1
|
Sia KC, Fu ZY, Calne RY, Nathwani AC, Lee KO, Gan SU. Modification of a Constitutive to Glucose-Responsive Liver-Specific Promoter Resulted in Increased Efficacy of Adeno-Associated Virus Serotype 8-Insulin Gene Therapy of Diabetic Mice. Cells 2020; 9:cells9112474. [PMID: 33202992 PMCID: PMC7696068 DOI: 10.3390/cells9112474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/02/2023] Open
Abstract
We have previously used a hepatotropic adeno-associated viral (AAV) vector with a modified human insulin gene to treat diabetic mice. The HLP (hybrid liver-specific promoter) used was constitutively active and non-responsive to glucose. In this study, we examined the effects of addition of glucose responsive elements (R3G) and incorporation of a 3' albumin enhancer (3'iALB) on insulin expression. In comparison with the original promoter, glucose responsiveness was only observed in the modified promoters in vitro with a 36 h lag time before the peak expression. A 50% decrease in the number of viral particles at 5 × 109 vector genome (vg)/mouse was required by AAV8-R3GHLP-hINSco to reduce the blood sugar level to near normoglycemia when compared to the original AAV8-HLP-hINSco that needed 1 × 1010 vg/mouse. The further inclusion of an 860 base-pairs 3'iALB enhancer component in the 3' untranslated region increased the in vitro gene expression significantly but this increase was not observed when the packaged virus was systemically injected in vivo. The addition of R3G to the HLP promoter in the AAV8-human insulin vector increased the insulin expression and secretion, thereby lowering the required dosage for basal insulin treatment. This in turn reduces the risk of liver toxicity and cost of vector production.
Collapse
Affiliation(s)
- Kian Chuan Sia
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
| | - Zhen Ying Fu
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
| | - Roy Y. Calne
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Amit C. Nathwani
- Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK;
| | - Kok Onn Lee
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore 117597, Singapore; (K.C.S.); (Z.Y.F.); (R.Y.C.)
- Correspondence: ; Tel.: +65-6601-2465
| |
Collapse
|
2
|
Moriizumi S, Gourdon L, Lefrançois-Martinez AM, Kahn A, Raymondjean M. Effect of different basic helix-loop-helix leucine zipper factors on the glucose response unit of the L-type pyruvate kinase gene. Gene Expr 2018; 7:103-13. [PMID: 9699482 PMCID: PMC6190201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glucose-regulated transcription of the L-type pyruvate kinase (L-PK) gene is mediated through its glucose response element (GlRE/L4 box) composed of two degenerated E-boxes. Upstream stimulatory factor (USF) is a component of the transcriptional glucose response complex built up on the GlRE. Cooperation of the GlRE with the contiguous binding site (L3 box) for the orphan nuclear receptor hepatocyte nuclear factor 4 (HNF4) has also been suggested. We compared by transient transfection assays the effects of USF2a and other basic helix-loop-helix leucine zipper (bHLH-LZ) factors (TFE3, c-Myc, SREBP/ADD1) on the activity and glucose responsiveness of a minimal L-PK promoter directed by oligomerized glucose response units (L4L3 boxes). We found that: (i) although USF2a is intrinsically a moderate transcriptional activator, it has a strong stimulatory effect on the activity of the L4L3-based reporter construct in hepatocyte-derived cells and interferes with the glucose responsiveness; (ii) despite its potent ability as a transactivator, TFE3 alone is barely active on the GlRE in hepatocyte-derived cells; (iii) TFE3 as USF2a acts synergistically with HNF4 and abolishes glucose responsiveness of the promoter when overexpressed; (iv) in contrast, overexpression of HNF4 alone stimulates activity of the promoter without interfering with glucose responsiveness; (v) SREBP/ADD1 has a very weak activity on the L4L3 elements, only detectable in the presence of HNF4, and c-Myc does not interact with the GIRE of the L-PK promoter. Our studies indicate that different bHLH-LZ transcription factors known to recognize CACGTG-type E-boxes are not equivalent in acting through the L-PK glucose response element, with USF proteins being especially efficient in hepatocyte-derived cells.
Collapse
Affiliation(s)
- Shigeki Moriizumi
- Institut Cochin de Génétique Moléculaire, INSERM Unité 129, CHU Cochin, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Laurence Gourdon
- Institut Cochin de Génétique Moléculaire, INSERM Unité 129, CHU Cochin, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Anne-Marie Lefrançois-Martinez
- Institut Cochin de Génétique Moléculaire, INSERM Unité 129, CHU Cochin, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Axel Kahn
- Institut Cochin de Génétique Moléculaire, INSERM Unité 129, CHU Cochin, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
- Address correspondence to Axel Kahn. Tel: 33 1 44 41 24 24; Fax: 33 1 44 41 24 21; E-mail:
| | - Michel Raymondjean
- Institut Cochin de Génétique Moléculaire, INSERM Unité 129, CHU Cochin, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
3
|
Miquerol L, Cluzeaud F, Porteu A, Alexandre Y, Vandewalle A, Kahn A. Tissue specificity of L-pyruvate kinase transgenes results from the combinatorial effect of proximal promoter and distal activator regions. Gene Expr 2018; 5:315-30. [PMID: 8836739 PMCID: PMC6138020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The L-type pyruvate kinase (L-PK) gene is regulated by diet and hormones and expressed at high levels in the hepatocytes, enterocytes, and proximal tubular cells of the kidney and at low levels in the endocrine pancreatic cells. Two regulatory regions have been shown to be important in transgenic mice to confer on a reporter gene a similar tissue-specific and diet-responsive expression: a proximal promoter fragment, with binding sites for the tissue-specific hepatocyte nuclear factors 1 and 4, and presence of the glucose-response element (GIRE) and a distal activator corresponding to a liver-specific hypersensitive site at -3000 bp with respect to the cap site. Although the proximal promoter is able to confer by itself tissue-specific expression on a reporter gene, its activity in vivo is strongly stimulated by the distal activator. To determine the possible role of the distal region on diet responsiveness and tissue specificity of the L-PK gene expression, we have created lines of transgenic mice in which the gene for SV40 T antigen (Tag) was directed by composite regulatory sequences consisting of the L-PK promoter and different enhancers: either the SV40 early enhancer (SV) or the H enhancer of the aldolase A gene (H). The induction of the composite H-PK/Tag and SV-PK/Tag transgenes by a carbohydrate-rich diet in the liver was similar to that of the endogenous L-PK gene. This suggests that in fasted mice the L-PK promoter, and especially the GIRE, is able to silence the activating influence of a strong viral enhancer such as the SV40 enhancer. The H-PK/Tag mice expressed the transgene similarly to the endogenous gene, except in the pancreas, where expression was practically undetectable. Consistently, whereas L-PK/Tag mice develop insulinomas, H-PK/Tag mice develop only hepatomas. In contrast, the transgene expression was partly aberrant in SV-PK/Tag mice. In addition to a normal activation of the transgene in the liver, a strong expression was also detected in the kidney medulla, whereas the transgene was practically silent in enterocytes. Finally, the effect of the distal region (-2070 to -3200) on an ubiquitous promoter was tested by ligating the distal L-PK gene fragment in front of a thymidine kinase/CAT transgene. Such a transgene was constantly expressed in the pancreas and, strikingly, in the brain. It appears, therefore, that the L-PK distal activator exhibits, by itself, a certain neuropancreatic specificity required in combination with the proximal promoter for L-PK gene expression in pancreas endocrine cells.
Collapse
Affiliation(s)
- L Miquerol
- Institut Cochin de Génétique Moléculaire, INSERM U 129, Université René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
4
|
Jois T, Chen W, Howard V, Harvey R, Youngs K, Thalmann C, Saha P, Chan L, Cowley MA, Sleeman MW. Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice. Mol Metab 2017; 6:1381-1394. [PMID: 29107286 PMCID: PMC5681238 DOI: 10.1016/j.molmet.2017.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Carbohydrate response element binding protein (ChREBP) is a transcription factor that responds to glucose and activates genes involved in the glycolytic and lipogenic pathways. Recent studies have linked adipose ChREBP to insulin sensitivity in mice. However, while ChREBP is most highly expressed in the liver, the effect of hepatic ChREBP on insulin sensitivity remains unknown. To clarify the importance of hepatic ChREBP on glucose homeostasis, we have generated a knockout mouse model that lacks this protein specifically in the liver (Liver-ChREBP KO). METHODS Using Liver-ChREBP KO mice, we investigated whether hepatic ChREBP deletion influences insulin sensitivity, glucose homeostasis and the development of hepatic steatosis utilizing various dietary stressors. Furthermore, we determined gene expression changes in response to fasted and fed states in liver, white, and brown adipose tissues. RESULTS Liver-ChREBP KO mice had impaired insulin sensitivity as indicated by reduced glucose infusion to maintain euglycemia during hyperinsulinemic-euglycemic clamps on both chow (25% lower) and high-fat diet (33% lower) (p < 0.05). This corresponded with attenuated suppression of hepatic glucose production. Although Liver-ChREBP KO mice were protected against carbohydrate-induced hepatic steatosis, they displayed worsened glucose tolerance. Liver-ChREBP KO mice did not show the expected gene expression changes in liver in response to fasted and fed states. Interestingly, hepatic ChREBP deletion also resulted in gene expression changes in white and brown adipose tissues, suggesting inter-tissue communication. This included an almost complete abolition of BAT ChREBPβ induction in the fed state (0.15-fold) (p = 0.015) along with reduced lipogenic genes. In contrast, WAT showed inappropriate increases in lipogenic genes in the fasted state along with increased PEPCK1 in both fasted (3.4-fold) and fed (5.1-fold) states (p < 0.0001). CONCLUSIONS Overall, hepatic ChREBP is protective in regards to hepatic insulin sensitivity and whole body glucose homeostasis. Hepatic ChREBP action can influence other peripheral tissues and is likely essential in coordinating the body's response to different feeding states.
