1
|
Li W, Zhu K, Liu Y, Liu M, Chen Q. Recent advances in PKC inhibitor development: Structural design strategies and therapeutic applications. Eur J Med Chem 2025; 287:117290. [PMID: 39904144 DOI: 10.1016/j.ejmech.2025.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Protein kinase C (PKC) isozymes play critical roles in diverse cellular processes and are implicated in numerous diseases, including cancer, diabetes, and autoimmune disorders. Despite extensive research efforts spanning four decades, only one PKC inhibitor has received clinical approval, highlighting the challenges in developing selective and efficacious PKC-targeting therapeutics. Here we review recent advances in the development of small-molecule PKC inhibitors, focusing on structural design strategies, pharmacological activities, and structure-activity relationships. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and natural product derivatization that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly for PKCα and PKCβ, which have proven crucial for therapeutic applications. We discuss how integration of computational methods, structural biology insights, and rational design principles has advanced our understanding of PKC inhibition mechanisms. This comprehensive analysis reveals key challenges in PKC drug development, including the need for enhanced selectivity and reduced off-target effects, while highlighting promising directions for future therapeutic development. Our findings provide a framework for designing next-generation PKC inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Wen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yuyin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Meixi Liu
- Department of Endocrinology, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, 618000, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Desgraves JF, Mendez Valdez MJ, Chandar J, Gurses ME, Henderson L, Castro JR, Seetheram D, Ivan ME, Komotar RJ, Shah AH. Antisense Oligonucleotides for Rapid Translation of Gene Therapy in Glioblastoma. Cancers (Basel) 2024; 16:1944. [PMID: 38792022 PMCID: PMC11119631 DOI: 10.3390/cancers16101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
PURPOSE The limited efficacy of current treatments for malignant brain tumors necessitates novel therapeutic strategies. This study aimed to assess the potential of antisense oligonucleotides (ASOs) as adjuvant therapy for high-grade gliomas, focusing on their CNS penetration and clinical translation prospects. METHODS A comprehensive review of the existing literature was conducted to evaluate the implications of ASOs in neuro-oncology. Studies that investigated ASO therapy's efficacy, CNS penetration, and safety profile were analyzed to assess its potential as a therapeutic intervention for high-grade gliomas. RESULTS ASOs present a promising avenue for enhancing targeted gene therapies in malignant gliomas. Their potent CNS penetration, in vivo durability, and efficient transduction offer advantages over conventional treatments. Preliminary in vivo and in vitro studies suggest ASOs as a viable adjuvant therapy for high-grade gliomas, warranting further exploration in clinical trials. CONCLUSIONS ASOs hold significant promise as adjuvant therapy for high-grade gliomas, offering improved CNS penetration and durability compared with existing treatments. While preliminary studies are encouraging, additional research is needed to establish the safety and efficacy of ASO therapy in clinical settings. Further investigation and clinical trials are warranted to validate ASOs as a transformative approach in neuro-oncology.
Collapse
Affiliation(s)
- Jelisah F. Desgraves
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Mynor J. Mendez Valdez
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Jay Chandar
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Muhammet Enes Gurses
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Lisa Henderson
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Jesus R. Castro
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Deepa Seetheram
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| | - Michael E. Ivan
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Ricardo J. Komotar
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace (D4-6), Miami, FL 33136, USA; (M.E.I.); (R.J.K.)
| | - Ashish H. Shah
- Section of Virology and Immunotherapy, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (J.F.D.); (M.J.M.V.); (J.C.); (L.H.); (J.R.C.); (D.S.); (A.H.S.)
| |
Collapse
|
3
|
Minas A, Talebi H, Taravat Ray M, Yari Eisalou M, Alves MG, Razi M. Insulin treatment to type 1 male diabetic rats protects fertility by avoiding testicular apoptosis and cell cycle arrest. Gene 2021; 799:145847. [PMID: 34274473 DOI: 10.1016/j.gene.2021.145847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Uncontrolled type 1 diabetes mellitus (T1D) impairs reproductive potential of males. Insulin treatment restores metabolic parameters but it is unclear how it protects male reproductive health. Herein, we hypothesized that insulin treatment to T1D rats protects testicular physiology by mediating mechanisms associated with apoptosis and cell cycle. METHODS Mature male Wistar rats (n = 24) were divided into 3 groups: control, T1D-induced (received 40 mg kg-1 streptozotocin) and insulin-treated T1D (Ins T1D; received 40 mg kg-1 streptozotocin and then treated 0.9 IU/100 gr of insulin for 56 days) (N = 8/group). Expression levels of intrinsic apoptosis pathways regulators (Bcl-2, Bax, Caspase-3 and p53) and core regulators of cell cycle machinery (Cyclin D1, Cdk-4 and p21) were determined in testicular tissue by immunohistochemistry (IHC) and RT-PCR techniques. The percentage of testicular apoptotic cells was evaluated by TUNEL staining. RESULTS Our data shows that insulin treatment to T1D rats restored (P < 0.05) T1D-induced increased of caspase-3 and p53 expression in testis. Moreover, the testis of T1D rats treated with insulin exhibited increased expression of Cyclin D1 and cdk-4, and a reduced expression of p21 when compared with the expression in testis of T1D rats. Finally, insulin treatment could fairly control T1D-induced apoptosis. Accordingly, treatment of T1D rats with insulin led to a remarkable reduction (p < 0.05) in the percentage of apoptotic cells in the testis. CONCLUSIONS Insulin treatment is able to restore the network expression of apoptosis and proliferation-related genes caused by T1D in the testis and via this mechanism, preserve the fertility of males.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Hatef Talebi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Morteza Taravat Ray
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Mohammad Yari Eisalou
- Department of Basic Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, P.O.BOX: 1177, Urmia, Iran.
| |
Collapse
|
4
|
Black AR, Black JD. The complexities of PKCα signaling in cancer. Adv Biol Regul 2021; 80:100769. [PMID: 33307285 PMCID: PMC8141086 DOI: 10.1016/j.jbior.2020.100769] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
Protein kinase C α (PKCα) is a ubiquitously expressed member of the PKC family of serine/threonine kinases with diverse functions in normal and neoplastic cells. Early studies identified anti-proliferative and differentiation-inducing functions for PKCα in some normal tissues (e.g., regenerating epithelia) and pro-proliferative effects in others (e.g., cells of the hematopoietic system, smooth muscle cells). Additional well documented roles of PKCα signaling in normal cells include regulation of the cytoskeleton, cell adhesion, and cell migration, and PKCα can function as a survival factor in many contexts. While a majority of tumors lose expression of PKCα, others display aberrant overexpression of the enzyme. Cancer-related mutations in PKCα are uncommon, but rare examples of driver mutations have been detected in certain cancer types (e. g., choroid gliomas). Here we review the role of PKCα in various cancers, describe mechanisms by which PKCα affects cancer-related cell functions, and discuss how the diverse functions of PKCα contribute to tumor suppressive and tumor promoting activities of the enzyme. We end the discussion by addressing mutations and expression of PKCα in tumors and the clinical relevance of these findings.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Shi S, Li C, Zhang Y, Deng C, Tan M, Pan G, Du J, Ji Y, Li Q, Liang H, Liu W, Guo L, Zhao G, Liu Y, Cui H. Lycorine hydrochloride inhibits melanoma cell proliferation, migration and invasion via down-regulating p21 Cip1/WAF1. Am J Cancer Res 2021; 11:1391-1409. [PMID: 33948364 PMCID: PMC8085853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023] Open
Abstract
Lycorine hydrochloride (LH) is an active ingredient sourced from the medicinal herb Lycoris radiata. Previous studies have suggested that LH exerts tumor suppression activity in several human cancers. However, the anti-cancer effect of LH in melanoma and the potential molecular mechanisms still need to be further studied. p21Cip1/WAF1, unlike its traditional cyclin-dependent kinase (CDK) inhibitor role, is believed to act as an oncogene under certain cellular conditions. In this research, an increased expression of p21Cip1/WAF1 was found in human melanoma tissues and positively related to the tumor invasion depth. High level of p21Cip1/WAF1 was found to correlate with bad outcomes of melanoma patients by Kaplan-Meier survival analysis. Functional experiments demonstrated that the proliferation, migration and invasion ability of A375 and MV3 melanoma cells was powerfully inhibited by LH through inducing S phase cell cycle arrest and regulating epithelial-mesenchymal transition (EMT). In NOD/SCID mice model, LH effectively inhibited the xenograft tumor growth and lung metastasis of A375 cells. Further research revealed that LH reduced p21Cip1/WAF1 protein by accelerating its ubiquitination. Importantly, the LH-induced suppression of cell proliferation and metastasis was rescued by p21Cip1/WAF1 overexpression, both in vitro an in vivo. Taken together, LH, which suppresses the proliferation and metastasis of melanoma cells via down-regulating p21Cip1/WAF1, is expected to be developed as an effective medicine for melanoma therapy.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
- Department of Dermatology, The Fifth Hospital of ShijiazhuangShijiazhuang 050000, Hebei, China
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Yanli Zhang
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Mengqin Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Guangzhao Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Juan Du
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Yacong Ji
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Qian Li
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Wei Liu
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Leiyang Guo
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| | - Yaling Liu
- Department of Dermatology, The Third Hospital of Hebei Medical UniversityShijiazhuang 050000, Hebei, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest UniversityChongqing 400715, China
- Cancer Center, Medical Research Institute, Southwest UniversityChongqing 400715, China
| |
Collapse
|
6
|
The Role of Cell Cycle Regulators in Cell Survival-Dual Functions of Cyclin-Dependent Kinase 20 and p21 Cip1/Waf1. Int J Mol Sci 2020; 21:ijms21228504. [PMID: 33198081 PMCID: PMC7698114 DOI: 10.3390/ijms21228504] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian cell cycle is important in controlling normal cell proliferation and the development of various diseases. Cell cycle checkpoints are well regulated by both activators and inhibitors to avoid cell growth disorder and cancerogenesis. Cyclin dependent kinase 20 (CDK20) and p21Cip1/Waf1 are widely recognized as key regulators of cell cycle checkpoints controlling cell proliferation/growth and involving in developing multiple cancers. Emerging evidence demonstrates that these two cell cycle regulators also play an essential role in promoting cell survival independent of the cell cycle, particularly in those cells with a limited capability of proliferation, such as cardiomyocytes. These findings bring new insights into understanding cytoprotection in these tissues. Here, we summarize the new progress of the studies on these two molecules in regulating cell cycle/growth, and their new roles in cell survival by inhibiting various cell death mechanisms. We also outline their potential implications in cancerogenesis and protection in heart diseases. This information renews the knowledge in molecular natures and cellular functions of these regulators, leading to a better understanding of the pathogenesis of the associated diseases and the discovery of new therapeutic strategies.
