1
|
Engelhardt S, Trutzenberg A, Kopischke M, Probst K, McCollum C, Hofer J, Hückelhoven R. Barley RIC157, a potential RACB scaffold protein, is involved in susceptibility to powdery mildew. PLANT MOLECULAR BIOLOGY 2023; 111:329-344. [PMID: 36562946 PMCID: PMC10090020 DOI: 10.1007/s11103-022-01329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/03/2022] [Indexed: 06/15/2023]
Abstract
CRIB motif-containing barley RIC157 is a novel ROP scaffold protein that interacts directly with barley RACB, promotes susceptibility to fungal penetration, and colocalizes with RACB at the haustorial neck. Successful obligate pathogens benefit from host cellular processes. For the biotrophic ascomycete fungus Blumeria hordei (Bh) it has been shown that barley RACB, a small monomeric G-protein (ROP, Rho of plants), is required for full susceptibility to fungal penetration. The susceptibility function of RACB probably lies in its role in cell polarity, which may be co-opted by the pathogen for invasive ingrowth of its haustorium. However, how RACB supports fungal penetration success and which other host proteins coordinate this process is incompletely understood. RIC (ROP-Interactive and CRIB-(Cdc42/Rac Interactive Binding) motif-containing) proteins are considered scaffold proteins which can interact directly with ROPs via a conserved CRIB motif. Here we describe a previously uncharacterized barley RIC protein, RIC157, which can interact directly with RACB in planta. We show that, in the presence of constitutively activated RACB, RIC157 shows a localization at the cell periphery/plasma membrane, whereas it otherwise localizes to the cytoplasm. RIC157 appears to mutually stabilize the plasma membrane localization of the activated ROP. During fungal infection, RIC157 and RACB colocalize at the penetration site, particularly at the haustorial neck. Additionally, transiently overexpressed RIC157 renders barley epidermal cells more susceptible to fungal penetration. We discuss that RIC157 may promote fungal penetration into barley epidermal cells by operating probably downstream of activated RACB.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Adriana Trutzenberg
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Michaela Kopischke
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Katja Probst
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Christopher McCollum
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Johanna Hofer
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
2
|
Travis AM, Manocha S, Willer JR, Wessler TS, Skiba NP, Pearring JN. Disrupting the ciliary gradient of active Arl3 affects rod photoreceptor nuclear migration. eLife 2023; 12:80533. [PMID: 36598133 PMCID: PMC9831603 DOI: 10.7554/elife.80533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
The small GTPase Arl3 is important for the enrichment of lipidated proteins to primary cilia, including the outer segment of photoreceptors. Human mutations in the small GTPase Arl3 cause both autosomal recessive and dominant inherited retinal dystrophies. We discovered that dominant mutations result in increased active G-protein-Arl3-D67V has constitutive activity and Arl3-Y90C is fast cycling-and their expression in mouse rods resulted in a displaced nuclear phenotype due to an aberrant Arl3-GTP gradient. Using multiple strategies, we go on to show that removing or restoring the Arl3-GTP gradient within the cilium is sufficient to rescue the nuclear migration defect. Together, our results reveal that an Arl3 ciliary gradient is involved in proper positioning of photoreceptor nuclei during retinal development.
Collapse
Affiliation(s)
- Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Samiya Manocha
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States
| | - Timothy S Wessler
- Department of Mathematics, University of North Carolina at Chapel HillChapel HillUnited States
| | - Nikolai P Skiba
- Department of Ophthalmology, Duke UniversityDurhamUnited States
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan-Ann ArborAnn ArborUnited States,Department of Cell and Developmental Biology, University of Michigan–Ann ArborAnn ArborUnited States
| |
Collapse
|
3
|
Trutzenberg A, Engelhardt S, Weiß L, Hückelhoven R. Barley guanine nucleotide exchange factor HvGEF14 is an activator of the susceptibility factor HvRACB and supports host cell entry by Blumeria graminis f. sp. hordei. MOLECULAR PLANT PATHOLOGY 2022; 23:1524-1537. [PMID: 35849420 PMCID: PMC9452760 DOI: 10.1111/mpp.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In barley (Hordeum vulgare), signalling rat sarcoma homolog (RHO) of plants guanosine triphosphate hydrolases (ROP GTPases) support the penetration success of Blumeria graminis f. sp. hordei but little is known about ROP activation. Guanine nucleotide exchange factors (GEFs) facilitate the exchange of ROP-bound GDP for GTP and thereby turn ROPs into a signalling-activated ROP-GTP state. Plants possess a unique class of GEFs harbouring a plant-specific ROP nucleotide exchanger domain (PRONE). Here, we performed phylogenetic analyses and annotated barley PRONE-GEFs. The leaf epidermal-expressed PRONE-GEF HvGEF14 undergoes a transcriptional down-regulation on inoculation with B. graminis f. sp. hordei and directly interacts with the ROP GTPase and susceptibility factor HvRACB in yeast and in planta. Overexpression of activated HvRACB or of HvGEF14 led to the recruitment of ROP downstream interactor HvRIC171 to the cell periphery. HvGEF14 further supported direct interaction of HvRACB with a HvRACB-GTP-binding CRIB (Cdc42/Rac Interactive Binding motif) domain-containing HvRIC171 truncation. Finally, the overexpression of HvGEF14 caused enhanced susceptibility to fungal entry, while HvGEF14 RNAi provoked a trend to more penetration resistance. HvGEF14 might therefore play a role in the activation of HvRACB in barley epidermal cells during fungal penetration.
Collapse
Affiliation(s)
- Adriana Trutzenberg
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Stefan Engelhardt
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Lukas Weiß
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
4
|
Backwell L, Marsh JA. Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations: Beyond the Loss-of-Function Paradigm. Annu Rev Genomics Hum Genet 2022; 23:475-498. [PMID: 35395171 DOI: 10.1146/annurev-genom-111221-103208] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most known disease-causing mutations occur in protein-coding regions of DNA. While some of these involve a loss of protein function (e.g., through premature stop codons or missense changes that destabilize protein folding), many act via alternative molecular mechanisms and have dominant-negative or gain-of-function effects. In nearly all cases, these non-loss-of-function mutations can be understood by considering interactions of the wild-type and mutant protein with other molecules, such as proteins, nucleic acids, or small ligands and substrates. Here, we review the diverse molecular mechanisms by which pathogenic mutations can have non-loss-of-function effects, including by disrupting interactions, increasing binding affinity, changing binding specificity, causing assembly-mediated dominant-negative and dominant-positive effects, creating novel interactions, and promoting aggregation and phase separation. We believe that increased awareness of these diverse molecular disease mechanisms will lead to improved diagnosis (and ultimately treatment) of human genetic disorders. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa Backwell
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
5
|
Hidalgo F, Nocka LM, Shah NH, Gorday K, Latorraca NR, Bandaru P, Templeton S, Lee D, Karandur D, Pelton JG, Marqusee S, Wemmer D, Kuriyan J. A saturation-mutagenesis analysis of the interplay between stability and activation in Ras. eLife 2022; 11:e76595. [PMID: 35272765 PMCID: PMC8916776 DOI: 10.7554/elife.76595] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 61. Previously, we reported that deep mutagenesis of H-Ras using a bacterial assay identified many other activating mutations (Bandaru et al., 2017). We now show that the results of saturation mutagenesis of H-Ras in mammalian Ba/F3 cells correlate well with the results of bacterial experiments in which H-Ras or K-Ras are co-expressed with a GTPase-activating protein (GAP). The prominent cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-frequency sites (e.g. at Val 14 or Asp 119) can be activating or deleterious, depending on the stability of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by using NMR to monitor hydrogen-deuterium exchange (HDX). These mutations result in global increases in HDX rates, consistent with destabilization of Ras. An explanation for these observations is that mutations that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras - and subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP surveillance and protein stability in determining the sensitivity of Ras to mutational activation.
Collapse
Affiliation(s)
- Frank Hidalgo
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Laura M Nocka
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Neel H Shah
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, Columbia UniversityNew YorkUnited States
| | - Kent Gorday
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate Group, University of California, BerkeleyBerkeleyUnited States
| | - Naomi R Latorraca
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Pradeep Bandaru
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Sage Templeton
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - David Lee
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Deepti Karandur
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jeffrey G Pelton
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
| | - Susan Marqusee
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - David Wemmer
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - John Kuriyan
- California Institute for Quantitative Biosciences (QB3), University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am J Hum Genet 2022; 109:518-532. [PMID: 35108495 DOI: 10.1016/j.ajhg.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.
