
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Susumu Y Imanishi
- ‡‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Garry Corthals
- ‡‡Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Petteri Hintsanen
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- ¶Institute for Molecular Medicine Finland (FIMM), FI-00014 University of Helsinki, Helsinki, Finland
| | - Xavier Saelens
- ‖Medical Biotechnology Center, VIB, B-9052 Ghent (Zwijnaarde), Belgium; **Department of Biomedical Molecular Biology, B-9052 Ghent University, Ghent, Belgium
| | - Sampsa Matikainen
- §§Department of Rheumatology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuula A Nyman
- From the ‡Institute of Biotechnology, FI-00014 University of Helsinki, Helsinki, Finland; ¶¶Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
31
|
Mäkelä SM, Österlund P, Westenius V, Latvala S, Diamond MS, Gale M, Julkunen I. RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression. J Virol 2015; 89:12014-25. [PMID: 26378160 PMCID: PMC4645339 DOI: 10.1128/jvi.01576-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/13/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Influenza B virus causes annual epidemics and, along with influenza A virus, accounts for substantial disease and economic burden throughout the world. Influenza B virus infects only humans and some marine mammals and is not responsible for pandemics, possibly due to a very low frequency of reassortment and a lower evolutionary rate than that of influenza A virus. Influenza B virus has been less studied than influenza A virus, and thus, a comparison of influenza A and B virus infection mechanisms may provide new insight into virus-host interactions. Here we analyzed the early events in influenza B virus infection and interferon (IFN) gene expression in human monocyte-derived macrophages and dendritic cells. We show that influenza B virus induces IFN regulatory factor 3 (IRF3) activation and IFN-λ1 gene expression with faster kinetics than does influenza A virus, without a requirement for viral protein synthesis or replication. Influenza B virus-induced activation of IRF3 required the fusion of viral and endosomal membranes, and nuclear accumulation of IRF3 and viral NP occurred concurrently. In comparison, immediate early IRF3 activation was not observed in influenza A virus-infected macrophages. Experiments with RIG-I-, MDA5-, and RIG-I/MDA5-deficient mouse fibroblasts showed that RIG-I is the critical pattern recognition receptor needed for the influenza B virus-induced activation of IRF3. Our results show that innate immune mechanisms are activated immediately after influenza B virus entry through the endocytic pathway, whereas influenza A virus avoids early IRF3 activation and IFN gene induction. IMPORTANCE Recently, a great deal of interest has been paid to identifying the ligands for RIG-I under conditions of natural infection, as many previous studies have been based on transfection of cells with different types of viral or synthetic RNA structures. We shed light on this question by analyzing the earliest step in innate immune recognition of influenza B virus by human macrophages. We show that influenza B virus induces IRF3 activation, leading to IFN gene expression after viral RNPs (vRNPs) are released into the cytosol and are recognized by RIG-I receptor, meaning that the incoming influenza B virus is already able to activate IFN gene expression. In contrast, influenza A (H3N2) virus failed to activate IRF3 at very early times of infection, suggesting that there are differences in innate immune recognition between influenza A and B viruses.
Collapse
Affiliation(s)
- Sanna M Mäkelä
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Pamela Österlund
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Veera Westenius
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Sinikka Latvala
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland
| | - Michael S Diamond
- Departments of Medicine, Pathology and Immunology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ilkka Julkunen
- Viral Infections Unit, Department of Infectious Diseases, National Institute for Health and Welfare, Helsinki, Finland Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
32
|
Tynell J, Westenius V, Rönkkö E, Munster VJ, Melén K, Österlund P, Julkunen I. Middle East respiratory syndrome coronavirus shows poor replication but significant induction of antiviral responses in human monocyte-derived macrophages and dendritic cells. J Gen Virol 2015; 97:344-355. [PMID: 26602089 DOI: 10.1099/jgv.0.000351] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection.
