1
|
Nagpal I, Wei LN. All- trans Retinoic Acid as a Versatile Cytosolic Signal Modulator Mediated by CRABP1. Int J Mol Sci 2019; 20:ijms20153610. [PMID: 31344789 PMCID: PMC6696438 DOI: 10.3390/ijms20153610] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022] Open
Abstract
All-trans retinoic acid (AtRA), an active metabolite of vitamin A, is recognized for its classical action as an endocrine hormone that triggers genomic effects mediated through nuclear receptors RA receptors (RARs). New evidence shows that atRA-mediated cellular responses are biphasic with rapid and delayed responses. Most of these rapid atRA responses are the outcome of its binding to cellular retinoic acid binding protein 1 (CRABP1) that is predominantly localized in cytoplasm and binds to atRA with a high affinity. This review summarizes the most recent studies of such non-genomic outcomes of atRA and the role of CRABP1 in mediating such rapid effects in different cell types. In embryonic stem cells (ESCs), atRA-CRABP1 dampens growth factor sensitivity and stemness. In a hippocampal neural stem cell (NSC) population, atRA-CRABP1 negatively modulates NSC proliferation and affects learning and memory. In cardiomyocytes, atRA-CRABP1 prevents over-activation of calcium-calmodulin-dependent protein kinase II (CaMKII), protecting heart function. These are supported by the fact that CRABP1 gene knockout (KO) mice exhibit multiple phenotypes including hippocampal NSC expansion and spontaneous cardiac hypertrophy. This indicates that more potential processes/signaling pathways involving atRA-CRABP1 may exist, which remain to be identified.
Collapse
Affiliation(s)
- Isha Nagpal
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Jing W, Xiaohuan H, Zhenhua F, Zhuo Y, Fan D, Wenjing T, Linyan Z, Deshou W. Promoter activity and regulation of the Pou5f1 homolog from a teleost, Nile tilapia. Gene 2018; 642:277-283. [DOI: 10.1016/j.gene.2017.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
|
3
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
4
|
Wu G, Schöler HR. Role of Oct4 in the early embryo development. CELL REGENERATION 2014; 3:7. [PMID: 25408886 PMCID: PMC4230828 DOI: 10.1186/2045-9769-3-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Oct4 is a key component of the pluripotency regulatory network, and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells (ESCs) or their differentiation into trophoblast. Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development. However, the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected, and that these embryos could complete full-term development without any obvious defect. These results indicate that Oct4 is not essential for the initiation of pluripotency, in contrast to its critical role in maintaining pluripotency. This conclusion is further supported by the formation of Oct4-GFP– and Nanog- expressing inner cell masses (ICMs) in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany ; Medical Faculty, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
5
|
Teng HF, Li PN, Hou DR, Liu SW, Lin CT, Loo MR, Kao CH, Lin KH, Chen SL. Valproic acid enhances Oct4 promoter activity through PI3K/Akt/mTOR pathway activated nuclear receptors. Mol Cell Endocrinol 2014; 383:147-58. [PMID: 24361750 DOI: 10.1016/j.mce.2013.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/24/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022]
Abstract
Valproic acid (VPA) has been shown to increase the reprogramming efficiency of induced pluripotent stem cells (iPSC) from somatic cells, but the mechanism by which VPA enhances iPSC induction has not been defined. Here we demonstrated that VPA directly activated Oct4 promoter activity through activation of the PI3K/Akt/mTOR signaling pathway that targeted the proximal hormone response element (HRE, -41∼-22) in this promoter. The activating effect of VPA is highly specific as similar compounds or constitutional isomers failed to instigate Oct4 promoter activity. We further demonstrated that the upstream 2 half-sites in this HRE were essential to the activating effect of VPA and they were targeted by a subset of nuclear receptors, such as COUP-TFII and TR2. These findings show the first time that NRs are implicated in the VPA stimulated expression of stem cell-specific factors and should invite more investigation on the cooperation between VPA and NRs on iPSC induction.
Collapse
Affiliation(s)
- Han Fang Teng
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Pei Ning Li
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Duen Ren Hou
- Department of Chemistry, National Central University, Jhongli 32001, Taiwan
| | - Sin Wei Liu
- Department of Chemistry, National Central University, Jhongli 32001, Taiwan
| | - Cheng Tao Lin
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Moo Rung Loo
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Chien Han Kao
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan
| | - Kwang Huei Lin
- Department of Biochemistry, Chang Gung University, Taoyuan 333, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli 32001, Taiwan.
| |
Collapse
|
6
|
Abstract
MicroRNA MicroRNA s (miRNAs) are small noncoding RNAs acting as endogenous regulators of gene expression. Their discovery is one of the major recent breakthroughs in molecular biology. miRNAs establish a multiplicity of relationships with target mRNAs and exert pleiotropic biological effects in many cell physiological pathways during development and adult life. The dynamic nature of gene expression regulation by Retinoic Acid Retinoic acid (RA) is consistent with an extensive functional interplay with miRNA activities. In fact, RA regulates the expression of many different miRNAs, thus suggesting a relevant function of miRNAs in RA-controlled gene expression programmes. miRNAs have been extensively studied as targets and mediators of the biological activity of RA during embryonic development as well as in normal and neoplastic cells. However, relatively few studies have experimentally explored the direct contribution of miRNA function to the RA signalling pathway. Here, we provide an overview of the mechanistic aspects that allow miRNA biogenesis, functional activation and regulation, focusing on recent evidence that highlights a functional interplay between miRNAs and RA-regulated molecular networks. We report examples of tissue-specific roles of miRNAs modulated by RA in stem cell pluripotency maintenance and regeneration, embryonic development, hematopoietic and neural differentiation, and other biological model systems, underlining their role in disease pathogenesis. We also address novel areas of research linking the RA signalling pathway to the nuclear activity of miRNAs.
Collapse
MESH Headings
- Cell Differentiation
- Embryo, Mammalian
- Embryonic Development
- Gene Expression Regulation
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Pluripotent Stem Cells/cytology
- Pluripotent Stem Cells/metabolism
- Protein Binding
- Protein Multimerization
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Signal Transduction
- Tretinoin/metabolism
Collapse
Affiliation(s)
- Clara Nervi
- Department of Medical-Surgical Sciences and Biotechnologies, University "La Sapienza", Rome, Italy,
| | | |
Collapse
|
7
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
8
|
Flajollet S, Rachez C, Ploton M, Schulz C, Gallais R, Métivier R, Pawlak M, Leray A, Issulahi AA, Héliot L, Staels B, Salbert G, Lefebvre P. The elongation complex components BRD4 and MLLT3/AF9 are transcriptional coactivators of nuclear retinoid receptors. PLoS One 2013; 8:e64880. [PMID: 23762261 PMCID: PMC3677938 DOI: 10.1371/journal.pone.0064880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/18/2013] [Indexed: 12/20/2022] Open
Abstract
Nuclear all-trans retinoic acid receptors (RARs) initiate early transcriptional events which engage pluripotent cells to differentiate into specific lineages. RAR-controlled transactivation depends mostly on agonist-induced structural transitions in RAR C-terminus (AF-2), thus bridging coactivators or corepressors to chromatin, hence controlling preinitiation complex assembly. However, the contribution of other domains of RAR to its overall transcriptional activity remains poorly defined. A proteomic characterization of nuclear proteins interacting with RAR regions distinct from the AF-2 revealed unsuspected functional properties of the RAR N-terminus. Indeed, mass spectrometry fingerprinting identified the Bromodomain-containing protein 4 (BRD4) and ALL1-fused gene from chromosome 9 (AF9/MLLT3), known to associate with and regulates the activity of Positive Transcription Elongation Factor b (P-TEFb), as novel RAR coactivators. In addition to promoter sequences, RAR binds to genomic, transcribed regions of retinoid-regulated genes, in association with RNA polymerase II and as a function of P-TEFb activity. Knockdown of either AF9 or BRD4 expression affected differentially the neural differentiation of stem cell-like P19 cells. Clusters of retinoid-regulated genes were selectively dependent on BRD4 and/or AF9 expression, which correlated with RAR association to transcribed regions. Thus RAR establishes physical and functional links with components of the elongation complex, enabling the rapid retinoid-induced induction of genes required for neuronal differentiation. Our data thereby extends the previously known RAR interactome from classical transcriptional modulators to components of the elongation machinery, and unravel a functional role of RAR in transcriptional elongation.
