1
|
Chen T, Wang T, Shi Y, Deng J, Yan X, Zhang C, Yin X, Liu W. Integrated network pharmacology, metabolomics and molecular docking analysis to reveal the mechanisms of quercetin in the treatment of hyperlipidemia. J Pharm Biomed Anal 2024; 252:116507. [PMID: 39383544 DOI: 10.1016/j.jpba.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/23/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Hyperlipidemia (HLP) is a significant contributor to cardiovascular diseases. Quercetin (QUE), a naturally occurring flavonoid with diverse bioactivities, has garnered attention due to its potential therapeutic effects. However, the precise mechanisms underlying the effects of QUE on HLP remain unclear. In this study, an ultra-high-performance liquid chromatography-quadrupole/electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive-MS) metabolomics strategy was employed to obtain metabolite profiles, and potential biomarkers were identified following data analysis. Network pharmacology and Drug Affinity Responsive Target Stability (DARTS) assays were utilized to explore the potential targets of QUE for HLP treatment. The results of metabolomics and network pharmacology were then integrated to identify the key targets and metabolic pathways involved in the therapeutic action of the QUE against HLP. Molecular docking and experimental validation were performed to confirm these key targets. A comprehensive database search identified 138 QUE-HLP-related targets. A protein-protein interaction (PPI) network was constructed using STRING, and the shared targets were filtered with Cytoscape. Among these, AKT1, TNF, VEGFA, mTOR, SREBP1, and SCD emerged as potential therapeutic targets. These findings were validated using in vitro cell experiments. Additionally, the mechanism of action of QUE against HLP was evaluated by integrating network pharmacology with metabolomics, identifying two metabolomic pathways crucial to HLP treatment. DARTS experiments confirmed the stable binding of QUE to FASN, p-mTOR, SREBP1, and p-AKT. In HepG2 cells treated with palmitic acid (PA), QUE significantly reduced the mRNA expression of ACLY, ACACA, FASN, and SCD (p < 0.05). Western blot analysis revealed that PA significantly increased protein expression of p-mTOR, SREBP1, FASN, and p-AKT (p < 0.05). In summary, our study provides novel insights into the protective mechanisms of QUE against HLP and offers valuable information regarding its potential benefits in clinical treatment.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Tongtong Wang
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Yuanxiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Xiao Yan
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Chenbin Zhang
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Xin Yin
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China
| | - Wen Liu
- Department of Pharmacy, Hunan Provincial People's Hospital (The First Affiliate Hospital of Hunan Normal University), Changsha 410000, China.
| |
Collapse
|
2
|
Inpan R, Sakuludomkan C, Na Takuathung M, Koonrungsesomboon N. Network Pharmacology Revealing the Therapeutic Potential of Bioactive Components of Triphala and Their Molecular Mechanisms against Obesity. Int J Mol Sci 2024; 25:10755. [PMID: 39409084 PMCID: PMC11476943 DOI: 10.3390/ijms251910755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Obesity, characterized by the excessive accumulation of fat, is a prevalent metabolic disorder that poses a significant global health concern. Triphala, an herbal combination consisting of Phyllanthus emblica Linn, Terminalia chebula Retz, and Terminalia bellerica (Gaertn) Roxb, has emerged as a potential solution for addressing concerns related to obesity. This study aimed to investigate the network pharmacology and molecular docking of Triphala to identify its bioactive ingredients and their interactions with pathways associated with obesity. The bioactive compounds present in Triphala and genes linked to obesity were identified, followed by an analysis of the protein-protein interaction networks. Enrichment analysis, including Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis, was conducted. Prominent genes and compounds were selected for further investigation through molecular docking studies. The study revealed a close correlation between obesity and the AKT1 and PPARG genes. The observed binding energy between beta-sitosterol, 7-dehydrosigmasterol, peraksine, α-amyrin, luteolin, quercetin, kaempferol, ellagic acid, and phyllanthin with AKT1 and PPARG indicated a favorable binding affinity. In conclusion, nine compounds showed promise in regulating these genes for obesity prevention and management. Further research is required to validate their specific effects.
Collapse
Affiliation(s)
- Ratchanon Inpan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chotiwit Sakuludomkan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand or (R.I.); (C.S.); (M.N.T.)
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Koch RL, Stanton JB, McClatchy S, Churchill GA, Craig SW, Williams DN, Johns ME, Chase KR, Thiesfeldt DL, Flynt JC, Pazdro R. Discovery of genomic loci for liver health and steatosis reveals overlap with glutathione redox genetics. Redox Biol 2024; 75:103248. [PMID: 38917671 PMCID: PMC11254179 DOI: 10.1016/j.redox.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition in the United States, encompassing a wide spectrum of liver pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite its high prevalence, there are no medications currently approved by the Food and Drug Administration for the treatment of NAFLD. Recent work has suggested that NAFLD has a strong genetic component and identifying causative genes will improve our understanding of the molecular mechanisms contributing to NAFLD and yield targets for future therapeutic investigations. Oxidative stress is known to play an important role in NAFLD pathogenesis, yet the underlying mechanisms accounting for disturbances in redox status are not entirely understood. To better understand the relationship between the glutathione redox system and signs of NAFLD in a genetically-diverse population, we measured liver weight, serum biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and graded liver pathology in a large cohort of Diversity Outbred mice. We compared hepatic endpoints to those of the glutathione redox system previously measured in the livers and kidneys of the same mice, and we screened for statistical and genetic associations using the R/qtl2 software. We discovered several novel genetic loci associated with markers of liver health, including loci that were associated with both liver steatosis and glutathione redox status. Candidate genes within each locus point to possible new mechanisms underlying the complex relationship between NAFLD and the glutathione redox system, which could have translational implications for future studies targeting NAFLD pathology.
Collapse
Affiliation(s)
- Rebecca L Koch
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - James B Stanton
- Department of Pathology, University of Georgia, Athens, GA, USA, 30602
| | | | | | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Darian N Williams
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Mallory E Johns
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Kylah R Chase
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Dana L Thiesfeldt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Jessica C Flynt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602.
| |
Collapse
|
4
|
Wang Q, Tao C, Wu Y, Anderson KE, Hannan A, Lin CS, Hawkins P, Stephens L, Zhang X. Phospholipase Cγ regulates lacrimal gland branching by competing with PI3K in phosphoinositide metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601066. [PMID: 39005344 PMCID: PMC11244885 DOI: 10.1101/2024.06.28.601066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the regulation of branching morphogenesis by spatially distributed cues is well established, the role of intracellular signaling in determining the branching pattern remains poorly understood. In this study, we investigated the regulation and function of phospholipase C gamma (PLCγ) in Fibroblast Growth Factor (FGF) signaling in lacrimal gland development. We showed that deletion of PLCγ1 in the lacrimal gland epithelium leads to ectopic branching and acinar hyperplasia, which was phenocopied by either mutating the PLCγ1 binding site on Fgfr2 or disabling any of its SH2 domains. PLCγ1 inactivation did not change the level of Fgfr2 or affect MAPK signaling, but instead led to sustained AKT phosphorylation due to increased PIP3 production. Consistent with this, PLCγ1 mutant phenotype can be reproduced by elevation of PI3K signaling in Pten knockout and attenuated by blocking AKT signaling. This study demonstrated that PLCγ modulates PI3K signaling by shifting phosphoinositide metabolism, revealing an important role of signaling dynamics in conjunction with spatial cues in shaping branching morphogenesis.
Collapse
|
5
|
Cha M, Lee S, Yoon S, Lee SY, Gupta H, Ganesan R, Sharma SP, Won S, Jeong J, Kim DJ, Oh K, Suk K. New insight of chemical constituents in Persea americana fruit against obesity via integrated pharmacology. Clin Transl Sci 2024; 17:e13778. [PMID: 38515346 PMCID: PMC10958180 DOI: 10.1111/cts.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Persea americana fruit (PAF) is a favorable nutraceutical resource that comprises diverse unsaturated fatty acids (UFAs). UFAs are significant dietary supplementation, as they relieve metabolic disorders, including obesity (OB). In another aspect, this study was focused on the anti-OB efficacy of the non-fatty acids (NFAs) in PAF through network pharmacology (NP). Natural product activity & species source (NPASS), SwissADME, similarity ensemble approach (SEA), Swiss target prediction (STP), DisGeNET, and online Mendelian inheritance in man (OMIM) were utilized to gather significant molecules and its targets. The crucial targets were adopted to construct certain networks: protein-protein interaction (PPI), PAF-signaling pathways-targets-compounds (PSTC) networks, a bubble chart, molecular docking assay (MDA), and density function theory (DFT). Finally, the toxicities of the key compounds were validated by ADMETlab 2.0 platform. All 41 compounds in PAF conformed to Lipinski's rule, and the key 31 targets were identified between OB and PAF. On the bubble chart, PPAR signaling pathway had the highest rich factor, suggesting that the pathway might be an agonism for anti-OB. Conversely, estrogen signaling pathway had the lowest rich factor, indicating that the mechanism might be antagonism against OB. Likewise, the PSTC network represented that AKT1 had the greatest degree value. The MDA results showed that AKT1-gamma-tocopherol, PPARA-fucosterol, PPARD-stigmasterol, (PPARG)-fucosterol, (NR1H3)-campesterol, and ILK-alpha-tocopherol formed the most stable conformers. The DFT represented that the five molecules might be promising agents via multicomponent targeting. Overall, this study suggests that the NFAs in PAF might play important roles against OB.
Collapse
Affiliation(s)
- Min‐Gi Cha
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Su‐Been Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Sang‐Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Sang Youn Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Sung‐Min Won
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Jin‐Ju Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Ki‐Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| | - Ki‐Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym UniversityChuncheonKorea
| |
Collapse
|
6
|
Aloufi B, Alshabrmi FM, Sreeharsha N, Rehman A. Exploring therapeutic targets and drug candidates for obesity: a combined network pharmacology, bioinformatics approach. J Biomol Struct Dyn 2023:1-22. [PMID: 37811763 DOI: 10.1080/07391102.2023.2265491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
The remarkably high prevalence of obesity in Saudi Arabia reflects a global epidemic demanding urgent attention due to its associated health risks. The integration of traditional medicine, a vital cultural aspect, involves the use of medicinal plants to address various diseases, including obesity. This research merges network pharmacology (NP) and bioinformatics to innovate obesity treatment by identifying effective phytochemicals from native plants in the Taif valley. Focusing on six indigenous plants-Senna alexandrina, Capsicum annuum, Zingiber officinale, Curcuma longa, Trigonella foenum-graecum, and Foeniculum vulgare-we conducted preliminary screenings for potential bioactive compounds. We systematically compiled compound data from public databases and reviewed literature, revealing active compounds like apigenin, kaempferol, moupinamide, cyclocurcumin, chrysoeriol, isorhamnetin, rheinanthrone, cyclocurcumin, and riboflavin.Constructing a compound-target genes-obesity network unveiled their significant impact on metabolic regulation and fat accumulation, interacting notably with key proteins AKT1 and PTGS2. Molecular docking and 100 ns Molecular Dynamic (MD) simulations demonstrated robust binding affinity and stability at the docking site. Employing adipocytes as a cellular model, we gauged their viability and response to obesity-related stressors post-treatment with these native plant compounds.In conclusion, Saudi Arabia's indigenous plants hold promise as natural solutions for obesity treatment. This research opens new avenues in the battle against this pervasive health crisis by incorporating the potential of native botanicals.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bandar Aloufi
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India
| | - Abdur Rehman
- Department of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Ding Y, Tang Z, Zhang R, Zhang M, Guan Q, Zhang L, Wang H, Chen Y, Zhang W, Wang J. Genetic Variations of AKT1 are Associated with Risk Screening for Non-Alcoholic Fatty Liver Disease. Risk Manag Healthc Policy 2023; 16:1365-1376. [PMID: 37525829 PMCID: PMC10387243 DOI: 10.2147/rmhp.s416592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023] Open
Abstract
Purpose Protein kinase B (PKB/AKT) has shown a high profile in the research of metabolic diseases. This research sought to determine whether the AKT1 gene's single nucleotide polymorphisms (SNPs) and the risk of developing non-alcoholic fatty liver disease (NAFLD) were related. Patients and Methods Recruited in this case-control study were 2693 subjects, including 815 with NAFLD and 1878 without NAFLD. Three SNPs of AKT1 (rs2494732, rs2494752 and rs1130233) were genotyped. To examine the correlation between SNPs and NAFLD susceptibility, logistic regression was performed. Results After adjusting for sex, age, triglyceride and glucose, AKT1 rs2494732-C (all P < 0.05 in co-dominant model, dominant model and additive model) and rs2494752-G (P < 0.05 in co-dominant model) were linked to a lower risk of NAFLD. The combined effect of both SNPs on NAFLD risk was statistically significant, showing a dose dependence (Ptrend = 0.010). Sex, body mass index, hypertension, hyperglycemia, hypertriglyceridemia, high-density lipoprotein-cholesterol, alanine aminotransferase, and beneficial alleles were all significant predictors of NAFLD risk (all P < 0.05). The prediction model achieved good discrimination, with an area under the receiver operating characteristic curve of 0.779. The Hosmer-Lemeshow test suggested an inadequate calibration of the model (χ2 = 21.073, P = 0.007). Conclusion AKT1 rs2494732 and rs2494752 may be related to Chinese NAFLD susceptibility. The prediction model combining both SNPs with clinical factors displays a strong ability to discriminate NAFLD patients. Both SNPs may be exploited to design new models for early screening of NAFLD high-risk population.