Collapse
Affiliation(s)
- Janne Tynell
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Veera Westenius
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Esa Rönkkö
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Krister Melén
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Pamela Österlund
- National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Ilkka Julkunen
- National Institute for Health and Welfare (THL), Helsinki, Finland.,Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
33
|
Novel Types of Small RNA Exhibit Sequence- and Target-dependent Angiogenesis Suppression Without Activation of Toll-like Receptor 3 in an Age-related Macular Degeneration (AMD) Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e258. [PMID: 26484944 PMCID: PMC4881762 DOI: 10.1038/mtna.2015.34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/15/2015] [Indexed: 12/16/2022]
Abstract
RNA interference (RNAi) has become a powerful tool for suppressing gene expression in vitro and in vivo. A great deal of evidence has demonstrated the potential for the use of synthetic small interfering RNAs (siRNAs) as therapeutic agents. However, the application of siRNA to clinical medicine is still limited, mainly due to sequence-independent suppression of angiogenesis mediated by Toll-like receptor 3 (TLR3). Here, we describe novel types of synthetic RNA, named nkRNA and PnkRNA, that exhibit sequence-specific gene silencing through RNAi without activating TLRs or RIG-I–like receptor signaling. In addition, we confirmed the therapeutic effect for the novel types of RNA in an animal model of age-related macular degeneration (AMD) without retinal degeneration. These data indicate that nkRNA and PnkRNA are of great potential utility as therapies against blinding choroidal neovascularization due to AMD.
Collapse
|
34
|
Dong Q, Zhu H, Zhang Y, Yang D. Bioinformatics Analysis of Proteome Changes in Calu-3 Cell Infected by Influenza A Virus (H5N1). J Mol Microbiol Biotechnol 2015; 25:311-9. [DOI: 10.1159/000437226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Aim:</i></b> This paper aimed to identify the differentially expressed proteins (DEPs) in Calu-3 cells infected by influenza A virus (IAV) subtype H5N1. <b><i>Methods:</i></b> We downloaded proteome data (BTO: 0000762) from the Proteomics Identifications database and identified the DEPs in the IAV-infected Calu-3 cells. Then we constructed a protein-protein interaction network and a transcriptional regulatory network of the proteins. Finally, we performed gene ontology (GO) analysis to study the IAV infection at a functional level. <b><i>Results:</i></b> A total of 4 protein groups between the normal cells and the Calu-3 cells infected by IAV, severe acute respiratory syndrome or swine influenza were identified. In the networks, we found 5 significant proteins including FAN, CPSF2, AGO1, AGO2 and PAX5. In addition, we demonstrated those proteins were associated with GO terms such as phosphate metabolic process, calcium ion transport, cell division and regulation of cell motion. STAT1, NS2, CD5, NCKX6 and PDGFB were significant DEPs in these GO terms. <b><i>Conclusions:</i></b> By referring to the previous studies, we suggest that proteins including FAN, CPSF2, AGO1, AGO2, PAX5, STAT1 and PDGFB can be used as therapeutic targets of IAV infection.
Collapse
|
35
|
Palma-Ocampo HK, Flores-Alonso JC, Vallejo-Ruiz V, Reyes-Leyva J, Flores-Mendoza L, Herrera-Camacho I, Rosas-Murrieta NH, Santos-López G. Interferon lambda inhibits dengue virus replication in epithelial cells. Virol J 2015; 12:150. [PMID: 26411318 PMCID: PMC4584467 DOI: 10.1186/s12985-015-0383-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/16/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. METHODS Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. RESULTS We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. CONCLUSIONS Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.
Collapse
Affiliation(s)
- Helen K Palma-Ocampo
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México.
| | - Juan C Flores-Alonso
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.
| | - Verónica Vallejo-Ruiz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.
| | - Lilian Flores-Mendoza
- Laboratorio de Inmunología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, México.
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
| | - Nora H Rosas-Murrieta
- Laboratorio de Bioquímica, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México.
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, México.
| |
Collapse
|
36
|
Dai M, Wang X, Li JL, Zhou Y, Sang M, Liu JB, Wu JG, Ho WZ. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages. FASEB J 2015; 29:4978-88. [PMID: 26296370 DOI: 10.1096/fj.15-273128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.