Collapse
Affiliation(s)
- Sébastien Flajollet
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Christophe Rachez
- Unité de Régulation Epigénétique, URA 2578 du CNRS, Département de Biologie du Développement, Institut Pasteur, Paris, France
| | - Maheul Ploton
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Céline Schulz
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Rozenn Gallais
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Raphaël Métivier
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Michal Pawlak
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Aymeric Leray
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Al Amine Issulahi
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Laurent Héliot
- Interdisciplinary Research Institute, Univ Lille 1, USR 3078 CNRS, Biophotonique Cellulaire Fonctionnelle, Villeneuve d’Ascq, France
| | - Bart Staels
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Gilles Salbert
- Equipe SPARTE, UMR CNRS 6026-Université Rennes 1, Rennes, France
| | - Philippe Lefebvre
- European Genomic Institute for Diabetes (EGID), FR 3508, Lille, France
- INSERM UMR1011, Lille, France
- Univ Lille 2, Lille, France
- Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
9
|
Wagner RT, Cooney AJ. Minireview: the diverse roles of nuclear receptors in the regulation of embryonic stem cell pluripotency. Mol Endocrinol 2013; 27:864-78. [PMID: 23504955 PMCID: PMC3656235 DOI: 10.1210/me.2012-1383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Extensive research has been devoted to the goal of understanding how a single cell of embryonic origin can give rise to every somatic cell type and the germ cell lineage, a hallmark defined as "pluripotency." The aggregate of this work supports fundamentally important roles for the gene transcription networks inherent to the pluripotent cell. Transcription networks have been identified that are both required for pluripotency, as well as sufficient to reprogram somatic cells to a naive pluripotent state. Several members of the nuclear receptor (NR) superfamily of transcription factors have been identified to play diverse roles in the regulation of pluripotency. The ligand-responsive nature of NRs coupled with the abundance of genetic models available has led to a significant advance in the understanding of NR roles in embryonic stem cell pluripotency. Furthermore, the presence of a ligand-binding domain may lead to development of small molecules for a wide range of therapeutic and research applications, even in cases of NRs that are not known to respond to physiologic ligands. Presented here is an overview of NR regulation of pluripotency with a focus on the transcriptional, proteomic, and epigenetic mechanisms by which they promote or suppress the pluripotent state.
Collapse
Affiliation(s)
- Ryan T Wagner
- Department of Cell Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston TX 77030-3498, USA
| | | |
Collapse
|
10
|
Yamada T, Urano-Tashiro Y, Tanaka S, Akiyama H, Tashiro F. Involvement of crosstalk between Oct4 and Meis1a in neural cell fate decision. PLoS One 2013; 8:e56997. [PMID: 23451132 PMCID: PMC3581578 DOI: 10.1371/journal.pone.0056997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6–12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells.
Collapse
Affiliation(s)
- Takeyuki Yamada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Yumiko Urano-Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Saori Tanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Hirotada Akiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Fumio Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
11
|
Abstract
DNA methylation is among the best studied epigenetic modifications and is essential to mammalian development. Although the methylation status of most CpG dinucleotides in the genome is stably propagated through mitosis, improvements to methods for measuring methylation have identified numerous regions in which it is dynamically regulated. In this Review, we discuss key concepts in the function of DNA methylation in mammals, stemming from more than two decades of research, including many recent studies that have elucidated when and where DNA methylation has a regulatory role in the genome. We include insights from early development, embryonic stem cells and adult lineages, particularly haematopoiesis, to highlight the general features of this modification as it participates in both global and localized epigenetic regulation.
Collapse
|
12
|
Pou2, a class V POU-type transcription factor in zebrafish, regulates dorsoventral patterning and convergent extension movement at different blastula stages. Mech Dev 2012; 129:219-35. [DOI: 10.1016/j.mod.2012.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
|
13
|
Annab LA, Bortner CD, Sifre MI, Collins JM, Shah RR, Dixon D, Karimi Kinyamu H, Archer TK. Differential responses to retinoic acid and endocrine disruptor compounds of subpopulations within human embryonic stem cell lines. Differentiation 2012; 84:330-43. [PMID: 22906706 DOI: 10.1016/j.diff.2012.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 11/25/2022]
Abstract
The heterogeneous nature of stem cells is an important issue in both research and therapeutic use in terms of directing cell lineage differentiation pathways, as well as self-renewal properties. Using flow cytometry we have identified two distinct subpopulations by size, large and small, within cultures of human embryonic stem (hES) cell lines. These two cell populations respond differentially to retinoic acid (RA) differentiation and several endocrine disruptor compounds (EDC). The large cell population responds to retinoic acid differentiation with greater than a 50% reduction in cell number and loss of Oct-4 expression, whereas the number of the small cell population does not change and Oct-4 protein expression is maintained. In addition, four estrogenic compounds altered SSEA-3 expression differentially between the two cell subpopulations changing their ratios relative to each other. Both populations express stem cell markers Oct-4, Nanog, Tra-1-60, Tra-1-80 and SSEA-4, but express low levels of differentiation markers common to the three germ layers. Cloning studies indicate that both populations can revive the parental population. Furthermore, whole genome microarray identified approximately 400 genes with significantly different expression between the two populations (p<0.01). We propose the differential response to RA in these populations is due to differential gene expression of Notch signaling members, CoupTF1 and CoupTF2, chromatin remodeling and histone modifying genes that render the small population resistant to RA differentiation. The findings that hES cells exist as heterogeneous populations with distinct responses to differentiation signals and environmental stimuli will be relevant for their use for drug discovery and disease therapy.