Collapse
Affiliation(s)
- Yajie Ding
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zongzhe Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ru Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mengting Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Qing Guan
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Liuxin Zhang
- The Nethersole School of Nursing, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (SAR), People’s Republic of China
| | - Hongliang Wang
- Department of General Practice, Ninghai Road Community Health Service Center, Nanjing, Jiangsu, People’s Republic of China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People’s Republic of China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
8
|
Cai Y, Zuo X, Zuo Y, Wu S, Pang W, Ma K, Yi Q, Tan L, Deng H, Qu X, Chen X. Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis. Front Immunol 2023; 14:1101854. [PMID: 37063877 PMCID: PMC10090675 DOI: 10.3389/fimmu.2023.1101854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundBoth obesity (OB) and periodontitis (PD) are chronic non-communicable diseases, and numerous epidemiological studies have demonstrated the association between these two diseases. However, the molecular mechanisms that could explain the association between OB and PD are largely unclear. This study aims to investigate the common gene signatures and biological pathways in OB and PD through bioinformatics analysis of publicly available transcriptome datasets.MethodsThe RNA expression profile datasets of OB (GSE104815) and PD (GSE106090) were used as training data, and GSE152991 and GSE16134 as validation data. After screening for differentially expressed genes (DEGs) shared by OB and PD, gene enrichment analysis, protein-protein interaction (PPI) network construction, GeneMANIA analysis, immune infiltration analysis and gene set enrichment analysis (GSEA) were performed. In addition, receiver operating characteristic (ROC) curves were used to assess the predictive accuracy of the hub gene. Finally, we constructed the hub gene-associated TF-miRNA-mRNA regulatory network.ResultsWe identified a total of 147 DEGs shared by OB and PD (38 down-regulated and 109 up-regulated). Functional analysis showed that these genes were mainly enriched in immune-related pathways such as B cell receptor signalling, leukocyte migration and cellular defence responses. 14 hub genes (FGR, MNDA, NCF2, FYB1, EVI2B, LY86, IGSF6, CTSS, CXCR4, LCK, FCN1, CXCL2, P2RY13, MMP7) showed high sensitivity and specificity in the ROC curve analysis. The results of immune infiltration analysis showed that immune cells such as macrophages, activated CD4 T cells and immune B cells were present at high infiltration levels in both OB and PD samples.The results of GeneMANIA analysis and GSEA analysis suggested that five key genes (FGR, LCK, FYB1, LY86 and P2RY13) may be strongly associated with macrophages. Finally, we constructed a TF-miRNA-mRNA regulatory network consisting of 233 transcription factors (TFs), 8 miRNAs and 14 mRNAs based on the validated information obtained from the database.ConclusionsFive key genes (FGR, LCK, FYB1, LY86, P2RY13) may be important biomarkers of OB and PD. These genes may play an important role in the pathogenesis of OB and PD by affecting macrophage activity and participating in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Yisheng Cai
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xuemei Zuo
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yuyang Zuo
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuang Wu
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Weiwei Pang
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Keqiang Ma
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaorong Yi
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lijun Tan
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hongwen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xiaochao Qu
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Xiaochao Qu, ; Xiangding Chen,
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics and Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, China
- *Correspondence: Xiaochao Qu, ; Xiangding Chen,
| |
Collapse
|
9
|
Lei C, Chen J, Huang Z, Men Y, Qian Y, Yu M, Xu X, Li L, Zhao X, Jiang Y, Liu Y. Ginsenoside Rg1 can reverse fatigue behavior in CFS rats by regulating EGFR and affecting Taurine and Mannose 6-phosphate metabolism. Front Pharmacol 2023; 14:1163638. [PMID: 37101547 PMCID: PMC10123289 DOI: 10.3389/fphar.2023.1163638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Background: Chronic fatigue syndrome (CFS) is characterized by significant and persistent fatigue. Ginseng is a traditional anti-fatigue Chinese medicine with a long history in Asia, as demonstrated by clinical and experimental studies. Ginsenoside Rg1 is mainly derived from ginseng, and its anti-fatigue metabolic mechanism has not been thoroughly explored. Methods: We performed non-targeted metabolomics of rat serum using LC-MS and multivariate data analysis to identify potential biomarkers and metabolic pathways. In addition, we implemented network pharmacological analysis to reveal the potential target of ginsenoside Rg1 in CFS rats. The expression levels of target proteins were measured by PCR and Western blotting. Results: Metabolomics analysis confirmed metabolic disorders in the serum of CFS rats. Ginsenoside Rg1 can regulate metabolic pathways to reverse metabolic biases in CFS rats. We found a total of 34 biomarkers, including key markers Taurine and Mannose 6-phosphate. AKT1, VEGFA and EGFR were identified as anti-fatigue targets of ginsenoside Rg1 using network pharmacological analysis. Finally, biological analysis showed that ginsenoside Rg1 was able to down-regulate the expression of EGFR. Conclusion: Our results suggest ginsenoside Rg1 has an anti-fatigue effect, impacting the metabolism of Taurine and Mannose 6-phosphate through EGFR regulation. This demonstrates ginsenoside Rg1 is a promising alternative treatment for patients presenting with chronic fatigue syndrome.
Collapse
Affiliation(s)
- Chaofang Lei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinian Men
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Qian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhi Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Youming Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yueyun Liu,
| |
Collapse
|
10
|
Sasako T, Umehara T, Soeda K, Kaneko K, Suzuki M, Kobayashi N, Okazaki Y, Tamura-Nakano M, Chiba T, Accili D, Kahn CR, Noda T, Asahara H, Yamauchi T, Kadowaki T, Ueki K. Deletion of skeletal muscle Akt1/2 causes osteosarcopenia and reduces lifespan in mice. Nat Commun 2022; 13:5655. [PMID: 36198696 PMCID: PMC9535008 DOI: 10.1038/s41467-022-33008-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/19/2022] [Indexed: 01/23/2023] Open
Abstract
Aging is considered to be accelerated by insulin signaling in lower organisms, but it remained unclear whether this could hold true for mammals. Here we show that mice with skeletal muscle-specific double knockout of Akt1/2, key downstream molecules of insulin signaling, serve as a model of premature sarcopenia with insulin resistance. The knockout mice exhibit a progressive reduction in skeletal muscle mass, impairment of motor function and systemic insulin sensitivity. They also show osteopenia, and reduced lifespan largely due to death from debilitation on normal chow and death from tumor on high-fat diet. These phenotypes are almost reversed by additional knocking out of Foxo1/4, but only partially by additional knocking out of Tsc2 to activate the mTOR pathway. Overall, our data suggest that, unlike in lower organisms, suppression of Akt activity in skeletal muscle of mammals associated with insulin resistance and aging could accelerate osteosarcopenia and consequently reduce lifespan.
Collapse
Affiliation(s)
- Takayoshi Sasako
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toshihiro Umehara
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Soeda
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuma Kaneko
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miho Suzuki
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Kobayashi
- grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Okazaki
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwa Tamura-Nakano
- grid.45203.300000 0004 0489 0290Communal Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomoki Chiba
- grid.265073.50000 0001 1014 9130Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Domenico Accili
- grid.21729.3f0000000419368729Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY USA
| | - C. Ronald Kahn
- grid.38142.3c000000041936754XJoslin Diabetes Center, Harvard Medical School, Boston, MA USA
| | - Tetsuo Noda
- grid.410807.a0000 0001 0037 4131Department of Cell Biology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Hiroshi Asahara
- grid.265073.50000 0001 1014 9130Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshimasa Yamauchi
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- grid.26999.3d0000 0001 2151 536XDepartment of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.410813.f0000 0004 1764 6940Toranomon Hospital, Tokyo, Japan
| | - Kohjiro Ueki
- grid.45203.300000 0004 0489 0290Department of Molecular Diabetic Medicine, Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Molecular Diabetetology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Khine HEE, Sungthong R, Sritularak B, Prompetchara E, Chaotham C. Untapped Pharmaceutical Potential of 4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl for Regulating Obesity: A Cell-Based Study with a Focus on Terminal Differentiation in Adipogenesis. JOURNAL OF NATURAL PRODUCTS 2022; 85:1591-1602. [PMID: 35679136 DOI: 10.1021/acs.jnatprod.2c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Obesity and its global prevalence has become a threat to human health, while its pharmacotherapy via the application of natural products is still underdeveloped. Here, we probed how 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (TDB) derived from an orchid (Dendrobium ellipsophyllum) could exert its roles on the differentiation and function of murine (3T3-L1) and human (PCS-210-010) pre-adipocytes and offer some implications to modulate obesity. Cytotoxic effects of TDB on adipocytes were 2-fold lower than those detected with pre-adipocytes, and no significant difference was detected in cytotoxic profiles between both cell lineages. TDB in a dose-dependent manner decreased cellular lipid accumulation and enhanced lipolysis of both cell lines assessed at early differentiation and during maturation. Underlining molecular mechanisms proved that TBD paused the cell cycle progression by regulating inducers and inhibitors in mitotic clonal expansion, leading to growth arrest of pre-adipocytes at the G0/G1 phase. The compound also governed adipocyte differentiation by repressing expressions of crucial adipogenic regulators and effectors through deactivating the AKT/GSK-3β signaling pathway and activating the AMPK-ACC pathway. To this end, TDB has shown its pharmaceutical potential for modulating adipocyte development and function, and it would be a promising candidate for further assessments as a therapeutic agent to defeat obesity.