Collapse
|
7
|
Khan I, Koide A, Zuberi M, Ketavarapu G, Denbaum E, Teng KW, Rhett JM, Spencer-Smith R, Hobbs GA, Camp ER, Koide S, O'Bryan JP. Identification of the nucleotide-free state as a therapeutic vulnerability for inhibition of selected oncogenic RAS mutants. Cell Rep 2022; 38:110322. [PMID: 35139380 PMCID: PMC8936000 DOI: 10.1016/j.celrep.2022.110322] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
RAS guanosine triphosphatases (GTPases) are mutated in nearly 20% of human tumors, making them an attractive therapeutic target. Following our discovery that nucleotide-free RAS (apo RAS) regulates cell signaling, we selectively target this state as an approach to inhibit RAS function. Here, we describe the R15 monobody that exclusively binds the apo state of all three RAS isoforms in vitro, regardless of the mutation status, and captures RAS in the apo state in cells. R15 inhibits the signaling and transforming activity of a subset of RAS mutants with elevated intrinsic nucleotide exchange rates (i.e., fast exchange mutants). Intracellular expression of R15 reduces the tumor-forming capacity of cancer cell lines driven by select RAS mutants and KRAS(G12D)-mutant patient-derived xenografts (PDXs). Thus, our approach establishes an opportunity to selectively inhibit a subset of RAS mutants by targeting the apo state with drug-like molecules. Khan et al. develop a high-affinity monobody to nucleotide-free RAS that, when expressed intracellularly, inhibits oncogenic RAS-mediated signaling and tumorigenesis. This study reveals the feasibility of targeting the nucleotide-free state to inhibit tumors driven by oncogenic RAS mutants that possess elevated nucleotide exchange activity.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Mariyam Zuberi
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eric Denbaum
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ernest Ramsay Camp
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Osaka N, Hirota Y, Ito D, Ikeda Y, Kamata R, Fujii Y, Chirasani VR, Campbell SL, Takeuchi K, Senda T, Sasaki AT. Divergent Mechanisms Activating RAS and Small GTPases Through Post-translational Modification. Front Mol Biosci 2021; 8:707439. [PMID: 34307463 PMCID: PMC8295990 DOI: 10.3389/fmolb.2021.707439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
RAS is a founding member of the RAS superfamily of GTPases. These small 21 kDa proteins function as molecular switches to initialize signaling cascades involved in various cellular processes, including gene expression, cell growth, and differentiation. RAS is activated by GTP loading and deactivated upon GTP hydrolysis to GDP. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) accelerate GTP loading and hydrolysis, respectively. These accessory proteins play a fundamental role in regulating activities of RAS superfamily small GTPase via a conserved guanine binding (G)-domain, which consists of five G motifs. The Switch regions lie within or proximal to the G2 and G3 motifs, and undergo dynamic conformational changes between the GDP-bound "OFF" state and GTP-bound "ON" state. They play an important role in the recognition of regulatory factors (GEFs and GAPs) and effectors. The G4 and G5 motifs are the focus of the present work and lie outside Switch regions. These motifs are responsible for the recognition of the guanine moiety in GTP and GDP, and contain residues that undergo post-translational modifications that underlie new mechanisms of RAS regulation. Post-translational modification within the G4 and G5 motifs activates RAS by populating the GTP-bound "ON" state, either through enhancement of intrinsic guanine nucleotide exchange or impairing GAP-mediated down-regulation. Here, we provide a comprehensive review of post-translational modifications in the RAS G4 and G5 motifs, and describe the role of these modifications in RAS activation as well as potential applications for cancer therapy.
Collapse
Affiliation(s)
- Natsuki Osaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yoshihisa Hirota
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Doshun Ito
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Yoshiki Ikeda
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Ryo Kamata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yuki Fujii
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Venkat R. Chirasani
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Science and Technology, Tokyo, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Accelerator Science, School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Atsuo T. Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Cancer Biology, University of Cincinnati College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, United States
| |
Collapse
|
9
|
Updegrove TB, Harke J, Anantharaman V, Yang J, Gopalan N, Wu D, Piszczek G, Stevenson DM, Amador-Noguez D, Wang JD, Aravind L, Ramamurthi KS. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. eLife 2021; 10:65845. [PMID: 33704064 PMCID: PMC7952092 DOI: 10.7554/elife.65845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jailynn Harke
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Nikhil Gopalan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
10
|
Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 2020; 319:C404-C418. [PMID: 32520609 PMCID: PMC7500214 DOI: 10.1152/ajpcell.00188.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.
Collapse
Affiliation(s)
- Skylar Fisher
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Damian Kuna
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| | - Tamara Caspary
- 3Department of Human Genetics, Emory
University School of Medicine, Atlanta,
Georgia
| | - Richard A. Kahn
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Elizabeth Sztul
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| |
Collapse
|
11
|
Vasjari L, Bresan S, Biskup C, Pai G, Rubio I. Ras signals principally via Erk in G1 but cooperates with PI3K/Akt for Cyclin D induction and S-phase entry. Cell Cycle 2019; 18:204-225. [PMID: 30560710 DOI: 10.1080/15384101.2018.1560205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes. Applying this strategy to inhibit Ras stepwise in synchronous cell populations revealed that Ras signaling was required well into G1 for Cyclin D induction, pocket protein phosphorylation and S-phase entry, irrespective of whether cells emerged from quiescence or G2/M. Unexpectedly, Erk, and not PI3K/Akt or Ral was activated by Ras at mid-G1, albeit PI3K/Akt signalling was a necessary companion of Ras/Erk for sustaining cyclin-D levels and G1/S transition. Our findings chart mitogenic signaling by endogenous Ras during G1 and identify limited effector engagement restricted to Raf/MEK/Erk as a cogent distinction from oncogenic Ras signalling.
Collapse
Affiliation(s)
- Ledia Vasjari
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Stephanie Bresan
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Christoph Biskup
- b Biomolecular Photonics Group , Jena University Hospital , Jena , Germany
| | - Govind Pai
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| | - Ignacio Rubio
- a Institute of Molecular Cell Biology, Center for Molecular Biomedicine , Jena University Hospital , Jena , Germany
| |
Collapse
|
12
|
Bery N, Cruz-Migoni A, Bataille CJ, Quevedo CE, Tulmin H, Miller A, Russell A, Phillips SE, Carr SB, Rabbitts TH. BRET-based RAS biosensors that show a novel small molecule is an inhibitor of RAS-effector protein-protein interactions. eLife 2018; 7:37122. [PMID: 29989546 PMCID: PMC6039175 DOI: 10.7554/elife.37122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022] Open
Abstract
The RAS family of proteins is amongst the most highly mutated in human cancers and has so far eluded drug therapy. Currently, much effort is being made to discover mutant RAS inhibitors and in vitro screening for RAS-binding drugs must be followed by cell-based assays. Here, we have developed a robust set of bioluminescence resonance energy transfer (BRET)-based RAS biosensors that enable monitoring of RAS-effector interaction inhibition in living cells. These include KRAS, HRAS and NRAS and a variety of different mutations that mirror those found in human cancers with the major RAS effectors such as CRAF, PI3K and RALGDS. We highlighted the utility of these RAS biosensors by showing a RAS-binding compound is a potent pan-RAS-effector interactions inhibitor in cells. The RAS biosensors represent a useful tool to investigate and characterize the potency of anti-RAS inhibitors in cells and more generally any RAS protein-protein interaction (PPI) in cells. A group of proteins known as the RAS family plays a critical role in controlling animal cell growth and division. RAS proteins are normally active only some of the time, but genetic mutations can create permanently active forms of the proteins. These constantly interact with other proteins called effectors. In response, cells multiply uncontrollably and give rise to cancers. In an attempt to find new cancer treatments, researchers across the globe are trying to develop inhibitor drugs that prevent RAS and effector proteins from interacting. New drugs are often tested in laboratory experiments that directly apply the drugs to the proteins that they are designed to work on. But in some cases a drug may work wellin the laboratory but fail to work when used in cells. Unfortunately, there are few ways to judge how well inhibitor drugs work inside living cells. Bery et al. have now developed RAS biosensors – a collection of proteins that bind to RAS and produce light more brightly when RAS interacts with effector proteins in living cells. Tests on cells treated with an antibody that works inside cells and is known to prevent interactions between RAS and effector proteins confirmed that the RAS biosensors work well. Bery et al. then used the RAS biosensors to show that a new RAS inhibitor works in human cancer cells. The RAS biosensors are available upon request to researchers across the globe. They should form an important tool for testing potential treatments for cancers that contain mutated RAS proteins.