Collapse
Affiliation(s)
- Lois A Annab
- Chromatin and Gene Expression Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Favaedi R, Shahhoseini M, Akhoond MR. Comparative epigenetic analysis of Oct4 regulatory region in RA-induced differentiated NT2 cells under adherent and non-adherent culture conditions. Mol Cell Biochem 2011; 363:129-34. [PMID: 22160855 DOI: 10.1007/s11010-011-1165-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Oct4 is a POU domain homeobox gene, expressed in undifferentiated embryonal carcinoma and embryonic stem cells and is quickly down-regulated upon induction of differentiation. Transcriptional repression of Oct4 is followed by pronounced epigenetic changes on the regulatory region of the gene. Oct4 has a long upstream regulatory region of about 2,600 bp, consisting of proximal enhancer (PE), distal enhancer (DE), and proximal promoter (PP). In this study, we induced differentiation of a human embryonic carcinoma cell line, NT2, under two different adherent and non-adherent culture conditions, and compared histone modifications as the epigenetic marks on the regulatory region of Oct4 gene after 3 days of differentiation. Using chromatin immunoprecipitation coupled with real-time PCR technique, it was shown that the after induction of differentiation the repressive epigenetic marks of hypoacetylation and methylation on lysine-9 of histone H3 occurred very effectively on the upstream of Oct4, especially in PP region. Also, comparing the two culturing systems it was shown that methylation of lysine-9 of H3 histone was more drastic in PE region of adherent cells rather than suspension cells. This epigenetic profile was in agreement with the difference observed in the expression level of Oct4 in these two culturing systems. The current study clearly shows the effective role of cell culture condition on the epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Raha Favaedi
- Department of Genetics, Reproductive Biomedicine Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box 19395-4644, Tehran, Iran
| | | | | |
Collapse
|
15
|
Gu P, Xu X, Le Menuet D, Chung ACK, Cooney AJ. Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4. Stem Cells 2011; 29:1041-51. [PMID: 21608077 PMCID: PMC3468724 DOI: 10.1002/stem.652] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter. When compared with wild-type ESCs and gastrulating embryos, Oct4 repression is lost and its proximal promoter is significantly hypomethylated in retinoic acid (RA)-differentiated GCNF−/− ESCs and GCNF−/− embryos. Efforts to characterize mediators of GCNF's repressive function and DNA methylation of the Oct4 promoter identified MBD3, MBD2, and de novo Dnmts as GCNF interacting factors. Upon differentiation, endogenous GCNF binds to the Oct4 proximal promoter and differentially recruits MBD3 and MBD2 as well as Dnmt3A. In differentiated GCNF−/− ESCs, recruitment of MBD3 and MBD2 as well as Dnmt3A to Oct4 promoter is lost and subsequently Oct4 repression and DNA methylation failed to occur. Hypomethylation of the Oct4 promoter is also observed in RA-differentiated MBD3−/− and Dnmt3A−/− ESCs, but not in MBD2−/− and Dnmt3B−/− ESCs. Thus, recruitment of MBD3, MBD2, and Dnmt3A by GCNF links two events: gene-specific repression and DNA methylation, which occur differentially at the Oct4 promoter. GCNF initiates the repression and epigenetic modification of Oct4 gene during ESC differentiation. Stem Cells 2011;29:1041–1051
Collapse
Affiliation(s)
- Peili Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Puttagunta R, Schmandke A, Floriddia E, Gaub P, Fomin N, Ghyselinck NB, Di Giovanni S. RA-RAR-β counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. ACTA ACUST UNITED AC 2011; 193:1147-56. [PMID: 21690307 PMCID: PMC3216335 DOI: 10.1083/jcb.201102066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central nervous system injury results in the release of molecules that inhibit neuronal regeneration, but retinoic acid counteracts this effect by inhibiting Lingo-1. After an acute central nervous system injury, axonal regeneration is limited as the result of a lack of neuronal intrinsic competence and the presence of extrinsic inhibitory signals. The injury fragments the myelin neuronal insulating layer, releasing extrinsic inhibitory molecules to signal through the neuronal membrane–bound Nogo receptor (NgR) complex. In this paper, we show that a neuronal transcriptional pathway can interfere with extrinsic inhibitory myelin-dependent signaling, thereby promoting neurite outgrowth. Specifically, retinoic acid (RA), acting through the RA receptor β (RAR-β), inhibited myelin-activated NgR signaling through the transcriptional repression of the NgR complex member Lingo-1. We show that suppression of Lingo-1 was required for RA–RAR-β to counteract extrinsic inhibition of neurite outgrowth. Furthermore, we confirm in vivo that RA treatment after a dorsal column overhemisection injury inhibited Lingo-1 expression, specifically through RAR-β. Our findings identify a novel link between RA–RAR-β–dependent proaxonal outgrowth and inhibitory NgR complex–dependent signaling, potentially allowing for the development of molecular strategies to enhance axonal regeneration after a central nervous system injury.
Collapse
Affiliation(s)
- Radhika Puttagunta
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research and 2 Graduate School for Cellular and Molecular Neuroscience, University of Tuebingen, 72074 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Involvement of COUP-TFs in Cancer Progression. Cancers (Basel) 2011; 3:700-15. [PMID: 24212637 PMCID: PMC3756385 DOI: 10.3390/cancers3010700] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/25/2011] [Accepted: 02/10/2011] [Indexed: 12/21/2022] Open
Abstract
The orphan receptors COUP-TFI and COUP-TFII are members of the nuclear receptor superfamily that play distinct and critical roles in vertebrate organogenesis, as demonstrated by loss-of-function COUP-TFI and/or COUP-TFII mutant mice. Although COUP-TFs are expressed in a wide range of tissues in adults, little is known about their functions at later stages of development or in organism homeostasis. COUP-TFs are expressed in cancer cell lines of various origins and increasing studies suggest they play roles in cell fate determination and, potentially, in cancer progression. Nevertheless, the exact roles of COUP-TFs in these processes remain unclear and even controversial. In this review, we report both in vitro and in vivo data describing known and suspected actions of COUP-TFs that suggest that these factors are involved in modification of the phenotype of cancer cells, notably of epithelial origin.
Collapse
|
18
|
Teng HF, Kuo YL, Loo MR, Li CL, Chu TW, Suo H, Liu HS, Lin KH, Chen SL. Valproic acid enhances Oct4 promoter activity in myogenic cells. J Cell Biochem 2010; 110:995-1004. [PMID: 20564199 DOI: 10.1002/jcb.22613] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Induced pluripotent stem (iPS) cells are reprogrammed from somatic cells through ectopic expression of stem cell-specific transcription factors, including Oct4, Nanog, Sox2, Lin28, Klf4, and c-Myc. Although iPS cells are similar to embryonic stem (ES) cells in their pluripotency, their inherited defects, such as insertion mutagenesis, employment of oncogenes, and low efficiency, associated with the reprogramming procedure have hindered their clinical application. A study has shown that valproic acid (VPA) treatment can significantly enhance the reprogramming efficiency and avoid the usage of oncogenes. To understand how VPA can enhance pluripotency, we stably transfected an Oct4 promoter driven luciferase reporter (Oct4-1.9k-Luc) into P19 embryonic carcinoma (EC) cells and C2C12 myoblasts and examined their response to VPA. We found that VPA could both activate Oct4 promoter and rescue its inhibition by retinoic acid (RA). In C2C12 myoblasts, VPA treatment also enhanced endogenous Oct4 expression but repressed that of MyoD. Furthermore, both RARalpha over-expression and mutation of a proximal hormone response element (HRE) blocked the activation effect of VPA on Oct4 promoter, implying that VPA may exert its activation effect through factors targeting this HRE. Taken together, these observations identify a molecular mechanism by which VPA directly regulate Oct4 expression to ensure the acquirement and maintenance of pluripotency.
Collapse
Affiliation(s)
- Han Fang Teng
- Department of Life Sciences, National Central University, Jhongli 32054, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Salmina K, Jankevics E, Huna A, Perminov D, Radovica I, Klymenko T, Ivanov A, Jascenko E, Scherthan H, Cragg M, Erenpreisa J. Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells. Exp Cell Res 2010; 316:2099-112. [PMID: 20457152 DOI: 10.1016/j.yexcr.2010.04.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 04/20/2010] [Accepted: 04/28/2010] [Indexed: 02/06/2023]
Abstract
We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.
Collapse
Affiliation(s)
- Kristine Salmina
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Park SW, Huang WH, Persaud SD, Wei LN. RIP140 in thyroid hormone-repression and chromatin remodeling of Crabp1 gene during adipocyte differentiation. Nucleic Acids Res 2010; 37:7085-94. [PMID: 19778926 PMCID: PMC2790899 DOI: 10.1093/nar/gkp780] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular retinoic acid binding protein 1 (Crabp1) gene is biphasically (proliferation versus differentiation) regulated by thyroid hormone (T3) in 3T3-L1 cells. This study examines T3-repression of Crabp1 gene during adipocyte differentiation. T3 repression of Crabp1 requires receptor interacting protein 140 (RIP140). During differentiation, the juxtaposed chromatin configuration of Crabp1 promoter with its upstream region is maintained, but the 6-nucleosomes spanning thyroid hormone response element to transcription initiation site slide bi-directionally, with the third nucleosome remaining at the same position throughout differentiation. On the basal promoter, RIP140 replaces coactivators GRIP1 and PCAF and forms a repressive complex with CtBP1, HDAC3 and G9a. Initially active chromatin marks on this promoter, histone modifications H3-Ac and H3K4-me3, are weakened whereas repressive chromatin marks, H3K9-me3 and H3K27-me3 modification and recruitment of G9a, HP1α, HP1γ and H1, are intensified. This is the first study to examine chromatin remodeling, during the phase of hormone repression, of a bi-directionally regulated hormone target gene, and provides evidence for a functional role of RIP140 in chromatin remodeling to repress hormone target gene expression.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
21
|
Miyagi S, Kato H, Okuda A. Role of SoxB1 transcription factors in development. Cell Mol Life Sci 2009; 66:3675-84. [PMID: 19633813 PMCID: PMC11115863 DOI: 10.1007/s00018-009-0097-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/03/2009] [Accepted: 07/07/2009] [Indexed: 12/11/2022]
Abstract
SoxB1 factors, which include Sox1, 2, and 3, share more than 90% amino acid identity in their DNA binding HMG box and participate in diverse developmental events. They are known to exert cell-type-specific functions in concert with other transcription factors on Sox factor-dependent regulatory enhancers. Due to the high degree of sequence similarity both within and outside the HMG box, SoxB1 members show almost identical biological activities. As a result, they exhibit strong functional redundancy in regions where SoxB1 members are coexpressed, such as neural stem/progenitor cells in the developing central nervous system.