Collapse
Affiliation(s)
- Hnin Ei Ei Khine
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Rungroch Sungthong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, U.K
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Eakachai Prompetchara
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Pharmaceutical Sciences and Technology Graduate Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Mechanism of Astragalus membranaceus Alleviating Acquired Hyperlipidemia Induced by High-Fat Diet through Regulating Lipid Metabolism. Nutrients 2022; 14:nu14050954. [PMID: 35267929 PMCID: PMC8912611 DOI: 10.3390/nu14050954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Astragalus membranaceus (AM) is a food and medicinal homologous plant. The current research is aimed to investigate the beneficial effects and mechanisms of AM in treating acquired hyperlipidemia. The network pharmacology and bioinformatics analysis results showed 481 AM-related targets and 474 acquired hyperlipidemia-associated targets, and 101 candidate targets were obtained through the intersection, mainly enriched in endocrine resistance, AGE-RAGE in diabetic complications and p53 signaling pathways. Quercetin, kaempferol, calycosin, formononetin and isorhamnetin were determined as the candidate active components of AM in the treatment of acquired hyperlipidemia. Moreover, key targets of AM, namely, AKT serine/threonine kinase 1 (AKT1), vascular endothelial growth factor A (VEGFA), cyclin D1 (CCND1) and estrogen receptor 1 (ESR1), were screened out, which were closely related to adipogenesis, fatty acid metabolism and bile acid metabolism. The subsequent animal experiments showed that AM extract treatment improved the lipid profiles of the high-fat diet (HFD)-fed mice by reducing lipogenesis and increasing lipolysis and lipid β-oxidation, which were associated with the downregulating of AKT1 and CCND1, and the upregulating of VEGFA and ESR1 in liver and adipose tissue. Overall, AM alleviated acquired hyperlipidemia through regulating lipid metabolism, and AKT1, VEGFA, CCND1 and ESR1 might be the key targets.
Collapse
|
13
|
Revealing the Mechanism of Astragali Radix against Cancer-Related Fatigue by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7075920. [PMID: 34925533 PMCID: PMC8674051 DOI: 10.1155/2021/7075920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022]
Abstract
Background Cancer-related fatigue (CRF) is an increasingly appreciated complication in cancer patients, which severely impairs their quality of life for a long time. Astragali Radix (AR) is a safe and effective treatment to improve CRF, but the related mechanistic studies are still limited. Objective To systematically analyze the mechanism of AR against CRF by network pharmacology. Methods TCMSP was searched to obtain the active compounds and targets of AR. The active compound-target (AC-T) network was established and exhibited by related visualization software. The GeneCards database was searched to acquire CRF targets, and the intersection targets with AR targets were used to make the Venny diagram. The protein-protein interaction (PPI) network of intersection targets was established, and further, the therapeutic core targets were selected by topological parameters. The selected core targets were uploaded to Metascape for GO and KEGG analysis. Finally, AutoDock Vina and PyMOL were employed for molecular docking validation. Results 16 active compounds of AR were obtained, such as quercetin, kaempferol, 7-O-methylisomucronulatol, formononetin, and isorhamnetin. 57 core targets were screened, such as AKT1, TP53, VEGFA, IL-6, and CASP3. KEGG analysis manifested that the core targets acted on various pathways, including 137 pathways such as TNF, IL-17, and the AGE-RAGE signaling pathway. Molecular docking demonstrated that active compounds docked well with the core targets. Conclusion The mechanism of AR in treating CRF involves multiple targets and multiple pathways. The present study laid a theoretical foundation for the subsequent research and clinical application of AR and its extracts against CRF.
Collapse
|
14
|
Oh KK, Adnan M, Cho DH. Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk ( Stigma Maydis) against Obesity: A Network Pharmacology Study. Curr Issues Mol Biol 2021; 43:1906-1936. [PMID: 34889899 PMCID: PMC8929052 DOI: 10.3390/cimb43030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Corn silk (Stigma Maydis) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski's rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski's rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (β-Amyrone, β-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and β-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.
Collapse
Affiliation(s)
| | | | - Dong-Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (K.-K.O.); (M.A.)
| |
Collapse
|
15
|
Toda G, Soeda K, Okazaki Y, Kobayashi N, Masuda Y, Arakawa N, Suwanai H, Masamoto Y, Izumida Y, Kamei N, Sasako T, Suzuki R, Kubota T, Kubota N, Kurokawa M, Tobe K, Noda T, Honda K, Accili D, Yamauchi T, Kadowaki T, Ueki K. Insulin- and Lipopolysaccharide-Mediated Signaling in Adipose Tissue Macrophages Regulates Postprandial Glycemia through Akt-mTOR Activation. Mol Cell 2020; 79:43-53.e4. [PMID: 32464093 DOI: 10.1016/j.molcel.2020.04.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 01/18/2023]
Abstract
The physiological role of immune cells in the regulation of postprandial glucose metabolism has not been fully elucidated. We have found that adipose tissue macrophages produce interleukin-10 (IL-10) upon feeding, which suppresses hepatic glucose production in cooperation with insulin. Both elevated insulin and gut-microbiome-derived lipopolysaccharide in response to feeding are required for IL-10 production via the Akt/mammalian target of rapamycin (mTOR) pathway. Indeed, myeloid-specific knockout of the insulin receptor or bone marrow transplantation of mutant TLR4 marrow cells results in increased expression of gluconeogenic genes and impaired glucose tolerance. Furthermore, myeloid-specific Akt1 and Akt2 knockout results in similar phenotypes that are rescued by additional knockout of TSC2, an inhibitor of mTOR. In obesity, IL-10 production is impaired due to insulin resistance in macrophages, whereas adenovirus-mediated expression of IL-10 ameliorates postprandial hyperglycemia. Thus, the orchestrated response of the endogenous hormone and gut environment to feeding is a key regulator of postprandial glycemia.
Collapse
Affiliation(s)
- Gotaro Toda
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kotaro Soeda
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoki Kobayashi
- Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukari Masuda
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Arakawa
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hirotsugu Suwanai
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Masamoto
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiko Izumida
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nozomu Kamei
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayoshi Sasako
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Suzuki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Toyama University, Toyama, Japan
| | - Tetsuo Noda
- Department of Cell Biology, Cancer Institute, Japanese Foundation of Cancer Research, Tokyo, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Domenico Accili
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY 10032, USA
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Metabolism and Nutrition, Mizonokuchi Hospital, Faculty of Medicine, Teikyo University, Kanagawa, Japan.
| | - Kohjiro Ueki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Molecular Diabetic Medicine, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
AKT1 Regulates Endoplasmic Reticulum Stress and Mediates the Adaptive Response of Pancreatic β Cells. Mol Cell Biol 2020; 40:MCB.00031-20. [PMID: 32179553 DOI: 10.1128/mcb.00031-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Isoforms of protein kinase B (also known as AKT) play important roles in mediating insulin and growth factor signals. Previous studies have suggested that the AKT2 isoform is critical for insulin-regulated glucose metabolism, while the role of the AKT1 isoform remains less clear. This study focuses on the effects of AKT1 on the adaptive response of pancreatic β cells. Using a mouse model with inducible β-cell-specific deletion of the Akt1 gene (βA1KO mice), we showed that AKT1 is involved in high-fat-diet (HFD)-induced growth and survival of β cells but is unnecessary for them to maintain a population in the absence of metabolic stress. When unchallenged, βA1KO mice presented the same metabolic profile and β-cell phenotype as the control mice with an intact Akt1 gene. When metabolic stress was induced by HFD, β cells in control mice with intact Akt1 proliferated as a compensatory mechanism for metabolic overload. Similar effects were not observed in βA1KO mice. We further demonstrated that AKT1 protein deficiency caused endoplasmic reticulum (ER) stress and potentiated β cells to undergo apoptosis. Our results revealed that AKT1 protein loss led to the induction of eukaryotic initiation factor 2 α subunit (eIF2α) signaling and ER stress markers under normal-chow-fed conditions, indicating chronic low-level ER stress. Together, these data established a role for AKT1 as a growth and survival factor for adaptive β-cell response and suggest that ER stress induction is responsible for this effect of AKT1.
Collapse
|
17
|
Han Y, Wang W, Jia J, Sun X, Kuang D, Tong P, Li N, Lu C, Zhang H, Dai J. WGCNA analysis of the subcutaneous fat transcriptome in a novel tree shrew model. Exp Biol Med (Maywood) 2020; 245:945-955. [PMID: 32216464 DOI: 10.1177/1535370220915180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPACT STATEMENT We constructed the transcriptomic network in adipose tissue in lean, moderate obesity and severe obesity groups of tree shrew for the first time. Compared to other laboratory animal models, the tree shrew is a prospective laboratory animal that has a closer genetic association with primates than with rodents. It is widely used in biomedical researches. Enrichment analyses revealed several molecular biological processes were involved in the ribosome, lysosome, and ubiquitin-mediated proteolysis process. These results provided insights into new targets for the prevention and therapy of obesity and a novel research model for obesity.
Collapse
Affiliation(s)
- Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | | | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| | - Huatang Zhang
- Chongqing Research Center of Biomedicine and Medical Equipment, Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming 650118, China
| |
Collapse
|
18
|
Riehle C, Weatherford ET, Wende AR, Jaishy BP, Seei AW, McCarty NS, Rech M, Shi Q, Reddy GR, Kutschke WJ, Oliveira K, Pires KM, Anderson JC, Diakos NA, Weiss RM, White MF, Drakos SG, Xiang YK, Abel ED. Insulin receptor substrates differentially exacerbate insulin-mediated left ventricular remodeling. JCI Insight 2020; 5:134920. [PMID: 32213702 DOI: 10.1172/jci.insight.134920] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 01/10/2023] Open
Abstract
Pressure overload (PO) cardiac hypertrophy and heart failure are associated with generalized insulin resistance and hyperinsulinemia, which may exacerbate left ventricular (LV) remodeling. While PO activates insulin receptor tyrosine kinase activity that is transduced by insulin receptor substrate 1 (IRS1), the present study tested the hypothesis that IRS1 and IRS2 have divergent effects on PO-induced LV remodeling. We therefore subjected mice with cardiomyocyte-restricted deficiency of IRS1 (CIRS1KO) or IRS2 (CIRS2KO) to PO induced by transverse aortic constriction (TAC). In WT mice, TAC-induced LV hypertrophy was associated with hyperactivation of IRS1 and Akt1, but not IRS2 and Akt2. CIRS1KO hearts were resistant to cardiac hypertrophy and heart failure in concert with attenuated Akt1 activation. In contrast, CIRS2KO hearts following TAC developed more severe LV dysfunction than WT controls, and this was prevented by haploinsufficiency of Akt1. Failing human hearts exhibited isoform-specific IRS1 and Akt1 activation, while IRS2 and Akt2 activation were unchanged. Kinomic profiling identified IRS1 as a potential regulator of cardioprotective protein kinase G-mediated signaling. In addition, gene expression profiling revealed that IRS1 signaling may promote a proinflammatory response following PO. Together, these data identify IRS1 and Akt1 as critical signaling nodes that mediate LV remodeling in both mice and humans.