Collapse
|
7
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Ribosomal RACK1:Protein Kinase C βII Phosphorylates Eukaryotic Initiation Factor 4G1 at S1093 To Modulate Cap-Dependent and -Independent Translation Initiation. Mol Cell Biol 2018; 38:MCB.00304-18. [PMID: 30012863 DOI: 10.1128/mcb.00304-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic ribosomes contain the high-affinity protein kinase C βII (PKCβII) scaffold, receptor for activated C kinase (RACK1), but its role in protein synthesis control remains unclear. We found that RACK1:PKCβII phosphorylates eukaryotic initiation factor 4G1 (eIF4G1) at S1093 and eIF3a at S1364. We showed that reversible eIF4G(S1093) phosphorylation is involved in a global protein synthesis surge upon PKC-Raf-extracellular signal-regulated kinase 1/2 (ERK1/2) activation and in induction of phorbol ester-responsive transcripts, such as cyclooxygenase 2 (Cox-2) and cyclin-dependent kinase inhibitor (p21Cip1), or in 5' 7-methylguanosine (m7G) cap-independent enterovirus translation. Comparison of mRNA and protein levels revealed that eIF4G1 or RACK1 depletion blocked phorbol ester-induced Cox-2 or p21Cip1 expression mostly at the translational level, whereas PKCβ inhibition reduced them both at the translational and transcript levels. Our findings reveal a physiological role for ribosomal RACK1 in providing the molecular scaffold for PKCβII and its role in coordinating the translational response to PKC-Raf-ERK1/2 activation.
Collapse
|
9
|
Perchey RT, Serres MP, Nowosad A, Creff J, Callot C, Gay A, Manenti S, Margolis RL, Hatzoglou A, Besson A. p27 Kip1 regulates the microtubule bundling activity of PRC1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1630-1639. [PMID: 30327204 DOI: 10.1016/j.bbamcr.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Cytokinesis begins in anaphase with the formation of the central spindle. PRC1 is a microtubule associated protein that plays an essential role in central spindle formation by crosslinking antiparallel microtubules. We have identified PRC1 as a novel binding partner for p27Kip1 (p27). p27 is a cyclin-CDK inhibitor that causes cell cycle arrest in G1. However, p27 has also been involved in the regulation of G2/M progression and cytokinesis, as well as of other cellular processes, including actin and microtubule cytoskeleton dynamics. We found that p27 interferes with the ability of PRC1 to bind to microtubules, without affecting PRC1 dimerization or its capacity to interact with other partners such as KIF4. In this way, p27 inhibited microtubule bundling by PRC1 in vitro and prevented the extensive microtubule bundling phenotype caused by PRC1 overexpression in cells in culture. Finally, co-expression of p27 or a p27 mutant that does not bind cyclin-CDKs inhibited multinucleation induced by PRC1 overexpression. Together, our results suggest that p27 may participate in the regulation of mitotic progression in a CDK-independent manner by modulating PRC1 activity.
Collapse
Affiliation(s)
- Renaud T Perchey
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Murielle P Serres
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Ada Nowosad
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Justine Creff
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Caroline Callot
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Alexandre Gay
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Stéphane Manenti
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, CNRS ERL5294, University of Toulouse, Toulouse, France
| | - Robert L Margolis
- Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anastassia Hatzoglou
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France
| | - Arnaud Besson
- LBCMCP, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex, France.
| |
Collapse
|
10
|
Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nat Commun 2017; 8:1990. [PMID: 29259169 PMCID: PMC5736601 DOI: 10.1038/s41467-017-02119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 11/08/2017] [Indexed: 01/05/2023] Open
Abstract
The treatment of progressive multiple sclerosis (MS) is unsatisfactory. One reason is that the drivers of disease, which include iron-mediated neurotoxicity, lymphocyte activity, and oxidative stress, are not simultaneously targeted. Here we present a systematic screen to identify generic, orally available medications that target features of progressive MS. Of 249 medications that cross the blood–brain barrier, 35 prevent iron-mediated neurotoxicity in culture. Of these, several antipsychotics and antidepressants strongly reduce T-cell proliferation and oxidative stress. We focus on the antidepressant clomipramine and found that it additionally inhibits B-lymphocyte activity. In mice with experimental autoimmune encephalomyelitis, a model of MS, clomipramine ameliorates clinical signs of acute and chronic phases. Histologically, clomipramine reduces inflammation and microglial activation, and preserves axonal integrity. In summary, we present a systematic approach to identify generic medications for progressive multiple sclerosis with the potential to advance rapidly into clinical trials, and we highlight clomipramine for further development. Progressive multiple sclerosis is an inflammatory and degenerative disease of the central nervous system, for which effective treatment is lacking. The authors carry out a screen to identify orally available generic medications, and show that the antidepressant clomipramine reduces pathology in mouse models.
Collapse
|
11
|
Zhang MX, Zhang J, Zhang H, Tang H. miR-24-3p Suppresses Malignant Behavior of Lacrimal Adenoid Cystic Carcinoma by Targeting PRKCH to Regulate p53/p21 Pathway. PLoS One 2016; 11:e0158433. [PMID: 27351203 PMCID: PMC4924841 DOI: 10.1371/journal.pone.0158433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miRNA) may function as an oncogene or a tumor suppressor in tumorigenesis. However, the mechanism of miRNAs in adenoid cystic carcinoma (ACC) is unclear. Here, we provide evidence that miR-24-3p was downreglated and functions as a tumor suppressor in human lacrimal adenoid cystic carcinoma by suppressing proliferation and migration/invasion while promoting apoptosis. miR-24-3p down-regulated protein kinase C eta (PRKCH) by binding to its untranslated region (3’UTR). PRKCH increased the of the cell growth and migration/invasion in ACC cells and suppressed the expression of p53 and p21 in both mRNA and protein level. The overexpression of miR-24-3p decreased its malignant phenotype. Ectopic expression of PRKCH counteracted the suppression of malignancy induced by miR-24-3p, as well as ectopic expression of miR-24-3p rescued the suppression of PRKCH in the p53/p21 pathway. These results suggest that miR-24-3p promotes the p53/p21 pathway by down-regulating PRKCH expression in lacrimal adenoid cystic carcinoma cells.
Collapse
Affiliation(s)
- Ming-xue Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
| | - Jie Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
| | - Hong Zhang
- Department of Ophthalmology, The Second Hospital of TianJin Medical University, Tianjin, China
- * E-mail: (HZ); (HT)
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- * E-mail: (HZ); (HT)
| |
Collapse
|
12
|
Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:61-95. [DOI: 10.1007/978-3-319-27511-6_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Balça-Silva J, Matias D, do Carmo A, Girão H, Moura-Neto V, Sarmento-Ribeiro AB, Lopes MC. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines. Biochim Biophys Acta Gen Subj 2014; 1850:722-32. [PMID: 25554223 DOI: 10.1016/j.bbagen.2014.12.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. METHODS We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. RESULTS The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. CONCLUSIONS The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. GENERAL SIGNIFICANCE We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment.
Collapse
Affiliation(s)
- Joana Balça-Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | - Diana Matias
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil.
| | - Anália do Carmo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | - Henrique Girão
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center of Ophthalmology and Vision Sciences, Institute of Biomedical Imaging and Life Sciences (IBILI), Portugal.
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rio de Janeiro, Brazil.
| | - Ana Bela Sarmento-Ribeiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center of Investigation on Environment, Genetics and Oncobiology (CIMAGO), Coimbra, Portugal; Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Portugal.
| | - Maria Celeste Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
14
|
Zhou X, Kim SH, Shen L, Lee HJ, Chen C. Induction of mitotic catastrophe by PKC inhibition in Nf1-deficient cells. Cell Cycle 2014; 13:2340-8. [PMID: 25483185 DOI: 10.4161/cc.29297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.