Collapse
Affiliation(s)
- Tara Jois
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Weiyi Chen
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Victor Howard
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Harvey
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Kristina Youngs
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Claudia Thalmann
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Pradip Saha
- Diabetes and Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence Chan
- Diabetes and Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael A Cowley
- Department of Physiology, Monash University, Clayton, Victoria, Australia; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mark W Sleeman
- Department of Physiology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol 2016; 16:678-89. [PMID: 26490400 DOI: 10.1038/nrm4074] [Citation(s) in RCA: 453] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Jose Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Sun-Joong Kim
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Identification of HNF-4α as a key transcription factor to promote ChREBP expression in response to glucose. Sci Rep 2016; 6:23944. [PMID: 27029511 PMCID: PMC4814918 DOI: 10.1038/srep23944] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Transcription factor carbohydrate responsive element binding protein (ChREBP) promotes glycolysis and lipogenesis in metabolic tissues and cancer cells. ChREBP-α and ChREBP-β, two isoforms of ChREBP transcribed from different promoters, are both transcriptionally induced by glucose. However, the mechanism by which glucose increases ChREBP mRNA levels remains unclear. Here we report that hepatocyte nuclear factor 4 alpha (HNF-4α) is a key transcription factor for glucose-induced ChREBP-α and ChREBP-β expression. Ectopic HNF-4α expression increased ChREBP transcription while knockdown of HNF-4α greatly reduced ChREBP mRNA levels in liver cancer cells and mouse primary hepatocytes. HNF-4α not only directly bound to an E-box-containing region in intron 12 of the ChREBP gene, but also promoted ChREBP-β transcription by directly binding to two DR1 sites and one E-box-containing site of the ChREBP-β promoter. Moreover, HNF-4α interacted with ChREBP-α and synergistically promoted ChREBP-β transcription. Functionally, HNF-4α suppression reduced glucose-dependent ChREBP induction. Increased nuclear abundance of HNF-4α and its binding to cis-elements of ChREBP gene in response to glucose contributed to glucose-responsive ChREBP transcription. Taken together, our results not only revealed the novel mechanism by which HNF-4α promoted ChREBP transcription in response to glucose, but also demonstrated that ChREBP-α and HNF-4α synergistically increased ChREBP-β transcription.
Collapse
|
7
|
Poupeau A, Postic C. Cross-regulation of hepatic glucose metabolism via ChREBP and nuclear receptors. Biochim Biophys Acta Mol Basis Dis 2011; 1812:995-1006. [PMID: 21453770 DOI: 10.1016/j.bbadis.2011.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/17/2023]
Abstract
There is a worldwide epidemic of obesity and type 2 diabetes, two major public health concerns associated with alterations in both insulin and glucose signaling pathways. Glucose is not only an energy source but also controls the expression of key genes involved in energetic metabolism, through the glucose-signaling transcription factor, Carbohydrate Responsive Element Binding Protein (ChREBP). ChREBP has emerged as a central regulator of de novo fatty acid synthesis (lipogenesis) in response to glucose under both physiological and physiopathological conditions. Glucose activates ChREBP by regulating its entry from the cytosol to the nucleus, thereby promoting its binding to carbohydrate responsive element (ChoRE) in the promoter regions of glycolytic (L-PK) and lipogenic genes (ACC and FAS). We have previously reported that the inhibition of ChREBP in liver of obese ob/ob mice improves the metabolic alterations linked to obesity, fatty liver and insulin-resistance. Therefore, regulating ChREBP activity could be an attractive target for lipid-lowering therapies in obesity and diabetes. However, before this is possible, a better understanding of the mechanism(s) regulating its activity is needed. In this review, we summarize recent findings on the role and regulation of ChREBP and particularly emphasize on the cross-regulations that may exist between key nuclear receptors (LXR, TR, HNF4α) and ChREBP for the control of hepatic glucose metabolism. These novel molecular cross-talks may open the way to new pharmacological opportunities. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
|
8
|
Caron S, Verrijken A, Mertens I, Samanez CH, Mautino G, Haas JT, Duran-Sandoval D, Prawitt J, Francque S, Vallez E, Muhr-Tailleux A, Berard I, Kuipers F, Kuivenhoven JA, Biddinger SB, Taskinen MR, Van Gaal L, Staels B. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol 2010; 31:513-9. [PMID: 21183731 DOI: 10.1161/atvbaha.110.220723] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Hypertriglyceridemia and fatty liver are common in patients with type 2 diabetes, but the factors connecting alterations in glucose metabolism with plasma and liver lipid metabolism remain unclear. Apolipoprotein CIII (apoCIII), a regulator of hepatic and plasma triglyceride metabolism, is elevated in type 2 diabetes. In this study, we analyzed whether apoCIII is affected by altered glucose metabolism. METHODS AND RESULTS Liver-specific insulin receptor-deficient mice display lower hepatic apoCIII mRNA levels than controls, suggesting that factors other than insulin regulate apoCIII in vivo. Glucose induces apoCIII transcription in primary rat hepatocytes and immortalized human hepatocytes via a mechanism involving the transcription factors carbohydrate response element-binding protein and hepatocyte nuclear factor-4α. ApoCIII induction by glucose is blunted by treatment with agonists of farnesoid X receptor and peroxisome proliferator-activated receptor-α but not liver X receptor, ie, nuclear receptors controlling triglyceride metabolism. Moreover, in obese humans, plasma apoCIII protein correlates more closely with plasma fasting glucose and glucose excursion after oral glucose load than with insulin. CONCLUSIONS Glucose induces apoCIII transcription, which may represent a mechanism linking hyperglycemia, hypertriglyceridemia, and cardiovascular disease in type 2 diabetes.
Collapse
|
9
|
De Souza CT, Frederico MJS, da Luz G, Cintra DE, Ropelle ER, Pauli JR, Velloso LA. Acute exercise reduces hepatic glucose production through inhibition of the Foxo1/HNF-4alpha pathway in insulin resistant mice. J Physiol 2010; 588:2239-53. [PMID: 20421289 DOI: 10.1113/jphysiol.2009.183996] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein hepatocyte nuclear factor 4alpha (HNF-4alpha) is atypically activated in the liver of diabetic rodents and contributes to hepatic glucose production. HNF-4alpha and Foxo1 can physically interact with each other and represent an important signal transduction pathway that regulates the synthesis of glucose in the liver. Foxo1 and HNF-4alpha interact with their own binding sites in the phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) promoters, and this binding is required for their effects on those promoters. However, the effect of physical activity on the HNF-4alpha/Foxo1 pathway is currently unknown. Here, we investigate the protein levels of HNF-4alpha and the HNF-4alpha/Foxo1 pathway in the liver of leptin-deficient (ob/ob) and diet-induced obese Swiss (DIO) mice after acute exercise. The ob/ob and DIO mice swam for four 30 min periods, with 5 min rest intervals for a total swimming time of 2h. Eight hours after the acute exercise protocol, the mice were submitted to an insulin tolerance test (ITT) and determination of biochemical and molecular parameters. Acute exercise improved insulin signalling, increasing insulin-stimulated Akt and Foxo1 phosphorylation and decreasing HNF-4alpha protein levels in the liver of DIO and ob/ob mice under fasting conditions. These phenomena were accompanied by a reduction in the expression of gluconeogenesis genes, such as PEPCK and G6Pase. Importantly, the PI3K inhibitor LY292004 reversed the acute effect of exercise on fasting hyperglycaemia, confirming the involvement of the PI3K pathway. The present study shows that exercise acutely improves the action of insulin in the liver of animal models of obesity and diabetes, resulting in increased phosphorylation and nuclear exclusion of Foxo1, and a reduction in the Foxo1/HNF-4alpha pathway. Since nuclear localization and the association of these proteins is involved in the activation of PEPCK and G6Pase, we believe that the regulation of Foxo1 and HNF-4alpha activities are important mechanisms involved in exercise-induced improvement of glucose homeostasis in insulin resistant states.
Collapse
Affiliation(s)
- Cláudio T De Souza
- Exercise Biochemistry and Physiology Laboratory, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina - Criciăúma, SC, Brazil.
| | | | | | | | | | | | | |
Collapse
|
10
|
Burke SJ, Collier JJ, Scott DK. cAMP opposes the glucose-mediated induction of the L-PK gene by preventing the recruitment of a complex containing ChREBP, HNF4alpha, and CBP. FASEB J 2009; 23:2855-65. [PMID: 19406844 DOI: 10.1096/fj.08-126631] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucose-mediated activation of the L-type pyruvate kinase (L-PK) gene is repressed by cAMP, making this an excellent model for studying the mechanism by which these contrary signals regulate gene expression. Using the 832/13 rat insulinoma cell line, we demonstrate using RNA interference and chromatin immunoprecipitation that carbohydrate response element binding protein (ChREBP), hepatic nuclear factor 4alpha (HNF4alpha), and the coactivator CREB binding protein (CBP) are required for the glucose response of the L-PK gene and are recruited to the promoter by glucose. The cAMP agonist forskolin blocked the glucose-mediated induction of the L-PK gene in a PKA-dependent manner and blocked the recruitment of ChREBP, HNF4alpha, and CBP to the L-PK promoter, while simultaneously recruiting CBP to the cAMP-inducible gene, nuclear receptor subfamily 4, group A, member 2 (NR4A2). Overexpression of CBP, but not ChREBP, reversed the cAMP repression of the L-PK gene. In addition, CBP augmented the glucose response of the L-PK promoter. We conclude that cAMP and glucose signaling converge on a complex containing ChREBP, HNF4alpha, and CBP, and that cAMP acts by disrupting this transcriptional complex assembled by glucose-derived signals.
Collapse
Affiliation(s)
- Susan J Burke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
11
|
Selva DM, Hogeveen KN, Innis SM, Hammond GL. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J Clin Invest 2008; 117:3979-87. [PMID: 17992261 DOI: 10.1172/jci32249] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 08/29/2007] [Indexed: 01/02/2023] Open
Abstract
The liver produces plasma sex hormone-binding globulin (SHBG), which transports sex steroids and regulates their access to tissues. In overweight children and adults, low plasma SHBG levels are a biomarker of the metabolic syndrome and its associated pathologies. Here, we showed in transgenic mice and HepG2 hepatoblastoma cells that monosaccharides (glucose and fructose) reduce human SHBG production by hepatocytes. This occurred via a downregulation of hepatocyte nuclear factor-4alpha (HNF-4alpha) and replacement of HNF-4alpha by the chicken OVA upstream promoter-transcription factor 1 at a cis-element within the human SHBG promoter, coincident with repression of its transcriptional activity. The dose-dependent reduction of HNF-4alpha levels in HepG2 cells after treatment with glucose or fructose occurred in concert with parallel increases in cellular palmitate levels and could be mimicked by treatment with palmitoyl-CoA. Moreover, inhibition of lipogenesis prevented monosaccharide-induced downregulation of HNF-4alpha and reduced SHBG expression in HepG2 cells. Thus, monosaccharide-induced lipogenesis reduced hepatic HNF-4alpha levels, which in turn attenuated SHBG expression. This provides a biological explanation for why SHBG is a sensitive biomarker of the metabolic syndrome and the metabolic disturbances associated with increased fructose consumption.