Collapse
Affiliation(s)
- Nicolas Bery
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Abimael Cruz-Migoni
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom
| | | | - Camilo E Quevedo
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanna Tulmin
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Ami Miller
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Simon Ev Phillips
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Terence H Rabbitts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Revenkova E, Liu Q, Gusella GL, Iomini C. The Joubert syndrome protein ARL13B binds tubulin to maintain uniform distribution of proteins along the ciliary membrane. J Cell Sci 2018; 131:jcs212324. [PMID: 29592971 PMCID: PMC5992585 DOI: 10.1242/jcs.212324] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/23/2018] [Indexed: 01/09/2023] Open
Abstract
Cilia-mediated signal transduction involves precise targeting and localization of selected molecules along the ciliary membrane. However, the molecular mechanism underlying these events is unclear. The Joubert syndrome protein ARL13B is a membrane-associated G-protein that localizes along the cilium and functions in protein transport and signaling. We identify tubulin as a direct interactor of ARL13B and demonstrate that the association occurs via the G-domain and independently from the GTPase activity of ARL13B. The G-domain is necessary for the interaction of ARL13B with the axoneme both in vitro and in vivo We further show that exogenously expressed mutants lacking the tubulin-binding G-domain (ARL13B-ΔGD) or whose GTPase domain is inactivated (ARL13B-T35N) retain ciliary localization, but fail to rescue ciliogenesis defects of null Arl13bhnn mouse embryonic fibroblasts (MEFs). However, while ARL13B-ΔGD and the membrane proteins Smoothened (SMO) and Somatostatin receptor-3 (SSTR3) distribute unevenly along the cilium of Arl13bhnn MEFs, ARL13B-T35N distributes evenly along the cilium and enables the uniform distribution of SMO and SSTR3. Thus, we propose a so far unknown function of ARL13B in anchoring ciliary membrane proteins to the axoneme through the direct interaction of its G-domain with tubulin.
Collapse
Affiliation(s)
- Ekaterina Revenkova
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qing Liu
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - G Luca Gusella
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
14
|
Zhang Y, Larraufie MH, Musavi L, Akkiraju H, Brown LM, Stockwell BR. Design of Small Molecules That Compete with Nucleotide Binding to an Engineered Oncogenic KRAS Allele. Biochemistry 2018; 57:1380-1389. [PMID: 29313669 PMCID: PMC5960803 DOI: 10.1021/acs.biochem.7b01113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RAS mutations are found in 30% of all human cancers, with KRAS the most frequently mutated among the three RAS isoforms (KRAS, NRAS, and HRAS). However, directly targeting oncogenic KRAS with small molecules in the nucleotide-binding site has been difficult because of the high affinity of KRAS for GDP and GTP. We designed an engineered allele of KRAS and a covalent inhibitor that competes for GTP and GDP. This ligand-receptor combination demonstrates that the high affinity of GTP and GDP for RAS proteins can be overcome with a covalent inhibitor and a suitably engineered binding site. The covalent inhibitor irreversibly modifies the protein at the engineered nucleotide-binding site and is able to compete with GDP and GTP. This provides a new tool for studying KRAS function and suggests strategies for targeting the nucleotide-binding site of oncogenic RAS proteins.
Collapse
Affiliation(s)
| | | | | | - Hemanth Akkiraju
- Quantitative Proteomics and Metabolomics Center, Columbia University , New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Columbia University , New York, New York 10027, United States
| | | |
Collapse
|
15
|
Abstract
RAS mutations are among the most common genetic alterations found in cancerous tumors but rational criteria or strategies for targeting RAS-dependent tumors are only recently emerging. Clinical and laboratory data suggest that patient selection based on specific RAS mutations will be an essential component of these strategies. A thorough understanding of the biochemical and structural properties of mutant RAS proteins form the theoretical basis for these approaches. Direct inhibition of KRAS G12C by covalent inhibitors is a notable recent example of the RAS mutation-tailored approach that establishes a paradigm for other RAS mutation-centered strategies.
Collapse
Affiliation(s)
- Steven K Montalvo
- School of Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianbo Li
- Departments of Biochemistry & Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth D Westover
- Departments of Biochemistry & Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Ostrem JML, Shokat KM. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov 2016; 15:771-785. [PMID: 27469033 DOI: 10.1038/nrd.2016.139] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
KRAS is the most frequently mutated oncogene in human cancer. In addition to holding this distinction, unsuccessful attempts to target this protein have led to the characterization of RAS as 'undruggable'. However, recent advances in technology and novel approaches to drug discovery have renewed hope that a direct KRAS inhibitor may be on the horizon. In this Review, we provide an in-depth analysis of the structure, dynamics, mutational activation and inactivation, and signalling mechanisms of RAS. From this perspective, we then consider potential mechanisms of action for effective RAS inhibitors. Finally, we examine each of the many recent reports of direct RAS inhibitors and discuss promising avenues for further development.
Collapse
Affiliation(s)
- Jonathan M L Ostrem
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
17
|
Gotthardt K, Lokaj M, Koerner C, Falk N, Gießl A, Wittinghofer A. A G-protein activation cascade from Arl13B to Arl3 and implications for ciliary targeting of lipidated proteins. eLife 2015; 4. [PMID: 26551564 PMCID: PMC4868535 DOI: 10.7554/elife.11859] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022] Open
Abstract
Small G-proteins of the ADP-ribosylation-factor-like (Arl) subfamily have been shown to be crucial to ciliogenesis and cilia maintenance. Active Arl3 is involved in targeting and releasing lipidated cargo proteins from their carriers PDE6δ and UNC119a/b to the cilium. However, the guanine nucleotide exchange factor (GEF) which activates Arl3 is unknown. Here we show that the ciliary G-protein Arl13B mutated in Joubert syndrome is the GEF for Arl3, and its function is conserved in evolution. The GEF activity of Arl13B is mediated by the G-domain plus an additional C-terminal helix. The switch regions of Arl13B are involved in the interaction with Arl3. Overexpression of Arl13B in mammalian cell lines leads to an increased Arl3·GTP level, whereas Arl13B Joubert-Syndrome patient mutations impair GEF activity and thus Arl3 activation. We anticipate that through Arl13B's exclusive ciliary localization, Arl3 activation is spatially restricted and thereby an Arl3·GTP compartment generated where ciliary cargo is specifically released.
Collapse
Affiliation(s)
- Katja Gotthardt
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Mandy Lokaj
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Carolin Koerner
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Nathalie Falk
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
18
|
Dick A, Graf L, Olal D, von der Malsburg A, Gao S, Kochs G, Daumke O. Role of nucleotide binding and GTPase domain dimerization in dynamin-like myxovirus resistance protein A for GTPase activation and antiviral activity. J Biol Chem 2015; 290:12779-92. [PMID: 25829498 DOI: 10.1074/jbc.m115.650325] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 12/28/2022] Open
Abstract
Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action.
Collapse
Affiliation(s)
- Alexej Dick
- From the Max-Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | - Laura Graf
- the Institute of Virology, University Medical Center, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany, the Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany, and
| | - Daniel Olal
- From the Max-Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Alexander von der Malsburg
- the Institute of Virology, University Medical Center, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany
| | - Song Gao
- the Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Georg Kochs
- the Institute of Virology, University Medical Center, Hermann-Herder-Strasse 11, 79104 Freiburg, Germany, the Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstrasse 19a, 79104 Freiburg, Germany, and
| | - Oliver Daumke
- From the Max-Delbrück Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany, the Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany,
| |
Collapse
|
19
|
Kapoor A, Travesset A. Mechanism of the exchange reaction in HRAS from multiscale modeling. PLoS One 2014; 9:e108846. [PMID: 25272152 PMCID: PMC4182752 DOI: 10.1371/journal.pone.0108846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/28/2014] [Indexed: 11/28/2022] Open
Abstract
HRAS regulates cell growth promoting signaling processes by cycling between active (GTP-bound) and inactive (GDP-bound) states. Understanding the transition mechanism is central for the design of small molecules to inhibit the formation of RAS-driven tumors. Using a multiscale approach involving coarse-grained (CG) simulations, all-atom classical molecular dynamics (CMD; total of 3.02 µs), and steered molecular dynamics (SMD) in combination with Principal Component Analysis (PCA), we identified the structural features that determine the nucleotide (GDP) exchange reaction. We show that weakening the coupling between the SwitchI (residues 25–40) and SwitchII (residues 59–75) accelerates the opening of SwitchI; however, an open conformation of SwitchI is unstable in the absence of guanine nucleotide exchange factors (GEFs) and rises up towards the bound nucleotide to close the nucleotide pocket. Both I21 and Y32, play a crucial role in SwitchI transition. We show that an open SwitchI conformation is not necessary for GDP destabilization but is required for GDP/Mg escape from the HRAS. Further, we present the first simulation study showing displacement of GDP/Mg away from the nucleotide pocket. Both SwitchI and SwitchII, delays the escape of displaced GDP/Mg in the absence of GEF. Based on these results, a model for the mechanism of GEF in accelerating the exchange process is hypothesized.