Collapse
Affiliation(s)
- Xiaodong Zhou
- a Center for Drug Discovery; Northeastern University; Boston, MA USA
| | | | | | | | | |
Collapse
|
15
|
Mishra S, Vinayak M. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma. Mol Biol Rep 2014; 41:4187-97. [PMID: 24574001 DOI: 10.1007/s11033-014-3289-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
Abstract
Antioxidants protect the cells from the damaging effects of reactive oxygen species (ROS). Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which participates in multistage carcinogenesis by causing oxidative DNA damage, mutations in the proto-oncogenes and tumor suppressor genes. Antioxidant defense system is required to overcome the process of carcinogenesis generated by ROS. Antioxidant enzymes are major contributors to endogenous antioxidant defense system. Protein kinase C (PKC) is generally involved in cell proliferation and its over expression leads to abnormal tumor growth. Out of three classes of PKC, classical PKC is mainly involved in cell proliferation and tumor growth. Classical PKC initiates signaling pathway and leads to activation of a number of downstream protein via activation of NF-κB. Therefore any agent which can promotes the endogenous antioxidant defense system should be able to down regulate PKC and NF-κB activation and thus may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of antioxidant ellagic acid on antioxidant enzymes and PKC signaling in Dalton's lymphoma bearing (DL) mice. DL mice were treated with three different doses of ellagic acid. The treatment significantly increases the activity and expression of antioxidant enzymes and down regulates the expression of classical isozymes of PKC as well as the activation of NF-κB, indicating that ellagic acid improves antioxidant defense system and PKC signaling via NF-κB which may contribute to its cancer preventive role.
Collapse
Affiliation(s)
- Sudha Mishra
- Biochemistry & Molecular Biology Laboratory, Centre of Advanced Study in Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
16
|
Hardee J, Ouyang Z, Zhang Y, Kundaje A, Lacroute P, Snyder M. STAT3 targets suggest mechanisms of aggressive tumorigenesis in diffuse large B-cell lymphoma. G3 (BETHESDA, MD.) 2013; 3:2173-85. [PMID: 24142927 PMCID: PMC3852380 DOI: 10.1534/g3.113.007674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/05/2013] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that, when dysregulated, becomes a powerful oncogene found in many human cancers, including diffuse large B-cell lymphoma. Diffuse large B-cell lymphoma is the most common form of non-Hodgkin's lymphoma and has two major subtypes: germinal center B-cell-like and activated B-cell-like. Compared with the germinal center B-cell-like form, activated B-cell-like lymphomas respond much more poorly to current therapies and often exhibit overexpression or overactivation of STAT3. To investigate how STAT3 might contribute to this aggressive phenotype, we have integrated genome-wide studies of STAT3 DNA binding using chromatin immunoprecipitation-sequencing with whole-transcriptome profiling using RNA-sequencing. STAT3 binding sites are present near almost a third of all genes that differ in expression between the two subtypes, and examination of the affected genes identified previously undetected and clinically significant pathways downstream of STAT3 that drive oncogenesis. Novel treatments aimed at these pathways may increase the survivability of activated B-cell-like diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Jennifer Hardee
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Zhengqing Ouyang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Yuping Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
- Department of Computer Science, Stanford University School of Engineering, Stanford, California 94305
| | - Philippe Lacroute
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
17
|
Sarkar S, Döring A, Zemp FJ, Silva C, Lun X, Wang X, Kelly J, Hader W, Hamilton M, Mercier P, Dunn JF, Kinniburgh D, van Rooijen N, Robbins S, Forsyth P, Cairncross G, Weiss S, Yong VW. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 2013; 17:46-55. [PMID: 24316889 DOI: 10.1038/nn.3597] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022]
Abstract
Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.
Collapse
Affiliation(s)
- Susobhan Sarkar
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Axinia Döring
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada. [3]
| | - Franz J Zemp
- 1] The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada. [2]
| | - Claudia Silva
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xueqing Lun
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Xiuling Wang
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - John Kelly
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Walter Hader
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mark Hamilton
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Philippe Mercier
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Dave Kinniburgh
- Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | - Stephen Robbins
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter Forsyth
- The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Gregory Cairncross
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] The Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Samuel Weiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - V Wee Yong
- 1] Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada. [2] Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
18
|
Porwal M, Cohen S, Snoussi K, Popa-Wagner R, Anderson F, Dugot-Senant N, Wodrich H, Dinsart C, Kleinschmidt JA, Panté N, Kann M. Parvoviruses cause nuclear envelope breakdown by activating key enzymes of mitosis. PLoS Pathog 2013; 9:e1003671. [PMID: 24204256 PMCID: PMC3814971 DOI: 10.1371/journal.ppat.1003671] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/16/2013] [Indexed: 11/18/2022] Open
Abstract
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. Parvoviruses are small non-enveloped DNA viruses successfully used in gene therapy. Their nuclear replication requires transit of the nuclear envelope. Analyzing the interaction between parvoviruses and the nucleus, we showed that despite their small size, they did not traverse the nuclear pore, but attached directly to proteins of the nuclear pore complex. We observed that this binding induced structural changes of the parvoviruses and that the structural rearrangement was essential for triggering a signal cascade resulting in disintegration of the nuclear envelope. Physiologically such nuclear envelope breakdown occurs late during prophase of mitosis. Our finding that the parvovirus-mediated nuclear envelope breakdown also occurred in the absence of soluble cytosolic factors allowed us to decipher the intra nuclear pathways involved in nuclear envelope destabilization. Consistently with the physiological disintegration we found that key enzymes of mitosis were essential and we further identified Ca++ as the initial trigger. Thus our data not only show a unique pathway of how a DNA virus interacts with the nucleus but also describes a virus-based system allowing the first time to analyze selectively the intranuclear pathways leading to nuclear envelope disintegration.
Collapse
Affiliation(s)
- Manvi Porwal
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sarah Cohen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kenza Snoussi
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Fenja Anderson
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Harald Wodrich
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | | | - Nelly Panté
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Kann
- Institute of Medical Virology, University of Giessen, Giessen, Germany
- Univ. de Bordeaux, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
- * E-mail:
| |
Collapse
|
19
|
Yano M, Ohkoshi S, Aoki YH, Takahashi H, Kurita S, Yamazaki K, Suzuki K, Yamagiwa S, Sanpei A, Fujimaki S, Wakai T, Kudo SE, Matsuda Y, Aoyagi Y. Hepatitis B virus X induces cell proliferation in the hepatocarcinogenesis via up-regulation of cytoplasmic p21 expression. Liver Int 2013; 33:1218-1229. [PMID: 23590292 DOI: 10.1111/liv.12176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 03/10/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hepatitis B virus X protein (HBx) has been shown to induce hepatocarcinogenesis by disrupting the functions of intracellular molecules. Cyclin-dependent kinase inhibitor p21 (Cip1/WAF1), known as a tumour-suppressor gene, has been reported to have paradoxical function, that is, acting as an oncogene, particularly when expressed in the cytoplasm. The effects of HBx on the expression and function of p21 also remain controversial. AIMS We attempted to investigate the role of HBx in the hepatocarcinogenic process, focusing on the association with this paradoxical function of p21. The results obtained were further verified with experiments using the antihepatocarcinogenic action of interferon (IFN)-β. METHODS HBx transgenic mice (Xg) and HBx-transfected hepatoma cell lines were used. Intracellular localization of p21 was determined by Western blot analysis and immunofluorescence. RESULTS Xg and HBx-transfected cells exhibited increased expression of p21. Up-regulation of p21 was positively correlated with the expression of cyclin D1 and inactive phosphorylation of retinoblastoma protein (pRb). These HBx-induced cell proliferative responses were cancelled by knockdown of p21, which resulted in growth reduction in HBx-expressing cells, suggesting the oncogenic properties of HBx-induced p21. HBx induced accumulation of p21 in the cytoplasm, and activation of PKCα was involved. Finally, IFN-β-treated Xg liver, as well as hepatoma cells, showed a shift of cytoplasmic p21 to the nucleus, accompanied by the abrogation of HBx-induced oncogenic modulation. CONCLUSIONS Our results suggest that HBx induces hepatocarcinogenesis via PKCα-mediated overexpression of cytoplasmic p21 and IFN-β suppressed these molecular events by shifting p21 to the nucleus.
Collapse
Affiliation(s)
- Masahiko Yano
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Berlow N, Davis LE, Cantor EL, Séguin B, Keller C, Pal R. A new approach for prediction of tumor sensitivity to targeted drugs based on functional data. BMC Bioinformatics 2013; 14:239. [PMID: 23890326 PMCID: PMC3750584 DOI: 10.1186/1471-2105-14-239] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 07/25/2013] [Indexed: 12/21/2022] Open
Abstract
Background The success of targeted anti-cancer drugs are frequently hindered by the lack of knowledge of the individual pathway of the patient and the extreme data requirements on the estimation of the personalized genetic network of the patient’s tumor. The prediction of tumor sensitivity to targeted drugs remains a major challenge in the design of optimal therapeutic strategies. The current sensitivity prediction approaches are primarily based on genetic characterizations of the tumor sample. We propose a novel sensitivity prediction approach based on functional perturbation data that incorporates the drug protein interaction information and sensitivities to a training set of drugs with known targets. Results We illustrate the high prediction accuracy of our framework on synthetic data generated from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and an experimental dataset of four canine osteosarcoma tumor cultures following application of 60 targeted small-molecule drugs. We achieve a low leave one out cross validation error of <10% for the canine osteosarcoma tumor cultures using a drug screen consisting of 60 targeted drugs. Conclusions The proposed framework provides a unique input-output based methodology to model a cancer pathway and predict the effectiveness of targeted anti-cancer drugs. This framework can be developed as a viable approach for personalized cancer therapy.