Collapse
Affiliation(s)
- David M Selva
- Department of Obstetrics and Gynecology, University of British Columbia, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
12
|
Arpiainen S, Lämsä V, Pelkonen O, Yim SH, Gonzalez FJ, Hakkola J. Aryl hydrocarbon receptor nuclear translocator and upstream stimulatory factor regulate Cytochrome P450 2a5 transcription through a common E-box site. J Mol Biol 2007; 369:640-52. [PMID: 17466327 DOI: 10.1016/j.jmb.2007.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) belongs to the basic-helix-loop-helix (bHLH) transcription factors and regulates several genes as heterodimers with other bHLH proteins. ARNT is also able to homodimerize, but no mammalian target genes for the homodimer have been shown. We identified a palindromic E-box element in the 5' regulatory region of the murine cytochrome P450 (Cyp) 2a5 gene that was found to be important for Cyp2a5 transcription in primary hepatocytes, and was found by chromatin immunoprecipitation assays to interact with ARNT. Electrophoretic mobility-shift assay experiments with in vitro translated ARNT showed binding without heterodimerization partner, indicating binding as a homodimer. Transfection studies in wild-type and ARNT-deficient Hepa-1 cells revealed that ARNT expression is necessary for full activity of the Cyp2a5 promoter. In the liver-specific Arnt-null mouse line, the level of hepatic CYP2A5 mRNA was decreased significantly. Co-transfection studies with an ARNT expression vector lacking the transactivation domain (TAD) demonstrated that the ARNT TAD is needed for Cyp2a5 activation, which suggests that ARNT transactivates Cyp2a5 as a homodimer. In primary hepatocytes, the mRNA levels of both CYP2A5 and ARNT splice variant 1 were increased during cultivation. Upstream stimulatory factors 1 and 2a were also able to bind to the same E-box as ARNT, indicating that there may be competition for DNA binding between these factors. Indeed, the upstream stimulatory factors activated the Cyp2a5 promoter through the E-box only in the presence of hepatocyte nuclear factor-4alpha, while ARNT transactivation was independent of hepatocyte nuclear factor-4alpha. In conclusion, these results indicate that ARNT controls Cyp2a5 transcription and thus, for the first time, suggest active involvement of the ARNT homodimer in mammalian gene regulation.
Collapse
Affiliation(s)
- Satu Arpiainen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Dentin R, Denechaud PD, Benhamed F, Girard J, Postic C. Hepatic gene regulation by glucose and polyunsaturated fatty acids: a role for ChREBP. J Nutr 2006; 136:1145-9. [PMID: 16614395 DOI: 10.1093/jn/136.5.1145] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The liver is a major site for carbohydrate metabolism (glycolysis and glycogen synthesis) and triglyceride synthesis (lipogenesis). In the last decade, increasing evidence has emerged to show that nutrients, in particular, glucose and fatty acids, are able to regulate hepatic gene expression in a transcriptional manner. Indeed, although insulin was long thought to be the major regulator of hepatic gene expression, it is now clear that glucose metabolism rather that glucose itself also contributes substantially to the coordinated regulation of carbohydrate and lipid homeostasis in liver. In fact, the recent discovery of the glucose-signaling transcription factor carbohydrate responsive element binding protein (ChREBP) shed some light on the molecular mechanisms by which glycolytic and lipogenic genes are reciprocally regulated by glucose and fatty acids in liver. Here, we will review some of the recent studies that have begun to elucidate the regulation and function of this key transcription factor in liver. Indeed, a better understanding of the mechanisms by which glucose and fatty acids control hepatic gene expression may provide novel insight into the development of new therapeutic strategies for a better management of diseases involving blood glucose and/or disorders of lipid metabolism.
Collapse
Affiliation(s)
- Renaud Dentin
- Institut Cochin, INSERM U567 CNRS UMR8104, Université René Descartes, Département d'Endocrinologie, Métabolisme et Cancer, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics 2005; 5:2819-38. [PMID: 15942958 DOI: 10.1002/pmic.200401108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics methods were used to characterize proteins that change their form or abundance in the nucleus of NRK49F rat kidney fibroblasts during prolonged hypoxia (1% O(2), 12 h). Of the 791 proteins that were monitored, about 20% showed detectable changes. The 51 most abundant proteins were identified by mass spectrometry. Changes in nuclear receptor transcription factors (THRalpha1, RORalpha4, HNF4alpha, NUR77), other transcription factors (GATA1, AP-2alpha, OCT1, ATF6alpha, ZFP161, ZNF354A, PDCD2), and transcription cofactors (PC4, PCAF, MTA1, TCEA1, JMY) are indicative of major, co-ordinated changes in transcription. Proteins involved in DNA repair/recombination, ribosomal RNA synthesis, RNA processing, nuclear transport, nuclear organization, protein translation, glycolysis, lipid metabolism, several protein kinases (PKCdelta, MAP3K4, GRK3), as well as proteins with no established functional role were also observed. The observed proteins suggest nuclear regulatory roles for proteins involved in cytosolic processes such as glycolysis and fatty acid metabolism, and roles in overall nuclear structure/organization for proteins previously associated with meiosis and/or spermatogenesis (synaptonemal complex proteins 1 and 2 (SYCP1, SYCP2), meiosis-specific nuclear structural protein 1 (MNS1), LMNC2, zinc finger protein 99 (ZFP99)). Proteins associated with cytoplasmic membrane functions (ACTN4, hyaluronan mediated motility receptor (RHAMM), VLDLR, GRK3) and/or endocytosis (DNM2) were also seen. For 30% of the identified proteins, new isoforms indicative of alternative transcription were detected (e.g., GATA1, ATF6alpha, MTA1, MLH1, MYO1C, UBF, SYCP2, EIF3S10, MAP3K4, ZFP99). Comparison with proteins involved in cell death, cancer, and testis/meiosis/spermatogenesis suggests commonalities, which may reflect fundamental mechanisms for down-regulation of cellular function.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Medicine, Rayne Institute, University College London, London, UK
| | | | | | | | | |
Collapse
|
16
|
Satoh SI, Noaki T, Ishigure T, Osada S, Imagawa M, Miura N, Yamada K, Noguchi T. Nuclear factor 1 family members interact with hepatocyte nuclear factor 1alpha to synergistically activate L-type pyruvate kinase gene transcription. J Biol Chem 2005; 280:39827-34. [PMID: 16204235 DOI: 10.1074/jbc.m507303200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcription of hepatic L-type pyruvate kinase (L-PK) gene is cell type-specific and is under the control of various nutritional conditions. The L-PK gene contains multiple cis-regulatory elements located within a 170-bp upstream region necessary for these regulations. These elements can synergistically stimulate L-PK gene transcription, although their mechanisms are largely unknown. Because nuclear factor (NF) 1 family members bind to specific cis-regulatory elements known as L-IIA and L-IIB and hepatocyte nuclear factor (HNF) 1alpha binds to the adjacent element L-I, we examined the functional and physical interactions between these two transcription factors. Reporter gene assay showed that these two factors synergistically activated the L-PK promoter containing the 5'-flanking region up to -189. Although two NF1-binding sites are required for the maximum synergistic effect of NF1 family members with HNF1alpha, significant functional interaction between the two factors was observed in the L-PK promoter containing two mutated NF1-binding sites and also in the promoter containing only the HNF1alpha-binding site, raising the possibility that NF1 proteins function as HNF1alpha co-activators. Chromatin immunoprecipitation assay revealed that both NF1 proteins and HNF1alpha bound to the promoter region of the L-PK gene in vivo. In vitro binding assay confirmed that NF1 proteins directly interacted mainly with the homeodomain of HNF1alpha via their DNA-binding domains. This interaction enhanced HNF1alpha binding to the L-I element and was also observed in rat liver by co-immunoprecipitation assay. Thus, we conclude that cooperative interaction between NF1 family members and HNF1alpha plays an important role in hepatic L-PK transcription.
Collapse
MESH Headings
- Animals
- Binding Sites
- Blotting, Western
- Cells, Cultured
- Chromatin Immunoprecipitation
- DNA/chemistry
- DNA Primers
- Genes, Reporter
- Glutathione Transferase/metabolism
- HeLa Cells
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Hepatocytes/metabolism
- Humans
- Immunoprecipitation
- Liver/metabolism
- Male
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- NFI Transcription Factors/genetics
- NFI Transcription Factors/metabolism
- Oligonucleotides/chemistry
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Pyruvate Kinase/metabolism
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Shin-ichi Satoh
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 2005; 87:81-6. [PMID: 15733741 DOI: 10.1016/j.biochi.2004.11.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 11/02/2004] [Indexed: 12/14/2022]
Abstract
In mammals, the regulation of hepatic metabolism plays a key role in whole body energy balance, since the liver is the major site of carbohydrate metabolism (glycolysis and glycogen synthesis) and triglyceride synthesis (lipogenesis). Lipogenesis is regulated through the acute control of key enzyme activities by means of allosteric and covalent modifications. Moreover, the synthesis of most glycolytic and lipogenic enzymes is regulated in response to dietary status, in which glucose, in particular, is a crucial energy nutrient. This latter response occurs in large part through transcriptional regulation of genes encoding glycolytic and lipogenic enzymes. In the past few years, recent advances have been made in understanding the transcriptional regulation of hepatic glycolytic and lipogenic genes by insulin and glucose. Although insulin is a major regulator of hepatic lipogenesis, there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and lipid metabolism in liver. Here, we review the respective roles of the transcription factor sterol regulatory element binding protein-1c (SREBP-1c) in mediating the effect of insulin on hepatic gene expression, and the role of carbohydrate responsive element binding protein (ChREBP) in regulating gene transcription by glucose.