Collapse
Affiliation(s)
- Ming Dai
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jie-Liang Li
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yu Zhou
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ming Sang
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jin-Biao Liu
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jian-Guo Wu
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- *The Center for Animal Experiment/Animal Biological Safety Level 3 Laboratory, State Key Laboratory of Virology, Wuhan University, Wuhan, China, and Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Wack A, Terczyńska-Dyla E, Hartmann R. Guarding the frontiers: the biology of type III interferons. Nat Immunol 2015; 16:802-9. [PMID: 26194286 PMCID: PMC7096991 DOI: 10.1038/ni.3212] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Type III interferons (IFNs) or IFN-λs regulate a similar set of genes as type I IFNs, but whereas type I IFNs act globally, IFN-λs primarily target mucosal epithelial cells and protect them against the frequent viral attacks that are typical for barrier tissues. IFN-λs thereby help to maintain healthy mucosal surfaces through immune protection, without the significant immune-related pathogenic risk associated with type I IFN responses. Type III IFNs also target the human liver, with dual effects: they induce an antiviral state in hepatocytes, but specific IFN-λ4 action impairs the clearance of hepatitis C virus and could influence inflammatory responses. This constitutes a paradox that has yet to be resolved.
Collapse
Affiliation(s)
- Andreas Wack
- Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Ewa Terczyńska-Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
38
|
Andersen LL, Mørk N, Reinert LS, Kofod-Olsen E, Narita R, Jørgensen SE, Skipper KA, Höning K, Gad HH, Østergaard L, Ørntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. ACTA ACUST UNITED AC 2015. [PMID: 26216125 PMCID: PMC4548062 DOI: 10.1084/jem.20142274] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans.
Collapse
Affiliation(s)
- Line Lykke Andersen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nanna Mørk
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Line S Reinert
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Emil Kofod-Olsen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Ryo Narita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Sofie E Jørgensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Kristian A Skipper
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Klara Höning
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Torben F Ørntoft
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Veit Hornung
- Department of Molecular Medicine, University of Bonn, 53113 Bonn, Germany
| | - Søren R Paludan
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Takashi Fujita
- Department of Molecular Genetics, Kyoto University, Kyoto 606-8507, Japan
| | - Mette Christiansen
- Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Trine H Mogensen
- Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Molecular Biology and Genetics, Aarhus Research Center for Innate Immunity, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark Department of Infectious Diseases, International Center for Immunodeficiency Diseases, Department of Molecular Medicine, Department of Clinical Immunology, Aarhus University Hospital Skejby, 8200 Aarhus, Denmark
| |
Collapse
|
39
|
Odendall C, Kagan JC. The unique regulation and functions of type III interferons in antiviral immunity. Curr Opin Virol 2015; 12:47-52. [PMID: 25771505 PMCID: PMC4470718 DOI: 10.1016/j.coviro.2015.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
Abstract
Type I interferons (IFNs) were long considered to be the sole IFN species produced by virus-infected cells until the discovery of type III IFNs (IFNλs), decades later. Like type I IFNs, type III IFNs are induced by and protect against viral infections, leading to the initial conclusion that the two IFN species are identical in regulation and biological functions. However, the two systems differ in the tissue expression of their receptor, resulting in different roles in vivo. The unique nature of IFNλs has been further demonstrated by recent studies revealing differences in the regulation of type I and III IFN expression, and how these proteins elicit specific cellular responses. This review focuses on the distinctive features of type III IFNs in antiviral innate immunity.