Collapse
Affiliation(s)
- Christian Riehle
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Eric T Weatherford
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Adam R Wende
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Bharat P Jaishy
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alec W Seei
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas S McCarty
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Monika Rech
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Qian Shi
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Department of Pharmacology, UCD, Davis, California, USA
| | | | - William J Kutschke
- Division of Cardiovascular Medicine, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Karen Oliveira
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Karla Maria Pires
- Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Joshua C Anderson
- Department of Radiation Oncology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nikolaos A Diakos
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Robert M Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yang K Xiang
- Department of Pharmacology, UCD, Davis, California, USA.,VA Northern California Health Care System, Mather, California, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and.,Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Division of Endocrinology, Metabolism and Diabetes, and.,Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
19
|
Non-canonical mTORC2 Signaling Regulates Brown Adipocyte Lipid Catabolism through SIRT6-FoxO1. Mol Cell 2020; 75:807-822.e8. [PMID: 31442424 DOI: 10.1016/j.molcel.2019.07.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022]
Abstract
mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
Collapse
|
20
|
Dopamine Signaling in the Suprachiasmatic Nucleus Enables Weight Gain Associated with Hedonic Feeding. Curr Biol 2020; 30:196-208.e8. [PMID: 31902720 DOI: 10.1016/j.cub.2019.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
Abstract
The widespread availability of energy-dense, rewarding foods is correlated with the increased incidence of obesity across the globe. Overeating during mealtimes and unscheduled snacking disrupts timed metabolic processes, which further contribute to weight gain. The neuronal mechanism by which the consumption of energy-dense food restructures the timing of feeding is poorly understood. Here, we demonstrate that dopaminergic signaling within the suprachiasmatic nucleus (SCN), the central circadian pacemaker, disrupts the timing of feeding, resulting in overconsumption of food. D1 dopamine receptor (Drd1)-null mice are resistant to diet-induced obesity, metabolic disease, and circadian disruption associated with energy-dense diets. Conversely, genetic rescue of Drd1 expression within the SCN restores diet-induced overconsumption, weight gain, and obesogenic symptoms. Access to rewarding food increases SCN dopamine turnover, and elevated Drd1-signaling decreases SCN neuronal activity, which we posit disinhibits downstream orexigenic responses. These findings define a connection between the reward and circadian pathways in the regulation of pathological calorie consumption.
Collapse
|
21
|
Xu Z, Xu M, Liu P, Zhang S, Shang R, Qiao Y, Che L, Ribback S, Cigliano A, Evert K, Pascale RM, Dombrowski F, Evert M, Chen X, Calvisi DF, Chen X. The mTORC2-Akt1 Cascade Is Crucial for c-Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology 2019; 70:1600-1613. [PMID: 31062368 PMCID: PMC7195156 DOI: 10.1002/hep.30697] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/26/2019] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is a deadly form of liver cancer with limited treatment options. The c-Myc transcription factor is a pivotal player in hepatocarcinogenesis, but the mechanisms underlying c-Myc oncogenic activity in the liver remain poorly delineated. Mammalian target of rapamycin complex 2 (mTORC2) has been implicated in cancer by regulating multiple AGC kinases, especially AKT proteins. In the liver, AKT1 and AKT2 are widely expressed. While AKT2 is the major isoform downstream of activated phosphoinositide 3-kinase and loss of phosphatase and tensin homolog-induced HCC, the precise function of AKT1 in hepatocarcinogenesis is largely unknown. In the present study, we demonstrate that mTORC2 is activated in c-Myc-driven mouse HCC, leading to phosphorylation/activation of Akt1 but not Akt2. Ablation of Rictor inhibited c-Myc-induced HCC formation in vivo. Mechanistically, we discovered that loss of Akt1, but not Akt2, completely prevented c-Myc HCC formation in mice. Silencing of Rictor or Akt1 in c-Myc HCC cell lines inhibited phosphorylated forkhead box o1 expression and strongly suppressed cell growth in vitro. In human HCC samples, c-MYC activation is strongly correlated with phosphorylated AKT1 expression. Higher expression of RICTOR and AKT1, but not AKT2, is associated with poor survival of patients with HCC. In c-Myc mice, while rapamycin, an mTORC1 inhibitor, had limited efficacy at preventing c-Myc-driven HCC progression, the dual mTORC1 and mTORC2 inhibitor MLN0128 effectively promoted tumor regression by inducing apoptosis and necrosis. Conclusion: Our study indicates the functional contribution of mTORC2/Akt1 along c-Myc-induced hepatocarcinogenesis, with AKT1 and AKT2 having distinct roles in HCC development and progression; targeting both mTORC1 and mTORC2 may be required for effective treatment of human HCC displaying c-Myc amplification or overexpression.
Collapse
Affiliation(s)
- Zhong Xu
- Department of Gastroenterology, Guizhou Provincial People’s Hospital, Medical College of Guizhou University, Guiyang, PR China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Meng Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, PR China
| | - Pin Liu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shu Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
- Department of Radiation Oncology and Department of Head & Neck Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Runze Shang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi’an, PR China
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
- Department of Oncology, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Rosa M. Pascale
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, PR China
| | - Diego F. Calvisi
- Institute of Pathology, University of Greifswald, Greifswald, Germany
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| |
Collapse
|
22
|
Jaiswal N, Gavin MG, Quinn WJ, Luongo TS, Gelfer RG, Baur JA, Titchenell PM. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Mol Metab 2019; 28:1-13. [PMID: 31444134 PMCID: PMC6822261 DOI: 10.1016/j.molmet.2019.08.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Skeletal muscle insulin signaling is a major determinant of muscle growth and glucose homeostasis. Protein kinase B/Akt plays a prominent role in mediating many of the metabolic effects of insulin. Mice and humans harboring systemic loss-of-function mutations in Akt2, the most abundant Akt isoform in metabolic tissues, are glucose intolerant and insulin resistant. Since the skeletal muscle accounts for a significant amount of postprandial glucose disposal, a popular hypothesis in the diabetes field suggests that a reduction in Akt, specifically in skeletal muscle, leads to systemic glucose intolerance and insulin resistance. Despite this common belief, the specific role of skeletal muscle Akt in muscle growth and insulin sensitivity remains undefined. METHODS We generated multiple mouse models of skeletal muscle Akt deficiency to evaluate the role of muscle Akt signaling in vivo. The effects of these genetic perturbations on muscle mass, glucose homeostasis and insulin sensitivity were assessed using both in vivo and ex vivo assays. RESULTS Surprisingly, mice lacking Akt2 alone in skeletal muscle displayed normal skeletal muscle insulin signaling, glucose tolerance, and insulin sensitivity despite a dramatic reduction in phosphorylated Akt. In contrast, deletion of both Akt isoforms (M-AktDKO) prevented downstream signaling and resulted in muscle atrophy. Despite the absence of Akt signaling, in vivo and ex vivo insulin-stimulated glucose uptake were normal in M-AktDKO mice. Similar effects on insulin sensitivity were observed in mice with prolonged deletion (4 weeks) of both skeletal muscle Akt isoforms selectively in adulthood. Conversely, short term deletion (2 weeks) of skeletal muscle specific Akt in adult muscles impaired insulin tolerance paralleling the effect observed by acute pharmacological inhibition of Akt in vitro. Mechanistically, chronic ablation of Akt induced mitochondrial dysfunction and activation of AMPK, which was required for insulin-stimulated glucose uptake in the absence of Akt. CONCLUSIONS Together, these data indicate that chronic reduction in Akt activity alone in skeletal muscle is not sufficient to induce insulin resistance or prevent glucose uptake in all conditions. Therefore, since insulin-stimulated glucose disposal in skeletal muscle is markedly impaired in insulin-resistant states, we hypothesize that alterations in signaling molecules in addition to skeletal muscle Akt are necessary to perturb glucose tolerance and insulin sensitivity in vivo.
Collapse
Affiliation(s)
- N Jaiswal
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M G Gavin
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - W J Quinn
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - T S Luongo
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - R G Gelfer
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - J A Baur
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - P M Titchenell
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Eshaghi FS, Ghazizadeh H, Kazami-Nooreini S, Timar A, Esmaeily H, Mehramiz M, Avan A, Ghayour-Mobarhan M. Association of a genetic variant in AKT1 gene with features of the metabolic syndrome. Genes Dis 2019; 6:290-295. [PMID: 32042868 PMCID: PMC6997569 DOI: 10.1016/j.gendis.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/28/2019] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Metabolic syndrome (MetS) is a clustering of metabolic abnormalities that is associated with increased risk of developing cardiovascular disease and type 2 diabetes. There is growing body of data showing the associations of genetic variants of the genes involved in the PI3K/AKT/mTOR pathway with diabetes and obesity. We aimed to investigate the association between MetS and its components with the genetic polymorphism in AKT1, rs1130233 (T > C). Total of 618 participants, recruited from Mashhad stroke and heart atherosclerosis disorder cohort (MASHAD study). Patients with MetS were defined by using international diabetes federation (IDF) criteria (n = 326) and those without MetS (n = 261) were recruited. Anthropometric and biochemical parameters were measured in all subjects. Genetic analysis for the rs1130233 polymorphism was performed, using the ABI-StepOne instruments with SDS version-2.0 software. Individuals with MetS had a significantly higher levels of BMI, waist-circumference, total cholesterol, triglyceride, high sensitivity-c reactive protein (hs-CRP) and blood-pressure, and lower concentrations of high density lipoprotein (HDL-C), compared to non-MetS individuals (P < 0.05). The association between the rs1130233 and MetS was not significant. Subjects with a CC or CT genotypes had a significantly higher serum hs-CRP-level (OR: 1.5; 95% CI (1.05–2.1), P = 0.02). Additionally, subjects who carried the TC genotype had a higher BMI compared to the CC genotype (p value = 0.045). Our findings demonstrated that AKT1, rs1130233 (T > C) polymorphism was associated with major components of MetS such as hs-CRP, and BMI, indicating further investigation in a multi-center setting to explore its value as an emerging biomarker of risk stratification marker.
Collapse
Affiliation(s)
- Fateme Sadat Eshaghi
- Department of Biochemistry, Faculty of Basic Sciences, Hakim Sabzevary University, Sabzevar, Iran
| | - Hamideh Ghazizadeh
- Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakine Kazami-Nooreini
- Department of Biochemistry, Faculty of Basic Sciences, Hakim Sabzevary University, Sabzevar, Iran
| | - Ameneh Timar
- Department of Biochemistry, Faculty of Basic Sciences, Hakim Sabzevary University, Sabzevar, Iran
| | - Habibollah Esmaeily
- Social Department of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome and Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Balise VD, Cornelius-Green JN, Kassotis CD, Rector RS, Thyfault JP, Nagel SC. Preconceptional, Gestational, and Lactational Exposure to an Unconventional Oil and Gas Chemical Mixture Alters Energy Expenditure in Adult Female Mice. Front Endocrinol (Lausanne) 2019; 10:323. [PMID: 31191452 PMCID: PMC6540741 DOI: 10.3389/fendo.2019.00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/02/2019] [Indexed: 01/21/2023] Open
Abstract
Previous studies conducted in our laboratory have found altered adult health outcomes in animals with prenatal exposure to environmentally relevant levels of unconventional oil and gas (UOG) chemicals with endocrine-disrupting activity. This study aimed to examine potential metabolic health outcomes following a preconception, prenatal and postnatal exposure to a mixture of 23 UOG chemicals. Prior to mating and from gestation day 1 to postnatal day 21, C57BL/6J mice were developmentally exposed to a laboratory-created mixture of 23 UOG chemicals in maternal drinking water. Body composition, spontaneous activity, energy expenditure, and glucose tolerance were evaluated in 7-month-old female offspring. Neither body weight nor body composition differed in 7-month female mice. However, females exposed to 1.5 and 150 μg/kg/day UOG mix had lower total and resting energy expenditure within the dark cycle. In the light cycle, the 1,500 μg//kg/day group had lower total energy expenditure and the 1.5 μg/kg/day group had lower resting energy expenditure. Females exposed to the 150 μg/kg/day group had lower spontaneous activity in the dark cycle, and females exposed to the 1,500 μg/kg/day group had lower activity in the light cycle. This study reports for the first time that developmental exposure to a mixture of 23 UOG chemicals alters energy expenditure and spontaneous activity in adult female mice.