Collapse
Affiliation(s)
- Renaud Dentin
- Département d'Endocrinologie, Institut Cochin, Inserm U567, CNRS UMR8104, Université Paris V René Descartes, 24, rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | |
Collapse
|
18
|
Thomas BE, Thekkumkara TJ. Glucose mediates transcriptional repression of the human angiotensin type-1 receptor gene: role for a novel cis-acting element. Mol Biol Cell 2004; 15:4347-55. [PMID: 15269283 PMCID: PMC519131 DOI: 10.1091/mbc.e04-03-0203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human angiotensin type 1 receptor (hAT1R) gene is regulated by hormones, second messengers, and both pathophysiological and developmental states. The focus of the present study was to determine the role of glucose in the trans-repression of hAT1R gene transcription and to identify the functional cis-acting response element(s). Serial deletions of the hAT1R promoter region indicated that an area between -1717 and -1543 base pairs upstream of the 5' end of the cDNA sequence has a glucose responsive regulatory element (GluRE) to down-regulate the gene expression. Further analysis revealed a putative 29-bp (5'-AACTGATTTTTGTATATTGATCTTGTATT-3') repressor element located between -1582 and -1610 bp was necessary for transcriptional repression. Removal of this region from promoter construct abolished repression of the hAT1R gene transcription in human proximal tubule epithelial cells (hPTECs). Using mobility shift assays, we demonstrated DNA binding activity to the labeled repressor element in hPTEC nuclear extracts. Additional studies demonstrated increased DNA binding activity to the labeled repressor element in nuclear extracts treated with high glucose (25 mM). Southwestern analysis identified two GluRE binding proteins of 34 and 36 kDa in glucose-treated extracts. Glucose-induced activity of the repressor trans-acting factor(s) reached a maximum at 4 h, which correlated with decreased transcriptional activity of the hAT1R gene, suggesting that glucose can down-regulate the transcription of the hAT1R gene through the repressor element. Furthermore, insertion of the glucose response element into heterologous SV40 promoter (SV40) chloramphenicol acetyl transferase (CAT) vector showed orientation/distance-independent repression of SV40 promoter-mediated CAT activity in hPTECs. Our results show that the glucose response factor(s) acts as trans-acting factor(s) binding to the cis-acting repressor element in the hAT1R promoter, which may participate in the control of basal transcription as well as glucose-mediated transcriptional inhibition of the hAT1R gene.
Collapse
Affiliation(s)
- Beena E Thomas
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | |
Collapse
|
19
|
Wiwi CA, Gupte M, Waxman DJ. Sexually dimorphic P450 gene expression in liver-specific hepatocyte nuclear factor 4alpha-deficient mice. Mol Endocrinol 2004; 18:1975-87. [PMID: 15155787 DOI: 10.1210/me.2004-0129] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hepatocyte nuclear factor (HNF) 4alpha is a liver-enriched nuclear receptor that plays a critical role in regulating the expression of numerous hepatic genes, including members of the cytochrome P450 (CYP) superfamily, several of which are expressed in a sex-dependent manner. Presently, we use a liver-specific Hnf4alpha-deficient mouse model to investigate the role of HNF4alpha in regulating liver-enriched transcription factors and sexually dimorphic Cyps in liver in vivo. Real-time PCR analysis of RNA isolated from livers of wild-type and Hnf4alpha-deficient mice revealed the following: 1) HNF4alpha exerts both positive regulation (Hnfalpha, C/ebpalpha, and C/ebpbeta) and negative regulation (Hnf3alpha and the HNF4alpha coactivator Pgc-1alpha) on liver transcription factor expression; 2) a strong dependence on HNF4alpha characterizes several male-predominant Cyps (2d9 and 8b1), female-predominant Cyps (2b10, 2b13, 3a41, and 3a44) and Cyps, whose expression is sex independent (3a11, 3a25); 3) HNF4alpha confers a unique, positive regulation of two male-expressed genes (Cyp4a12 and GSTpi) and a negative regulation of several female-predominant genes (Cyp2a4, Cyp2b9, Hnf3beta, and Hnf6), both of which are manifest in male but not female mouse liver. These trends were confirmed at the protein level by Western blot analysis using antibodies raised to Cyp2a, Cyp2b, and Cyp3a family members. Thus, HNF4alpha is an essential player in the complex regulatory network of liver-enriched transcription factors and the sexually dimorphic mouse Cyp genes that they regulate. HNF4alpha is proposed to contribute to the sex specificity of liver gene expression by positively regulating a subset of male-specific Cyp genes while concomitantly inhibiting the expression of certain female-specific Cyps and liver transcription factors, by mechanisms that are operative in male, but not female, mouse liver.
Collapse
Affiliation(s)
- Christopher A Wiwi
- Department of Biology, Boston University, 5 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
20
|
Hong YH, Varanasi US, Yang W, Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J Biol Chem 2003; 278:27495-501. [PMID: 12740371 DOI: 10.1074/jbc.m304112200] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is the central component of a cellular signaling system that regulates multiple metabolic enzymes and pathways in response to reduced intracellular energy levels. The transcription factor hepatic nuclear factor 4alpha (HNF4alpha) is an orphan nuclear receptor that regulates the expression of genes involved in energy metabolism in the liver, intestine, and endocrine pancreas. Inheritance of a single null allele of HNF4alpha causes diabetes in humans. Here we demonstrate that AMPK directly phosphorylates HNF4alpha and represses its transcriptional activity. AMPK-mediated phosphorylation of HNF4alpha on serine 304 had a 2-fold effect, reducing the ability of the transcription factor to form homodimers and bind DNA and increasing its degradation rate in vivo. These results demonstrate that HNF4alpha is a downstream target of AMPK and raise the possibility that one of the effects of AMPK activation is reduced expression of HNF4alpha target genes.
Collapse
Affiliation(s)
- Yu Holly Hong
- Department of Pathology and the Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
21
|
Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S, Sugaya T, Fukamizu A. Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem 2003; 278:13056-60. [PMID: 12519792 DOI: 10.1074/jbc.c200553200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that FKHR, a member of the forkhead family of transcription factors, acts as a DNA binding-independent cofactor of nuclear receptors, including estrogen, retinoid, and thyroid hormone receptors, in addition to the original function as a DNA binding transcription factor that redistributes from the nucleus to the cytoplasm by insulin-induced phosphorylation. Here, we demonstrated the physical interaction of FKHR with hepatocyte nuclear factor (HNF)-4, a member of steroid/thyroid nuclear receptor superfamily, and the repression of HNF-4 transactivation by FKHR. FKHR interacted with the DNA binding domain of HNF-4 and inhibited HNF-4 binding to the cognate DNA. Furthermore, the binding affinity of HNF-4 with phosphorylated FKHR significantly decreased in comparison to that with unphosphorylated FKHR. Therefore, a phosphorylation of FKHR by insulin followed by its dissociation from HNF-4 and the redistribution of FKHR from the nucleus to the cytoplasm would expect to induce the transcriptional activation of HNF-4 by facilitating to the access of HNF-4 to its DNA element. Indeed, most intriguingly, insulin stimulation reversed the repression of HNF-4 transcriptional activity by phosphorylation-sensitive (wild-type) FKHR, but not by phosphorylation-deficient FKHR. These results suggest that insulin regulates the transcriptional activity of HNF-4 via FKHR as a signal-regulated transcriptional inhibitor.
Collapse
Affiliation(s)
- Keiko Hirota
- Center of Tsukuba Advanced Research Alliance, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wisely GB, Miller AB, Davis RG, Thornquest AD, Johnson R, Spitzer T, Sefler A, Shearer B, Moore JT, Miller AB, Willson TM, Williams SP. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 2002; 10:1225-34. [PMID: 12220494 DOI: 10.1016/s0969-2126(02)00829-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2.7 A X-ray crystal structure of the HNF4gamma ligand binding domain (LBD) revealed the presence of a fatty acid within the pocket, with the AF2 helix in a conformation characteristic of a transcriptionally active nuclear receptor. GC/MS and NMR analysis of chloroform/methanol extracts from purified HNF4alpha and HNF4gamma LBDs identified mixtures of saturated and cis-monounsaturated C14-18 fatty acids. The purified HNF4 LBDs interacted with nuclear receptor coactivators, and both HNF4 subtypes show high constitutive activity in transient transfection assays, which was reduced by mutations designed to interfere with fatty acid binding. The endogenous fatty acids did not readily exchange with radiolabeled palmitic acid, and all attempts to displace them without denaturing the protein failed. Our results suggest that the HNF4s may be transcription factors that are constitutively bound to fatty acids.
Collapse
Affiliation(s)
- G Bruce Wisely
- GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Plaisance V, Thompson N, Niederhauser G, Haefliger JA, Nicod P, Waeber G, Abderrahmani A. The mif gene is transcriptionally regulated by glucose in insulin-secreting cells. Biochem Biophys Res Commun 2002; 295:174-81. [PMID: 12083786 DOI: 10.1016/s0006-291x(02)00648-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an important regulator of glucose homeostasis. In pancreatic beta-cells, MIF expression is regulated by glucose and its secretion potentiates the glucose-induced insulin secretion. The molecular mechanisms by which glucose mediates its effect on MIF expression are not elucidated. Herein, we report that incubating the differentiated insulin-secreting cell line INS-1 in high glucose concentration increases MIF transcriptional activity as well as the reporter gene activity driven by the -1033 to +63 bp fragment of the MIF promoter. A minimal region located between -187 and -98 bp of this promoter sequence contributes both to basal activity and glucose-responsiveness of the gene. Within this promoter region, two cis-binding sequences were identified by mobility shift assays and footprinting experiments. Both cis-elements interact with nuclear proteins expressed specifically in insulin-secreting cells. In conclusion, we identified a minimal region of the MIF promoter which contributes to the glucose stimulation of the mif gene in insulin-secreting cells.