Collapse
Affiliation(s)
- Abhijeet Kapoor
- Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| | - Alex Travesset
- Physics and Astronomy, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
20
|
Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K. An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 2014; 13:465-76. [PMID: 23601108 DOI: 10.1016/j.chom.2013.03.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/17/2013] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Abstract
OsCEBiP, a chitin-binding protein, and OsCERK1, a receptor-like kinase, are plasma membrane (PM) proteins that form a receptor complex essential for fungal chitin-driven immune responses in rice. The signaling events immediately following chitin perception are unclear. Investigating the spatiotemporal regulation of the rice small GTPase OsRac1, we find that chitin induces rapid activation of OsRac1 at the PM. Searching for OsRac1 interactors, we identified OsRacGEF1 as a guanine nucleotide exchange factor for OsRac1. OsRacGEF1 interacts with OsCERK1 and is activated when its C-terminal S549 is phosphorylated by the cytoplasmic domain of OsCERK1 in response to chitin. Activated OsRacGEF1 is required for chitin-driven immune responses and resistance to rice blast fungus infection. Further, a protein complex including OsCERK1 and OsRacGEF1 is transported from the endoplasmic reticulum to the PM. Collectively, our results suggest that OsCEBiP, OsCERK1, OsRacGEF1, and OsRac1 function as key components of a "defensome" critically engaged early during chitin-induced immunity.
Collapse
Affiliation(s)
- Akira Akamatsu
- Laboratory of Plant Molecular Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ras palmitoylation is necessary for N-Ras activation and signal propagation in growth factor signalling. Biochem J 2013; 454:323-32. [PMID: 23758196 DOI: 10.1042/bj20121799] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ras GTPases undergo post-translational modifications that govern their subcellular trafficking and localization. In particular, palmitoylation of the Golgi tags N-Ras and H-Ras for exocytotic transport and residency at the PM (plasma membrane). Following depalmitoylation, PM-Ras redistributes to all subcellular membranes causing an accumulation of palmitate-free Ras at endomembranes, including the Golgi and endoplasmic reticulum. Palmitoylation is unanimously regarded as a critical modification at the crossroads of Ras activity and trafficking control, but its precise relevance to native wild-type Ras function in growth factor signalling is unknown. We show in the present study by use of palmitoylation-deficient N-Ras mutants and via the analysis of palmitate content of agonist-activated GTP-loaded N-Ras that only palmitoylated N-Ras becomes activated by agonists. In line with an essential role of palmitoylation in Ras activation, dominant-negative RasS17N loses its blocking potency if rendered devoid of palmitoylation. Live-cell Ras-GTP imaging shows that N-Ras activation proceeds only at the PM, consistent with activated N-Ras-GTP being palmitoylated. Finally, palmitoylation-deficient N-Ras does not sustain EGF (epidermal growth factor) or serum-elicited mitogenic signalling, confirming that palmitoylation is essential for signal transduction by N-Ras. These findings document that N-Ras activation proceeds at the PM and suggest that depalmitoylation, by removing Ras from the PM, may contribute to the shutdown of Ras signalling.
Collapse
|
22
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
23
|
Cirstea IC, Gremer L, Dvorsky R, Zhang SC, Piekorz RP, Zenker M, Ahmadian MR. Diverging gain-of-function mechanisms of two novel KRAS mutations associated with Noonan and cardio-facio-cutaneous syndromes. Hum Mol Genet 2012; 22:262-70. [PMID: 23059812 DOI: 10.1093/hmg/dds426] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activating somatic and germline mutations of closely related RAS genes (H, K, N) have been found in various types of cancer and in patients with developmental disorders, respectively. The involvement of the RAS signalling pathways in developmental disorders has recently emerged as one of the most important drivers in RAS research. In the present study, we investigated the biochemical and cell biological properties of two novel missense KRAS mutations (Y71H and K147E). Both mutations affect residues that are highly conserved within the RAS family. KRAS(Y71H) showed no clear differences to KRAS(wt), except for an increased binding affinity for its major effector, the RAF1 kinase. Consistent with this finding, even though we detected similar levels of active KRAS(Y71H) when compared with wild-type protein, we observed an increased activation of MEK1/2, irrespective of the stimulation conditions. In contrast, KRAS(K147E) exhibited a tremendous increase in nucleotide dissociation generating a self-activating RAS protein that can act independently of upstream signals. As a consequence, levels of active KRAS(K147E) were strongly increased regardless of serum stimulation and similar to the oncogenic KRAS(G12V). In spite of this, KRAS(K147E) downstream signalling did not reach the level triggered by oncogenic KRAS(G12V), especially because KRAS(K147E) was downregulated by RASGAP and moreover exhibited a 2-fold lower affinity for RAF kinase. Here, our findings clearly emphasize that individual RAS mutations, despite being associated with comparable phenotypes of developmental disorders in patients, can cause remarkably diverse biochemical effects with a common outcome, namely a rather moderate gain-of-function.
Collapse
Affiliation(s)
- Ion C Cirstea
- Institute of Biochemistry & Molecular Biology II, Heinrich-Heine University, Düsseldorf 40225, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Milano SK, Kwon W, Pereira R, Antonyak MA, Cerione RA. Characterization of a novel activated Ran GTPase mutant and its ability to induce cellular transformation. J Biol Chem 2012; 287:24955-66. [PMID: 22679017 DOI: 10.1074/jbc.m111.306514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ran (Ras-related nuclear) protein, a member of the Ras superfamily of GTPases, is best known for its roles in nucleocytoplasmic transport, mitotic spindle fiber assembly, and nuclear envelope formation. Recently, we have shown that the overexpression of Ran in fibroblasts induces cellular transformation and tumor formation in mice (Ly, T. K., Wang, J., Pereira, R., Rojas, K. S., Peng, X., Feng, Q., Cerione, R. A., and Wilson, K. F. (2010) J. Biol. Chem. 285, 5815-5826). Here, we describe a novel activated Ran mutant, Ran(K152A), which is capable of an increased rate of GDP-GTP exchange and an accelerated GTP binding/GTP hydrolytic cycle compared with wild-type Ran. We show that its expression in NIH-3T3 fibroblasts induces anchorage-independent growth and stimulates cell invasion, as well as activates signaling pathways that lead to extracellular regulated kinase (ERK) activity. Furthermore, Ran(K152A) expression in the human mammary SKBR3 adenocarcinoma cell line gives rise to an enhanced transformed phenotype and causes a robust stimulation of both ERK and the N-terminal c-Jun kinase (JNK). Microarray analysis reveals that the expression of the gene encoding SMOC-2 (secreted modular calcium-binding protein-2), which has been shown to synergize with different growth factors, is increased by at least 50-fold in cells stably expressing Ran(K152A) compared with cells expressing control vector. Knocking down SMOC-2 expression greatly reduces the ability of Ran(K152A) to stimulate anchorage-independent growth in NIH-3T3 cells and in SKBR3 cells and also inhibits cell invasion in fibroblasts. Collectively, our findings highlight a novel connection between the hyper-activation of the small GTPase Ran and the matricellular protein SMOC-2 that has important consequences for oncogenic transformation.