Collapse
Affiliation(s)
- Noah Berlow
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
| | | | | | | | | | | |
Collapse
|
21
|
do Carmo A, Balça-Silva J, Matias D, Lopes MC. PKC signaling in glioblastoma. Cancer Biol Ther 2013; 14:287-94. [PMID: 23358475 PMCID: PMC3667867 DOI: 10.4161/cbt.23615] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive brain tumor characterized by intratumoral heterogeneity at cytopathological, genomic and transcriptional levels. Despite the efforts to develop new therapeutic strategies the median survival of GBM patients is 12-14 months. Results from large-scale gene expression profile studies confirmed that the genetic alterations in GBM affect pathways controlling cell cycle progression, cellular proliferation and survival and invasion ability, which may explain the difficulty to treat GBM patients. One of the signaling pathways that contribute to the aggressive behavior of glioma cells is the protein kinase C (PKC) pathway. PKC is a family of serine/threonine-specific protein kinases organized into three groups according the activating domains. Due to the variability of actions controlled by PKC isoforms, its contribution to the development of GBM is poorly understood. This review intends to highlight the contribution of PKC isoforms to proliferation, survival and invasive ability of glioma cells.
Collapse
Affiliation(s)
- Anália do Carmo
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| | | | | | | |
Collapse
|
22
|
Korulu S, Yildiz-Unal A, Yuksel M, Karabay A. Protein kinase C activation causes neurite retraction via cyclinD1 and p60-katanin increase in rat hippocampal neurons. Eur J Neurosci 2013; 37:1610-9. [PMID: 23489891 DOI: 10.1111/ejn.12185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/30/2022]
Abstract
Neurons are differentiated postmitotic cells residing in G0 phase of the cell cycle and are unable to proceed through G1 phase, in which cyclinD1 needs to be up-regulated for initiation. Yet, a growing body of evidence has shown that cell cycle re-activation via cyclinD1 up-regulation drives neurons into apoptosis. By contrast, there is also evidence demonstrating cell cycle proteins playing roles in neuronal differentiation. cyclinD1 has been shown to be differently regulated by protein kinase C alpha (PKC-α) in various mitotic cells. Based on these different effects, we investigated the role of PKC-α on cyclinD1 regulation in hippocampal neurons. Neurons were treated with PKC activator, PMA, and analysed for subcellular distributions of PKC-α and cyclinD1. Remarkably, PMA treatment increased nuclear PKC-α and cyclinD1, but not PKC-ε in hippocampal neurons. Increases in nuclear PKC-α and cyclinD1 were accompanied by microtubule re-organisation via increases in tau and retinoblastoma protein phosphorylation levels. Increased p60-katanin and p53 changed the neuronal morphology into neurons with shorter, but increased number of side branches. Since up-regulation of cell cycle is associated with apoptosis in neurons, we also analysed changes in Bax, Bcl-2 early and PARP (poly(ADP-ribose)polymerase), caspase3 late apoptotic markers. However, we did not observe any indication of apoptosis. These data suggest that in addition to their previously known roles in mitotic cells on cell cycle regulation, PKC-α and cyclinD1 seem to be important for differentiation, and nuclear PKC-α and cyclinD1 interfere with differentiation by promoting microtubule re-organisation through PKC signaling without triggering apoptosis.
Collapse
Affiliation(s)
- Sirin Korulu
- Departments of Molecular Biology and Genetics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | | | | | | |
Collapse
|
23
|
Hu YC, Hsieh BS, Cheng HL, Huang LW, Huang TC, Huang IY, Chang KL. Osteoblasts survive the arsenic trioxide treatment by activation of ATM-mediated pathway. Biochem Pharmacol 2013; 85:1018-26. [PMID: 23337567 DOI: 10.1016/j.bcp.2013.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
Arsenic trioxide (ATO) is widely used in tumor treatment, but excessive arsenic exposure can have adverse effects. We recently found that, in primary osteoblasts, ATO produces oxidative stress and causes DNA tailing, but does not induce apoptosis. We further examined the signaling pathway by which osteoblasts survive ATO treatment, and found that they were arrested at G2/M phase of the cell cycle at 30h and overrode the G2/M boundary at 48h. After treatment for 30h, there was increased Cdc2 phosphorylation and expression of Wee1, a Cdc2 kinase, and expression of the cell cycle inhibitor, p21(waf1/cip1), which interacts with Cdc2. Furthermore, levels of the phosphatase Cdc25C, which activates Cdc2, were decreased, while the ratio of its phosphorylated/inactivated form to the total amount was increased. Moreover, phosphorylation/activation of the checkpoint kinases Chk1, Chk2 and p53 levels were increased, as were levels of activated ATM and γ-H2AX. The cell viability was decreased as an ATM inhibitor was added. Additionally, these effects of ATO on γ-H2AX, Chk1, Chk2, p53, and p21(waf1/cip1) were reduced by an ATM inhibitor. These findings suggest that G2/M phase arrest of osteoblasts is mediated by Chk1/Chk2 activation via an ATM-dependent pathway by which osteoblasts survive.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Black AR, Black JD. Protein kinase C signaling and cell cycle regulation. Front Immunol 2013; 3:423. [PMID: 23335926 PMCID: PMC3547298 DOI: 10.3389/fimmu.2012.00423] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about 30 years. However, despite the wealth of information on PKC-mediated control of, T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s) and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks), cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1 → S and/or G2 → M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in T cells.
Collapse
Affiliation(s)
- Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
25
|
Lee YJ, Lee YJ, Im JH, Won SY, Kim YB, Cho MK, Nam HS, Choi YJ, Lee SH. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells. Food Chem Toxicol 2012; 52:61-8. [PMID: 23146690 DOI: 10.1016/j.fct.2012.10.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/31/2012] [Indexed: 12/11/2022]
Abstract
Dietary phytochemicals as adjuvants have been suggested to play important roles in enhancing chemotherapeutic potential owing to multitargeted chemopreventive properties and lack of substantial toxicity. Here, we investigated the efficacy of the combined treatment of various phytochemicals with the anticancer drug clofarabine in malignant mesothelioma MSTO-211H cells and normal mesothelial MeT-5A cells. The combined treatment of resveratrol and clofarabine produced a synergistic antiproliferative effect in MSTO-211H cells, but not in MeT-5A cells. In MSTO-211H cells, the nuclear accumulation of Sp1 and the levels of p-Akt, Sp1, c-Met, cyclin D1, and p21 were effectively decreased by the combined treatment of them. In combination with clofarabine, the ability of resveratrol to reduce the contents of Sp1 and its target gene products was also evident in a time- and dose-dependent experiment. The inhibition of phosphoinositide 3-kinase using Ly294002 augmented a decrease in the p21 level induced by their combination, but it showed no significant effects on expression of Sp1 and cyclin D1. Taken together, the data provide evidence that the synergistic antiproliferative effect of resveratrol and clofarabine is linked to the inhibition of Akt and Sp1 activities, and suggest that this combination may have therapeutic value in treatment of malignant mesothelioma.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 330-090, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in oral squamous cell carcinoma. Hum Pathol 2011; 43:276-81. [PMID: 21840039 DOI: 10.1016/j.humpath.2011.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/22/2022]
Abstract
Protein kinase Cs play important roles in many biological processes and tumorigenesis. This study examined the expression of protein kinase Cθ and assessed its significance in patients with oral squamous cell carcinoma. Immunohistochemical staining was carried out to investigate the expression of protein kinase Cθ in 59 cases of oral squamous cell carcinoma. The results were correlated with clinical characteristics and outcome of patients. Diffuse cytoplasmic protein kinase Cθ was identified in 53 (89.8%) of the 59 oral squamous cell carcinoma cases, and the expression was not statistically associated with any clinicopathologic parameter. Twenty (40.7%) of the 59 oral squamous cell carcinoma cases exhibited nuclear expression of protein kinase Cθ with different grade of intensity. χ(2) analysis indicated that high nuclear protein kinase Cθ expression correlated significantly with shorter 24-month survival (P = .043) and disease recurrence (P = .019). The Kaplan-Meier method also showed that high nuclear expression of protein kinase Cθ was significantly associated with poor overall survival (P = .034) and shorter time to recurrence (P = .003). Univariate analysis revealed that high nuclear protein kinase Cθ expression (P = .046; hazard ratio, 2.2), tumor size less than 2 cm (P = .049; hazard ratio, 4.7), lymph node metastasis (P = .003; hazard ratio, 3.0), and higher stage (P = .002; hazard ratio, 8.7) were each associated with shorter overall survival. We identified the aberrant nuclear expression of protein kinase Cθ in oral squamous cell carcinoma. High nuclear protein kinase Cθ expression may correlate with disease recurrence and poor survival in patients with oral squamous cell carcinoma.