Collapse
Affiliation(s)
- Victoria D. Balise
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
| | - Jennifer N. Cornelius-Green
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States
| | | | - R. Scott Rector
- Department of Nutrition and Health Exercise Physiology, University of Missouri, Columbia, MO, United States
- Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
- Research Service, Harry S Truman Memorial Veterans Medical Center, Columbia, MO, United States
| | - John P. Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
- Kansas City VA Medical Center, Research Service, Kansas City, MO, United States
| | - Susan C. Nagel
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, United States
- Department of Biological Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Susan C. Nagel
| |
Collapse
|
25
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Alfredo Martinez J. Association of Methylation Signatures at Hepatocellular Carcinoma Pathway Genes with Adiposity and Insulin Resistance Phenotypes. Nutr Cancer 2018; 71:840-851. [PMID: 30457363 DOI: 10.1080/01635581.2018.1531136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jose I. Riezu-Boj
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I. Milagro
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, and Center for Nutrition Research, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain
| | | |
Collapse
|
26
|
Pierre C, Guillebaud F, Airault C, Baril N, Barbouche R, Save E, Gaigé S, Bariohay B, Dallaporta M, Troadec JD. Invalidation of Microsomal Prostaglandin E Synthase-1 (mPGES-1) Reduces Diet-Induced Low-Grade Inflammation and Adiposity. Front Physiol 2018; 9:1358. [PMID: 30333759 PMCID: PMC6176076 DOI: 10.3389/fphys.2018.01358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023] Open
Abstract
Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity. Because of its properties, prostaglandin E2 (PGE2), an emblematic inflammatory mediator, has been proposed as an actor linking inflammation and obesity. Indeed, PGE2 is involved in mechanisms that are dysregulated in obesity such as lipolysis and adipogenesis. Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which specifically catalyzes the final step of PGE2 biosynthesis. Interestingly, mPGES-1 invalidation dramatically alters the production of PGE2 during inflammation. In the present work, we sought to determine whether mPGES-1 could contribute to inflammation associated with obesity. To this end, we analyzed the energy metabolism of mPGES-1 deficient mice (mPGES-1-/-) and littermate controls, fed with a high-fat diet. Our data showed that mPGES-1-/- mice exhibited resistance to diet-induced obesity when compared to wild-type littermates. mPGES-1-/- mice fed with a high-fat diet, showed a lower body weight gain and a reduced adiposity, which were accompanied by a decrease in adipose tissues inflammation. We also observed an increase in energy expenditures in mPGES-1-/- mice fed with a high-fat diet without any changes in activity and browning process. Altogether, these data suggest that mPGES-1 inhibition may prevent diet-induced obesity.
Collapse
Affiliation(s)
- Clément Pierre
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France.,Biomeostasis CRO, La Penne-sur-Huveaune, France
| | - Florent Guillebaud
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Nathalie Baril
- CNRS, Fédération de Recherche 3C FR 3512, Aix-Marseille Université, Marseille, France
| | - Rym Barbouche
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Etienne Save
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Stéphanie Gaigé
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | | | - Michel Dallaporta
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| | - Jean-Denis Troadec
- Aix Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives UMR 7291, Marseille, France
| |
Collapse
|
27
|
PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice. Cell Death Dis 2018; 9:876. [PMID: 30158592 PMCID: PMC6115456 DOI: 10.1038/s41419-018-0904-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Stimulation of white adipose tissue (WAT) browning is considered as a potential approach to treat obesity and metabolic diseases. Our previous studies have shown that phytochemical butein can stimulate WAT browning through induction of Prdm4 in adipocytes. Here, we investigated the effects of butein on diet-induced obesity and its underlying molecular mechanism. Treatment with butein prevented weight gains and improved metabolic profiles in diet-induced obese mice. Butein treatment groups also displayed higher body temperature, increased energy expenditure, and enhanced expression of thermogenic genes in adipose tissue. Butein also suppressed body weight gains and improved glucose and insulin tolerance in mice housed at thermoneutrality (30 °C). These effects were associated with adipose-selective induction of Prdm4, suggesting the role of Prdm4 in butein-mediated anti-obese effects. To directly assess the in vivo role of Prdm4, we generated aP2-Prdm4 transgenic mouse lines overexpressing Prdm4 in adipose tissues. Adipose-specific transgenic expression of Prdm4 recapitulated the butein’s actions in stimulating energy expenditure, cold tolerance, and thermogenic gene expression, resulting in prevention of obesity and improvement of metabolism. Mechanistically, direct inhibition of PI3Kα activity followed by selective suppression of its downstream Akt1 mirrored butein’s effect on Ucp1 expression and oxygen consumption. In addition, effects of butein were completely abolished in Akt1 KO mouse embryonic fibroblasts. Together, these studies demonstrate the role of butein in obesity and metabolic diseases, further highlighting that adipose PI3Kα–Akt1–Prdm4 axis is a regulator of energy expenditure.
Collapse
|
28
|
Goupille O, Penglong T, Kadri Z, Granger-Locatelli M, Denis R, Luquet S, Badoual C, Fucharoen S, Maouche-Chrétien L, Leboulch P, Chrétien S. The LXCXE Retinoblastoma Protein-Binding Motif of FOG-2 Regulates Adipogenesis. Cell Rep 2018; 21:3524-3535. [PMID: 29262331 DOI: 10.1016/j.celrep.2017.11.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/12/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023] Open
Abstract
GATA transcription factors and their FOG cofactors play a key role in tissue-specific development and differentiation, from worms to humans. Mammals have six GATA and two FOG factors. We recently demonstrated that interactions between retinoblastoma protein (pRb) and GATA-1 are crucial for erythroid proliferation and differentiation. We show here that the LXCXE pRb-binding site of FOG-2 is involved in adipogenesis. Unlike GATA-1, which inhibits cell division, FOG-2 promotes proliferation. Mice with a knockin of a Fog2 gene bearing a mutated LXCXE pRb-binding site are resistant to obesity and display higher rates of white-to-brown fat conversion. Thus, each component of the GATA/FOG complex (GATA-1 and FOG-2) is involved in pRb/E2F regulation, but these molecules have markedly different roles in the control of tissue homeostasis.
Collapse
Affiliation(s)
- Olivier Goupille
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Tipparat Penglong
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Zahra Kadri
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Marine Granger-Locatelli
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France
| | - Raphaël Denis
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Centre National la Recherche scientifique, UMR 8251, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Cécile Badoual
- Department of Pathology, G. Pompidou European Hospital APHP-Université Paris Descartes, Paris, France
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand
| | - Leila Maouche-Chrétien
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; INSERM, Paris, France
| | - Philippe Leboulch
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 73170 Nakhon Pathom, Thailand; Genetics Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Stany Chrétien
- Service des Thérapies Innovantes, Institute Jacob, CEA 92265 Fontenay-aux-Roses and University Paris Saclay UMR-E007, 91405 Orsay Cedex, France; INSERM, Paris, France.
| |
Collapse
|
29
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
30
|
Lee MY, Gamez-Mendez A, Zhang J, Zhuang Z, Vinyard DJ, Kraehling J, Velazquez H, Brudvig GW, Kyriakides TR, Simons M, Sessa WC. Endothelial Cell Autonomous Role of Akt1: Regulation of Vascular Tone and Ischemia-Induced Arteriogenesis. Arterioscler Thromb Vasc Biol 2018; 38:870-879. [PMID: 29449333 DOI: 10.1161/atvbaha.118.310748] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The importance of PI3K/Akt signaling in the vasculature has been demonstrated in several models, as global loss of Akt1 results in impaired postnatal ischemia- and VEGF-induced angiogenesis. The ubiquitous expression of Akt1, however, raises the possibility of cell-type-dependent Akt1-driven actions, thereby necessitating tissue-specific characterization. APPROACH AND RESULTS Herein, we used an inducible, endothelial-specific Akt1-deleted adult mouse model (Akt1iECKO) to characterize the endothelial cell autonomous functions of Akt1 in the vascular system. Endothelial-targeted ablation of Akt1 reduces eNOS (endothelial nitric oxide synthase) phosphorylation and promotes both increased vascular contractility in isolated vessels and elevated diastolic blood pressures throughout the diurnal cycle in vivo. Furthermore, Akt1iECKO mice subject to the hindlimb ischemia model display impaired blood flow and decreased arteriogenesis. CONCLUSIONS Endothelial Akt1 signaling is necessary for ischemic resolution post-injury and likely reflects the consequence of NO insufficiency critical for vascular repair.
Collapse
Affiliation(s)
- Monica Y Lee
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Ana Gamez-Mendez
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Jiasheng Zhang
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Zhenwu Zhuang
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - David J Vinyard
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Jan Kraehling
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Heino Velazquez
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Gary W Brudvig
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Themis R Kyriakides
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - Michael Simons
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.)
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program, Department of Pharmacology (M.Y.L., A.G.-M., J.K., W.C.S.), Vascular Biology and Therapeutics Program, Department of Pathology (T.R.K.), and Department of Cell Biology (M.S.), Yale University School of Medicine, New Haven, CT; Department of Internal Medicine, Section of Cardiovascular Medicine, Yale Cardiovascular Research Center, New Haven, CT (J.Z., Z.Z., M.S.); Department of Chemistry, Yale University, New Haven, CT (D.J.V., G.W.B.); and Department of Internal Medicine, VA Connecticut Healthcare System, West Haven, CT (H.V.).
| |
Collapse
|
31
|
Sanchez-Gurmaches J, Tang Y, Jespersen NZ, Wallace M, Martinez Calejman C, Gujja S, Li H, Edwards YJK, Wolfrum C, Metallo CM, Nielsen S, Scheele C, Guertin DA. Brown Fat AKT2 Is a Cold-Induced Kinase that Stimulates ChREBP-Mediated De Novo Lipogenesis to Optimize Fuel Storage and Thermogenesis. Cell Metab 2018; 27:195-209.e6. [PMID: 29153407 PMCID: PMC5762420 DOI: 10.1016/j.cmet.2017.10.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
Brown adipose tissue (BAT) is a therapeutic target for metabolic diseases; thus, understanding its metabolic circuitry is clinically important. Many studies of BAT compare rodents mildly cold to those severely cold. Here, we compared BAT remodeling between thermoneutral and mild-cold-adapted mice, conditions more relevant to humans. Although BAT is renowned for catabolic β-oxidative capacity, we find paradoxically that the anabolic de novo lipogenesis (DNL) genes encoding ACLY, ACSS2, ACC, and FASN were among the most upregulated by mild cold and that, in humans, DNL correlates with Ucp1 expression. The regulation and function of adipocyte DNL and its association with thermogenesis are not understood. We provide evidence suggesting that AKT2 drives DNL in adipocytes by stimulating ChREBPβ transcriptional activity and that cold induces the AKT2-ChREBP pathway in BAT to optimize fuel storage and thermogenesis. These data provide insight into adipocyte DNL regulation and function and illustrate the metabolic flexibility of thermogenesis.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yuefeng Tang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Naja Zenius Jespersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sharvari Gujja
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH-Zürich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Levenga J, Wong H, Milstead RA, Keller BN, LaPlante LE, Hoeffer CA. AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity. eLife 2017; 6:30640. [PMID: 29173281 PMCID: PMC5722612 DOI: 10.7554/elife.30640] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
AKT is a kinase regulating numerous cellular processes in the brain, and mutations in AKT are known to affect brain function. AKT is indirectly implicated in synaptic plasticity, but its direct role has not been studied. Moreover, three highly related AKT isoforms are expressed in the brain, but their individual roles are poorly understood. We find in Mus musculus, each AKT isoform has a unique expression pattern in the hippocampus, with AKT1 and AKT3 primarily in neurons but displaying local differences, while AKT2 is in astrocytes. We also find isoform-specific roles for AKT in multiple paradigms of hippocampal synaptic plasticity in area CA1. AKT1, but not AKT2 or AKT3, is required for L-LTP through regulating activity-induced protein synthesis. Interestingly, AKT activity inhibits mGluR-LTD, with overlapping functions for AKT1 and AKT3. In summary, our studies identify distinct expression patterns and roles in synaptic plasticity for AKT isoforms in the hippocampus.