Collapse
Affiliation(s)
- Satoru Miyagi
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hidemasa Kato
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241 Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama 350-1241 Japan
| |
Collapse
|
22
|
Kawasumi M, Unno Y, Matsuoka T, Nishiwaki M, Anzai M, Amano T, Mitani T, Kato H, Saeki K, Hosoi Y, Iritani A, Kishigami S, Matsumoto K. Abnormal DNA methylation of the Oct-4 enhancer region in cloned mouse embryos. Mol Reprod Dev 2009; 76:342-50. [PMID: 18932201 DOI: 10.1002/mrd.20966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oct-4 is essential for normal embryonic development, and abnormal Oct-4 expression in cloned embryos contributes to cloning inefficiency. However, the causes of abnormal Oct-4 expression in cloned embryos are not well understood. As DNA methylation in regulatory regions is known to control transcriptional activity, we investigated the methylation status of three transcriptional regulatory regions of the Oct-4 gene in cloned mouse embryos--the distal enhancer (DE), the proximal enhancer (PE), and the promoter regions. We also investigated the level of Oct-4 gene expression in cloned embryos. Immunochemistry revealed that 85% of cloned blastocysts expressed Oct-4 in both trophectoderm and inner cell mass cells. DNA methylation analysis revealed that the PE region methylation was greater in cloned morulae than in normal morulae. However, the same region was less methylated in cloned blastocysts than in normal blastocysts. We found abnormal expression of de novo methyltransferase 3b in cloned blastocysts. These results indicate that cloned embryos have aberrant DNA methylation in the CpG sites of the PE region of Oct-4, and this may contribute directly to abnormal expression of this gene in cloned embryos.
Collapse
Affiliation(s)
- Miyuri Kawasumi
- Division of Biological Science, Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Epsztejn-Litman S, Feldman N, Abu-Remaileh M, Shufaro Y, Gerson A, Ueda J, Deplus R, Fuks F, Shinkai Y, Cedar H, Bergman Y. De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 2008; 15:1176-1183. [PMID: 18953337 PMCID: PMC2581722 DOI: 10.1038/nsmb.1476] [Citation(s) in RCA: 324] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 07/15/2008] [Indexed: 12/17/2022]
Abstract
The pluripotency-determining gene Oct3/4 (also called Pou5f1) undergoes postimplantation silencing in a process mediated by the histone methyltransferase G9a. Microarray analysis now shows that this enzyme may operate as a master regulator that inactivates numerous early-embryonic genes by bringing about heterochromatinization of methylated histone H3K9 and de novo DNA methylation. Genetic studies in differentiating embryonic stem cells demonstrate that a point mutation in the G9a SET domain prevents heterochromatinization but still allows de novo methylation, whereas biochemical and functional studies indicate that G9a itself is capable of bringing about de novo methylation through its ankyrin domain, by recruiting Dnmt3a and Dnmt3b independently of its histone methyltransferase activity. These modifications seem to be programmed for carrying out two separate biological functions: histone methylation blocks target-gene reactivation in the absence of transcriptional repressors, whereas DNA methylation prevents reprogramming to the undifferentiated state.
Collapse
Affiliation(s)
- Silvina Epsztejn-Litman
- Departments of Experimental Medicine and Cellular Biochemistry Hebrew University Medical School Ein Kerem Jerusalem, 91120 ISRAEL
| | - Nirit Feldman
- Departments of Experimental Medicine and Cellular Biochemistry Hebrew University Medical School Ein Kerem Jerusalem, 91120 ISRAEL
| | - Monther Abu-Remaileh
- Departments of Experimental Medicine and Cellular Biochemistry Hebrew University Medical School Ein Kerem Jerusalem, 91120 ISRAEL
| | - Yoel Shufaro
- IVF Unit, The Department of OB/GYN The Hadassah Human Embryonic Stem Cell Research Center Hadassah Hebrew University Medical Center Jerusalem, 91120 ISRAEL
| | - Ariela Gerson
- Departments of Experimental Medicine and Cellular Biochemistry Hebrew University Medical School Ein Kerem Jerusalem, 91120 ISRAEL
| | - Jun Ueda
- Experimental Research Center for Infectious Disease Institute for Virus Research Kyoto University Sakyo-Ku, Kyoto 606-8507 JAPAN
| | - Rachel Deplus
- Laboratory of Cancer Epigenetics Faculty of Medicine Free University of Brussels Brussels 1070 BELGIUM
| | - François Fuks
- Laboratory of Cancer Epigenetics Faculty of Medicine Free University of Brussels Brussels 1070 BELGIUM
| | - Yoichi Shinkai
- Experimental Research Center for Infectious Disease Institute for Virus Research Kyoto University Sakyo-Ku, Kyoto 606-8507 JAPAN
| | - Howard Cedar
- Departments of Experimental Medicine and Cellular Biochemistry Hebrew University Medical School Ein Kerem Jerusalem, 91120 ISRAEL
| | - Yehudit Bergman
- Departments of Experimental Medicine and Cellular Biochemistry Hebrew University Medical School Ein Kerem Jerusalem, 91120 ISRAEL
| |
Collapse
|
24
|
Niwa H, Sekita Y, Tsend-Ayush E, Grützner F. Platypus Pou5f1 reveals the first steps in the evolution of trophectoderm differentiation and pluripotency in mammals. Evol Dev 2008; 10:671-82. [DOI: 10.1111/j.1525-142x.2008.00280.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Lavial F, Acloque H, Bertocchini F, Macleod DJ, Boast S, Bachelard E, Montillet G, Thenot S, Sang HM, Stern CD, Samarut J, Pain B. The Oct4 homologue PouV and Nanog regulate pluripotency in chicken embryonic stem cells. Development 2007; 134:3549-63. [PMID: 17827181 DOI: 10.1242/dev.006569] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESC) have been isolated from pregastrulation mammalian embryos. The maintenance of their pluripotency and ability to self-renew has been shown to be governed by the transcription factors Oct4 (Pou5f1) and Nanog. Oct4 appears to control cell-fate decisions of ESC in vitro and the choice between embryonic and trophectoderm cell fates in vivo. In non-mammalian vertebrates, the existence and functions of these factors are still under debate, although the identification of the zebrafish pou2 (spg; pou5f1) and Xenopus Pou91 (XlPou91) genes, which have important roles in maintaining uncommitted putative stem cell populations during early development, has suggested that these factors have common functions in all vertebrates. Using chicken ESC (cESC), which display similar properties of pluripotency and long-term self-renewal to mammalian ESC, we demonstrated the existence of an avian homologue of Oct4 that we call chicken PouV (cPouV). We established that cPouV and the chicken Nanog gene are required for the maintenance of pluripotency and self-renewal of cESC. These findings show that the mechanisms by which Oct4 and Nanog regulate pluripotency and self-renewal are not exclusive to mammals.