Collapse
|
28
|
Ziv-Av A, Taller D, Attia M, Xiang C, Lee HK, Cazacu S, Finniss S, Kazimirsky G, Sarid R, Brodie C. RTVP-1 expression is regulated by SRF downstream of protein kinase C and contributes to the effect of SRF on glioma cell migration. Cell Signal 2011; 23:1936-43. [PMID: 21777672 DOI: 10.1016/j.cellsig.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/04/2011] [Indexed: 01/13/2023]
Abstract
Gliomas are characterized by increased infiltration into the surrounding normal brain tissue. We recently reported that RTVP-1 is highly expressed in gliomas and plays a role in the migration of these cells, however the regulation of RTVP-1 expression in these cells is not yet described. In this study we examined the role of PKC in the regulation of RTVP-1 expression and found that PMA and overexpression of PKCα and PKCε increased the expression of RTVP-1, whereas PKCδ exerted an opposite effect. Using the MatInspector software, we identified a SRF binding site on the RTVP-1 promoter. Chromatin immunoprecipitation (ChIP) assay revealed that SRF binds to the RTVP-1 promoter in U87 cells, and that this binding was significantly increased in response to serum addition. Moreover, silencing of SRF blocked the induction of RTVP-1 expression in response to serum. We found that overexpression of PKCα and PKCε increased the activity of the RTVP-1 promoter and the binding of SRF to the promoter. In contrast, overexpression of PKCδ blocked the increase in RTVP-1 expression in response to serum and the inhibitory effect of PKCδ was abrogated in cells expressing a SRFT160A mutant. SRF regulated the migration of glioma cells and its effect was partially mediated by RTVP-1. We conclude that RTVP-1 is a PKC-regulated gene and that this regulation is at least partly mediated by SRF. Moreover, RTVP-1 plays a role in the effect of SRF on glioma cell migration.
Collapse
Affiliation(s)
- Amotz Ziv-Av
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Das G, Shiras A, Shanmuganandam K, Shastry P. Rictor regulates MMP-9 activity and invasion through Raf-1-MEK-ERK signaling pathway in glioma cells. Mol Carcinog 2010; 50:412-23. [PMID: 21557327 DOI: 10.1002/mc.20723] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and highly aggressive type of primary brain tumor. Tumor-associated macrophages (TAMs) secrete TNF-α that activates important survival pathways including Akt (PKB)/mTOR network. The mammalian target of rapamycin (mTOR) network functions downstream of PI3K/Akt pathway to regulate cell growth, proliferation and survival. mTOR exists in two distinct complexes-mTORC1 and mTORC2 that differ in their components and sensitivity to rapamycin. The rapamycin-insensitive complex (mTORC2) consists of mTOR, mLST8, Rictor, mSin1 and Protor and regulates the actin cytoskeleton in addition to activating Akt (protein kinase B). The present study aimed to investigate the role of Rictor-a core component of mTORC2 in regulating proliferation, survival, and invasion in gliomas. siRNA-mediated loss of Rictor function in human glioma cell lines, LN18 and LN229 and in primary GBM cells resulted in elevated expression and activity of MMP-9 and significant increase in the invasive potential of these cells. Mechanistic studies revealed that the activation of Raf-1-MEK-ERK pathway was essential for induction of MMP-9 activity and enhanced invasion. Interestingly, ablation of Rictor did not affect TNF-α-induced MMP-9 activity and invasiveness suggesting that TNF-α in the microenvironment of tumor might overrule the function of Rictor as a negative regulator of MMP-9 and invasion. Silencing Rictor had no effect on the survival or proliferation in the cell lines in the presence or absence of TNF-α. Our findings identify a role for Rictor in bridging two major pathways-Akt (PKB)/mTOR and Raf-1-MEK-ERK in regulating MMP-9 activity and invasion of glioma tumor cells.
Collapse
Affiliation(s)
- Gowry Das
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, India
| | | | | | | |
Collapse
|
30
|
Sotoodehnia N, Isaacs A, de Bakker PIW, Dörr M, Newton-Cheh C, Nolte IM, van der Harst P, Müller M, Eijgelsheim M, Alonso A, Hicks AA, Padmanabhan S, Hayward C, Smith AV, Polasek O, Giovannone S, Fu J, Magnani JW, Marciante KD, Pfeufer A, Gharib SA, Teumer A, Li M, Bis JC, Rivadeneira F, Aspelund T, Köttgen A, Johnson T, Rice K, Sie MPS, Wang YA, Klopp N, Fuchsberger C, Wild SH, Mateo Leach I, Estrada K, Völker U, Wright AF, Asselbergs FW, Qu J, Chakravarti A, Sinner MF, Kors JA, Petersmann A, Harris TB, Soliman EZ, Munroe PB, Psaty BM, Oostra BA, Cupples LA, Perz S, de Boer RA, Uitterlinden AG, Völzke H, Spector TD, Liu FY, Boerwinkle E, Dominiczak AF, Rotter JI, van Herpen G, Levy D, Wichmann HE, van Gilst WH, Witteman JCM, Kroemer HK, Kao WHL, Heckbert SR, Meitinger T, Hofman A, Campbell H, Folsom AR, van Veldhuisen DJ, Schwienbacher C, O'Donnell CJ, Volpato CB, Caulfield MJ, Connell JM, Launer L, Lu X, Franke L, Fehrmann RSN, te Meerman G, Groen HJM, Weersma RK, van den Berg LH, Wijmenga C, Ophoff RA, Navis G, Rudan I, Snieder H, Wilson JF, Pramstaller PP, Siscovick DS, Wang TJ, Gudnason V, van Duijn CM, Felix SB, Fishman GI, Jamshidi Y, Stricker BHC, et alSotoodehnia N, Isaacs A, de Bakker PIW, Dörr M, Newton-Cheh C, Nolte IM, van der Harst P, Müller M, Eijgelsheim M, Alonso A, Hicks AA, Padmanabhan S, Hayward C, Smith AV, Polasek O, Giovannone S, Fu J, Magnani JW, Marciante KD, Pfeufer A, Gharib SA, Teumer A, Li M, Bis JC, Rivadeneira F, Aspelund T, Köttgen A, Johnson T, Rice K, Sie MPS, Wang YA, Klopp N, Fuchsberger C, Wild SH, Mateo Leach I, Estrada K, Völker U, Wright AF, Asselbergs FW, Qu J, Chakravarti A, Sinner MF, Kors JA, Petersmann A, Harris TB, Soliman EZ, Munroe PB, Psaty BM, Oostra BA, Cupples LA, Perz S, de Boer RA, Uitterlinden AG, Völzke H, Spector TD, Liu FY, Boerwinkle E, Dominiczak AF, Rotter JI, van Herpen G, Levy D, Wichmann HE, van Gilst WH, Witteman JCM, Kroemer HK, Kao WHL, Heckbert SR, Meitinger T, Hofman A, Campbell H, Folsom AR, van Veldhuisen DJ, Schwienbacher C, O'Donnell CJ, Volpato CB, Caulfield MJ, Connell JM, Launer L, Lu X, Franke L, Fehrmann RSN, te Meerman G, Groen HJM, Weersma RK, van den Berg LH, Wijmenga C, Ophoff RA, Navis G, Rudan I, Snieder H, Wilson JF, Pramstaller PP, Siscovick DS, Wang TJ, Gudnason V, van Duijn CM, Felix SB, Fishman GI, Jamshidi Y, Stricker BHC, Samani NJ, Kääb S, Arking DE. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 2010; 42:1068-76. [PMID: 21076409 PMCID: PMC3338195 DOI: 10.1038/ng.716] [Show More Authors] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 10/19/2010] [Indexed: 12/16/2022]
Abstract
QRS interval on the electrocardiogram reflects ventricular depolarization and conduction time, and is a risk factor for mortality, sudden death, and heart failure. We performed a genome-wide association meta-analysis in 40,407 European-descent individuals from 14 studies, with further genotyping in 7170 additional Europeans, and identified 22 loci associated with QRS duration (P < 5 × 10−8). These loci map in or near genes in pathways with established roles in ventricular conduction such as sodium channels, transcription factors, and calcium-handling proteins, but also point to novel biologic processes, such as kinase inhibitors and genes related to tumorigenesis. We demonstrate that SCN10A, a gene at our most significant locus, is expressed in the mouse ventricular conduction system, and treatment with a selective SCN10A blocker prolongs QRS duration. These findings extend our current knowledge of ventricular depolarization and conduction.
Collapse
Affiliation(s)
- Nona Sotoodehnia
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22:1003-12. [PMID: 20100570 PMCID: PMC2860671 DOI: 10.1016/j.cellsig.2010.01.013] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/16/2010] [Indexed: 02/06/2023]
Abstract
p21(Waf1/Cip1/Sdi1) was originally identified as an inhibitor of cyclin-dependent kinases, a mediator of p53 in growth suppression and a marker of cellular senescence. p21 is required for proper cell cycle progression and plays a role in cell death, DNA repair, senescence and aging, and induced pluripotent stem cell reprogramming. Although transcriptional regulation is considered to be the initial control point for p21 expression, there is growing evidence that post-transcriptional and post-translational regulations play a critical role in p21 expression and activity. This review will briefly discuss the activity of p21 and focus on current knowledge of the determinants that control p21 transcription, mRNA stability and translation, and protein stability and activity.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | - Yingjuan Qian
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | - Xinbin Chen
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| |
Collapse
|
32
|
Gao Q, Tan J, Ma P, Ge J, Liu Y, Sun X, Zhou L. PKC alpha affects cell cycle progression and proliferation in human RPE cells through the downregulation of p27kip1. Mol Vis 2009; 15:2683-95. [PMID: 20011080 PMCID: PMC2791041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 12/03/2009] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Protein kinase C (PKC) plays an important role in the regulation of retinal pigment epithelium (RPE) cell proliferation. In this study, we investigated which of these isozymes could be responsible for the cell cycle and proliferation in human RPE cells. METHODS The effect of PKC activators on human RPE cell cycle progression was tested by flow cytometry. To identify the isoform of PKC responsible for the increased progression of the cells through the cell cycle, we monitored the effect of phorbol 12-myristate 13-acetate (PMA) on the subcellular localization of the nine PKC isoforms expressed in RPE cells. To evaluate the molecular mechanism by which PKC(alpha) induces cell cycle progression, we examined the transcript, protein, and cellular levels of cell cycle regulatory proteins using RT-PCR, western blotting, and a confocal microscope, respectively. RESULTS We demonstrated that PKC activation by PMA affected cell cycle progression in RPE cells. Of the nine PKC isoforms that were present in RPE cells, we found PKC(alpha) was both necessary and sufficient to promote cell cycle progression after being stimulated with PMA. Decreased PKC(alpha) expression resulted in a significant decrease in cell proliferation. The only cell cycle-regulatory molecule whose expression was rapidly altered and decreased by PKC(alpha) activity was the cyclin- dependent kinase (CDK) inhibitor p27(kip1). CONCLUSIONS These results suggest that PKC(alpha) affects cell cycle progression and proliferation in human RPE cells through the downregulation of p27(kip1).