Collapse
Affiliation(s)
- Shawn K Milano
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
25
|
Jaiswal M, Gremer L, Dvorsky R, Haeusler LC, Cirstea IC, Uhlenbrock K, Ahmadian MR. Mechanistic insights into specificity, activity, and regulatory elements of the regulator of G-protein signaling (RGS)-containing Rho-specific guanine nucleotide exchange factors (GEFs) p115, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). J Biol Chem 2011; 286:18202-12. [PMID: 21454492 DOI: 10.1074/jbc.m111.226431] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multimodular guanine nucleotide exchange factors (GEFs) of the Dbl family mostly share a tandem Dbl homology (DH) and pleckstrin homology (PH) domain organization. The function of these and other domains in the DH-mediated regulation of the GDP/GTP exchange reaction of the Rho proteins is the subject of intensive investigations. This comparative study presents detailed kinetic data on specificity, activity, and regulation of the catalytic DH domains of four GEFs, namely p115, p190, PDZ-RhoGEF (PRG), and leukemia-associated RhoGEF (LARG). We demonstrate that (i) these GEFs are specific guanine nucleotide exchange factors for the Rho isoforms (RhoA, RhoB, and RhoC) and inactive toward other members of the Rho family, including Rac1, Cdc42, and TC10. (ii) The DH domain of LARG exhibits the highest catalytic activity reported for a Dbl protein till now with a maximal acceleration of the nucleotide exchange by 10(7)-fold, which is at least as efficient as reported for GEFs specific for Ran or the bacterial toxin SopE. (iii) A novel regulatory region at the N terminus of the DH domain is involved in its association with GDP-bound RhoA monitored by a fluorescently labeled RhoA. (iv) The tandem PH domains of p115 and PRG efficiently contribute to the DH-mediated nucleotide exchange reaction. (v) In contrast to the isolated DH or DH-PH domains, a p115 fragment encompassing both the regulator of G-protein signaling and the DH domains revealed a significantly reduced GEF activity, supporting the proposed models of an intramolecular autoinhibitory mechanism for p115-like RhoGEFs.
Collapse
Affiliation(s)
- Mamta Jaiswal
- Institut für Biochemie und Molekularbiologie II, Medizinische Fakultät der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Heo J. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Antioxid Redox Signal 2011; 14:689-724. [PMID: 20649471 DOI: 10.1089/ars.2009.2984] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA.
| |
Collapse
|
27
|
Mucha E, Hoefle C, Hückelhoven R, Berken A. RIP3 and AtKinesin-13A – A novel interaction linking Rho proteins of plants to microtubules. Eur J Cell Biol 2010; 89:906-16. [DOI: 10.1016/j.ejcb.2010.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
28
|
Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J 2010; 29:2276-89. [PMID: 20543819 PMCID: PMC2910265 DOI: 10.1038/emboj.2010.114] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 05/10/2010] [Indexed: 11/30/2022] Open
Abstract
The rod-shaped cells of the bacterium Myxococcus xanthus move uni-directionally and occasionally undergo reversals during which the leading/lagging polarity axis is inverted. Cellular reversals depend on pole-to-pole relocation of motility proteins that localize to the cell poles between reversals. We show that MglA is a Ras-like G-protein and acts as a nucleotide-dependent molecular switch to regulate motility and that MglB represents a novel GTPase-activating protein (GAP) family and is the cognate GAP of MglA. Between reversals, MglA/GTP is restricted to the leading and MglB to the lagging pole defining the leading/lagging polarity axis. For reversals, the Frz chemosensory system induces the relocation of MglA/GTP to the lagging pole causing an inversion of the leading/lagging polarity axis. MglA/GTP stimulates motility by establishing correct polarity of motility proteins between reversals and reversals by inducing their pole-to-pole relocation. Thus, the function of Ras-like G-proteins and their GAPs in regulating cell polarity is found not only in eukaryotes, but also conserved in bacteria.
Collapse
|
29
|
Nassar N, Singh K, Garcia-Diaz M. Structure of the dominant negative S17N mutant of Ras. Biochemistry 2010; 49:1970-4. [PMID: 20131908 DOI: 10.1021/bi9020742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17N in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg(2+) ion that normally coordinates the beta-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca(2+) ion is coordinating the alpha-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide's guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg(2+) ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg(2+) should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways.
Collapse
Affiliation(s)
- Nicolas Nassar
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA.
| | | | | |
Collapse
|
30
|
Thomas C, Berken A. Structure and Function of ROPs and their GEFs. INTEGRATED G PROTEINS SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03524-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Ford B, Boykevisch S, Zhao C, Kunzelmann S, Bar-Sagi D, Herrmann C, Nassar N. Characterization of a Ras mutant with identical GDP- and GTP-bound structures . Biochemistry 2009; 48:11449-57. [PMID: 19883123 DOI: 10.1021/bi901479b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously characterized the G60A mutant of Ras and showed that the switch regions of the GTP-bound but not the GDP-bound form of this mutant adopt an "open conformation" similar to that seen in nucleotide-free Ras. Here, we mutate Lys147 of the conserved (145)SAK(147) motif in the G60A background and characterize the resulting double mutant (DM). We show that RasDM is the first structure of a Ras protein with identical GDP- and GTP-bound structures. Both structures adopt the open conformation of the active form of RasG60A. The increase in the accessible surface area of the nucleotide is consistent with a 4-fold increase in its dissociation rate. Stopped-flow experiments show no major difference in the two-step kinetics of association of GDP or GTP with the wild type, G60A, or RasDM. Addition of Sos fails to accelerate nucleotide exchange. Overexpression of the G60A or double mutant of Ras in COS-1 cells fails to activate Erk and shows a strong dominant negative effect. Our data suggest that flexibility at position 60 is required for proper Sos-catalyzed nucleotide exchange and that structural information is somehow shared among the switch regions and the different nucleotide binding motifs.
Collapse
Affiliation(s)
- Bradley Ford
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pinheiro H, Samalova M, Geldner N, Chory J, Martinez A, Moore I. Genetic evidence that the higher plant Rab-D1 and Rab-D2 GTPases exhibit distinct but overlapping interactions in the early secretory pathway. J Cell Sci 2009; 122:3749-58. [PMID: 19789181 DOI: 10.1242/jcs.050625] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPases of the Rab1 subclass are essential for membrane traffic between the endoplasmic reticulum (ER) and Golgi complex in animals, fungi and plants. Rab1-related proteins in higher plants are unusual because sequence comparisons divide them into two putative subclasses, Rab-D1 and Rab-D2, that are conserved in monocots and dicots. We tested the hypothesis that the Rab-D1 and Rab-D2 proteins of Arabidopsis represent functionally distinct groups. RAB-D1 and RAB-D2a each targeted fluorescent proteins to the same punctate structures associated with the Golgi stacks and trans-Golgi-network. Dominant-inhibitory N121I mutants of each protein inhibited traffic of diverse cargo proteins at the ER but they appeared to act via distinct biochemical pathways as biosynthetic traffic in cells expressing either of the N121I mutants could be restored by coexpressing the wild-type form of the same subclass but not the other subclass. The same interaction was observed in transgenic seedlings expressing RAB-D1 [N121I]. Insertional mutants confirmed that the three Arabidopsis Rab-D2 genes were extensively redundant and collectively performed an essential function that could not be provided by RAB-D1, which was non-essential. However, plants lacking RAB-D1, RAB-D2b and RAB-D2c were short and bushy with low fertility, indicating that the Rab-D1 and Rab-D2 subclasses have overlapping functions.
Collapse
Affiliation(s)
- Hazel Pinheiro
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | |
Collapse
|
33
|
Veltel S, Kravchenko A, Ismail S, Wittinghofer A. Specificity of Arl2/Arl3 signaling is mediated by a ternary Arl3-effector-GAP complex. FEBS Lett 2008; 582:2501-7. [PMID: 18588884 DOI: 10.1016/j.febslet.2008.05.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 10/21/2022]
Abstract
Arl2 and Arl3, members of the Arf subfamily of small G proteins, are believed to be involved in ciliary and microtubule-dependent processes. Recently, we could identify RP2, responsible for a variant of X-linked retinitis pigmentosa, as the Arl3-specific GAP. Here, we have characterized Arl2/3 interactions. We show the formation of a ternary complex between Arl3, its cognate GAP RP2 and its retinal effector HRG4. This complex seems to be important for photoreceptor function.