Collapse
Affiliation(s)
- Valérie Plaisance
- Department of Internal Medicine and Institute of Cellular Biology and Morphology, University of Lausanne, Lausanne CH-1011, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Portois L, Tastenoy M, Viollet B, Svoboda M. Functional analysis of the glucose response element of the rat glucagon receptor gene in insulin-producing INS-1 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:175-86. [PMID: 11955627 DOI: 10.1016/s0167-4781(01)00379-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glucose stimulates the transcription of the glucagon receptor gene in hepatocytes and in pancreatic beta cells. We recently identified a glucose response element in the immediate upstream non-coding region of the rat glucagon receptor gene. We previously showed that this DNA element is centered on a palindromic sequence of 19 nucleotides (termed as G box), containing two E boxes separated by three nucleotides. In the present study, we further characterized the DNA sequence requirements for the glucose induced expression of the rat glucagon receptor gene. Transfection study realized in the insulin-producing INS-1 cells revealed that a fragment of 49 nucleotides, centered on the G box, bears all the features required for the glucose activation. Mutations performed in the 5'-E box totally abolished the glucose responsiveness, whereas mutations or deletion of the 3'-E box only had a limited effect. Deletions performed upstream from the G box revealed that an accessory factor binding site, located in the region just upstream from the G box, is required for full stimulation by glucose. Finally, by using G box based probes in gel shift experiments, we demonstrated that USF1/USF2 transcription factors are part of the proteinic complex that binds to the glucose response element of the rat glucagon receptor gene promoter. In conclusion, in contrast to many other glucose regulated genes, only the 5'-E box appears to be a crucial DNA element for the glucose transcriptional effect. However, an accessory factor binding site located in the region just upstream from the G box is required for a complete stimulation by glucose.
Collapse
Affiliation(s)
- L Portois
- Department of Biochemistry and Nutrition, Medical School, Université Libre de Bruxelles, CP 611, 808 Route de Lennik, B-1070, Brussels, Belgium
| | | | | | | |
Collapse
|
25
|
Calomme C, Nguyen TLA, de Launoit Y, Kiermer V, Droogmans L, Burny A, Van Lint C. Upstream stimulatory factors binding to an E box motif in the R region of the bovine leukemia virus long terminal repeat stimulates viral gene expression. J Biol Chem 2002; 277:8775-89. [PMID: 11741930 DOI: 10.1074/jbc.m107441200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bovine leukemia virus (BLV) promoter is located in its 5'-long terminal repeat and is composed of the U3, R, and U5 regions. BLV transcription is regulated by cis-acting elements located in the U3 region, including three 21-bp enhancers required for transactivation of the BLV promoter by the virus-encoded transactivator Tax(BLV). In addition to the U3 cis-acting elements, both the R and U5 regions contain stimulatory sequences. To date, no transcription factor-binding site has been identified in the R region. Here sequence analysis of this region revealed the presence of a potential E box motif (5'-CACGTG-3'). By competition and supershift gel shift assays, we demonstrated that the basic helix-loop-helix transcription factors USF1 and USF2 specifically interacted with this R region E box motif. Mutations abolishing upstream stimulatory factor (USF) binding caused a reproducible decrease in basal or Tax-activated BLV promoter-driven gene expression in transient transfection assays of B-lymphoid cell lines. Cotransfection experiments showed that the USF1 and USF2a transactivators were able to act through the BLV R region E box. Taken together, these results physically and functionally characterize a USF-binding site in the R region of BLV. This E box motif located downstream of the transcription start site constitutes a new positive regulatory element involved in the transcriptional activity of the BLV promoter and could play an important role in virus replication.
Collapse
Affiliation(s)
- Claire Calomme
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Eeckhoute J, Formstecher P, Laine B. Maturity-onset diabetes of the young Type 1 (MODY1)-associated mutations R154X and E276Q in hepatocyte nuclear factor 4alpha (HNF4alpha) gene impair recruitment of p300, a key transcriptional co-activator. Mol Endocrinol 2001; 15:1200-10. [PMID: 11435618 DOI: 10.1210/mend.15.7.0670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a nuclear receptor involved in glucose homeostasis and is required for normal beta-cell function. Mutations in the HNF4alpha gene are associated with maturity-onset diabetes of the young type 1. E276Q and R154X mutations were previously shown to impair intrinsic transcriptional activity (without exogenously supplied co-activators) of HNF4alpha. Given that transcriptional partners of HNF4alpha modulate its intrinsic transcriptional activity and play crucial roles in HNF4alpha function, we investigated the effects of these mutations on potentiation of HNF4alpha activity by p300, a key co-activator for HNF4alpha. We show here that loss of HNF4alpha function by both mutations is increased through impaired physical interaction and functional cooperation between HNF4alpha and p300. Impairment of p300-mediated potentiation of HNF4alpha transcriptional activity is of particular importance for the E276Q mutant since its intrinsic transcriptional activity is moderately affected. Together with previous results obtained with chicken ovalbumin upstream promoter-transcription factor II, our results highlight that impairment of recruitment of transcriptional partners represents an important mechanism leading to abnormal HNF4alpha function resulting from the MODY1 E276Q mutation. The impaired potentiations of HNF4alpha activity were observed on the promoter of HNF1alpha, a transcription factor involved in a transcriptional network and required for beta-cell function. Given its involvement in a regulatory signaling cascade, loss of HNF4alpha function may cause reduced beta-cell function secondary to defective HNF1alpha expression. Our results also shed light on a better structure-function relationship of HNF4alpha and on p300 sequences involved in the interaction with HNF4alpha.
Collapse
Affiliation(s)
- J Eeckhoute
- Unité 459 INSERM Laboratoire de Biologie Cellulaire Université H. Warembourg Lille, France F 59045
| | | | | |
Collapse
|
28
|
Krones A, Jungermann K, Kietzmann T. Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology 2001; 142:2707-18. [PMID: 11356723 DOI: 10.1210/endo.142.6.8200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The signals oxygen and glucose play an important role in metabolism, angiogenesis, tumorigenesis, and embryonic development. Little is known about an interaction of these two signals. We demonstrate here the cross-talk between oxygen and glucose in the regulation of L-type pyruvate kinase (L-PK) gene expression in the liver. In the liver the periportal to perivenous drop in O(2) tension was proposed to be an endocrine key regulator for the zonated gene expression. In primary rat hepatocyte cultures the expression of the L-PK gene on mRNA and on protein level was induced by venous pO(2), whereas its glucose-dependent induction occurred predominantly under arterial pO(2). It was shown by transient transfection of L-PK promoter luciferase and glucose response element (Glc(PK)RE) SV40 promoter luciferase gene constructs that the modulation by O(2) of the glucose-dependent induction occurred at the Glc(PK)RE in the L-PK gene promoter. The reduction of the glucose-dependent induction of the L-PK gene expression under venous pO(2) appeared to be mediated via an interference between hypoxia inducible factor-1 (HIF-1) and upstream stimulating factor at the Glc(PK)RE. The glucose response element also functioned as an hypoxia response element which was confirmed in cotransfection assays with Glc(PK)RE luciferase gene constructs and HIF-1alpha expression vectors. Furthermore, it was found by gel shift and supershift assay that HIF-1alpha and USF-1 or USF-2 could bind to the Glc(PK)RE. Our findings implicate that the cross-talk between oxygen and glucose might have a fundamental role in the regulation of several physiological and pathophysiological processes.
Collapse
Affiliation(s)
- A Krones
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
29
|
Stafford JM, Waltner-Law M, Granner DK. Role of accessory factors and steroid receptor coactivator 1 in the regulation of phosphoenolpyruvate carboxykinase gene transcription by glucocorticoids. J Biol Chem 2001; 276:3811-9. [PMID: 11069927 DOI: 10.1074/jbc.m009389200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the liver, glucocorticoids induce a 10-15-fold increase in the rate of transcription of the phosphoenolpyruvate carboxykinase (PEPCK) gene, which encodes a key gluconeogenic enzyme. This induction requires a multicomponent glucocorticoid response unit (GRU) comprised of four glucocorticoid accessory factor (AF) elements and two glucocorticoid receptor binding sites. We show that the AFs that bind the gAF1, gAF2, and gAF3 elements (hepatocyte nuclear factor [HNF]4/chicken ovalbumin upstream promoter transcription factor 1 and HNF3beta) all interact with steroid receptor coactivator 1 (SRC1). This suggests that the AFs function in part by recruiting coactivators to the GRU. The binding of a GAL4-SRC1 chimeric protein completely restores the glucocorticoid induction that is lost when any one of these elements is replaced with a GAL4 binding site. Thus, when SRC1 is recruited directly to gAF1, gAF2, or gAF3, the requirement for the corresponding AF is bypassed. Surprisingly, glucocorticoid receptor is still required when SRC1 is recruited directly to the GAL4 site, suggesting a role for the receptor in activating SRC1 in the context of the GRU. Structural variants of GAL4-SRC1 were used to identify requirements for the basic-helix-loop-helix and histone acetyltransferase domains of SRC1, and these are specific to the region of the promoter to which the coactivator is recruited.
Collapse
Affiliation(s)
- J M Stafford
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and the Nashville Veterans Administration Hospital, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
30
|
Takahashi K, Nishiyama C, Okumura K, Ra C, Ohtake Y, Yokota T. Molecular cloning of rat USF2 cDNA and characterization of splicing variants. Biosci Biotechnol Biochem 2001; 65:56-62. [PMID: 11272846 DOI: 10.1271/bbb.65.56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The complete nucleotide sequence of rat USF2 cDNA was determined. In addition to the full length clone (USF2FL), four isoforms (delta1, delta2, delta3, and delta4) suggested to be generated by alternative splicing were isolated. USF2delta1 and delta2 lacked 27 and 67 internal amino acid residues, respectively. USF2delta3 and delta4 lacked most of the entire sequence but encoded short peptides of an N-terminal portion of USF2FL. Overexpression of USF2FL increased the transcription of the human high affinity IgE receptor (FcepsilonRI) alpha chain gene through specific binding to the CAGCTG motif in the first intron. On the other hand, overexpression of USF2delta1 or delta2 reduced the transcription of the human FcepsilonRI alpha chain gene. Both USF2FL and USF2delta1 bound to CACGTG as well as CAGCTG, while USF2delta2 bound to CACGTG but not to CAGCTG. These results suggested the presence of a different and definitive role of each variant in the expression of the alpha chain gene.