Collapse
Affiliation(s)
- Fabrice Lavial
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Walker E, Ohishi M, Davey RE, Zhang W, Cassar PA, Tanaka TS, Der SD, Morris Q, Hughes TR, Zandstra PW, Stanford WL. Prediction and Testing of Novel Transcriptional Networks Regulating Embryonic Stem Cell Self-Renewal and Commitment. Cell Stem Cell 2007; 1:71-86. [PMID: 18371337 DOI: 10.1016/j.stem.2007.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/16/2007] [Accepted: 04/19/2007] [Indexed: 01/07/2023]
Affiliation(s)
- Emily Walker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MSH, Niwa H. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 2007; 9:625-35. [PMID: 17515932 DOI: 10.1038/ncb1589] [Citation(s) in RCA: 846] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 04/27/2007] [Indexed: 02/06/2023]
Abstract
The pluripotency of embryonic stem (ES) cells is thought to be maintained by a few key transcription factors, including Oct3/4 and Sox2. The function of Oct3/4 in ES cells has been extensively characterized, but that of Sox2 has yet to be determined. Sox2 can act synergistically with Oct3/4 in vitro to activate Oct-Sox enhancers, which regulate the expression of pluripotent stem cell-specific genes, including Nanog, Oct3/4 and Sox2 itself. These findings suggest that Sox2 is required by ES cells for its Oct-Sox enhancer activity. Using inducible Sox2-null mouse ES cells, we show that Sox2 is dispensable for the activation of these Oct-Sox enhancers. In contrast, we demonstrate that Sox2 is necessary for regulating multiple transcription factors that affect Oct3/4 expression and that the forced expression of Oct3/4 rescues the pluripotency of Sox2-null ES cells. These results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.
Collapse
Affiliation(s)
- Shinji Masui
- Laboratory for Pluripotent Cell Studies, RIKEN Center for Developmental Biology, Minatojima-minamimachi 2-2-3, Chu-o-ku, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dahl JA, Collas P. Q2ChIP, a Quick and Quantitative Chromatin Immunoprecipitation Assay, Unravels Epigenetic Dynamics of Developmentally Regulated Genes in Human Carcinoma Cells. Stem Cells 2007; 25:1037-46. [PMID: 17272500 DOI: 10.1634/stemcells.2006-0430] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is a key technique for studying protein-DNA interactions and mapping epigenetic histone modifications on DNA. Current ChIP protocols require extensive sample handling and large cell numbers. We developed a quick and quantitative (Q(2))ChIP assay suitable for histone and transcription factor immunoprecipitation from chromatin amounts equivalent to as few as 100 cells. DNA-protein cross-linking in suspension in presence of butyrate, elimination of background chromatin through a tube shift after washes, and a combination of cross-link reversal, protein digestion, increased antibody-bead to chromatin ratio, and DNA elution into a single step considerably improve ChIP efficiency and shorten the procedure. We used Q(2)ChIP to monitor changes in histone H3 modifications on the 5' regulatory regions of the developmentally regulated genes OCT4, NANOG, LMNA, and PAX6 in the context of retinoic-acid-mediated human embryonal carcinoma cell differentiation. Quantitative polymerase chain reaction analysis of precipitated DNA unravels biphasic heterochromatin assembly on OCT4 and NANOG, involving H3 lysine (K)9 and K27 methylation followed by H3K9 deacetylation and additional H3K27 trimethylation. Di- and trimethylation of H3K4 remain relatively unaltered. In contrast, PAX6 displays histone modifications characteristic of repressed genes with potential for activation in undifferentiated cells. PAX6 undergoes H3K9 acetylation and enhanced H3K4 trimethylation upon transcriptional activation. Q(2)ChIP of the transcription factor Oct4 demonstrates its dissociation from the NANOG promoter upon differentiation. This study is, to our knowledge, the first to reveal histone modification changes on human OCT4 and NANOG regulatory sequences. The results demonstrate ordered chromatin rearrangement on developmentally regulated promoters upon differentiation.
Collapse
Affiliation(s)
- John Arne Dahl
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
29
|
Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 2006; 14:68-75. [PMID: 17187077 DOI: 10.1038/nsmb1185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022]
Abstract
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor. SUMOylation of Tr2 induces an exchange of its coregulators: corepressor Rip140 replaces coactivator Pcaf, which switches Tr2 from an activator to a repressor. This involves dynamic partitioning of Tr2 into Pml-containing and Pml-free pools. These results support a model where SUMOylation-dependent partitioning and differential coregulator recruitment contribute to the maintenance of a homeostatic supply of activating, as opposed to repressive, Tr2, thus fine-tuning Oct4 expression and regulating stem-cell proliferation.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
30
|
Camara-Clayette V, Le Pesteur F, Vainchenker W, Sainteny F. Quantitative Oct4 Overproduction in Mouse Embryonic Stem Cells Results in Prolonged Mesoderm Commitment During Hematopoietic Differentiation In Vitro. Stem Cells 2006; 24:1937-45. [PMID: 16690781 DOI: 10.1634/stemcells.2005-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The Oct4 transcription factor is essential for the self-renewal and pluripotency of embryonic stem cells (ESCs). Oct4 level also controls the fate of ESCs. We analyzed the effects of Oct4 overproduction on the hematopoietic differentiation of ESCs. Oct4 was introduced into ESCs via a bicistronic retroviral vector, and cells were selected on the basis of Oct4 production, with Oct4(+) and Oct4(2+) displaying twofold and three- to fourfold overproduction, respectively. Oct4 overproduction inhibited hematopoietic differentiation in a dose-dependent manner, after the induction of such differentiation by the formation of day 6 embryoid bodies (EB6). This effect resulted from defective EB6 formation rather than from defective hematopoietic differentiation. In contrast, when hematopoiesis was induced by the formation of blast colonies, the effects of Oct4 depended on the level of overproduction: twofold overproduction increased hematopoietic differentiation, whereas higher levels of overproduction markedly inhibited hematopoietic development. This increase or maintenance of Oct4 levels appears to alter the kinetics and pattern of mesoderm commitment, thereby modifying hemangioblast generation. These results demonstrate that Oct4 acts as a master regulator of ESC differentiation.
Collapse
|
31
|
Grégoire D, Brodolin K, Méchali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006; 7:812-6. [PMID: 16845368 PMCID: PMC1525151 DOI: 10.1038/sj.embor.7400758] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/23/2006] [Accepted: 06/23/2006] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, changes in the DNA replication programme could act to integrate differentiation with cell division in various developmental and transcriptional contexts. Here, we have addressed the use of DNA replication origins during differentiation in the HoxB domain-a cluster of nine genes developmentally regulated in a collinear manner. In undifferentiated mouse P19 cells, we detected several DNA replication origins in the 100 kb HoxB locus, indicating a relaxed origin use when the locus is transcriptionally silent. By contrast, in retinoic-acid-induced differentiated cells, when HoxB transcription is activated, a general silencing of DNA replication origins occurs in the locus except one located downstream of Hoxb1, at the 3' boundary of the HoxB domain. Silencing of the replication origins is associated with histone hyperacetylation, whereas the active Hoxb1 origin persists as a hypoacetylated island. These findings provide direct evidence for the differentiated use of origins in HoxB genes, and we suggest that this regulation might contribute to the regulated expression of HoxB genes during development.
Collapse
Affiliation(s)
- Damien Grégoire
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Konstantin Brodolin
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
- Tel: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
32
|
Yang HM, Do HJ, Oh JH, Kim JH, Choi SY, Cha KY, Chung HM, Kim JH. Characterization of putative cis-regulatory elements that control the transcriptional activity of the human Oct4 promoter. J Cell Biochem 2006; 96:821-30. [PMID: 16149048 DOI: 10.1002/jcb.20588] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Octamer-binding transcription factor-4 (Oct4), a member of the POU domain transcription factors, is crucial for both early embryonic development and the maintenance of stem cell pluripotency. The human Oct4 (hOct4) 5' upstream sequence contains four conserved regions (CR1, 2, 3, 4) that are homologous in the murine. In this study, we constructed a series of deletion mutants of the hOct4 5' upstream region and identified cis-regulatory elements that may be important determinants for the transcriptional activity of the hOct4 promoter. Our studies showed that CR2, 3, and 4 each acted as positive cis-regulatory elements in hOct4 promoter activity. We also newly identified a putative negative cis-acting element located between CR1 and CR2. In addition, the sequence -380/-1 at CR1 that contains a GC box was sufficient to provide the minimal promoter activity. Site-directed mutagenesis and electrophoretic mobility shift assays revealed the GC box located in the -380/-1 region may play a critical role in controlling the transcriptional activity of hOct4 by the direct binding of Sp1 or Sp3 transcription factors to the GC box. An overexpression study showed that Sp1 and Sp3 positively and negatively regulate hOct4 promoter activity. Thus, the hOct4 promoter upstream region contains multiple regulatory elements, one of which, the GC box, may be an important cis-regulatory element that regulates the transcription of the hOct4 promoter by the binding of Sp family transcription factors.