Collapse
|
33
|
Lu HC, Chou FP, Yeh KT, Chang YS, Hsu NC, Chang JG. Analysing the expression of protein kinase C eta in human hepatocellular carcinoma. Pathology 2009; 41:626-9. [DOI: 10.3109/00313020903273076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Lu HC, Chou FP, Yeh KT, Chang YS, Hsu NC, Chang JG. Expression of Protein Kinase C Family in Human Hepatocellular Carcinoma. Pathol Oncol Res 2009; 16:385-91. [DOI: 10.1007/s12253-009-9228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 11/10/2009] [Indexed: 11/28/2022]
|
35
|
Kim HS, Lim IK. Phosphorylated extracellular signal-regulated protein kinases 1 and 2 phosphorylate Sp1 on serine 59 and regulate cellular senescence via transcription of p21Sdi1/Cip1/Waf1. J Biol Chem 2009; 284:15475-86. [PMID: 19318349 DOI: 10.1074/jbc.m808734200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of p21(Sdi1) downstream of p53 is essential for induction of cellular senescence, although cancer cell senescence can also occur in the p53 null condition. We report herein that senescence-associated phosphorylated extracellular signal-regulated protein kinases 1 and 2 (SA-pErk1/2) enhanced p21(Sdi1) transcription by phosphorylating Sp1 on Ser(59) downstream of protein kinase C (PKC) alpha. Reactive oxygen species (ROS), which was increased in cellular senescence, significantly activated both PKCalpha and PKCbetaI. However, PKCalpha, but not PKCbetaI, regulated ROS generation and cell proliferation in senescent cells along with activation of cdk2, proven by siRNAs. PKCalpha-siRNA also reduced SA-pErk1/2 expression in old human diploid fibroblast cells, accompanied with changes of senescence phenotypes to young cell-like. Regulation of SA-pErk1/2 was also confirmed by using catalytically active PKCalpha and its DN-mutant construct. These findings strongly suggest a new pathway to regulate senescence phenotypes by ROS via Sp1 phosphorylation between PKCalpha and SA-pErk1/2: employing GST-Sp1 mutants and MEK inhibitor analyses, we found that SA-pErk1/2 regulated Sp1 phosphorylation on the Ser(59) residue in vivo, but not threonine, in cellular senescence, which regulated transcription of p21(Sdi1) expression. In summary, PKCalpha, which was activated in senescent cells by ROS strongly activated Erk1/2, and the SA-pErk1/2 in turn phosphorylated Sp1 on Ser(59). Sp1-enhanced transcription of p21(Sdi1) resulted in regulation of cellular senescence in primary human diploid fibroblast cells.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|
36
|
Reyland ME. Protein kinase C isoforms: Multi-functional regulators of cell life and death. Front Biosci (Landmark Ed) 2009; 14:2386-99. [PMID: 19273207 DOI: 10.2741/3385] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The protein kinase C (PKC) family consists of 10 related serine/threonine protein kinases some of which are critical regulators of cell proliferation, survival and cell death. While early studies relied on broad spectrum chemical activators or inhibitors of this family, the generation of isoform specific tools has greatly facilitated our understanding of the contribution of specific PKC isoforms to cell proliferation and apoptosis. These studies suggest that PKC-alpha, PKC-epsilon, and the atypical PKC's, PKC-lambda/iota and PKC-zeta, preferentially function to promote cell proliferation and survival, while the novel isoform, PKC-delta is an important regulator of apoptosis. The essential role of this kinase family in both cell survival and apoptosis suggests that specific isoforms may function as molecular sensors, promoting cell survival or cell death depending on environmental cues. Given their central role in cell and tissue homeostasis, it is not surprising that the expression or activity of some of these kinases is altered in human diseases, particularly cancer.
Collapse
Affiliation(s)
- Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA.
| |
Collapse
|
37
|
PDGF receptor activation induces p120-catenin phosphorylation at serine 879 via a PKCalpha-dependent pathway. Exp Cell Res 2009; 315:39-49. [PMID: 18950621 PMCID: PMC2925109 DOI: 10.1016/j.yexcr.2008.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 12/14/2022]
Abstract
p120-catenin (p120) is required for cadherin stability and is thought to have a central role in modulating cell-cell adhesion. Several lines of evidence suggest that S/T phosphorylation may regulate p120 activity, but the upstream kinases involved have not been established, nor has a discreet measurable function been assigned to an individual site. To approach these issues, we have generated p120 phospho-specific monoclonal antibodies to several individual phosphorylation sites and are using them to pinpoint upstream kinases and signaling pathways that control p120 activity. Protein Kinase C (PKC) has been implicated as a signaling intermediate in several cadherin-associated cellular activities. Signaling events that activate PKC induce rapid phosphorylation at p120 Serine 879 (S879), suggesting that p120 activity is regulated, in part, by one or more PKC isoforms. Here, we find that physiologic activation of a G-protein coupled receptor (i.e., endothelin receptor), as well as several Receptor Tyrosine Kinases, induce rapid and robust p120 phosphorylation at S879, suggesting that these pathways crosstalk to cadherin complexes via p120. Using Va2 cells and PDGF stimulation, we show for the first time that PDGFR-mediated phosphorylation at this site is dependent on PKCalpha, a conventional PKC isoform implicated previously in disruption of adherens junctions.
Collapse
|
38
|
Wang S, Raven JF, Durbin JE, Koromilas AE. Stat1 phosphorylation determines Ras oncogenicity by regulating p27 kip1. PLoS One 2008; 3:e3476. [PMID: 18941537 PMCID: PMC2568943 DOI: 10.1371/journal.pone.0003476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/30/2008] [Indexed: 01/10/2023] Open
Abstract
Inactivation of p27 Kip1 is implicated in tumorigenesis and has both prognostic and treatment-predictive values for many types of human cancer. The transcription factor Stat1 is essential for innate immunity and tumor immunosurveillance through its ability to act downstream of interferons. Herein, we demonstrate that Stat1 functions as a suppressor of Ras transformation independently of an interferon response. Inhibition of Ras transformation and tumorigenesis requires the phosphorylation of Stat1 at tyrosine 701 but is independent of Stat1 phosphorylation at serine 727. Stat1 induces p27 Kip1 expression in Ras transformed cells at the transcriptional level through mechanisms that depend on Stat1 phosphorylation at tyrosine 701 and activation of Stat3. The tumor suppressor properties of Stat1 in Ras transformation are reversed by the inactivation of p27 Kip1. Our work reveals a novel functional link between Stat1 and p27 Kip1, which act in coordination to suppress the oncogenic properties of activated Ras. It also supports the notion that evaluation of Stat1 phosphorylation in human tumors may prove a reliable prognostic factor for patient outcome and a predictor of treatment response to anticancer therapies aimed at activating Stat1 and its downstream effectors.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer F. Raven
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | - Joan E. Durbin
- Columbus Children's Research Institute, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Antonis E. Koromilas
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
39
|
Song T, Wu J, Fang F, Chen F, Huo L, Zhang M, Wu L, Zhai Z, Yang L, Fang J. Correlation analysis between the expression of P21WAF1/CIP1, P16 proteins and human glioma. Clin Exp Med 2008; 8:151-7. [PMID: 18791688 DOI: 10.1007/s10238-008-0172-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
Abstract
AIM Glioma is the most common neoplasm of the brain. Unfortunately, surgical cure of it is practically impossible and clinical course is primarily determined by the biological behaviour of the tumour cells. The purpose of this study was to investigate the correlation between the expression levels of P21WAF1/CIP1, P16 proteins and the grading of glioma. METHODS T98G human glioma cell line, normal human astrocyte (HA) cell line, tumour tissue samples from 70 patients suffering from glioma and normal brain tissues from 20 cases with brain contusion were investigated. The expression levels of P21WAF1/CIP1 and P16 proteins were detected using SABC immunohistochemical staining and semi-quantitive reverse transcriptase polymerase chain reaction (RT-PCR) assay. Then, the correlation of the two markers' expression with glioma grading of patients was analysed. RESULTS The expression levels of P21WAF1/CIP1 and P16 proteins in the T98G cell line were much lower than that in the HA cell line. Their positive expression rates in glioma tissues were 55.71% and 42.86% respectively, and a significant increase was observed in normal brain tissues (p = 0.012, 0.008). Combined with the result of semi-quantitive RT-PCR, we could demonstrate that the expression intensity of P21WAF1/CIP1 and P16 decreased with the glioma grade increase. Co-expression of them was also found in glioma and normal brain tissues. Furthermore, there was a negative correlation between the two markers' expression and glioma grading of patients (rs = -0.68, -0.56). CONCLUSIONS The positive expression rate and co-expression rate of P21WAF1/CIP1 and P16 proteins could reflect the malignant grade of glioma to some extent, and they can be considered as a sensitive index for glioma grading.