Collapse
Affiliation(s)
- K Takahashi
- Foods and Pharmaceuticals Research and Development Laboratory, Asahi Breweries Ltd., Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- S Vaulont
- Institut Cochin de Génétique Moléculaire, U.129 INSERM, Université René Descartes, 75014 Paris, France.
| | | | | |
Collapse
|
32
|
Koo SH, Towle HC. Glucose regulation of mouse S(14) gene expression in hepatocytes. Involvement of a novel transcription factor complex. J Biol Chem 2000; 275:5200-7. [PMID: 10671567 DOI: 10.1074/jbc.275.7.5200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of genes encoding enzymes required for lipogenesis is induced in hepatocytes in response to elevated glucose metabolism. We have previously mapped the carbohydrate-response elements (ChoREs) of the rat liver-type pyruvate kinase (L-PK) and S(14) genes and found them to share significant sequence similarity. However, progress in unraveling this signaling pathway has been hampered due to the difficulty in identifying the key factor(s) that bind to these ChoREs. To gain further insight into the nature of the carbohydrate-responsive transcription factor, the glucose regulatory sequences from the mouse S(14) gene were examined in primary hepatocytes. Three elements were found to be essential for supporting the glucose response: a thyroid hormone-response element between -1522 and -1494, an accessory factor site between -1421 and -1392, and the ChoRE between -1450 and -1425. Of these, only the accessory factor site was conserved between the rat and mouse S(14) genes. Investigation of the ChoRE sequence indicated that two half E box motifs are critical for the response to glucose. Electrophoretic mobility shift assays revealed a complex formed between the mouse S(14) ChoRE and liver nuclear proteins. This complex was also formed by ChoREs from the rat S(14) and L-PK genes but not by mutants of these sites that are inactive in supporting the glucose response. These results suggest the presence of a novel transcription factor complex that mediates the glucose-regulated transcription of S(14) and L-PK genes.
Collapse
Affiliation(s)
- S H Koo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
33
|
Sladek R, Giguère V. Orphan nuclear receptors: an emerging family of metabolic regulators. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 47:23-87. [PMID: 10582084 DOI: 10.1016/s1054-3589(08)60109-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Sladek
- Molecular Oncology Group, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
34
|
Lou DQ, Tannour M, Selig L, Thomas D, Kahn A, Vasseur-Cognet M. Chicken ovalbumin upstream promoter-transcription factor II, a new partner of the glucose response element of the L-type pyruvate kinase gene, acts as an inhibitor of the glucose response. J Biol Chem 1999; 274:28385-94. [PMID: 10497199 DOI: 10.1074/jbc.274.40.28385] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the L-type pyruvate kinase (L-PK) gene is induced by glucose in the presence of insulin and repressed by glucagon via cyclic AMP. The DNA regulatory sequence responsible for mediating glucose and cyclic AMP responses, called glucose response element (GlRE), consists of two degenerated E boxes spaced by 5 base pairs and is able to bind basic helix-loop-helix/leucine zipper proteins, in particular the upstream stimulatory factors (USFs). From ex vivo and in vivo experiments, it appears that USFs are required for correct response of the L-PK gene to glucose, but their expression and binding activity are not known to be regulated by glucose. A genetic screen in yeast has allowed us to identify a novel transcriptional factor binding to the GlRE, i.e. the chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII). Binding of COUP-TFII to the GlRE was confirmed by electrophoretic mobility shift assays, and COUP-TFII-containing complexes were detectable in liver nuclear extracts. Neither abundance nor binding activity of COUP-TFII appeared to be significantly regulated by diets. In footprinting experiments, two COUP-TFII-binding sites overlapping the E boxes were detected. Overexpression of COUP-TFII abrogated the USF-dependent transactivation of an artificial GlRE-dependent promoter in COS cells and the glucose responsiveness of the L-PK promoter in hepatocytes in primary culture. In addition, a mutated GlRE with increased affinity for USF and very low affinity for COUP-TFII conferred a dramatically decreased glucose responsiveness on the L-PK promoter in hepatocytes in primary culture by increasing activity of the reporter gene in low glucose condition. We propose that COUP-TFII could be a negative regulatory component of the glucose sensor complex assembled on the GlRE of the L-PK gene and most likely of other glucose-responsive genes as well.
Collapse
Affiliation(s)
- D Q Lou
- Institut Cochin de Génétique Moléculaire, U129 INSERM, Université René Descartes, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- V Giguère
- Molecular Oncology Group, McGill University Health Centre.
| |
Collapse
|
36
|
Qian J, Kaytor EN, Towle HC, Olson LK. Upstream stimulatory factor regulates Pdx-1 gene expression in differentiated pancreatic beta-cells. Biochem J 1999; 341 ( Pt 2):315-22. [PMID: 10393088 PMCID: PMC1220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The homeobox gene Pdx-1 plays a key role in the development of the pancreas. In the adult, however, expression of the Pdx-1 gene is restricted to pancreatic beta-cells and endocrine cells of duodenal epithelium. Recently, the transcription factor, upstream stimulatory factor (USF), has been shown to bind in vitro to a mutationally sensitive E-box motif within the 5'-flanking region of the Pdx-1 gene [Sharma, Leonard, Lee, Chapman, Leiter and Montminy (1996) J. Biol. Chem. 271, 2294-2299]. In the present study, we show that USF not only binds to the Pdx-1 gene promoter but also functionally regulates the expression of the Pdx-1 gene in differentiated pancreatic beta-cells. Adenovirus-mediated overexpression of a dominant negative form of USF2 decreased binding of endogenous USF to the E-box element by approximately 90%. This reduction in endogenous USF binding led to a greater than 50% decrease in Pdx-1 gene promoter activity, which, in turn, resulted in marked reductions in Pdx-1 mRNA and protein levels. Importantly, the lower Pdx-1 protein levels led to a greater than 50% reduction in Pdx-1 binding activity to the A3 element on the insulin gene promoter, and a significant reduction in insulin mRNA levels. Overall, our results show that USF functionally regulates Pdx-1 gene expression in differentiated pancreatic beta-cells and provide the first functional data for a role of USF in the regulation of a normal cellular gene.
Collapse
Affiliation(s)
- J Qian
- Department of Physiology, Michigan State University, 214 Giltner Hall, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
37
|
Yamada K, Tanaka T, Noguchi T. Characterization and purification of carbohydrate response element-binding protein of the rat L-type pyruvate kinase gene promoter. Biochem Biophys Res Commun 1999; 257:44-9. [PMID: 10092507 DOI: 10.1006/bbrc.1999.0410] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The L-III transcriptional regulatory element of the rat pyruvate kinase L gene is located between -170 and -150 base pairs upstream of the hepatocyte-specific transcription initiation site. As the L-III element is not only necessary for cell type-specific expression but also for transcriptional stimulation by carbohydrates, it is also referred to as a carbohydrate-response element. Electrophoretic mobility shift assays using rat liver nuclear extract showed that L-III element-binding protein (L-IIIBP) was observed as multiple bands. These bands disappeared when the nuclear extract was preincubated at 60 degrees C for 5 min and were competed with unlabeled L-III oligonucleotide but not with unlabeled adenovirus major late promoter E box oligonucleotide. In addition, these bands were not affected in the presence of antiserum against upstream stimulating factor (USF). Thus, we conclude that L-IIIBP is different from USF. Then, heat-labile L-IIIBP was purified from rat liver nuclear extracts. Purified L-IIIBP exhibited two bands on sodium dodecyl sulfate/polyacrylamide gel electrophoresis by silver staining. Ultraviolet crosslinking experiment showed that both bands had binding activity to the L-III oligonucleotide.
Collapse
Affiliation(s)
- K Yamada
- Department of Biochemistry, Fukui Medical University, Shimoaizuki, Matsuoka, Fukui, 910-1193, Japan
| | | | | |
Collapse
|
38
|
Le Beyec J, Ribeiro A, Schreider C, Chambaz J, Rousset M, Pinçon-Raymond M, Cardot P. Illegitimate expression of apolipoprotein A-II in Caco-2 cells is due to chromatin organization. Exp Cell Res 1999; 247:373-9. [PMID: 10066365 DOI: 10.1006/excr.1998.4371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcriptional activity of the human apolipoprotein (apo) A-II promoter has been reported in transiently transfected Caco-2 cells, but not in the intestine in vivo. In the present study we established that the transcription of a stably transfected reporter gene under the control of the -911/+29 human apo A-II, decreases with the onset of the differentiation process. This decrease paralleled that of the expression of the endogenous apo A-II gene. The decrease in apo A-II expression is also followed by a marked increase in the expression of the intestine-specific apo A-IV gene, analyzed here as a marker of enterocytic differentiation. Using clonal glucose metabolic variants of Caco-2 cells we have also observed that the lowest levels of apo A-II mRNA are associated with the lowest rates of glucose consumption. The illegitimate apo A-II transcriptional activity observed in Caco-2 cells is linked to the presence of DNase-I hypersensitive sites within the enhancer. This reflects a chromatin organization which allows, in Caco-2 cells as in the liver, the communication between the apo A-II enhancer and the proximal promoter, unlike what is observed in intestinal epithelial cells.
Collapse
Affiliation(s)
- J Le Beyec
- INSERM U505, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, Paris, 75006, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Carbohydrate feeding increases the transcriptional activity of the hepatic S14 gene. The region of the S14 promoter between -1384/-1275 contributes to the transcriptional regulation by carbohydrate. A previously identified element (-1303/-1289) within this region is required but is not sufficient for the carbohydrate effect. Therefore, we ligated -1384/-1275 to a heterologous promoter and created mutants in this region to identify other potential responsive sequences. We found that mutation within -1365/-1350 eliminated the response to high glucose (27.5 mM). However, three copies of this element ligated to a mouse mammary tumor virus-luciferase vector did not respond to glucose indicating the -1365/-1350 element is insufficient to confer a glucose response in isolation. Nevertheless. mutating the -1365/-1350 element in the native promoter led to a loss of response to glucose, proving this element is necessary. Electrophoretic mobility shift assays (EMSA) using three copies of the element showed significant binding to rat hepatic nuclear extracts, but no difference between the dietary states. Competition EMSA studies showed that the previously identified element at -1303/-1289 was unable to compete for proteins that bind to the -1365/-1350 element. Therefore, we have demonstrated two separate elements within the -1384/-1275 region of the S14 gene that bind different proteins and interact to elicit the carbohydrate effect.