Collapse
Affiliation(s)
- Stefan Veltel
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Otto-Hahn-Strasse 11, Dortmund, Germany
| | | | | | | |
Collapse
|
34
|
Chun DK, McEwen JM, Burbea M, Kaplan JM. UNC-108/Rab2 regulates postendocytic trafficking in Caenorhabditis elegans. Mol Biol Cell 2008; 19:2682-95. [PMID: 18434599 DOI: 10.1091/mbc.e07-11-1120] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
After endocytosis, membrane proteins are often sorted between two alternative pathways: a recycling pathway and a degradation pathway. Relatively little is known about how trafficking through these alternative pathways is differentially regulated. Here, we identify UNC-108/Rab2 as a regulator of postendocytic trafficking in both neurons and coelomocytes. Mutations in the Caenorhabditis elegans Rab2 gene unc-108, caused the green fluorescent protein (GFP)-tagged glutamate receptor GLR-1 (GLR-1::GFP) to accumulate in the ventral cord and in neuronal cell bodies. In neuronal cell bodies of unc-108/Rab2 mutants, GLR-1::GFP was found in tubulovesicular structures that colocalized with markers for early and recycling endosomes, including Syntaxin-13 and Rab8. GFP-tagged Syntaxin-13 also accumulated in the ventral cord of unc-108/Rab2 mutants. UNC-108/Rab2 was not required for ubiquitin-mediated sorting of GLR-1::GFP into the multivesicular body (MVB) degradation pathway. Mutations disrupting the MVB pathway and unc-108/Rab2 mutations had additive effects on GLR-1::GFP levels in the ventral cord. In coelomocytes, postendocytic trafficking of the marker Texas Red-bovine serum albumin was delayed. These results demonstrate that UNC-108/Rab2 regulates postendocytic trafficking, most likely at the level of early or recycling endosomes, and that UNC-108/Rab2 and the MVB pathway define alternative postendocytic trafficking mechanisms that operate in parallel. These results define a new function for Rab2 in protein trafficking.
Collapse
Affiliation(s)
- Denise K Chun
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston MA 02114, USA
| | | | | | | |
Collapse
|
35
|
Vincent F, Cook SP, Johnson EO, Emmert D, Shah K. Engineering unnatural nucleotide specificity to probe G protein signaling. ACTA ACUST UNITED AC 2007; 14:1007-18. [PMID: 17884633 DOI: 10.1016/j.chembiol.2007.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
G proteins comprise approximately 0.5% of proteins encoded by mammalian genomes. To date, there exists a lack of small-molecule modulators that could contribute to their functional study. In this report, we present the use of H-Ras to develop a system that answers this need. Small molecules that allow for the highly specific inhibition or activation of the engineered G protein were developed. The rational design preserved binding of the natural substrates to the G protein, and the mutations were functionally innocuous in a cellular context. This tool can be used for isolating specific G protein effectors, as we demonstrate with the identification of Nol1 as a putative effector of H-Ras. Finally, the generalization of this system was confirmed by applying it to Rap1B, suggesting that this method will be applicable to other G proteins.
Collapse
Affiliation(s)
- Fabien Vincent
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
36
|
Soundararajan M, Yang X, Elkins J, Sobott F, Doyle D. The centaurin gamma-1 GTPase-like domain functions as an NTPase. Biochem J 2007; 401:679-88. [PMID: 17037982 PMCID: PMC1770848 DOI: 10.1042/bj20060555] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 09/19/2006] [Accepted: 10/12/2006] [Indexed: 01/04/2023]
Abstract
Centaurins are a family of proteins that contain GTPase-activating protein domains, with the gamma family members containing in addition a GTPase-like domain. Centaurins reside mainly in the nucleus and are known to activate phosphoinositide 3-kinase, a key regulator of cell proliferation, motility and vesicular trafficking. In the present study, using X-ray structural analysis, enzymatic assays and nucleotide-binding studies, we show that, for CENTG1 (centaurin gamma-1) the GTPase-like domain has broader trinucleotide specificity. Alterations within the G4 motif of CENTG1 from the highly conserved NKXD found in typical GTPases to TQDR result in the loss of specificity, a lower affinity for the nucleotides and higher turnover rates. These results indicate that the centaurins could be more accurately classified as NTPases and point to alternative mechanisms of cell signalling control.
Collapse
Key Words
- centaurin γ-1 (centg1)
- gtpase-activating domain
- ntpase
- phosphoinositide 3-kinase (pi3k)
- phosphoinositide 3-kinase enhancer (pike)
- atp[s], adenosine 5′-[γ-thio]triphosphate
- centg, centaurin γ
- dtt, dithiothreitol
- gap, gtpase-activating protein
- gef, guanine-nucleotide-exchange factor
- gi, geninfo identifier
- gld, gtpase-like domain
- gtp[s], guanosine 5′-[γ-thio]triphosphate
- itc, isothermal calorimetry
- ni-nta, ni2+-nitrilotriacetate
- peg1000, poly(ethylene glycol) 1000
- ph, pleckstrin homology
- pi3k, phosphoinositide 3-kinase
- (r)pike, (rat) pi3k enhancer
- rmsd, root mean square deviation
- tev, tobacco etch virus
Collapse
Affiliation(s)
- Meera Soundararajan
- The Structural Genomics Consortium, University of Oxford, Botnar Research Centre, Oxford OX3 7LD, U.K
| | - Xiaowen Yang
- The Structural Genomics Consortium, University of Oxford, Botnar Research Centre, Oxford OX3 7LD, U.K
| | - Jonathan M. Elkins
- The Structural Genomics Consortium, University of Oxford, Botnar Research Centre, Oxford OX3 7LD, U.K
| | - Frank Sobott
- The Structural Genomics Consortium, University of Oxford, Botnar Research Centre, Oxford OX3 7LD, U.K
| | - Declan A. Doyle
- The Structural Genomics Consortium, University of Oxford, Botnar Research Centre, Oxford OX3 7LD, U.K
| |
Collapse
|
37
|
van de Graaf SFJ, Chang Q, Mensenkamp AR, Hoenderop JGJ, Bindels RJM. Direct interaction with Rab11a targets the epithelial Ca2+ channels TRPV5 and TRPV6 to the plasma membrane. Mol Cell Biol 2006; 26:303-12. [PMID: 16354700 PMCID: PMC1317621 DOI: 10.1128/mcb.26.1.303-312.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRPV5 and TRPV6 are the most Ca2+-selective members of the transient receptor potential (TRP) family of cation channels and play a pivotal role in the maintenance of Ca2+ balance in the body. However, little is known about the mechanisms controlling the plasma membrane abundance of these channels to regulate epithelial Ca2+ transport. In this study, we demonstrated the direct and specific interaction of GDP-bound Rab11a with TRPV5 and TRPV6. Rab11a colocalized with TRPV5 and TRPV6 in vesicular structures underlying the apical plasma membrane of Ca2+-transporting epithelial cells. This GTPase recognized a conserved stretch in the carboxyl terminus of TRPV5 that is essential for channel trafficking. Furthermore, coexpression of GDP-locked Rab11a with TRPV5 or TRPV6 resulted in significantly decreased Ca2+ uptake, caused by diminished channel cell surface expression. Together, our data demonstrated the important role of Rab11a in the trafficking of TRPV5 and TRPV6. Rab11a exerts this function in a novel fashion, since it operates via direct cargo interaction while in the GDP-bound configuration.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Shichrur K, Yalovsky S. Turning ON the switch--RhoGEFs in plants. TRENDS IN PLANT SCIENCE 2006; 11:57-9. [PMID: 16406756 DOI: 10.1016/j.tplants.2005.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 11/23/2005] [Accepted: 12/19/2005] [Indexed: 05/06/2023]
Abstract
Plant ROPs (or RACs) are Ras-related, small GTP-binding proteins that function as molecular switches in numerous signaling cascades. ROPs (RACs) cycle between a GDP-bound, inactive state and a GTP-bound, active state. Activation requires guanine-nucleotide exchange factors (GEFs), which were not identified in plants until recently. Alfred Wittinghofer and co-workers' description of a group of plant-specific RhoGEFs opens the way for the elucidation of ROP signaling cascades from membrane receptors to responses.