Collapse
Affiliation(s)
- Tao Song
- Neurosurgery Department, Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cameron AJ, Procyk KJ, Leitges M, Parker PJ. PKC alpha protein but not kinase activity is critical for glioma cell proliferation and survival. Int J Cancer 2008; 123:769-79. [PMID: 18508315 DOI: 10.1002/ijc.23560] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein kinase C alpha (PKCalpha) has been implicated in tumor development with high levels of PKCalpha expression being associated with various malignancies including glioblastomas and tumors of the breast and prostate. To account for its upregulation in these cancers, studies have suggested that PKCalpha plays a role in promoting cell survival. Here we show by siRNA depletion in U87MG glioma cells that a critical threshold level of PKCalpha protein expression is essential for their growth in the presence of serum and for their survival following serum deprivation. Derivation of PKCalpha wt and KO mouse embryo fibroblast cell lines confirms a role for PKCalpha in protecting cells from apoptosis induced by serum deprivation. Notably, PKCalpha was found to mediate chemo-protection in these fibroblastic cell lines. In U87MG cells PKCalpha does not confer chemoprotection though this likely reflects growth arrest associated with its depletion. To determine the requirements for catalytic function, comparison was made between distinct classes of PKC inhibitors. In contrast to loss of PKCalpha protein, inhibition of PKC kinase activity in glioma cell lines does not significantly inhibit growth or survival. Conversely, inhibition with calphostin C, which targets the regulatory domain of PKC, potently inhibits proliferation and induces apoptosis. Evidence is presented that it is the fully phosphorylated, folded form of PKCalpha that confers this activity-independent behaviour. These results indicate an essential pro-proliferative and pro-survival role for PKCalpha in glioma but question the use of ATP competitive inhibitors as therapeutics, either alone, or in combination with chemotoxic agents.
Collapse
Affiliation(s)
- Angus J Cameron
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, WC2A 3PX London, United Kingdom
| | | | | | | |
Collapse
|
41
|
Zolota V, Tsamandas AC, Aroukatos P, Panagiotopoulos V, Maraziotis T, Poulos C, Scopa CD. Expression of cell cycle inhibitors p21, p27, p14 and p16 in gliomas. Correlation with classic prognostic factors and patients' outcome. Neuropathology 2008; 28:35-42. [PMID: 18181833 DOI: 10.1111/j.1440-1789.2007.00844.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gliomas are among the most aggressive and treatment-refractory of all human tumors. The aim of the present study is to evaluate the role of the expression of cell cycle molecules as prognostic indicators in gliomas. We immunohistochemically analyzed the expression of p21, p27, p14, p16, p53 and proliferation marker Ki67, in 67 low and high grade astrocytic tumors. High grade tumors exhibited higher labeling indices for Ki67 (P = 0.004), p53 (P = 0.039) and slightly higher index for p21 (P = 0.07) compared to low grade tumors. p14 and p16 were more frequently present in low grade tumors (P = 0.001 and P = 0.052, respectively). Worse survival was correlated with high grade tumors (P < 0.0001) and higher Ki67 index (P < 0.0001). Cox regression analysis revealed that only age, grade and marginally Ki67 index were independent prognostic factors. Cell cycle alterations are involved in the malignant progression of astrocytomas, but only age, tumor grade and proliferating index can predict the outcome of the patients with glioma.
Collapse
Affiliation(s)
- Vassiliki Zolota
- Department of Pathology, University of Patras, Medical School, Patras, Greece.
| | | | | | | | | | | | | |
Collapse
|
42
|
Serova M, Ghoul A, Benhadji KA, Faivre S, Le Tourneau C, Cvitkovic E, Lokiec F, Lord J, Ogbourne SM, Calvo F, Raymond E. Effects of protein kinase C modulation by PEP005, a novel ingenol angelate, on mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling in cancer cells. Mol Cancer Ther 2008; 7:915-22. [DOI: 10.1158/1535-7163.mct-07-2060] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Wu TT, Hsieh YH, Hsieh YS, Liu JY. Reduction of PKC alpha decreases cell proliferation, migration, and invasion of human malignant hepatocellular carcinoma. J Cell Biochem 2008; 103:9-20. [PMID: 17486587 DOI: 10.1002/jcb.21378] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein kinase C (PKC) superfamily play key regulatory roles on the development of cancer. However, the exact role of these enzymes in human hepatocellular carcinoma (HCC) has not been well established. Using the RT-PCR and Western blotting to analyze the levels of PKC isoforms mRNA and protein in the five different differentiated hepatoma cell lines, we found that PKC alpha was highly expressed in the poor-differentiated HCC cell lines (SK-Hep-1 and HA22T/VGH) as compared with that in the well-differentiated HCC cell lines (PLC/PRF/5, Hep3B, and HepG2). When treated with PKC alpha antisense oligonucleotides (ODN), both HA22T/VGH and SK-Hep-1 cells lines showed the reduction of PKC alpha expression, as well as a deceleration in the growth rate and in the level of cyclin D1, but the increase in the levels of p53 and p21(WAF1/CIP1). Moreover, the reduction of PKC alpha expression also inhibited the migratory and invasive potential of both HA22T/VGH and SK-Hep-1 cells lines, and revealed a down-regulation of several migration/invasion-related genes (MMP-1, u-PA, u-PAR, and FAK). These phenomenon were also confirmed by DNA-based small interfering RNA (siRNA) PKC alpha and PKC alpha/beta specific inhibitor Go6976. Thus, the results indicated that PKC alpha may be associated with regulation of cell proliferation/migration/invasion in human poorly differentiated HCC cells, suggesting a role for the PKC alpha in the malignant progression of human HCC.
Collapse
Affiliation(s)
- Trang-Tiau Wu
- Department of Surgery, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
44
|
Podar K, Raab MS, Chauhan D, Anderson KC. The therapeutic role of targeting protein kinase C in solid and hematologic malignancies. Expert Opin Investig Drugs 2007; 16:1693-707. [PMID: 17922632 DOI: 10.1517/13543784.16.10.1693] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The protein kinase C (PKC) family, the most prominent target of tumor-promoting phorbol esters, is functionally linked to cell differentiation, growth, survival, migration and tumorigenesis and so mediates tumor cell proliferation, survival, multidrug resistance, invasion, metastasis and tumor angiogenesis. Therefore, targeting PKC isozymes may represent an attractive target for novel anticancer therapies. Recent preclinical and clinical studies using the macrocyclic bisindolylmaleimide enzastaurin or the N-benzylstaurosporine midostaurin demonstrate promising activity of PKC inhibitors in a variety of tumors, including diffuse large B-cell lymphoma, multiple myeloma and Waldenstroem's macroglobulinemia. However, our knowledge of PKCs in tumorigenesis is still only partial and each PKC isoform may contribute to tumorigenesis in a distinct way. Specifically, PKC isoforms have vastly different roles, which vary depending on expression levels of organ and tissue distribution, cell type, intracellular localization, protein-protein and lipid-protein interactions and the biologic environment. Although PKC activation generally positively affects tumor cell growth, motility, invasion and metastasis, recent reports show that many PKCs can also have negative effects. Therefore, it is necessary to further dissect the relative contribution of PKC isozymes in the development and progression of specific tumors in order to identify therapeutic opportunities, using either PKC inhibitors or PKC activators.
Collapse
Affiliation(s)
- Klaus Podar
- Dana-Farber Cancer Institute, Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
45
|
Martín V, Herrera F, García-Santos G, Antolín I, Rodriguez-Blanco J, Medina M, Rodriguez C. Involvement of protein kinase C in melatonin's oncostatic effect in C6 glioma cells. J Pineal Res 2007; 43:239-44. [PMID: 17803520 DOI: 10.1111/j.1600-079x.2007.00468.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical anticancer therapies often are ineffective in patients with malignant glioma who have a survival of <1 year. Our previous studies showed a potent inhibitory effect of melatonin on glioma cell proliferation. This effect seems to be mediated by the well-known antioxidant properties of this molecule and the negative regulation of some intracellular effectors, such as the kinase Akt or the transcription factor nuclear factor (NF)-kappaB. Finally, protein kinase C (PKC) also seems to be implicated in this effect although the intracellular pathways involved have not been elucidated. In this study, we analyzed the role of PKC in the regulation by melatonin of intracellular effectors leading to inhibition of cell proliferation. Activation of PKC by incubation with triphorbol ester acetate (TPA) blocks the inhibitory effect of melatonin on Akt and NF-kappaB activity. Moreover, incubation with melatonin induces a decrease in p21 expression in these cells that is partially blocked by co-incubation with TPA. Taken together, these results suggest that melatonin's oncostatic effect on glioma cells is mediated, at least in part, by the inhibition of PKC activity which, in turn, results in Akt and NF-kappaB activity inhibition and modulation of cell cycle-related gene expression.