Collapse
Affiliation(s)
- Charlotte Odendall
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
40
|
Wang S, Huang X, Zhang J, Huang C. Antiviral and myocyte protective effects of IL-28A in coxsackievirus B3-induced myocarditis. Braz J Infect Dis 2015; 19:132-40. [PMID: 25528576 PMCID: PMC9478766 DOI: 10.1016/j.bjid.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/12/2014] [Accepted: 10/06/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to investigate whether interleukin-28A (IL-28A) plays a role in murine myocarditis induced by coxsackievirus B3 (CVB3), and to explore its possible mechanism involved. METHODS Male BALB/c mice both infected and not infected by CVB3 were randomly divided into four groups (n=40), untreated or treated with different doses of IL-28A for 4 days, and then sacrificed on days 4 and 7 post-infection. The heart samples were collected for histopathologic examination. Cardiac viral load was determined by a plaque assay. Additionally, immunoblot analysis, TUNEL assay, and immunohistochemistry were performed to examine the expression of signal transducer, activator of transcription 1 and 2 (STAT1 and STAT2), CVB3-induced apoptosis and the expression of Bcl-2, BAX and Caspase-3. RESULTS Compared to uninfected mice, the CVB3 infected mice exhibited higher mortality rate (p<0.001), apparent inflammation and myocardial lesion (p<0.01), and higher cardiac viral load (p<0.01). After CVB3 infection, IL-28A treated mice presented no death (p<0.001), reduced inflammation and myocardial lesion (p<0.01), and lower viral load (p<0.01) compared to untreated mice. Besides, treatment with IL-28A markedly increased the expressions of STAT1 and STAT2, and inhibited CVB3-induced apoptosis in myocardial cells with increased ratio of Bcl-2/BAX. CONCLUSION The antiviral and myocyte protective effects of IL-28A in CVB3-induced myocarditis are regulated by STAT1 and STAT2.
Collapse
Affiliation(s)
- Shihong Wang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan University, Hubei, PR China
| | - Xingyuan Huang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan University, Hubei, PR China
| | - Jing Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan University, Hubei, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Hubei, PR China.
| |
Collapse
|
41
|
Jiang M, Österlund P, Fagerlund R, Rios DN, Hoffmann A, Poranen MM, Bamford DH, Julkunen I. MAP kinase p38α regulates type III interferon (IFN-λ1) gene expression in human monocyte-derived dendritic cells in response to RNA stimulation. J Leukoc Biol 2015; 97:307-20. [PMID: 25473098 DOI: 10.1189/jlb.2a0114-059rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recognition of viral nucleic acids leads to type I and type III IFN gene expression and activation of host antiviral responses. At present, type III IFN genes are the least well-characterized IFN types. Here, we demonstrate that the p38 MAPK signaling pathway is involved in regulating IFN-λ1 gene expression in response to various types of RNA molecules in human moDCs. Inhibition of p38 MAPK strongly reduced IFN gene expression, and overexpression of p38α MAPK enhanced IFN-λ1 gene expression in RNA-stimulated moDCs. The regulation of IFN gene expression by p38 MAPK signaling was independent of protein synthesis and thus, a direct result of RNA stimulation. Moreover, the RIG-I/MDA5-MAVS-IRF3 pathway was required for p38α MAPK to up-regulate IFN-λ1 promoter activation, whereas the MyD88-IRF7 pathway was not needed, and the regulation was not involved directly in IRF7-dependent IFN-α1 gene expression. The stimulatory effect of p38α MAPK on IFN-λ1 mRNA expression in human moDCs did not take place directly via the activating TBK1/IKKε complex, but rather, it occurred through some other parallel pathways. Furthermore, mutations in ISRE and NF-κB binding sites in the promoter region of the IFN-λ1 gene led to a significant reduction in p38α MAPK-mediated IFN responses after RNA stimulation. Altogether, our data suggest that the p38α MAPK pathway is linked with RLR signaling pathways and regulates the expression of early IFN genes after RNA stimulation cooperatively with IRF3 and NF-κB to induce antiviral responses further.