Collapse
Affiliation(s)
- Keren Shichrur
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
39
|
Hanzal-Bayer M, Linari M, Wittinghofer A. Properties of the interaction of Arf-like protein 2 with PDEdelta. J Mol Biol 2005; 350:1074-82. [PMID: 15979089 DOI: 10.1016/j.jmb.2005.05.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/04/2005] [Accepted: 05/18/2005] [Indexed: 02/06/2023]
Abstract
Arf-like proteins (Arl) share certain characteristic features with the Arf subfamily of Ras superfamily proteins, but their function is unknown. Here, we show by a variety of spectroscopic techniques that Arl2, unlike most other Ras-related proteins, has micromolar rather than picomolar affinity for nucleotides. As a consequence of low affinity, nucleotide dissociation rates are rather fast, arguing that it is not regulated by guanine nucleotide exchange factors. Arl2 is isolated as prey in a yeast double hybrid screen using phosphodiesterase 6delta (PDEdelta) as bait. This interaction is dependent on GTP, and the binding of PDEdelta substantially stabilizes GTP binding, increasing affinity and decreasing dissociation rates by a similar factor. Among all Arl proteins tested, PDEdelta only interacted with the closely related proteins Arl2 and Arl3, strongly suggesting that Arl2/3 are specific regulators of PDEdelta.
Collapse
Affiliation(s)
- Michael Hanzal-Bayer
- Max-Planck-Institute for Molecular Physiology, Department of Structural Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | |
Collapse
|
40
|
Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature 2005; 436:1176-80. [PMID: 15980860 DOI: 10.1038/nature03883] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 06/03/2005] [Indexed: 11/09/2022]
Abstract
In plants, the small GTP-binding proteins called Rops work as signalling switches that control growth, development and plant responses to various environmental stimuli. Rop proteins (Rho of plants, Rac-like and AtRac in Arabidopsis thaliana) belong to the Rho family of Ras-related GTP-binding proteins that turn on signalling pathways by switching from a GDP-bound inactive to a GTP-bound active conformation. Activation depends on guanine nucleotide exchange factors (GEFs) that catalyse the otherwise slow GDP dissociation for subsequent GTP binding. Although numerous RhoGEFs exist in animals and yeasts, no Rop-specific GEFs have yet been identified in plants and so Rop activation has remained elusive. Here we describe a new family of RhoGEF proteins that are exclusive to plants. We define a unique domain within these RopGEFs, termed PRONE (plant-specific Rop nucleotide exchanger), which is exclusively active towards members of the Rop subfamily. It increases nucleotide dissociation from Rop more than a thousand-fold and forms a tight complex with nucleotide-free Rop. RopGEFs may represent the missing link in signal transduction from receptor kinases to Rops and their identification has implications for the evolution of the Rho molecular switch.
Collapse
Affiliation(s)
- Antje Berken
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | | | | |
Collapse
|
41
|
Ford B, Skowronek K, Boykevisch S, Bar-Sagi D, Nassar N. Structure of the G60A mutant of Ras: implications for the dominant negative effect. J Biol Chem 2005; 280:25697-705. [PMID: 15878843 DOI: 10.1074/jbc.m502240200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substituting alanine for glycine at position 60 in v-H-Ras generated a dominant negative mutant that completely abolished the ability of v-H-Ras to transform NIH 3T3 cells and to induce germinal vesicle breakdown in Xenopus oocytes. The crystal structure of the GppNp-bound form of RasG60A unexpectedly shows that the switch regions adopt an open conformation reminiscent of the structure of the nucleotide-free form of Ras in complex with Sos. Critical residues that normally stabilize the guanine nucleotide and the Mg(2+) ion have moved considerably. Sos binds to RasG60A but is unable to catalyze nucleotide exchange. Our data suggest that the dominant negative effect observed for RasG60A.GTP could result from the sequestering of Sos in a non-productive Ras-GTP-guanine nucleotide exchange factor ternary complex.
Collapse
Affiliation(s)
- Bradley Ford
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
42
|
Datta K, Skidmore JM, Pu K, Maddock JR. The Caulobacter crescentus GTPase CgtAC is required for progression through the cell cycle and for maintaining 50S ribosomal subunit levels. Mol Microbiol 2005; 54:1379-92. [PMID: 15554976 DOI: 10.1111/j.1365-2958.2004.04354.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Obg subfamily of bacterial GTP-binding proteins are biochemically distinct from Ras-like proteins raising the possibility that they are not controlled by conventional guanine nucleotide exchange factors (GEFs) and/or guanine nucleotide activating proteins (GAPs). To test this hypothesis, we generated mutations in the Caulobacter crescentus obg gene (cgtAC) which, in Ras-like proteins, would result in either activating or dominant negative phenotypes. In C. crescentus, a P168V mutant is not activating in vivo, although in vitro, the P168V protein showed a modest reduction in the affinity for GDP. Neither the S173N nor N280Y mutations resulted in a dominant negative phenotype. Furthermore, the S173N was significantly impaired for GTP binding, consistent with a critical role of this residue in GTP binding. In general, conserved amino acids in the GTP-binding pocket were, however, important for function. To examine the in vivo consequences of depleting CgtAC, we generated a temperature-sensitive mutant, G80E. At the permissive temperature, G80E cells grow slowly and have reduced levels of 50S ribosomal subunits, indicating that CgtAC is important for 50S assembly and/or stability. Surprisingly, at the non-permissive temperature, G80E cells rapidly lose viability and yet do not display an additional ribosome defect. Thus, the essential nature of the cgtAC gene does not appear to result from its ribosome function. G80E cells arrest as predivisional cells and stalkless cells. Flow cytometry on synchronized cells reveals a G1-S arrest. Therefore, CgtAC is necessary for DNA replication and progression through the cell cycle.
Collapse
Affiliation(s)
- Kaustuv Datta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
43
|
Heo J, Prutzman KC, Mocanu V, Campbell SL. Mechanism of free radical nitric oxide-mediated Ras guanine nucleotide dissociation. J Mol Biol 2005; 346:1423-40. [PMID: 15713491 DOI: 10.1016/j.jmb.2004.12.050] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/03/2004] [Accepted: 12/21/2004] [Indexed: 11/18/2022]
Abstract
Ras proteins cycle between GDP-bound and GTP-bound states to modulate a diverse array of cellular growth processes. In this study, we have elucidated a mechanism by which nitric oxide, in the presence of oxygen (NO/O2), regulates Ras activity. We show that treatment of Ras with NO/O2 causes conversion of Ras-bound GDP into a free 463.3 Da nucleotide-nitration product. Mass and UV/visible spectroscopic analyses suggest that this nitration product is 5-guanidino-4-nitroimidazole diphosphate (NIm-DP), a degradation product of 5-nitro-GDP. These results indicate that NO/O2 mediates Ras guanine nucleotide exchange (GNE) by conversion of Ras-bound GDP into an unstable 5-nitro-GDP. 5-Nitro-GDP can be produced by radical-based reaction of the GDP guanine base with nitrogen dioxide (*NO2). We also provide evidence that the Ras Phe28 side-chain plays a key role in the formation of a NO/O2-induced Ras 5-nitro-GDP product. We previously proposed a mechanism of NO/O2-mediated Ras GNE, in which *NO2, formed by the reaction of NO with O2, generates a Ras Cys118 thiyl radical (Ras-S118) intermediate. In the present study, we provide evidence for a radical-based mechanism of NO/O2-mediated Ras GNE. According to this mechanism, reaction of NO with O2 produces *NO2. *NO2 then reacts with Ras to produce Ras-S118, which withdraws an electron from the Ras-bound guanine nucleotide base to produce a guanine nucleotide diphosphate cation radical (G(+)-DP) via the Phe28 side-chain. G(+)-DP is subsequently converted to a neutral radical, and can react with another *NO2 to produce 5-nitro-GDP. This radical-based reaction process disrupts key binding interactions between Ras and the guanine base, resulting in release of GDP from Ras and its conversion to free 5-nitro-GDP. This mechanism is likely to be common to other NKCD motif-containing Ras superfamily GTPases, as NO/O2 also facilitates GNE on the redox-active Rap1A and Rab3A GTPases.