Collapse
Affiliation(s)
- Josien Levenga
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States.,Linda Crnic Institute, Aurora, United States
| | - Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States
| | - Ryan A Milstead
- Department of Integrative Physiology, University of Colorado-Boulder, Boulder, United States
| | - Bailey N Keller
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States
| | - Lauren E LaPlante
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States
| | - Charles A Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, Boulder, United States.,Linda Crnic Institute, Aurora, United States.,Department of Integrative Physiology, University of Colorado-Boulder, Boulder, United States
| |
Collapse
|
33
|
Wang J, Chandrasekhar V, Abbadessa G, Yu Y, Schwartz B, Kontaridis MI. In vivo efficacy of the AKT inhibitor ARQ 092 in Noonan Syndrome with multiple lentigines-associated hypertrophic cardiomyopathy. PLoS One 2017; 12:e0178905. [PMID: 28582432 PMCID: PMC5459472 DOI: 10.1371/journal.pone.0178905] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/19/2017] [Indexed: 11/18/2022] Open
Abstract
Noonan Syndrome with Multiple Lentigines (NSML, formerly LEOPARD syndrome) is an autosomal dominant "RASopathy" disorder manifesting in congenital heart disease. Most cases of NSML are caused by catalytically inactivating mutations in the protein tyrosine phosphatase (PTP), non-receptor type 11 (PTPN11), encoding the SH2 domain-containing PTP-2 (SHP2) protein. We previously generated knock-in mice harboring the PTPN11 mutation Y279C, one of the most common NSML alleles; these now-termed SHP2Y279C/+ mice recapitulate the human disorder and develop hypertrophic cardiomyopathy (HCM) by 12 weeks of age. Functionally, heart and/or cardiomyocyte lysates from SHP2Y279C/+ mice exhibit increased basal and agonist-induced AKT and mTOR activities. Here, we sought to determine whether we could reverse the hypertrophy in SHP2Y279C/+ mice using ARQ 092, an oral and selective allosteric AKT inhibitor currently in clinical trials for patients with PI3K/AKT-driven tumors or Proteus syndrome. We obtained echocardiographs of SHP2Y279C/+ and wildtype (SHP2+/+) littermates, either in the presence or absence of ARQ 092 at 12, 14, and 16 weeks of age. While SHP2Y279C/+ mice developed significant left ventricular hypertrophy by 12 weeks, as indicated by decreased chamber dimension and increased posterior wall thickness, treatment of SHP2Y279C/+ mice with ARQ 092 normalized the hypertrophy in as early as 2 weeks following treatment, with hearts comparable in size to those in wildtype (SHP2+/+) mice. In addition, we observed an increase in fractional shortening (FS%) in SHP2Y279C/+ mice, an effect of increased compensatory hypertrophy, which was not apparent in SHP2Y279C/+ mice treated with ARQ 092, suggesting functional improvement of HCM upon treatment with the AKT inhibitor. Finally, we found that ARQ 092 specifically inhibited AKT activity, as well as its downstream effectors, PRAS and S6RP in NSML mice. Taken together, these data suggest ARQ 092 may be a promising novel therapy for treatment of hypertrophy in NSML patients.
Collapse
Affiliation(s)
- Jianxun Wang
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Vasanth Chandrasekhar
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | | | - Yi Yu
- ArQule, Inc., Burlington, Massachusetts, United States of America
| | - Brian Schwartz
- ArQule, Inc., Burlington, Massachusetts, United States of America
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
34
|
DJ-1 maintains energy and glucose homeostasis by regulating the function of brown adipose tissue. Cell Discov 2017; 3:16054. [PMID: 28224045 PMCID: PMC5309696 DOI: 10.1038/celldisc.2016.54] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
DJ-1 protein is involved in multiple physiological processes, including Parkinson’s disease. However, the role of DJ-1 in the metabolism is largely unknown. Here we found that DJ-1 maintained energy balance and glucose homeostasisvia regulating brown adipose tissue (BAT) activity. DJ-1-deficient mice reduced body mass, increased energy expenditure and improved insulin sensitivity. DJ-1 deletion also resisted high-fat-diet (HFD) induced obesity and insulin resistance. Accordingly, DJ-1 transgene triggered autonomous obesity and glucose intolerance. Further BAT transplantation experiments clarified DJ-1 regulates energy and glucose homeostasis by modulating BAT function. Mechanistically, we found that DJ-1 promoted PTEN proteasomal degradation via an E3 ligase, mind bomb-2 (Mib2), which led to Akt activation and inhibited FoxO1-dependent Ucp1 (Uncoupling protein-1) expression in BAT. Consistently, ablation of Akt1 mitigated the obesity and BAT dysfunction induced by DJ-1 transgene. These findings define a new biological role of DJ-1 protein in regulating BAT function, with an implication of the therapeutic target in the treatment of metabolic disorders.
Collapse
|
35
|
Pauta M, Rotllan N, Fernández-Hernando A, Langhi C, Ribera J, Lu M, Boix L, Bruix J, Jimenez W, Suárez Y, Ford DA, Baldán A, Birnbaum MJ, Morales-Ruiz M, Fernández-Hernando C. Akt-mediated foxo1 inhibition is required for liver regeneration. Hepatology 2016; 63:1660-74. [PMID: 26473496 PMCID: PMC5177729 DOI: 10.1002/hep.28286] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/18/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022]
Abstract
UNLABELLED Understanding the hepatic regenerative process has clinical interest as the effectiveness of many treatments for chronic liver diseases is conditioned by efficient liver regeneration. Experimental evidence points to the need for a temporal coordination between cytokines, growth factors, and metabolic signaling pathways to enable successful liver regeneration. One intracellular mediator that acts as a signal integration node for these processes is the serine-threonine kinase Akt/protein kinase B (Akt). To investigate the contribution of Akt during hepatic regeneration, we performed partial hepatectomy in mice lacking Akt1, Akt2, or both isoforms. We found that absence of Akt1 or Akt2 does not influence liver regeneration after partial hepatectomy. However, hepatic-specific Akt1 and Akt2 null mice show impaired liver regeneration and increased mortality. The major abnormal cellular events observed in total Akt-deficient livers were a marked reduction in cell proliferation, cell hypertrophy, glycogenesis, and lipid droplet formation. Most importantly, liver-specific deletion of FoxO1, a transcription factor regulated by Akt, rescued the hepatic regenerative capability in Akt1-deficient and Akt2-deficient mice and normalized the cellular events associated with liver regeneration. CONCLUSION The Akt-FoxO1 signaling pathway plays an essential role during liver regeneration.
Collapse
Affiliation(s)
- Montse Pauta
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Noemi Rotllan
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ana Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Cedric Langhi
- Edward A. Doisy Department of Biochemistry & Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, Saint Louis, Missuri, USA
| | - Jordi Ribera
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Mingjian Lu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Loreto Boix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERehd, Barcelona, Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic of Barcelona, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERehd, Barcelona, Spain
| | - Wladimiro Jimenez
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Department of Physiological Sciences I, University of Barcelona, Barcelona, Spain
| | - Yajaira Suárez
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David A. Ford
- Edward A. Doisy Department of Biochemistry & Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, Saint Louis, Missuri, USA
| | - Angel Baldán
- Edward A. Doisy Department of Biochemistry & Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, Saint Louis, Missuri, USA
| | - Morris J. Birnbaum
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuel Morales-Ruiz
- Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain,Department of Physiological Sciences I, University of Barcelona, Barcelona, Spain,Corresponding authors: Manuel Morales-Ruiz, Ph.D., Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, 170 Villarroel St, Barcelona, 08036, Spain, Tel: 011-34-932275466; Fax: 011-34-932275697; ., Carlos Fernandez-Hernando, Ph.D., Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT06520, Tel: 2037374615; Fax: 2037372290;
| | - Carlos Fernández-Hernando
- Departments of Medicine and Cell Biology, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA,Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA,Corresponding authors: Manuel Morales-Ruiz, Ph.D., Department of Biochemistry and Molecular Genetics, Hospital Clinic of Barcelona, 170 Villarroel St, Barcelona, 08036, Spain, Tel: 011-34-932275466; Fax: 011-34-932275697; ., Carlos Fernandez-Hernando, Ph.D., Vascular Biology and Therapeutics Program, Yale University School of Medicine, 10 Amistad Street, New Haven, CT06520, Tel: 2037374615; Fax: 2037372290;
| |
Collapse
|
36
|
Leoni C, Onesimo R, Giorgio V, Diamanti A, Giorgio D, Martini L, Rossodivita A, Tartaglia M, Zampino G. Understanding Growth Failure in Costello Syndrome: Increased Resting Energy Expenditure. J Pediatr 2016; 170:322-4. [PMID: 26778095 DOI: 10.1016/j.jpeds.2015.11.076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/25/2015] [Accepted: 11/24/2015] [Indexed: 10/22/2022]
Abstract
Costello syndrome is a rare multisystem disorder caused by mutations in the proto-oncogene HRAS. Failure to thrive is one of its cardinal clinical features. This study documents that individuals with Costello syndrome have increased resting energy expenditure. We speculate this could be one of the potential mechanisms causing failure to thrive.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | | | - Antonella Diamanti
- Artificial Nutrition Unit, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Daniela Giorgio
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Lucilla Martini
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Aurora Rossodivita
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases, Department of Pediatrics, Catholic University, Rome, Italy.