Collapse
Affiliation(s)
- Miao Jiang
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Pamela Österlund
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Riku Fagerlund
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Diana N Rios
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Alexander Hoffmann
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Minna M Poranen
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Dennis H Bamford
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| | - Ilkka Julkunen
- *Virology Unit, Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Helsinki, Finland; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA; Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA; Institute of Biotechnology and Department of Biosciences, University of Helsinki, Finland; and Department of Virology, University of Turku, Finland
| |
Collapse
|
42
|
Sun H, Bi L, Zhou J, Zhou D, Liu Y, Jin G, Yan W. Modulation of the function of dendritic cells in adolescents with chronic HBV infection by IFN-λ1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1743-51. [PMID: 25973063 PMCID: PMC4396338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
The exact immunology pathogenesis of hepatitis B virus (HBV) infection remains unclear currently. The dendritic cells (DCs) dysfunction is evident in adolescents with chronic HBV infection in the immune tolerant phase. DCs, as the most efficient professional antigen-presenting cells (APCs), possess the strongest antigen presenting the effect in the body and can stimulate the initial T cell activation and proliferation, depending on their stage of maturation. The recently classified type III interferon group, interferon-λ1 (IL-29), interferon-λ2 (IL-28A), and interferon-λ3 (IL-28B) displays immunomodulatory and antiviral activity. In the current study, we describe a way to stimulate the DCs maturation. As a result, IFN-λ1 combined with recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) and recombinant human interleukin-4 (rhIL-4) can induce the DCs maturation and promote the costimulatory molecules such as CD80, CD83, CD86 and human leucocyte antigen DR (HLA-DR) expression in the immune tolerance and the clearance phases. This study demonstrates that the DCs function is remarkably impaired both in the immune tolerant phase and the immune clearance phase in adolescents with chronic HBV infection compared with healthy youth control. At the same time, this study has developed a theoretical basis for the application of IFN-λ1 breaking immune tolerance and improving the body's immune system to clear HBV.
Collapse
Affiliation(s)
- Haihua Sun
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| | - Lijuan Bi
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| | - Junying Zhou
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| | - Dongfang Zhou
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| | - Yinghui Liu
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| | - Guohua Jin
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| | - Wenzhao Yan
- Department of Infectious Diseases, Third Hospital of Hebei Medical University Shijiazhuang 050051, China
| |
Collapse
|
43
|
Abstract
Influenza viruses pose a substantial threat to human and animal health worldwide. Recent studies in mouse models have revealed an indispensable role for the innate immune system in defense against influenza virus. Recognition of the virus by innate immune receptors in a multitude of cell types activates intricate signaling networks, functioning to restrict viral replication. Downstream effector mechanisms include activation of innate immune cells and, induction and regulation of adaptive immunity. However, uncontrolled innate responses are associated with exaggerated disease, especially in pandemic influenza virus infection. Despite advances in the understanding of innate response to influenza in the mouse model, there is a large knowledge gap in humans, particularly in immunocompromised groups such as infants and the elderly. We propose here, the need for further studies in humans to decipher the role of innate immunity to influenza virus, particularly at the site of infection. These studies will complement the existing work in mice and facilitate the quest to design improved vaccines and therapeutic strategies against influenza.
Collapse
Affiliation(s)
- Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| | - Richard W. Compans
- IDepartment of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| |
Collapse
|
44
|
Galani IE, Koltsida O, Andreakos E. Type III interferons (IFNs): Emerging Master Regulators of Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:1-15. [PMID: 26324342 DOI: 10.1007/978-3-319-15774-0_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lambda interferons (IFN-λs), type III interferons or interleukins 28 and 29 are the latest addition to the class II cytokine family. They share low homology with the interferon (IFN) and IL-10 cytokine families, yet they exhibit common and unique activities, the full spectrum of which still remains incompletely understood. Although initially described for their antiviral functions, it is now appreciated that IFN-λs also mediate diverse antitumor and immune-modulatory effects, and are key determinants of innate immunity at mucosal sites such as the gastrointestinal and respiratory tracks. Here, we are reviewing the biological functions of IFN-λs, the mechanisms controlling their expression, their downstream effects and their role in the maintenance of homeostasis and disease. We are also exploring the potential application of IFN-λs as novel therapeutics.