Collapse
Affiliation(s)
- Vanesa Martín
- Departamento de Morfología y Biología Celular, Facultad de Medicina de la Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Expression of protein kinase C isoforms in retinoic acid-induced differentiation of mouse embryonic stem cells into neuron-like cells. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200709020-00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Sun LL, Cheng C, Liu HO, Xiao F, Qin J, Shao XY, Shen AG. Changes of Src-suppressed C kinase substrate expression in cytokine induced reactive C6 glioma cells. Neurosci Bull 2007; 23:101-6. [PMID: 17592532 PMCID: PMC5550593 DOI: 10.1007/s12264-007-0014-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE To investigate effect of tumor necrosis factor-alpha (TNF-alpha) on the Src-suppressed C kinase substrate (SSeCKS) in C6 glioma cells. METHODS Cultured C6 glioma cells were randomly divided into two groups. In time-dependent group, cells were cultured with TNF-alpha (2 ng/mL) for 0 h, 1 h, 3 h, 6 h, 12 or 24 h, respectively; in dose-dependent group, cells were cultured with TNF-alpha (0 ng/mL, 0.02 ng/mL, 0.2 ng/mL, or 2 ng/mL) for 6 h. The expression of SSeCKS was detected by Realtime PCR and Western blot analysis, and immunocytochemistry was used to investigate SSeCKS's subcellular localization. RESULTS TNF-alpha induced rapid phosphorylations of protein kinase C (PKC) substrates in C6 glioma cells, and upregulated SSeCKS expression in a time and concentration dependent manner. Immunocytochemistry suggested that SSeCKS was localized in the cyroplasm and the leading end of podosomal extensions in control groups, while TNF-alpha induced translocation of SSeCKS perinuclear. This effect could be partly reversed by PKC inhibitor Ro-31-8220. CONCLUSION TNF-alpha activates PKC and upregulates SSeCKS expression in C6 glioma cells. These effects are associated with PKC activity, suggesting that SSeCKS plays a role in response to glia activation in PKC mediated pathway.
Collapse
Affiliation(s)
- Lin-Lin Sun
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Chun Cheng
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Hai-Ou Liu
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Feng Xiao
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Jing Qin
- Department of Pathology, Medical College of Nantong University, Nantong, 226001 China
| | - Xiao-Yi Shao
- Department of immunology and microbiology, Medical College of Nantong University, Nantong, 226001 China
| | - Ai-Guo Shen
- Key Laboratory of Neuroregeneration of Jiangsu Province, Nantong University, Nantong, 226001 China
| |
Collapse
|
48
|
Bae KM, Wang H, Jiang G, Chen MG, Lu L, Xiao L. Protein kinase C epsilon is overexpressed in primary human non-small cell lung cancers and functionally required for proliferation of non-small cell lung cancer cells in a p21/Cip1-dependent manner. Cancer Res 2007; 67:6053-63. [PMID: 17616661 DOI: 10.1158/0008-5472.can-06-4037] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein kinase C (PKC) family of proteins plays important roles in growth regulation and is implicated in tumorigenesis. It has become clear that the role of PKC in tumorigenesis is cell context dependent and/or isoform specific. In this study, we showed for the first time by immunohistochemistry that overexpression of PKC epsilon was detected in the vast majority (>90%) of primary human non-small cell lung cancers (NSCLC) compared with normal lung epithelium. Inhibition of the PKC epsilon pathway using a kinase-inactive, dominant-negative PKC epsilon, PKC epsilon(KR), led to a significant inhibition of proliferation and anchorage-independent growth of human NSCLC cells in a p53-independent manner. This was accompanied by a specific induction of the cyclin-dependent kinase (cdk) inhibitor p21/Cip1 but not p27/Kip1. In response to serum stimulation, PKC epsilon(KR)-expressing cells showed a prolonged G(1)-S transition and delayed and reduced activation of cdk2 complexes, which was likely attributed to the increased binding of p21/Cip1 to cdk2. Furthermore, inhibition of PKC epsilon function either by expressing PKC epsilon(KR) or by small interfering RNA (siRNA)-mediated gene knockdown resulted in c-Myc down-regulation, which, in turn, regulated p21/Cip1 expression. Knockdown of PKC epsilon or c-Myc expression using siRNA led to induction of p21/Cip1 and attenuation of G(1)-S transition in NSCLC cells. Using p21(+/+) and p21(-/-) HCT116 isogenic cell lines, we further showed that growth inhibition by PKC epsilon(KR) required the function of p21/Cip1. Collectively, these results reveal an important role for PKC epsilon signaling in lung cancer and suggest that one potential mechanism by which PKC epsilon exerts its oncogenic activity is through deregulation of the cell cycle via a p21/Cip1-dependent mechanism.
Collapse
Affiliation(s)
- Kyung-Mi Bae
- University of Florida Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610-3633, USA
| | | | | | | | | | | |
Collapse
|
49
|
Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007; 21:1731-46. [PMID: 17626791 PMCID: PMC1920168 DOI: 10.1101/gad.1556607] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell cycle inhibitor p27Kip1 also has cyclin-cyclin-dependent kinase (CDK)-independent functions. To investigate the significance of these functions in vivo, we generated a knock-in mouse in which four amino acid substitutions in the cdkn1b gene product prevent its interaction with cyclins and CDKs (p27CK-). In striking contrast to complete deletion of the cdkn1b gene, which causes spontaneous tumorigenesis only in the pituitary, the p27CK- protein dominantly caused hyperplastic lesions and tumors in multiple organs, including the lung, retina, pituitary, ovary, adrenals, spleen, and lymphomas. Moreover, the high incidence of spontaneous tumors in the lung and retina was associated with amplification of stem/progenitor cell populations. Therefore, independently of its role as a CDK inhibitor, p27Kip1 promoted stem cell expansion and functioned as a dominant oncogene in vivo. Thus, the p27CK- mouse unveils a dual role for p27 during tumorigenesis: It is a tumor suppressor by virtue of its cyclin-CDK regulatory function, and also an oncogene through a cyclin-CDK-independent function. This may explain why the cdkn1b gene is rarely inactivated in human tumors, and the p27CK- mouse in which the tumor suppressor function is lost but the cyclin-CDK-independent-oncogenic-function is maintained may represent a more faithful model for the widespread role of p27 misregulation in human cancers than the p27 null.
Collapse
Affiliation(s)
- Arnaud Besson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Harry C. Hwang
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Samantha Cicero
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Stacy L. Donovan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Mark Gurian-West
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Dianna Johnson
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38105, USA
| | - Bruce E. Clurman
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Department of Ophthalmology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38105, USA
| | - James M. Roberts
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Biochemistry, University of Washington, Seattle, Washington 98109, USA
- Corresponding author.E-MAIL ; FAX (206) 667-6877
| |
Collapse
|
50
|
Sharma GD, Kakazu A, Bazan HEP. Protein kinase C alpha and epsilon differentially modulate hepatocyte growth factor-induced epithelial proliferation and migration. Exp Eye Res 2007; 85:289-97. [PMID: 17603037 PMCID: PMC2384226 DOI: 10.1016/j.exer.2007.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 11/16/2022]
Abstract
Protein kinase C (PKC) isoenzymes require membrane translocation for physiological activation. We have recently shown that the growth factors such as epidermal growth factor and hepatocyte growth factor (HGF), but not keratinocyte growth factor (KGF), regulate PKCalpha activation to promote epithelial wound healing [Sharma, G.D., Ottino, P., Bazan, H.E.P., 2005. Epidermal and hepatocyte growth factors, but not keratinocyte growth factor, modulate protein kinase C alpha translocation to the plasma membrane through 15(S)-hydroxyeicosatetraenoic acid synthesis. J. Biol. Chem. 280, 7917--924]. Protein kinase C alpha (PKCalpha) and protein kinase C epsilon (PKCvarepsilon) are two differentially regulated isoenzymes. While PKCalpha requires Ca(2+) for its activation, PKEvarepsilon is Ca(2+) independent. However, growth factor-induced activation of these enzymes and their specific regulation of epithelial migration and proliferation have not been explored. In the present study, we overexpressed PKCvarepsilon fused to green fluorescent protein to examine its translocation in real-time to the plasma membrane in living human corneal epithelial cells. Stimulation with HGF and KGF demonstrated translocation of PKCvarepsilon to the plasma membrane. Because HGF activates both PKCs, this growth factor was used to stimulate wound healing. PKCalpha or PKCvarepsilon-genes were knocked down individually without affecting the basal expression of the other PKC isoforms. Gene knockdown of PKCalpha significantly inhibited HGF-stimulated proliferation of human corneal epithelial cells. In contrast, PKCvarepsilon-gene-silencing severely impaired the HGF-stimulated migratory ability of human corneal epithelial cells. When migrating epithelial cells in the cornea wound bed after injury were transfected with specific PKCalpha- or PKCvarepsilon-siRNA, there was a significant delay in wound healing. Corneal wound healing stimulated with HGF in similar conditions was also inhibited. On the other hand, overexpression of PKCalpha or PKCvarepsilon-genes fused with green fluorescent protein in migrating corneal epithelium accelerated repair of the epithelial defect. Our findings demonstrate that PKCalpha and PKCvarepsilon modulate different stages of wound healing stimulated by HGF and contribute to epithelial repair by playing selective regulatory roles in epithelial proliferation and migration, both crucial to corneal wound healing.
Collapse
Affiliation(s)
- Guru Dutt Sharma
- Department of Ophthalmology and Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, Louisiana, 70112, USA
| | - Azucena Kakazu
- Department of Ophthalmology and Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, Louisiana, 70112, USA
| | - Haydee E. P. Bazan
- Department of Ophthalmology and Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, Louisiana, 70112, USA
- Corresponding author: Haydee E.P. Bazan, Ph.D., Department of Ophthalmology and Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA, Tel. 1-504-599-0877; Fax. 1-504-568-5801; E-mail:
| |
Collapse
|