| |
Collapse
|
37
|
Chang YJ, Pownall S, Jensen TE, Mouaaz S, Foltz W, Zhou L, Liadis N, Woo M, Hao Z, Dutt P, Bilan PJ, Klip A, Mak T, Stambolic V. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. eLife 2015; 4. [PMID: 26512886 PMCID: PMC4709268 DOI: 10.7554/elife.06011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 10/25/2015] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI:http://dx.doi.org/10.7554/eLife.06011.001 Obesity is a growing public health concern around the world, and can lead to the development of type 2 diabetes, heart disease and cancer. Both genetics and environmental factors such as diet contribute to obesity. Fat cells are essential to good health, but the excess accumulation of fat cells in obese people involves a complex process that is regulated by interactions between numerous genes, cellular messengers and mechanical forces. Learning more about these factors could help prevent or treat obesity. One mutation in the gene encoding a protein called PDZ-RhoGEF has been linked to both obesity and type 2 diabetes. People with mutations in this gene are not responsive enough to insulin, a hormone important for sugar metabolism. This can interfere with the body’s ability to burn energy in food or lead to a dangerous build up of sugar in the blood as seen in type 2 diabetes. But exactly what PDZ-RhoGEF normally does to prevent this is unclear. Chang et al. now show that PDZ-RhoGEF controls fat cell production and the body’s ability to release the energy contained in food. First, mice that had been genetically engineered to lack PDZ-RhoGEF were compared to typical mice. The mice without PDZ-RhoGEF had fewer fat cells than the typical mice, and they burned more energy. The mutant mice walked around about as much as the typical mice but they were more likely to have repetitive movements, the mouse equivalent of human nervous ticks. Insulin normally stimulates the production of fat cells. But the mutant mice were less able to produce fat cells as they developed into adults. When fed a high fat food diet, the normal mice became fatter and insensitive to insulin and developed other health problems linked to excess fat in the body. The mutant mice on the same diet, however, stayed thin and avoided these health issues. The experiments show that PDZ-RhoGEF helps relay insulin’s message within the body, and as such it plays a critical role in regulating metabolism, sugar levels and fat accumulation. Future work should ask how PDZ-RhoGEF affects other complications linked to obesity, and explore the possibility of developing treatments for obesity based on the biology of this molecule. DOI:http://dx.doi.org/10.7554/eLife.06011.002
Collapse
Affiliation(s)
- Ying-Ju Chang
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Scott Pownall
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Thomas E Jensen
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Samar Mouaaz
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Warren Foltz
- Spatio-Temporal Targeting and Amplification of Radiation Response Program, Office of Research Trainees, University Health Network, Toronto, Canada
| | - Lily Zhou
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Nicole Liadis
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Minna Woo
- Toronto General Research Institute, University Health Network, Toronto, Canada
| | - Zhenyue Hao
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Previn Dutt
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Tak Mak
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Specific and redundant roles of PKBα/AKT1 and PKBβ/AKT2 in human pancreatic islets. Exp Cell Res 2015; 338:82-8. [PMID: 26318486 DOI: 10.1016/j.yexcr.2015.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/16/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023]
Abstract
Protein kinase Bα (PKBα)/AKT1 and PKBβ/AKT2 are required for normal peripheral insulin action but their role in pancreatic β cells remains enigmatic as indicated by the relatively mild islet phenotype of mice with deficiency for either one of these two isoforms. In this study we have analysed proliferation, apoptosis, β cell size and glucose-stimulated insulin secretion in human islets overexpressing either PKBα or PKBβ. Our results reveal redundant and specific functions. Overexpression of either isoform resulted in increased β cell size, but insulin production and secretion remained unchanged. Proliferation and apoptosis of β cells were only significantly stimulated and inhibited, respectively, by PKBα/AKT1. Importantly, overexpression of PKBα/AKT1 in dissociated islets increased the ratio of β cells to non-β cells. These results confirm our previous findings obtained with rodent islets and strongly indicate that PKBα/AKT1 can regulate β cell mass also in human islets.
Collapse
|
39
|
Ho D, Zhao X, Yan L, Yuan C, Zong H, Vatner DE, Pessin JE, Vatner SF. Adenylyl Cyclase Type 5 Deficiency Protects Against Diet-Induced Obesity and Insulin Resistance. Diabetes 2015; 64:2636-45. [PMID: 25732192 PMCID: PMC4477357 DOI: 10.2337/db14-0494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022]
Abstract
Adenylyl cyclase type 5 knockout (AC5KO) mice have increased longevity and share a similar phenotype with calorie-restricted wild-type (WT) mice. To determine the in vivo metabolic properties of AC5 deficiency, we compared the effects of standard diet (SD) and high-fat diet (HFD) on obesity, energy balance, glucose regulation, and insulin sensitivity. AC5KO mice on SD had reduced body weight and adiposity compared with WT mice. Blood cholesterol and triglyceride levels were also significantly reduced in AC5KO mice. Indirect calorimetry demonstrated increased oxygen consumption, respiratory exchange ratio, and energy expenditure in AC5KO compared with WT mice on both SD and HFD. AC5KO mice also displayed improved glucose tolerance and increased whole-body insulin sensitivity, accompanied by decreased liver glycogen stores. Euglycemic-hyperinsulinemic clamp studies confirmed the marked improvement of glucose homeostasis and insulin sensitivity in AC5KO mice primarily through increased insulin sensitivity in skeletal muscle. Moreover, the genes involved in mitochondrial biogenesis and function were significantly increased in AC5KO skeletal muscle. These data demonstrate that deficiency of AC5 protects against obesity, glucose intolerance, and insulin resistance, supporting AC5 as a potential novel therapeutic target for treatment of obesity and diabetes.
Collapse
Affiliation(s)
- David Ho
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Xin Zhao
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Lin Yan
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Chujun Yuan
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Haihong Zong
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Dorothy E Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| | - Jeffery E Pessin
- Departments of Medicine and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY
| | - Stephen F Vatner
- Departments of Cell Biology and Molecular Medicine and Medicine, New Jersey Medical School, Rutgers University, Newark, NJ
| |
Collapse
|
40
|
Sadahiro M, Erickson C, Lin WJ, Shin AC, Razzoli M, Jiang C, Fargali S, Gurney A, Kelley KA, Buettner C, Bartolomucci A, Salton SR. Role of VGF-derived carboxy-terminal peptides in energy balance and reproduction: analysis of "humanized" knockin mice expressing full-length or truncated VGF. Endocrinology 2015; 156:1724-38. [PMID: 25675362 PMCID: PMC4398760 DOI: 10.1210/en.2014-1826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Targeted deletion of VGF, a secreted neuronal and endocrine peptide precursor, produces lean, hypermetabolic, and infertile mice that are resistant to diet-, lesion-, and genetically-induced obesity and diabetes. Previous studies suggest that VGF controls energy expenditure (EE), fat storage, and lipolysis, whereas VGF C-terminal peptides also regulate reproductive behavior and glucose homeostasis. To assess the functional equivalence of human VGF(1-615) (hVGF) and mouse VGF(1-617) (mVGF), and to elucidate the function of the VGF C-terminal region in the regulation of energy balance and susceptibility to obesity, we generated humanized VGF knockin mouse models expressing full-length hVGF or a C-terminally deleted human VGF(1-524) (hSNP), encoded by a single nucleotide polymorphism (rs35400704). We show that homozygous male and female hVGF and hSNP mice are fertile. hVGF female mice had significantly increased body weight compared with wild-type mice, whereas hSNP mice have reduced adiposity, increased activity- and nonactivity-related EE, and improved glucose tolerance, indicating that VGF C-terminal peptides are not required for reproductive function, but 1 or more specific VGF C-terminal peptides are likely to be critical regulators of EE. Taken together, our results suggest that human and mouse VGF proteins are largely functionally conserved but that species-specific differences in VGF peptide function, perhaps a result of known differences in receptor binding affinity, likely alter the metabolic phenotype of hVGF compared with mVGF mice, and in hSNP mice in which several C-terminal VGF peptides are ablated, result in significantly increased activity- and nonactivity-related EE.
Collapse
Affiliation(s)
- Masato Sadahiro
- Departments of Neuroscience (M.S., W.-J.L., C.J., S.F., C.B., S.R.S.), Medicine (A.C.S., C.B.), Geriatrics (S.R.S.), and Developmental and Regenerative Biology (K.A.K.), Friedman Brain Institute (S.R.S.), and Graduate School of Biomedical Sciences (M.S., C.J.), Icahn School of Medicine at Mount Sinai, New York, New York 10029-6574; and Department of Integrative Biology and Physiology (C.E., M.R., A.G., A.B.), University of Minnesota, Minneapolis, Minnesota 55455-0001
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Keembiyehetty C, Love DC, Harwood KR, Gavrilova O, Comly ME, Hanover JA. Conditional knock-out reveals a requirement for O-linked N-Acetylglucosaminase (O-GlcNAcase) in metabolic homeostasis. J Biol Chem 2015; 290:7097-113. [PMID: 25596529 DOI: 10.1074/jbc.m114.617779] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-GlcNAc cycling is maintained by the reciprocal activities of the O-GlcNAc transferase and the O-GlcNAcase (OGA) enzymes. O-GlcNAc transferase is responsible for O-GlcNAc addition to serine and threonine (Ser/Thr) residues and OGA for its removal. Although the Oga gene (MGEA5) is a documented human diabetes susceptibility locus, its role in maintaining insulin-glucose homeostasis is unclear. Here, we report a conditional disruption of the Oga gene in the mouse. The resulting homozygous Oga null (KO) animals lack OGA enzymatic activity and exhibit elevated levels of the O-GlcNAc modification. The Oga KO animals showed nearly complete perinatal lethality associated with low circulating glucose and low liver glycogen stores. Defective insulin-responsive GSK3β phosphorylation was observed in both heterozygous (HET) and KO Oga animals. Although Oga HET animals were viable, they exhibited alterations in both transcription and metabolism. Transcriptome analysis using mouse embryonic fibroblasts revealed deregulation in the transcripts of both HET and KO animals specifically in genes associated with metabolism and growth. Additionally, metabolic profiling showed increased fat accumulation in HET and KO animals compared with WT, which was increased by a high fat diet. Reduced insulin sensitivity, glucose tolerance, and hyperleptinemia were also observed in HET and KO female mice. Notably, the respiratory exchange ratio of the HET animals was higher than that observed in WT animals, indicating the preferential utilization of glucose as an energy source. These results suggest that the loss of mouse OGA leads to defects in metabolic homeostasis culminating in obesity and insulin resistance.
Collapse
Affiliation(s)
| | - Dona C Love
- From the Laboratory of Cell Biology and Biochemistry and
| | | | - Oksana Gavrilova
- Mouse Metabolic Core Laboratory, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - John A Hanover
- From the Laboratory of Cell Biology and Biochemistry and
| |
Collapse
|
42
|
Cheng KK, Akasaki Y, Lecommandeur E, Lindsay RT, Murfitt S, Walsh K, Griffin JL. Metabolomic analysis of akt1-mediated muscle hypertrophy in models of diet-induced obesity and age-related fat accumulation. J Proteome Res 2014; 14:342-52. [PMID: 25231380 PMCID: PMC4286153 DOI: 10.1021/pr500756u] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Akt1
is a serine/threonine kinase that promotes cell growth and
survival. Previously, Akt1 activation in a double transgenic (DTG)
mouse model fed a high-fat/high-sucrose (HF/HS) diet was found to
promote type IIb muscle growth and to lead to a significant reduction
in obesity. Here, we have used metabolomics to examine the metabolic
perturbations in blood serum and liver and gastrocnemius tissues of
the DTG mice. Multivariate statistics highlighted consistent metabolic
changes in gastrocnemius muscle following Akt1 activation, which included
significant reductions of serine and histidine-containing dipeptides
(anserine and carnosine), in addition to increased concentrations
of phosphorylated sugars. In addition, Akt1-mediated regression in
obesity could be associated with increased glycolysis in gastrocnemius
muscle as well as increased gluconeogenesis, glycogenolysis, and ketogenesis
in the liver. In old DTG animals, Akt1 activation was found to improve
glucose metabolism and confer a beneficial effect in the regression
of age-related fat accumulation. This study identifies metabolic changes
induced by Akt1-mediated muscle growth and demonstrates a cross-talk
between distant organs that leads to a regression of fat mass. The
current findings indicate that agents that promote Akt1 induction
in muscle have utility in the regression of obesity.
Collapse
Affiliation(s)
- Kian-Kai Cheng
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge , Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc Natl Acad Sci U S A 2014; 111:12865-70. [PMID: 25136137 DOI: 10.1073/pnas.1408472111] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The PI3K/Akt pathway is necessary for several key endothelial cell (EC) functions, including cell growth, migration, survival, and vascular tone. However, existing literature supports the idea that Akt can be either pro- or antiangiogenic, possibly due to compensation by multiple isoforms in the EC when a single isoform is deleted. Thus, biochemical, genetic, and proteomic studies were conducted to examine isoform-substrate specificity for Akt1 vs. Akt2. In vitro, Akt1 preferentially phosphorylates endothelial nitric oxide synthase (eNOS) and promotes NO release, whereas nonphysiological overexpression of Akt2 can bypass the loss of Akt1. Conditional deletion of Akt1 in the EC, in the absence or presence of Akt2, retards retinal angiogenesis, implying that Akt1 exerts a nonredundant function during physiological angiogenesis. Finally, proteomic analysis of Akt substrates isolated from Akt1- or Akt2-deficient ECs documents that phosphorylation of multiple Akt substrates regulating angiogenic signaling is reduced in Akt1-deficient, but not Akt2-deficient, ECs, including eNOS and Forkhead box proteins. Therefore, Akt1 promotes angiogenesis largely due to phosphorylation and regulation of important downstream effectors that promote aspects of angiogenic signaling.