Collapse
Affiliation(s)
- Heung-Mo Yang
- Cell and Gene Therapy Research Institute, Graduate School of Life Science and Biotechnology, Pochon CHA University, 606-13, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Giuliano CJ, Kerley-Hamilton JS, Bee T, Freemantle SJ, Manickaratnam R, Dmitrovsky E, Spinella MJ. Retinoic acid represses a cassette of candidate pluripotency chromosome 12p genes during induced loss of human embryonal carcinoma tumorigenicity. ACTA ACUST UNITED AC 2005; 1731:48-56. [PMID: 16168501 DOI: 10.1016/j.bbaexp.2005.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/08/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Testicular germ cell tumors (TGCTs) are the most common carcinomas of young men aged 15-35. The molecular events involved in TGCT genesis are poorly understood. TGCTs have near universal amplification of the short arm of chromosome 12, however positional cloning efforts have not identified causative genes on 12p involved in formation or progression of TGCTs. Human embryonal carcinoma (EC) are the stem cells of TGCTs and are pluripotent. EC cells terminally differentiate toward a neuronal lineage with all-trans retinoic acid (RA) treatment resulting in a concomitant G1 cell cycle arrest and loss of tumorigenicity. Our efforts to define the molecular mechanisms of RA-mediated tumor cell differentiation at a critical "commitment to differentiate" window has identified a cassette of genes on 12p that are repressed with RA precisely as EC cells lose tumorigenic potential. These are Nanog, CD9, EDR1 (PHC1), SCNN1A, GDF3, Glut3 and Stella. The master pluripotency regulator Oct4 is located on chromosome 6 and is also repressed by RA. Notably, knockdown of Oct4 with siRNA results in repression of basal Nanog, EDR1, GDF3 and Stella gene expression. Nanog has recently been identified to play a role in maintenance of the pluripotency of mouse embryonic stem cells and CD9, EDR1, GDF3, and Stella have each been implicated as stem cell markers. Since RA suppresses the tumorigenicity of EC cells, these genes may have a critical role in the etiology of TGCTs, suggesting a link between enforced pluripotency and transformation.
Collapse
Affiliation(s)
- Caryl J Giuliano
- Department of Pharmacology and Toxicology, 7650 Remsen, Dartmouth Medical School, Dartmouth Hitchcock-Medical Center, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Embryonic stem (ES) cells are typically derived from the inner cell mass of the preimplantation blastocyst and can both self-renew and differentiate into all the cells and tissues of the embryo. Because they are pluripotent, ES cells have been used extensively to analyze gene function in development via gene targeting. The embryonic stem cell is also an unsurpassed starting material to begin to understand a critical, largely inaccessible period of development. If their differentiation could be controlled, they would also be an important source of cells for transplantation to replace cells lost through disease or injury or to replace missing hormones or genes. Traditionally, ES cells have been differentiated in suspension culture as embryoid bodies, named because of their similarity to the early postimplantation-staged embryo. Unlike the pristine organization of the early embryo, differentiation in embryoid bodies appears to be largely unpatterned, although multiple cell types form. It has recently been possible to separate the desired cell types from differentiating ES cells in embryoid bodies by using cell-type-restricted promoters driving expression of either antibiotic resistance genes or fluorophores such as EGFP. In combination with growth factor exposure, highly differentiated cell types have successfully been derived from ES cells. Recent technological advances such as RNA interference to knock down gene expression in ES cells are also producing enriched populations of cells and elucidating gene function in early development.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0616, USA.
| |
Collapse
|
35
|
Okuda T, Tagawa K, Qi ML, Hoshio M, Ueda H, Kawano H, Kanazawa I, Muramatsu M, Okazawa H. Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo. ACTA ACUST UNITED AC 2004; 132:18-30. [PMID: 15548425 DOI: 10.1016/j.molbrainres.2004.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2004] [Indexed: 11/20/2022]
Abstract
Oct-3/4 (Oct-3/Oct-4/POU5F1) is a critical regulator of embryonic stem (ES) cell differentiation, though its role in tissue stem cells that persist in differentiated tissues has not been shown. Here, we show that Oct-3/4 is expressed in neurospheres (NS) composed of neural stem cells and neural progenitor cells and that up- or down-regulation of Oct-3/4 by using adenovirus vectors influences cell fate. Oct-3/4 down-regulation accelerates neuronal differentiation of progenitor cells while its sustained expression prevents neuronal differentiation. Transplantation of neurospheres into the adult rat brain shows that down-regulation of Oct-3/4 promotes differentiation of NS cells in vivo. Our findings indicate that Oct-3/4 is an essential regulator of NS cell differentiation and suggest that the modulation of Oct-3/4 could be a useful tool in clinical application of NS cells.
Collapse
Affiliation(s)
- Tomohiro Okuda
- Department of Molecular Therapeutics, Tokyo Metropolitan Institute for Neuroscience, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW. Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. Nat Biotechnol 2004; 22:707-16. [PMID: 15146197 DOI: 10.1038/nbt971] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 03/23/2004] [Indexed: 12/18/2022]
Abstract
Human embryonic stem (hES) cells hold promise for generating an unlimited supply of cells for replacement therapies. To characterize hES cells at the molecular level, we obtained 148,453 expressed sequence tags (ESTs) from undifferentiated hES cells and three differentiated derivative subpopulations. Over 32,000 different transcripts expressed in hES cells were identified, of which more than 16,000 do not match closely any gene in the UniGene public database. Queries to this EST database revealed 532 significantly upregulated and 140 significantly downregulated genes in undifferentiated hES cells. These data highlight changes in the transcriptional network that occur when hES cells differentiate. Among the differentially regulated genes are several components of signaling pathways and transcriptional regulators that likely play key roles in hES cell growth and differentiation. The genomic data presented here may facilitate the derivation of clinically useful cell types from hES cells.
Collapse
|
37
|
Hattori N, Nishino K, Ko YG, Hattori N, Ohgane J, Tanaka S, Shiota K. Epigenetic Control of Mouse Oct-4 Gene Expression in Embryonic Stem Cells and Trophoblast Stem Cells. J Biol Chem 2004; 279:17063-9. [PMID: 14761969 DOI: 10.1074/jbc.m309002200] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first cell differentiation event in mammalian embryogenesis segregates inner cell mass lineage from the trophectoderm at the blastocyst stage. Oct-4, a member of the POU family of transcription factors, is necessary for the pluripotency of the inner cell mass lineage. Embryonic stem (ES) cells, which contribute to all of embryonic lineages, express the Oct-4 gene. Trophoblast stem (TS) cells, which have the ability to differentiate into trophoblast lineage in vitro, never contribute to embryonic proper tissues in chimeras and differentiate only into trophoblastic cells in the placenta. Expression of the Oct-4 gene was undetectable and severely repressed in trophoblastic lineage, including the stem cells. We found that the culture of TS cells with 5-aza-2'-deoxycytidine or trichostatin A caused the activation of the Oct-4 gene. Analysis of the DNA methylation status of mouse Oct-4 gene upstream region revealed that Oct-4 enhancer/promoter region was hypomethylated in ES cells but hypermethylated in TS cells. Furthermore, in vitro methylation suppressed Oct-4 enhancer/promoter activity in reporter assay. In the placenta of Dnmt1(n/n) mutant mice, most of the CpGs in the enhancer/promoter region were unmethylated, and Oct-4 gene expression was aberrantly detected. Chromatin immunoprecipitation assay revealed that Oct-4 enhancer/promoter region was hyperacetylated in ES cells compared with TS cells, thus demonstrating that DNA methylation status is closely linked to the chromatin structure of the Oct-4 gene. Here we propose that the epigenetic mechanism, consisting of DNA methylation and chromatin remodeling, underlies the developmental stage- and cell type-specific mechanism of Oct-4 gene expression.