Collapse
Affiliation(s)
- B Liu
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
40
|
Casado M, Vallet VS, Kahn A, Vaulont S. Essential role in vivo of upstream stimulatory factors for a normal dietary response of the fatty acid synthase gene in the liver. J Biol Chem 1999; 274:2009-13. [PMID: 9890958 DOI: 10.1074/jbc.274.4.2009] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the liver, transcription of several genes encoding lipogenic and glycolytic enzymes, in particular the gene for fatty acid synthase (FAS), is known to be stimulated by dietary carbohydrates. The molecular dissection of the FAS promoter pointed out the critical role of an E box motif, located at position -65 with respect to the start site of transcription, in mediating the glucose- and insulin-dependent regulation of the gene. Upstream stimulatory factors (USF1 and USF2) and sterol response element binding protein 1 (SREBP1) were shown to be able to interact in vitro with this E box. However, to date, the relative contributions of USFs and SREBP1 ex vivo remain controversial. To gain insight into the specific roles of these factors in vivo, we have analyzed the glucose responsiveness of hepatic FAS gene expression in USF1 and USF2 knock-out mice. In both types of mouse lines, defective in either USF1 or USF2, induction of the FAS gene by refeeding a carbohydrate-rich diet was severely delayed, whereas expression of SREBP1 was almost normal and insulin response unchanged. Therefore, USF transactivators, and especially USF1/USF2 heterodimers, seem to be essential to sustain the dietary induction of the FAS gene in the liver.
Collapse
Affiliation(s)
- M Casado
- Institut Cochin de Génétique Moléculaire, U.129 INSERM Unité de Recherches en Physiologie et Pathologie Génétiques et Moléculaires, 75014 Paris, France
| | | | | | | |
Collapse
|
41
|
Ribeiro A, Pastier D, Kardassis D, Chambaz J, Cardot P. Cooperative binding of upstream stimulatory factor and hepatic nuclear factor 4 drives the transcription of the human apolipoprotein A-II gene. J Biol Chem 1999; 274:1216-25. [PMID: 9880489 DOI: 10.1074/jbc.274.3.1216] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of the human apoA-II promoter is controlled by a synergistic interaction of the distal enhancer and the proximal promoter. An important role in apoA-II promoter activity is exerted by a transcription factor, designated CIIIB1, which binds to the proximal element AB and the distal elements of the enhancer, K and L. In the present communication we establish that CIIIB1 corresponds to the previously described factor, upstream stimulatory factor (USF) using the following criteria. (a) Purification of CIIIB1 by affinity chromatography provided a heat-stable protein with an apparent molecular mass of 45 kDa that cross-reacted with anti-USF1 and -USF2a antibodies; (b) CIIIB1 bound to the elements AB, K, and L was supershifted by these antibodies; (c) the heterodimer USF1/2a is the predominant form that corresponds to CIIIB1. Cotransfection experiments in HepG2 cells established the functional significance of USF in apoA-II transcription. It was found that the minimal promoter AB was transactivated by USF2a. In addition, all three E-box motifs present in elements AB, K and L are necessary for maximum transactivation by USF2a. A dominant negative form of USF2a inhibits the activity of apoA-II promoter. The USF1/2a heterodimer, which is naturally expressed in the liver, is as efficient as the USF2a homodimer in the transactivation of apoA-II promoter/enhancer constructs. Cotransfection experiments in COS-1 cells showed that hepatic nuclear factor 4 (HNF-4) synergized with USF2a in the transactivation of the apoA-II promoter. In addition, we showed that HNF-4 and USF2a bind to the enhancer cooperatively. This may account for the transcriptional synergism observed between USF and HNF-4 in the transactivation of the apoA-II promoter.
Collapse
Affiliation(s)
- A Ribeiro
- U505 INSERM, Université Pierre et Marie Curie, Institut des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | |
Collapse
|
42
|
Hasegawa J, Osatomi K, Wu RF, Uyeda K. A novel factor binding to the glucose response elements of liver pyruvate kinase and fatty acid synthase genes. J Biol Chem 1999; 274:1100-7. [PMID: 9873057 DOI: 10.1074/jbc.274.2.1100] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of the liver type pyruvate kinase and lipogenesis enzyme genes is induced by high carbohydrate in liver. We have found a novel protein factor in rat liver nuclei that binds to the glucose response element (CACGTG motifs) of the pyruvate kinase gene (Liu, Z. , Thompson, K. S., and Towle, H. C. (1993) J. Biol. Chem. 268, 12787-12795) and the "insulin response element" of fatty acid synthase gene. The amounts of this DNA-binding protein, termed "glucose response element binding protein" (GRBP) in the nuclear extract, were increased in liver by a high carbohydrate diet and decreased by starvation, high fat, and high protein diet. GRBP also occurs in cytosols of liver and is dependent on carbohydrate. Both the nuclear and the cytosolic GRBP showed similar properties, except the former was more resistant to thermal inactivation than the latter. Kinetics of glucose activation of the cytosolic GRBP in a primary culture of hepatocytes indicated that a half-maximum activation was achieved after 6 h, and glucose concentration required for the maximum activation of the GRBP was approximately 12 mM. Dibutyryl-cAMP, okadaic acid, and forskolin inhibited glucose activation of both GRBP and liver pyruvate kinase transcription. These results suggested that GRBP may be a factor that recognizes the glucose response motif site and may be involved in mediating carbohydrate response of the pyruvate kinase gene.
Collapse
Affiliation(s)
- J Hasegawa
- Research and Development, Dallas Veterans Affairs Medical Center and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75216, USA
| | | | | | | |
Collapse
|
43
|
Yamada K, Noguchi T. Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem J 1999; 337 ( Pt 1):1-11. [PMID: 9854017 PMCID: PMC1219928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mammalian pyruvate kinase (PK), a key glycolytic enzyme, has two genes named PKL and PKM, which produce the L- and R-type isoenzymes by means of alternative promoters, and the M1-and M2-types by mutually exclusive alternative splicing respectively. The expression of these genes is tissue-specific and under developmental, dietary and hormonal control. The L-type isoenzyme (L-PK) gene contains multiple regulatory elements necessary for regulation in the 5' flanking region, up to position -170. Both L-II and L-III elements are required for stimulation of L-PK gene transcription by carbohydrates such as glucose and fructose, although the L-III element is itself responsive to carbohydrates. The L-II element is also responsible for the gene regulation by polyunsaturated fatty acids. Nuclear factor-1 proteins and hepatocyte nuclear factor 4, which bind to the L-II element, may also be involved in carbohydrate and polyunsaturated fatty acid regulation of the L-PK gene respectively. However, the L-III-element-binding protein that is involved in carbohydrate regulation remains to be clarified, although involvement by an upstream stimulating factor has been proposed. Available evidence suggests that the carbohydrate signalling pathway to the L-PK gene includes a glucose metabolite, possibly glucose 6-phosphate or xylulose 5-phosphate, as well as phosphorylation and dephosphorylation mechanisms. In addition, at least five regulatory elements have been identified in the 5' flanking region of the PKM gene up to position -279. Sp1-family proteins bind to two proximal elements, but the binding of proteins to other elements have not yet been clarified. Glucose may stimulate the transcription of the PKM gene via hexosamine derivatives. Sp1 may be involved in this regulation via its dephosphorylation, although the carbohydrate response element has not been determined precisely in the PKM gene. Thus glucose stimulates transcription of the PKM gene by the mechanism which is probably different from the L-PK gene.
Collapse
Affiliation(s)
- K Yamada
- Department of Biochemistry, Fukui Medical University, Shimoaizuki, Matsuoka, Fukui 910-1193, Japan
| | | |
Collapse
|
44
|
Jänne M, Hammond GL. Hepatocyte nuclear factor-4 controls transcription from a TATA-less human sex hormone-binding globulin gene promoter. J Biol Chem 1998; 273:34105-14. [PMID: 9852068 DOI: 10.1074/jbc.273.51.34105] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocytes are the major source of sex hormone-binding globulin (SHBG), a glycoprotein that transports sex steroids in the blood and regulates their access to target tissues. The human SHBG proximal promoter was analyzed by DNase I footprinting, and the functional significance of 6 footprinted regions (FP1-FP6) within the proximal promoter was studied in human HepG2 hepatoblastoma cells. Two footprinted regions (FP1 and FP3) contain binding sites for the chicken ovalbumin upstream promoter-transcription factor (COUP-TF) and hepatocyte nuclear factor-4 (HNF-4). In experiments where SHBG promoter-luciferase reporter gene constructs were co-transfected into HepG2 cells with COUP-TF and/or HNF-4 expression vectors, HNF-4 markedly increased transcription, whereas COUP-TF suppressed this probably by displacing HNF-4 from their common FP1-binding site. This COUP-TF/HNF-4-binding site within FP1 includes a TTTAA sequence, located at nucleotides -30/-26 upstream of the transcription start site, which fails to interact with human TFIID, TATA-binding protein in vitro. When this sequence was replaced with an idealized HNF-4-binding site, the transcriptional activity of the promoter increased in HepG2 cells. Taken together, these data imply that an interplay between COUP-TF and HNF-4 at a site within FP1 regulates human SHBG expression and that HNF-4 controls transcription from this TATA-less promoter by somehow substituting for TATA-binding protein in the recruitment of a transcription preinitiation complex.