Collapse
Affiliation(s)
- Ioanna E Galani
- Department of Immunology, Center for Translational and Clinical Research, Biomedical Research Foundation, Academy of Athens, 11527, Athens, Greece
| | | | | |
Collapse
|
45
|
Westenius V, Mäkelä SM, Ziegler T, Julkunen I, Österlund P. Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells. Virology 2014; 471-473:38-48. [DOI: 10.1016/j.virol.2014.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 07/30/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
|
46
|
Zdrenghea MT, Makrinioti H, Muresan A, Johnston SL, Stanciu LA. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma. Rev Med Virol 2014; 25:33-49. [PMID: 25430775 PMCID: PMC4316183 DOI: 10.1002/rmv.1817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/25/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10-IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Ion Chiricuta Oncology InstituteCluj-Napoca, Romania
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Heidi Makrinioti
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Adriana Muresan
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Sebastian L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Luminita A Stanciu
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
- *
Correspondence to: Dr. L. A. Stanciu, MD, PhD, Airway Disease Infection Section, Imperial College London, London, UK., E-mail:
| |
Collapse
|
47
|
Arilahti V, Mäkelä SM, Tynell J, Julkunen I, Österlund P. Novel avian influenza A (H7N9) virus induces impaired interferon responses in human dendritic cells. PLoS One 2014; 9:e96350. [PMID: 24804732 PMCID: PMC4012951 DOI: 10.1371/journal.pone.0096350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023] Open
Abstract
In March 2013 a new avian influenza A(H7N9) virus emerged in China and infected humans with a case fatality rate of over 30%. Like the highly pathogenic H5N1 virus, H7N9 virus is causing severe respiratory distress syndrome in most patients. Based on genetic analysis this avian influenza A virus shows to some extent adaptation to mammalian host. In the present study, we analyzed the activation of innate immune responses by this novel H7N9 influenza A virus and compared these responses to those induced by the avian H5N1 and seasonal H3N2 viruses in human monocyte-derived dendritic cells (moDCs). We observed that in H7N9 virus-infected cells, interferon (IFN) responses were weak although the virus replicated as well as the H5N1 and H3N2 viruses in moDCs. H7N9 virus-induced expression of pro-inflammatory cytokines remained at a significantly lower level as compared to H5N1 virus-induced “cytokine storm” seen in human moDCs. However, the H7N9 virus was extremely sensitive to the antiviral effects of IFN-α and IFN-β in pretreated cells. Our data indicates that different highly pathogenic avian viruses may show considerable differences in their ability to induce host antiviral responses in human primary cell models such as moDCs. The unexpected appearance of the novel H7N9 virus clearly emphasizes the importance of the global influenza surveillance system. It is, however, equally important to systematically characterize in normal human cells the replication capacity of the new viruses and their ability to induce and respond to natural antiviral substances such as IFNs.
Collapse
Affiliation(s)
- Veera Arilahti
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Sanna M. Mäkelä
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Janne Tynell
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Ilkka Julkunen
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
- Department of Virology, University of Turku, Turku, Finland
| | - Pamela Österlund
- Virology Unit, National Institute for Health and Welfare, Helsinki, Finland
- * E-mail:
| |
Collapse
|
48
|
Lui YLE, Tan TL, Timms P, Hafner LM, Tan KH, Tan EL. Elucidating the host-pathogen interaction between human colorectal cells and invading Enterovirus 71 using transcriptomics profiling. FEBS Open Bio 2014; 4:426-31. [PMID: 24918057 PMCID: PMC4050184 DOI: 10.1016/j.fob.2014.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD). Types I, II and III interferon may be a key antiviral response against EV71. We examine the transcriptomic changes in human colorectal cells during EV71 infection. The intestinal epithelial immune system plays a key role in the progression of HFMD.
Enterovirus 71 (EV71) is one of the main etiological agents for Hand, Foot and Mouth Disease (HFMD) and has been shown to be associated with severe clinical manifestation. Currently, there is no antiviral therapeutic for the treatment of HFMD patients owing to a lack of understanding of EV71 pathogenesis. This study seeks to elucidate the transcriptomic changes that result from EV71 infection. Human whole genome microarray was employed to monitor changes in genomic profiles between infected and uninfected cells. The results reveal altered expression of human genes involved in critical pathways including the immune response and the stress response. Together, data from this study provide valuable insights into the host–pathogen interaction between human colorectal cells and EV71.