Collapse
|
44
|
Eberle C, Niessen M, Hemmings BA, Tschopp O, Ament C. Novel individual metabolic profile characterizes the protein kinase B-alpha (pkbα-/-) in vivo model. Arch Physiol Biochem 2014; 120:91-8. [PMID: 24773499 DOI: 10.3109/13813455.2014.911330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Type 2 diabetes and associated co-morbidities run epidemic waves worldwide. Since pathophysiological constellations are individual and display a wide spread of dysmetabolic profiles personalized health care assessments start to emerge. Therefore, we established a specific in silico assessment tool targeting metabolic characterizations individually. MATERIALS AND METHODS Values obtained from oral glucose and intraperitoneal insulin tolerance tests performed on pkbα(-/-) mice (KO) as well as age- and gender-matched controls (WT) were analysed using our established in silico model. RESULTS Generally, male pkbα(-/-) mice (KO) presented significantly increased insulin sensitivity at an age of 6 months compared with age-matched WTs (p = 0.036). Female KO and WT groups displayed improved glucose sensitivities compared with age-matched males (for WT p ≤ 0.011). DISCUSSION AND CONCLUSION Specific metabolic characterization should be assessed individually. Therefore, our in silico model enables novel insights inaugurating specific primary preventive strategies targeting individual metabolic profiling precisely.
Collapse
Affiliation(s)
- Claudia Eberle
- UniversitätsSpital Zürich, Abteilung für Endokrinologie , Diabetologie & Klin. Ernährung, 8091 Zürich , Switzerland
| | | | | | | | | |
Collapse
|
45
|
Bunner AE, Chandrasekera PC, Barnard ND. Knockout mouse models of insulin signaling: Relevance past and future. World J Diabetes 2014; 5:146-159. [PMID: 24748928 PMCID: PMC3990311 DOI: 10.4239/wjd.v5.i2.146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/03/2014] [Accepted: 02/20/2014] [Indexed: 02/05/2023] Open
Abstract
Insulin resistance is a hallmark of type 2 diabetes. In an effort to understand and treat this condition, researchers have used genetic manipulation of mice to uncover insulin signaling pathways and determine the effects of their perturbation. After decades of research, much has been learned, but the pathophysiology of insulin resistance in human diabetes remains controversial, and treating insulin resistance remains a challenge. This review will discuss limitations of mouse models lacking select insulin signaling molecule genes. In the most influential mouse models, glucose metabolism differs from that of humans at the cellular, organ, and whole-organism levels, and these differences limit the relevance and benefit of the mouse models both in terms of mechanistic investigations and therapeutic development. These differences are due partly to immutable differences in mouse and human biology, and partly to the failure of genetic modifications to produce an accurate model of human diabetes. Several factors often limit the mechanistic insights gained from experimental mice to the particular species and strain, including: developmental effects, unexpected metabolic adjustments, genetic background effects, and technical issues. We conclude that the limitations and weaknesses of genetically modified mouse models of insulin resistance underscore the need for redirection of research efforts toward methods that are more directly relevant to human physiology.
Collapse
|
46
|
Santiago JA, Potashkin JA. System-based approaches to decode the molecular links in Parkinson's disease and diabetes. Neurobiol Dis 2014; 72 Pt A:84-91. [PMID: 24718034 DOI: 10.1016/j.nbd.2014.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/24/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence indicates an increased risk for developing Parkinson's disease (PD) among people with type 2 diabetes (T2DM). The relationship between the etiology and development of both chronic diseases is beginning to be uncovered and recent studies show that PD and T2DM share remarkably similar dysregulated pathways. It has been proposed that a cascade of events including mitochondrial dysfunction, impaired insulin signaling, and metabolic inflammation trigger neurodegeneration in T2DM models. Network-based approaches have elucidated a potential molecular framework linking both diseases. Further, transcriptional signatures that modulate the neurodegenerative phenotype in T2DM have been identified. Here we contextualize the current experimental approaches to dissect the mechanisms underlying the association between PD and T2DM and discuss the existing challenges toward the understanding of the coexistence of these devastating aging diseases.
Collapse
Affiliation(s)
- Jose A Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Judith A Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
47
|
McCurdy CE, Klemm DJ. Adipose tissue insulin sensitivity and macrophage recruitment: Does PI3K pick the pathway? Adipocyte 2013; 2:135-42. [PMID: 23991359 PMCID: PMC3756101 DOI: 10.4161/adip.24645] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 02/06/2023] Open
Abstract
In the United States, obesity is a burgeoning health crisis, with over 30% of adults and nearly 20% of children classified as obese. Insulin resistance, a common metabolic complication associated with obesity, significantly increases the risk of developing metabolic diseases such as hypertension, coronary heart disease, stroke, type 2 diabetes, and certain cancers. With the seminal finding that obese adipose tissue harbors cytokine secreting immune cells, obesity-related research over the past decade has focused on understanding adipocyte–macrophage crosstalk and its impact on systemic insulin sensitivity. Indeed, adipose tissue has emerged as a central mediator of obesity- and diet-induced insulin resistance. In this mini-review, we focus on a potential role of adipose tissue phosphoinositide 3-kinase (PI3K) as a point of convergence of cellular signaling pathways that integrates nutrient sensing and inflammatory signaling to regulate tissue insulin sensitivity.
Collapse
|
48
|
Featherstone RE, M Tatard-Leitman V, Suh JD, Lin R, Lucki I, Siegel SJ. Electrophysiological and behavioral responses to ketamine in mice with reduced Akt1 expression. Psychopharmacology (Berl) 2013; 227:639-49. [PMID: 23392353 PMCID: PMC3808977 DOI: 10.1007/s00213-013-2997-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE A number of studies have associated reduced Akt1 expression with vulnerability for schizophrenia. Although mice with deletion of a single copy of the Akt1 gene (Akt1(+/-)) show reduced Akt1 expression relative to wild-type (WT) animals, the extent to which these mice show schizophrenia-like phenotypic changes and/or increased susceptibility to epigenetic or non-genetic factors related to schizophrenia is unknown. OBJECTIVES Mutant mice were assessed on electroencephalographic/event-related potential (EEG/ERP) and behavioral (acoustic startle and pre-pulse inhibition) measures relevant to schizophrenia. Mice were also assessed following exposure to the NMDA receptor antagonist ketamine, a potent psychotomimetic drug, in order to assess the role of reduced Akt1 expression as a vulnerability factor for schizophrenia. Methods Akt1(+/-), Akt1(-/-), and WT mice received a series of paired-click, white noise stimuli, following ketamine (50 mg/kg) and saline injections. EEG was analyzed for ERPs and event-related power. Akt1(+/-) and WT mice were also assessed on PPI following ketamine (50 mg/kg) or saline injection. RESULTS Akt1(+/-) and Akt1(-/-) mice displayed reduced amplitude of the P20 component of the ERP to the first click of a paired-click stimulus, as well as reduced S1-S2 difference for P20 and N40 components, following ketamine. Mutant mice also showed increased reduction in gamma synchrony and theta suppression following ketamine. Akt1(+/-) mice displayed reduced pre-pulse inhibition. CONCLUSIONS Reduced genetic expression of Akt1 facilitated ketamine-induced changes of EEG and behavior in mice, suggesting that reduced Akt1 expression can serve as a vulnerability factor for schizophrenia.
Collapse
Affiliation(s)
- Robert E Featherstone
- Department of Psychiatry, Translational Neuroscience Program, School of Medicine, University of Pennsylvania, 125 South 31st Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Matsumoto T, Nagase Y, Hirose J, Tokuyama N, Yasui T, Kadono Y, Ueki K, Kadowaki T, Nakamura K, Tanaka S. Regulation of bone resorption and sealing zone formation in osteoclasts occurs through protein kinase B-mediated microtubule stabilization. J Bone Miner Res 2013; 28:1191-202. [PMID: 23239117 DOI: 10.1002/jbmr.1844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/09/2012] [Accepted: 11/29/2012] [Indexed: 01/16/2023]
Abstract
We investigated the role of protein kinase B (Akt), a downstream effector of phosphatidylinositol 3-kinase, in bone-resorbing activity of mature osteoclasts. Treatment with a specific Akt inhibitor disrupted sealing zone formation and decreased the bone-resorbing activity of osteoclasts. The normal microtubule structures were lost and the Akt inhibitor reduced the amount of acetylated tubulin, which reflects stabilized microtubules, whereas forced Akt activation by adenovirus vectors resulted in the opposite effect. Forced Akt activation increased the binding of the microtubule-associated protein adenomatous polyposis coli (APC), the APC-binding protein end-binding protein 1 (EB1) and dynactin, a dynein activator complex, with microtubules. Depletion of Akt1 and Akt2 resulted in a disconnection of APC/EB1 and a decrease in bone-resorbing activity along with reduced sealing zone formation, both of which were recovered upon the addition of LiCl, a glycogen synthase kinase-3β (GSK-3β) inhibitor. The Akt1 and Akt2 double-knockout mice exhibited osteosclerosis due to reduced bone resorption. These findings indicate that Akt controls the bone-resorbing activity of osteoclasts by stabilizing microtubules via a regulation of the binding of microtubule associated proteins.
Collapse
Affiliation(s)
- Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1136-48. [PMID: 23524376 DOI: 10.1016/j.bbadis.2013.03.013] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/05/2013] [Accepted: 03/14/2013] [Indexed: 01/09/2023]
Abstract
Adiponectin (APN), an adipose-derived adipokine, offers cardioprotective effects although the precise mechanism of action remains unclear. This study was designed to examine the role of APN in high fat diet-induced obesity and cardiac pathology. Adult C57BL/6 wild-type and APN knockout mice were fed a low or high fat diet for 22weeks. After 40day feeding, mice were treated with 2mg/kg rapamycin or vehicle every other day for 42days on respective fat diet. Cardiomyocyte contractile and Ca(2+) transient properties were evaluated. Myocardial function was evaluated using echocardiography. Dual energy X-ray absorptiometry was used to evaluate adiposity. Energy expenditure, metabolic rate and physical activity were monitored using a metabolic cage. Lipid deposition, serum triglyceride, glucose tolerance, markers of autophagy and fatty acid metabolism including LC3, p62, Beclin-1, AMPK, mTOR, fatty acid synthase (FAS) were evaluated. High fat diet intake induced obesity, systemic glucose intolerance, cardiac hypertrophy, dampened metabolic ability, cardiac and intracellular Ca(2+) derangements, the effects of which were accentuated by APN knockout. Furthermore, APN deficiency augmented high fat diet-induced upregulation in the autophagy adaptor p62 and the decline in AMPK without affecting high fat diet-induced decrease in LC3II and LC3II-to-LC3I ratio. Neither high fat diet nor APN deficiency altered Beclin-1. Interestingly, rapamycin negated high fat diet-induced/APN-deficiency-accentuated obesity, cardiac hypertrophy and contractile dysfunction as well as AMPK dephosphorylation, mTOR phosphorylation and p62 buildup. Our results collectively revealed that APN deficiency may aggravate high fat diet-induced obesity, metabolic derangement, cardiac hypertrophy and contractile dysfunction possibly through decreased myocardial autophagy.
Collapse
|