Collapse
Affiliation(s)
- Jongyun Heo
- Department of Biochemistry and Biophysics, The University of North Carolina, 530 Mary Ellen Jones Building, Chapel Hill, NC 27599-7260, USA
| | | | | | | |
Collapse
|
44
|
Messina S, Leonetti C, De Gregorio G, Affatigato V, Ragona G, Frati L, Zupi G, Santoni A, Porcellini A. Ras inhibition amplifies cisplatin sensitivity of human glioblastoma. Biochem Biophys Res Commun 2004; 320:493-500. [PMID: 15219856 DOI: 10.1016/j.bbrc.2004.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Indexed: 11/25/2022]
Abstract
Resistance to chemotherapy is a common feature of malignant gliomas. This resistance is mediated by receptor tyrosine kinase (RTK)-regulated signaling. p21-Ras protein is pivotal in the propagation of the signal originated from many RTKs. Our aim was to investigate whether inhibition of Ras pathway affects the response to cisplatin in malignant gliomas. We found an enhanced sensitivity to cisplatin of two glioblastoma cell lines expressing dominant negative Ras. Moreover, DN-Ras expressing cells, implanted in nude mice, resulted in being extremely sensitive to cisplatin. The growth of all the tumors was significantly inhibited by combining DN-Ras adenovirus infection with cisplatin treatment. The majority of glioma cells expressing DN-Ras underwent apoptosis in response to cisplatin. In vivo, DN-Ras alone did not influence the growth of tumors, suggesting that the effects of Ras-inhibition observed in vitro could not be extrapolated in vivo. The survival signal pathway transduced by Ras was essentially mediated by inhibition of caspase-9 cleavage via PI3K/Akt.
Collapse
Affiliation(s)
- Samantha Messina
- Dipartimento di Patologia Molecolare, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Ras is a small monomeric GTP binding protein that transduces signals for growth and differentiation of eukaryotic organisms. Previously, a unique ras gene, designated Ct-ras, was cloned from the alfalfa fungal phytopathogen, Colletotrichum trifolii. Expression of Ct-Ras in mouse fibroblast cells (NIH3T3) demonstrated that Ct-ras is functionally similar to the mammalian ras genes since activating mutations of Ct-ras caused oncogenic phenotypes in nu/nu mice, including tumors. In C. trifolii, activated 'oncogenic' Ras (Val2) induced abnormal hyphal proliferation, defects in polarized growth and significantly reduced differentiation such as conidiation and appressorium formation in a nutrient dependent manner. Gene disruption of ct-ras was lethal. To further evaluate the function of Ct-Ras in C. trifolii, three different approaches were used: overexpression of cytosolic Ras by CAAX box deletion; expression of dominant negative Ct-RasT22N; and antisense ct-ras expression. Results showed that suppression of Ct-Ras activity significantly decreases fungal germination frequencies and hyphal growth rates. Taken together, these data suggest involvement of Ct-Ras in regulation of fungal cell growth and differentiation.
Collapse
Affiliation(s)
- Young-sil Ha
- Department of Plant Pathology, University of Nebraska, 406G Plant Science Hall, Lincoln, NE 68583-0722, USA
| | | | | |
Collapse
|
46
|
Crowder C, Kopantzev E, Williams K, Lengel C, Miki T, Rudikoff S. An unusual H-Ras mutant isolated from a human multiple myeloma line leads to transformation and factor-independent cell growth. Oncogene 2003; 22:649-59. [PMID: 12569357 DOI: 10.1038/sj.onc.1206180] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy. To investigate biochemical lesions associated with MM, we constructed an expression cDNA library from the OPM-2 human myeloma line. A highly transforming H-Ras mutant was identified by transfection analysis using NIH 3T3 cells. DNA sequencing demonstrated a single-point mutation at position 117 located in the guanine nucleotide-binding site resulting in a lysine-to-glutamic acid substitution. This mutant, H-Ras (K117E), was found to be constitutively activated in terms of GTP binding. We compared the biological effects of H-Ras (K117E) and H-Ras (G12V) in 32D murine hematopoietic progenitor cells. Whereas both Ras proteins are constitutively activated, 32D cells expressing H-Ras (G12V) are still dependent on IL-3 for survival and proliferation while cells carrying H-Ras (K117E) become IL-3 independent. Similar experiments conducted with the B9 line, an IL-6-dependent hybridoma, also demonstrated that B9/H-Ras (K117E) became IL-6-independent. Expression of H-Ras (K117E) in the human IL-6-dependent ANBL-6 myeloma line resulted in enhanced proliferation at suboptimal concentrations of IL-6. These observations suggest that H-Ras mutations at the binding site for the GTP nucleotide ring structure may also represent activating lesions and have additional biological effects when compared to previously described Ras mutants.
Collapse
Affiliation(s)
- Chun Crowder
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
47
|
Rossman KL, Worthylake DK, Snyder JT, Cheng L, Whitehead IP, Sondek J. Functional analysis of cdc42 residues required for Guanine nucleotide exchange. J Biol Chem 2002; 277:50893-8. [PMID: 12401782 DOI: 10.1074/jbc.m208580200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) directly engage small GTPases to facilitate the exchange of bound GDP for GTP, leading to GTPase activation. Several recent crystal structures of GEFs in complex with Rho family GTPases highlight the conserved interactions and conformational alterations necessary for catalyzing exchange. In the present study, functional roles were defined for specific residues within Cdc42 implicated by the crystal structures as important for physiological exchange of guanine nucleotides within Rho GTPases. In particular, this study highlights the paramount importance of the phosphate-binding loop and interactions with the magnesium co-factor as critical for proper regulation of RhoGEF-catalyzed exchange. Other conformational alterations of the GTPases affecting interactions with the sugar and base of guanine nucleotides are also important but are secondary. Of particular note, substitution of alanine for cysteine at position 18 of Cdc42 leads to a fast cycling phenotype for Cdc42 with heightened affinity for RhoGEFs and produces a dominant negative form of Cdc42 capable of inhibiting RhoGEFs both in vitro and in vivo.
Collapse
Affiliation(s)
- Kent L Rossman
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
48
|
Robinson VL, Hwang J, Fox E, Inouye M, Stock AM. Domain arrangement of Der, a switch protein containing two GTPase domains. Structure 2002; 10:1649-58. [PMID: 12467572 DOI: 10.1016/s0969-2126(02)00905-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The EngA subfamily of essential bacterial GTPases has a unique domain structure consisting of two adjacent GTPase domains (GD1 and GD2) and a C-terminal domain. The structure of Thermotoga maritima Der bound to GDP determined at 1.9 A resolution reveals a novel domain arrangement in which the GTPase domains pack at either side of the C-terminal domain. Unexpectedly, the C-terminal domain resembles a KH domain, missing the distinctive RNA recognition elements. Conserved motifs of the nucleotide binding site of GD1 are integral parts of the GD1-KH domain interface, suggesting the interactions between these two domains are directly influenced by the GTP/GDP cycling of the protein. In contrast, the GD2-KH domain interface is distal to the GDP binding site of GD2.
Collapse
Affiliation(s)
- Victoria L Robinson
- Howard Hughes Medical Institute and Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
49
|
Kuhlmann J, Tebbe A, Völkert M, Wagner M, Uwai K, Waldmann H. Photoactivatable synthetic Ras proteins: "baits" for the identification of plasma-membrane-bound binding partners of Ras. Angew Chem Int Ed Engl 2002; 41:2546-50. [PMID: 12203529 DOI: 10.1002/1521-3773(20020715)41:14<2546::aid-anie2546>3.0.co;2-e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jürgen Kuhlmann
- Max-Planck-Institut für molekulare Physiologie, Abteilung Strukturelle Biologie, Dortmund, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Click ES, Stearns T, Botstein D. Systematic structure-function analysis of the small GTPase Arf1 in yeast. Mol Biol Cell 2002; 13:1652-64. [PMID: 12006660 PMCID: PMC111134 DOI: 10.1091/mbc.02-01-0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the ADP-ribosylation factor (Arf) family of small GTPases are implicated in vesicle traffic in the secretory pathway, although their precise function remains unclear. We generated a series of 23 clustered charge-to-alanine mutations in the Arf1 protein of Saccharomyces cerevisiae to determine the portions of this protein important for its function in cells. These mutants display a number of phenotypes, including conditional lethality at high or low temperature, defects in glycosylation of invertase, dominant lethality, fluoride sensitivity, and synthetic lethality with the arf2 null mutation. All mutations were mapped onto the available crystal structures for Arf1p: Arf1p bound to GDP, to GTP, and complexed with the regulatory proteins ArfGEF and ArfGAP. From this systematic structure-function analysis we demonstrate that all essential mutations studied map to one hemisphere of the protein and provide strong evidence in support of the proposed ArfGEF contact site on Arf1p but minimal evidence in support of the proposed ArfGAP-binding site. In addition, we describe the isolation of a spatially distant intragenic suppressor of a dominant lethal mutation in the guanine nucleotide-binding region of Arf1p.
Collapse
Affiliation(s)
- Eleanor S Click
- Department of Genetics, Stanford University, California 94305, USA
| | | | | |
Collapse
|