Collapse
Affiliation(s)
- M Jänne
- Department of Obstetrics & Gynecology, and Medical Research Council of Canada Group in Fetal and Neonatal Health and Development, University of Western Ontario, Canada
| | | |
Collapse
|
45
|
Scott DK, O'Doherty RM, Stafford JM, Newgard CB, Granner DK. The repression of hormone-activated PEPCK gene expression by glucose is insulin-independent but requires glucose metabolism. J Biol Chem 1998; 273:24145-51. [PMID: 9727036 DOI: 10.1074/jbc.273.37.24145] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a rate-controlling enzyme in hepatic gluconeogenesis, and it therefore plays a central role in glucose homeostasis. The rate of transcription of the PEPCK gene is increased by glucagon (via cAMP) and glucocorticoids and is inhibited by insulin. Under certain circumstances glucose also decreases PEPCK gene expression, but the mechanism of this effect is poorly understood. The glucose-mediated stimulation of a number of glycolytic and lipogenic genes requires the expression of glucokinase (GK) and increased glucose metabolism. HL1C rat hepatoma cells are a stably transfected line of H4IIE rat hepatoma cells that express a PEPCK promoter-chloramphenicol acetyltransferase fusion gene that is regulated in the same manner as the endogenous PEPCK gene. These cells do not express GK and do not normally exhibit a response of either the endogenous PEPCK gene, or of the trans-gene, to glucose. A recombinant adenovirus that directs the expression of glucokinase (AdCMV-GK) was used to increase glucose metabolism in HL1C cells to test whether increased glucose flux is also required for the repression of PEPCK gene expression. In AdCMV-GK-treated cells glucose strongly inhibits hormone-activated transcription of the endogenous PEPCK gene and of the expressed fusion gene. The glucose effect on PEPCK gene promoter activity is blocked by 5 mM mannoheptulose, a specific inhibitor of GK activity. The glucose analog, 2-deoxyglucose mimics the glucose response, but this effect does not require GK expression. 3-O-methylglucose is ineffective. Glucose exerts its effect on the PEPCK gene within 4 h, at physiologic concentrations, and with an EC50 of 6.5 mM, which approximates the Km of glucokinase. The effects of glucose and insulin on PEPCK gene expression are additive, but only at suboptimal concentrations of both agents. The results of these studies demonstrate that, by inhibiting PEPCK gene transcription, glucose participates in a feedback control loop that governs its production from gluconeogenesis.
Collapse
Affiliation(s)
- D K Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
46
|
Sul HS, Wang D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 1998; 18:331-51. [PMID: 9706228 DOI: 10.1146/annurev.nutr.18.1.331] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activities of critical enzymes in fatty acid and triacylglycerol biosynthesis are tightly controlled by different nutritional, hormonal, and developmental conditions. Feeding previously fasted animals high-carbohydrate, low-fat diets causes a dramatic induction of enzymes-such as fatty acid synthase (FAS) and mitochondrial glycerol-3-phosphate acyltransferase (GPAT)-involved in fatty acid and triacylglycerol synthesis. During fasting and refeeding, transcription of these two enzymes is coordinately regulated by nutrients and hormones, such as glucose, insulin, glucagon, glucocorticoids, and thyroid hormone. Insulin stimulates transcription of the FAS and mitochondrial GPAT genes, and glucagon antagonizes the insulin effect through the cis-acting elements within the promoters and their bound trans-acting factors. This review discusses advances made in the understanding of the transcriptional regulation of FAS and mitochondrial GPAT genes, with emphasis on elucidation of the mechanisms by which multiple nutrients and hormones achieve their effects.
Collapse
Affiliation(s)
- H S Sul
- Department of Nutritional Sciences, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
47
|
Vallet VS, Casado M, Henrion AA, Bucchini D, Raymondjean M, Kahn A, Vaulont S. Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J Biol Chem 1998; 273:20175-9. [PMID: 9685363 DOI: 10.1074/jbc.273.32.20175] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
USF1 and USF2 are ubiquitous transcription factors of the basic helix-loop-helix leucine zipper family. They form homo- and heterodimers and recognize a CACGTG motif termed E box. In the liver, USF binding activity is mainly accounted for by the USF1/USF2 heterodimer, which binds in vitro the glucose/carbohydrate response elements (GlRE/ChoRE) of glucose-responsive genes. To assign a physiological role of USFs in vivo, we have undertaken the disruption of USF1 and USF2 genes in mice. We present here the generation of USF1-deficient mice. In the liver of these mice, we demonstrate that USF2 remaining dimers can compensate for glucose responsiveness, even though the level of total USF binding activity is reduced by half as compared with wild type mice. The residual USF1 binding activity was similarly reduced in the previously reported USF2 -/- mice in which an impaired glucose responsiveness was observed (Vallet, V. S., Henrion, A. A., Bucchini, D., Casado, M. , Raymondjean, M., Kahn, A., and Vaulont, S. (1997) J. Biol. Chem. 272, 21944-21949). Taken together, these results clearly suggest differential transactivating efficiencies of USF1 and USF2 in promoting the glucose response. Furthermore, they support the view that USF2 is the functional transactivator of the glucose-responsive complex.
Collapse
Affiliation(s)
- V S Vallet
- Institut Cochin de Génétique Moléculaire, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Murao K, Wada Y, Nakamura T, Taylor AH, Mooradian AD, Wong NC. Effects of glucose and insulin on rat apolipoprotein A-I gene expression. J Biol Chem 1998; 273:18959-65. [PMID: 9668074 DOI: 10.1074/jbc.273.30.18959] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the regulation of apolipoprotein A-I (apoA-I) gene expression in response to glucose and insulin. In Hep G2 cells, endogenous apoA-I mRNA was suppressed by one-half or induced 2-fold following 48 h of exposure to high concentrations of glucose (22.4 mM) or insulin (100 microunits/ml), respectively, compared with control. Transcriptional activity of the rat apoA-I promoter (-474 to -7) in Hep G2 cells paralleled endogenous mRNA expression, and this activity was dependent on the dose of glucose or insulin. Deletional analysis showed that a 50-base pair fragment spanning -425 to -376 of the promoter mediated the effects of both insulin and glucose. Within this DNA fragment there is a motif (-411 to -404) that is homologous to a previously identified insulin response core element (IRCE). Mutation of this motif abolished not only the induction of the promoter by insulin but also abrogated its suppression by glucose. Electrophoretic mobility shift assay analysis of nuclear extracts from Hep G2 cells revealed IRCE binding activity that formed a duplex with radiolabeled probe. The IRCE binding activity correlated with insulin induction of apoA-I expression. In summary, our data show that glucose decreases and insulin increases apoA-I promoter activity. This effect appears to be mediated by a single cis-acting element.
Collapse
Affiliation(s)
- K Murao
- Endocrine Research Group, Departments of Medicine and Medical Biochemistry, the Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Kardassis D, Sacharidou E, Zannis VI. Transactivation of the human apolipoprotein CII promoter by orphan and ligand-dependent nuclear receptors. The regulatory element CIIC is a thyroid hormone response element. J Biol Chem 1998; 273:17810-6. [PMID: 9651383 DOI: 10.1074/jbc.273.28.17810] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory elements CIIC (-159/-116) and CIIB (-102/-81) of the apolipoprotein CII (apoCII) promoter have distinct specificities for orphan nuclear receptors (Vorgia, P., Zannis, V. I., and Kardassis, D. (1998) J. Biol. Chem. 273, 4188-4199). In this communication we investigated the contribution of ligand-dependent and orphan nuclear receptors on the transcriptional regulation of the human apoCII gene. It was found that element CIIC in addition to ARP-1 and EAR-2 binds RXRalpha/T3Rbeta heterodimers strongly, whereas element CIIB binds hepatic nuclear factor 4 (HNF-4) exclusively. Binding is abolished by mutations that alter the HRE binding motifs. Transient cotransfection experiments showed that in the presence of T3, RXRalpha/T3Rbeta heterodimers transactivated the -205/+18 apoCII promoter 1.6- and 11-fold in HepG2 and COS-1 respectively. No transactivation was observed in the presence of 9-cis-retinoic acid. Transactivation requires the regulatory element CIIC, suggesting that this element contains a thyroid hormone response element. HNF-4 did not affect the apoCII promoter activity in HepG2 cells. However, mutations in the HNF-4 binding site on element CIIB and inhibition of HNF-4 synthesis in HepG2 cells by antisense HNF-4 constructs decreased the apoCII promoter activity to 25-40% of the control, indicating that HNF-4 is a positive regulator of the apoCII gene. ARP-1 repressed the -205/+18 but not the -104/+18 apoCII promoter activity in HepG2 cells, indicating that the repression depends on the regulatory element CIIC. In contrast, combination of ARP-1 and HNF-4 transactivated different apoCII promoter segments as well as a minimal adenovirus major late promoter driven by the regulatory element CIIB. Mutagenesis or deletion of elements CIIB or CIIC established that the observed transactivation requires DNA binding of one of the two factors and may result from HNF-4-ARP-1 interactions that elicit the transactivation functions of HNF-4. The combined data indicate that RXRalpha/T3Rbeta in the presence of T3 and HNF-4 can upregulate the apoCII promoter activity by binding to the regulatory elements CIIC and CIIB, respectively. In addition, ARP-1 can either have inhibitory or stimulatory effects on the apoCII promoter activity via different mechanisms.
Collapse
Affiliation(s)
- D Kardassis
- Division of Basic Sciences, Section of Biochemistry, Department Of Medicine, University Of Crete and Institute Of Molecular Biology and Biotechnology, Heraklion, Crete, Greece
| | | | | |
Collapse
|
50
|
Abstract
Regulation of gene expression by nutrients in mammals is an important mechanism allowing them to adapt to the nutritional environment. In-vivo and in-vitro experiments have demonstrated that the transcription of genes coding for lipogenic and glycolytic enzymes in liver and/or adipose tissue is upregulated by glucose. In order for glucose to act as a gene inducer, it must be metabolized. Recent evidence suggests that glucose-6-phosphate is the signal metabolite in the liver. DNA glucose response elements have been characterized and they have in common the presence of two sequences 5'-CACGTG-3' separated by five nucleotides, which bind in vitro a transcription factor of the basic domain, helix-loop-helix, leucine zipper family called USF/MLTF. Experiments concerning the potential role of USF/MLTF in the glucose response have led to opposite results, suggesting that USF/MLTF might not be the only factor involved. Finally, the glucose effect involves a kinase/phosphatase system. The kinase could be the AMP-activated protein kinase, the mammalian analogue of a yeast kinase, or SNF 1 which is important for the derepression of glucose-inhibited genes.
Collapse
Affiliation(s)
- F Foufelle
- U465 INSERM, Centre Biomédical des Cordeliers, Paris, France
| | | | | |
Collapse
|