Collapse
Affiliation(s)
- Naoko Hattori
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Nuclear orphan receptors represent a large and diverse subgroup in the nuclear receptor superfamily. Although putative ligands for these orphan members remain to be identified, some of these receptors possess intrinsic activating, inhibitory, or dual regulatory functions in development, differentiation, homeostasis, and reproduction. In particular, gene-silencing events elicited by chicken ovalbumin upstream promoter-transcription factors (COUP-TFs); dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1); germ cell nuclear factor (GCNF); short heterodimer partner (SHP); and testicular receptors 2 and 4 (TR2 and TR4) are among the best characterized. These orphan receptors are critical in controlling basal activities or hormonal responsiveness of numerous target genes. They employ multiple and distinct mechanisms to mediate target gene repression. Complex cross-talk exists between these orphan receptors at their cognate DNA binding elements and an array of steroid?nonsteroid hormone receptors, other transcriptional activators, coactivators and corepressors, histone modification enzyme complexes, and components of basal transcriptional components. Therefore, perturbation induced by these orphan receptors at multiple levels, including DNA binding activities, receptor homo- or heterodimerization, recruitment of cofactor proteins, communication with general transcriptional machinery, and changes at histone acetylation status and chromatin structures, may contribute to silencing of target gene expression in a specific promoter or cell-type context. Moreover, the findings derived from gene-targeting studies have demonstrated the significance of these orphan receptors' function in physiologic settings. Thus, COUP-TFs, DAX-1, GCNF, SHP, and TR2 and 4 are known to be required for multiple physiologic and biologic functions, including neurogenesis and development of the heart and vascular system steroidogenesis and sex determination, gametogenesis and embryonic development, and cholesterol?lipid homeostasis.
Collapse
MESH Headings
- Animals
- COUP Transcription Factor I
- COUP Transcription Factors
- DAX-1 Orphan Nuclear Receptor
- DNA-Binding Proteins/metabolism
- Gametogenesis/physiology
- Gene Expression/physiology
- Gene Silencing/physiology
- Humans
- Models, Molecular
- Nuclear Receptor Subfamily 2, Group C, Member 1
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/metabolism
- Receptors, Thyroid Hormone/metabolism
- Repressor Proteins/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Ying Zhang
- Section on Molecular Endocrinology, Endocrinology, and Reproduction Research Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
39
|
Gidekel S, Bergman Y. A unique developmental pattern of Oct-3/4 DNA methylation is controlled by a cis-demodification element. J Biol Chem 2002; 277:34521-30. [PMID: 12110668 DOI: 10.1074/jbc.m203338200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Oct-3/4 is the earliest expressed transcription factor that is known to be crucial in murine pre-implantation development. In this report we asked whether methylation participates in controlling changes in Oct-3/4 expression and thus may play an important role in controlling normal embryogenesis. We show that the Oct-3/4 gene is unmethylated from the blastula stage but undergoes de novo methylation at 6.5 days post-coitum and remains modified in all adult somatic tissues analyzed. Oct-3/4 remains unmethylated in 6.25 days post-coitum epiblast cells when other genes, such as apoAI, undergo de novo methylation. We show that methylation of the Oct-3/4 promoter sequence strongly compromises its ability to direct efficient transcription. Moreover, DNA methylation inhibits basal transcription of the endogenous Oct-3/4 gene in vivo. We found that the Oct-3/4 gene harbors a cis-specific demodification element that includes the proximal enhancer sequence. This element leads to demethylation in embryonal carcinoma cells when the sequence is initially methylated and protects the local region from de novo methylation in post-implantation embryos. These results indicate that in the embryo protection from de novo methylation is not a unique feature of imprinted or housekeeping genes that carry a CpG island, but is also applicable to tissue-specific genes expressed during early stages of embryogenesis. Methylation of Oct-3/4 may be analogous to methylation of CpG islands on the inactive X chromosome that also occurs at later stages of development.
Collapse
Affiliation(s)
- Sharon Gidekel
- Department of Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
40
|
|
41
|
Fuhrmann G, Chung AC, Jackson KJ, Hummelke G, Baniahmad A, Sutter J, Sylvester I, Schöler HR, Cooney AJ. Mouse germline restriction of Oct4 expression by germ cell nuclear factor. Dev Cell 2001; 1:377-87. [PMID: 11702949 DOI: 10.1016/s1534-5807(01)00038-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The POU-domain transcription factor Oct4 is essential for the maintenance of the mammalian germline. In this study, we show that the germ cell nuclear factor (GCNF), an orphan nuclear receptor, represses Oct4 gene activity by specifically binding within the proximal promoter. GCNF expression inversely correlates with Oct4 expression in differentiating embryonal cells. GCNF overexpression in embryonal cells represses Oct4 gene and transgene activities, and we establish a link to transcriptional corepressors mediating repression by GCNF. In GCNF-deficient mouse embryos, Oct4 expression is no longer restricted to the germ cell lineage after gastrulation. Our studies suggest that GCNF is critical in repressing Oct4 gene activity as pluripotent stem cells differentiate and in confining Oct4 expression to the germline.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Cell Differentiation/physiology
- Cell Line
- Cell Lineage
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/physiology
- Fushi Tarazu Transcription Factors
- Gene Expression Regulation
- Gene Expression Regulation, Developmental/physiology
- Genes, Reporter
- Germ Cells/physiology
- Homeodomain Proteins
- In Situ Hybridization
- Macromolecular Substances
- Mice
- Mice, Knockout
- Nuclear Proteins/metabolism
- Nuclear Receptor Co-Repressor 1
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Octamer Transcription Factor-3
- Promoter Regions, Genetic/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/metabolism
- Steroidogenic Factor 1
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transgenes/genetics
- Tretinoin/pharmacology
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- G Fuhrmann
- Centre de Neurochimie, Laboratoire de Neurobiologie du Dévelopment et de la Régéneration, Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The Oct-3/4 transcription factor is expressed in the earliest stages of embryogenesis, and is thus likely to play an important role in regulation of initial decisions in development. For the first time, we have shown that SF1 and Oct-3/4 are co-expressed in embryonal carcinoma (EC) P19 cells, and their expression is down-regulated with very similar kinetics following retinoic acid (RA) induced differentiation of these cells, suggesting a functional relationship between the two. Previously, we have shown that the Oct-3/4 promoter harbors an RA-responsive element, RAREoct, which functions in EC cells as a binding site for positive regulators of transcription, such as RAR and RXR. In this study we have identified in the Oct-3/4 promoter two novel SF1-binding sites: SF1(a) and SF1(b). The proximal site, SF1(a), is located within the RAREoct, and the distal site, SF1(b), is located between nucleotide -193 and -209 of the Oct-3/4 promoter. Both sites contribute to activation of Oct-3/4 promoter in EC cells, with SF1(a) playing a more crucial role. SF1, and its isoforms ELP2 and ELP3 bind to both SF1 sites and activate the Oct-3/4 promoter. This activation depends on the presence of SF1 DNA-binding domain. Thus, Oct-3/4 is the first EC-specific gene reported that is regulated by SF1. Interestingly, SF1 and RAR form a novel complex on the RAREoct sequence that synergistically activate the Oct-3/4 promoter. Both RARE and SF1 cis regulatory elements, as well as the SF1 DNA-binding domain, are needed for this synergism. SF1 and Oct-3/4 transcription factors play a role in the same developmental regulatory cascade.