Collapse
Affiliation(s)
- Yan Long Edmund Lui
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia ; School of Chemical and Life Sciences, Singapore Polytechnic, Singapore ; Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore
| | - Tuan Lin Tan
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore
| | - Peter Timms
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia ; Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Louise Marie Hafner
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Queensland, Australia ; Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Kian Hwa Tan
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore
| | - Eng Lee Tan
- Centre for Biomedical and Life Sciences, Singapore Polytechnic, Singapore ; Department of Paediatrics, University Children's Medical Institute, National University Hospital, Singapore
| |
Collapse
|
49
|
Hermant P, Michiels T. Interferon-λ in the context of viral infections: production, response and therapeutic implications. J Innate Immun 2014; 6:563-74. [PMID: 24751921 PMCID: PMC6741612 DOI: 10.1159/000360084] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN)-λ forms the type III IFN family. Although they signal through distinct receptors, type I (IFN-α/β) and type III IFNs elicit remarkably similar responses in cells. However, in vivo, type III and type I IFN responses are not fully redundant as their respective contribution to the antiviral defense highly depends on virus species. IFN-λ is much more potent than IFN-α/β at controlling rotavirus infection. In contrast, clearance of several other viruses, such as influenza virus, mostly depends on IFN-α/β. The IFN-λ receptor was reported to be preferentially expressed on epithelial cells. Cells responsible for IFN-λ production are still poorly characterized but seem to overlap only partly IFN-α/β-producing cells. Accumulating data suggest that epithelial cells are also important IFN-λ producers. Thus, IFN-λ may primarily act as a protection of mucosal entities, such as the lung, skin or digestive tract. Type I and type III IFN signal transduction pathways largely overlap, and cross talk between these IFN systems occurs. Finally, this review addresses the potential benefit of IFN-λ use for therapeutic purposes and summarizes recent results of genome-wide association studies that identified polymorphisms in the region of the IFN-λ3 gene impacting on the outcome of treatments against hepatitis C virus infection.
Collapse
Affiliation(s)
| | - Thomas Michiels
- *Dr. Thomas Michiels, de Duve Institute, Université Catholique de Louvain, B1.74.07 VIRO, 74 Avenue Hippocrate, BE-1200 Brussels (Belgium), E-Mail
| |
Collapse
|
50
|
Swider A, Siegel R, Eskdale J, Gallagher G. Regulation of interferon lambda-1 (IFNL1/IFN-λ1/IL-29) expression in human colon epithelial cells. Cytokine 2014; 65:17-23. [PMID: 24140069 DOI: 10.1016/j.cyto.2013.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 12/21/2022]
Abstract
The efficient regulation of intestinal immune responses is critical to colon health. Viruses, for example noraviruses, are key pathogens of the intestine. The lambda interferons (comprising three ligands: IFNL1, L2 and L3 - the so-called "Type III" interferons) constitute the most recently discovered IFN family and are known to be important in intestinal anti-viral defense. A fourth family member, IFNL4, was recently described. Expression of the IFN-lambda receptor is restricted to epithelial and immune cells; together, these ligands and their receptor represent an important anti-viral and immunoregulatory component of the immune/epithelial inteface. We investigated control of IFNL1 expression in human colon epithelial cells. We used the TLR3 agonist poly I:C to drive expression of IFNL1 in SW480 cells, and small interfering RNA (siRNA) to knockdown target transcription factors. We identified ZEB1 and BLIMP-1 as transcription factors that strongly inhibited IFNL1 expression in SW480 cells. Interestingly, while BLIMP-1 inhibited both type-III and type-I interferons (IFN-β), the inhibitory action of ZEB1 was specific for IFNL1. We also defined the NF-κB family member, p65 as a key activator of IFNL1 and NF-κB p50 as a key inhibitor. Finally, we demonstrated that siRNA targeting of ZEB1 or NF-κB p50 resulted in a significant elevation of secreted IFN-λ1 protein and expression of the anti-viral gene OAS1, while knockdown of p65 inhibited these events. Our data provide insight to the regulation of IFNL1 expression in the human colon and suggest novel therapeutic approaches to elevate IFNλ-1 protein where required.
Collapse
Affiliation(s)
- Adam Swider
- Genetic Immunology Laboratory, HUMIGEN LLC, 2439 Kuser Road, Hamilton, NJ 08690, United States(1)
| | | | | | | |
Collapse
|