Collapse
Affiliation(s)
- E Barnea
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| | | |
Collapse
|
43
|
Affiliation(s)
- V Giguère
- Molecular Oncology Group, McGill University Health Centre.
| |
Collapse
|
44
|
Folkers GE, van der Burg B, van der Saag PT. Promoter architecture, cofactors, and orphan receptors contribute to cell-specific activation of the retinoic acid receptor beta2 promoter. J Biol Chem 1998; 273:32200-12. [PMID: 9822698 DOI: 10.1074/jbc.273.48.32200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of retinoic acid receptor beta (RARbeta) is spatially and temporally restricted during embryonal development. Also during retinoic acid (RA)-dependent embryonal carcinoma (EC) cell differentiation, RARbeta expression is initially up-regulated, while in later phases of differentiation expression is down-regulated, by an unknown mechanism. To gain insight into the regulation of RARbeta, we studied the activity of the RARbeta2 promoter and mutants thereof in various cell lines. While the RARbeta2 promoter is activated by RA in a limited number of cell lines, synthetic RA-responsive reporters are activated in most cell types. We show that the expression levels of proteins that bind to the beta-retinoic acid response element (RAR/retinoid X receptors and orphan receptors) and also the differential expression of a number of coactivators modulate the RA response on both natural and synthetic reporters. We further show that cell type-specific activation of the RARbeta2 promoter is dependent on the promoter architecture including the spacing between retinoic acid response element and TATA-box and initiator sequence (betaINR). Mutation within these regions caused a decrease in the activity of this promoter in responsive EC cells, while an increase in activity in non-EC cell lines was observed. Cell-specific complexes were formed on the betaINR, suggesting that the betaINR contributes to cell-specific activation of the promoter. On this basis we propose that promoter context-dependent and more general RA response-determining mechanisms contribute to cell-specific RA-dependent activation of transcription.
Collapse
Affiliation(s)
- G E Folkers
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
45
|
OHKURA N, MARUYAMA K, TSUKADA T, HOSONO T, YAMAGUCHI K. The NGFI-B Family: Orphan Nuclear Receptors of the Steroid/Thyroid Receptor Superfamily. J Reprod Dev 1998. [DOI: 10.1262/jrd.44.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Naganari OHKURA
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Kouji MARUYAMA
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Toshihiko TSUKADA
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Tetsuji HOSONO
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| | - Ken YAMAGUCHI
- Growth Factor Division, National Cancer Center Research Institute,5-1-1 Tsukiji,Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
46
|
Brehm A, Ovitt CE, Schöler HR. Oct-4: more than just a POUerful marker of the mammalian germline? APMIS 1998; 106:114-24; discussion 124-6. [PMID: 9524569 DOI: 10.1111/j.1699-0463.1998.tb01326.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammals lack visible cytoplasmic components in the oocyte that could account for 'germline determinants' as identified in various non-mammalian species. Actually, mammals might not define the germline autonomously by localized 'germline determinants' but conditionally depending on the position of cells within the embryo. The Oct-4 gene encodes a transcription factor that is specifically expressed in the toti- and pluripotential stem cells of the mouse embryo and so far has only been found in mammalian species. Oct-4-expressing embryonal cell retain the capacity to differentiate along multiple lineages and they have been suggested to be part of a 'totipotent germline cycle' that links one generation to the next.
Collapse
Affiliation(s)
- A Brehm
- Gene Expression Programme, EMBL, Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Larraín J, Cizmeci-Smith G, Troncoso V, Stahl RC, Carey DJ, Brandan E. Syndecan-1 expression is down-regulated during myoblast terminal differentiation. Modulation by growth factors and retinoic acid. J Biol Chem 1997; 272:18418-24. [PMID: 9218485 DOI: 10.1074/jbc.272.29.18418] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Syndecan-1 is an integral membrane proteoglycan involved in the interaction of cells with extracellular matrix proteins and growth factors. It is transiently expressed in several condensing mesenchymal tissues after epithelial induction. In this study we evaluated the expression of syndecan-1 during skeletal muscle differentiation. The expression of syndecan-1 as determined by Northern blot analyses and immunofluorescence microscopy is down-regulated during differentiation. The transcriptional activity of a syndecan-1 promoter construct is also down-regulated in differentiating muscle cells. The decrease in syndecan-1 gene expression is not dependent on the presence of E-boxes, binding sites for the MyoD family of transcription factors in the promoter region, or myogenin expression. Deletion of the region containing the E-boxes or treatment of differentiating cells with sodium butyrate, an inhibitor of myogenin expression, had no effect on syndecan-1 expression. Basic fibroblast growth factor and transforming growth factor type beta, which are inhibitors of myogenesis, had little effect on syndecan-1 expression. When added together, however, they induced syndecan-1 expression. Retinoic acid, an inducer of myogenesis, inhibited syndecan-1 expression and abolished the effect of the growth factors. These results indicate that syndecan-1 expression is down-regulated during myogenesis and that growth factors and retinoic acid modulate syndecan-1 expression by a mechanism that is independent of myogenin.
Collapse
Affiliation(s)
- J Larraín
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Casilla 114-D, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- S Y Tsai
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
49
|
Barger PM, Kelly DP. Identification of a retinoid/chicken ovalbumin upstream promoter transcription factor response element in the human retinoid X receptor gamma2 gene promoter. J Biol Chem 1997; 272:2722-8. [PMID: 9006910 DOI: 10.1074/jbc.272.5.2722] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To investigate the mechanisms involved in the transcriptional control of retinoid X receptor (RXR) gene expression, the 5'-flanking region of the human RXRgamma2 isoform was characterized. An imperfect hexamer repeat (gamma retinoid X response element; gammaRXRE) with a single nucleotide spacer (GGTTGAaAGGTCA) was identified immediately upstream of the RXRgamma2 gene transcription start site. Cotransfection studies in CV-1 cells with expression vectors for the retinoid receptors RXRalpha and retinoic acid receptor beta (RARbeta) demonstrated that the gammaRXRE confers retinoid-mediated transcriptional activation with preferential activation by RXR in the presence of its cognate ligand, 9-cis-retinoic acid (RA). Electrophoretic mobility shift assays demonstrated that RXR homodimer binding to gammaRXRE is markedly enhanced by 9-cis-RA, whereas RAR.RXR heterodimer binding is ligand-independent. DNA binding studies and cell cotransfection experiments also demonstrated that the nuclear receptor, chicken ovalbumin upstream promoter transcription factor (COUP-TF), repressed transcription via the gammaRXRE. Cotransfection experiments revealed that COUP-TF and RXRalpha compete at the gammaRXRE to modulate transcription bidirectionally over a wide range. These results demonstrate that the human RXRgamma2 gene promoter contains a novel imperfect repeat element capable of mediating RXR-dependent transcriptional autoactivation and COUP-TF-dependent repression.
Collapse
Affiliation(s)
- P M Barger
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
50
|
Panariello L, Quadro L, Trematerra S, Colantuoni V. Identification of a novel retinoic acid response element in the promoter region of the retinol-binding protein gene. J Biol Chem 1996; 271:25524-32. [PMID: 8810324 DOI: 10.1074/jbc.271.41.25524] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously demonstrated that the retinol-binding protein (RBP) gene is induced by retinoids in hepatoma cells. In this report, we define in greater detail the region that mediates the retinoic acid response of the gene. It consists of two degenerate retinoic acid response elements, separated by 30 nucleotides that encompass a GC-rich Sp1 consensus-like sequence. We demonstrate that the entire region, as well as each element taken singly, can bind the retinoic acid receptors as homo- and heterodimers with low affinity. However, only the entire region is able to confer retinoic acid inducibility to a heterologous promoter. We also show that the correct phasing of the DNA segment is necessary to achieve full responsiveness. Site-directed mutants in each element retained partial induction after transfection, while the double mutant was no longer responsive, suggesting that the two elements act synergistically. Mutational analysis of the Sp1 binding site and cotransfection experiments revealed that Sp1 or a related protein plays an important role in the transcription of the gene. Thus, the retinoic acid induction of the RBP gene is mediated by a novel and complex responsive unit formed by two distinct elements located in a specific sequence context and the interplay of the retinoid receptors with Sp1 is required for induction.
Collapse
Affiliation(s)
- L Panariello
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini, 5 80131 Napoli, Italy
| | | | | | | |
Collapse
|