1
|
Ahn M, Dhawan S, McCown EM, Garcia PA, Bhattacharya S, Stein R, Thurmond DC. Beta cell-specific PAK1 enrichment ameliorates diet-induced glucose intolerance in mice by promoting insulin biogenesis and minimising beta cell apoptosis. Diabetologia 2025; 68:152-165. [PMID: 39404845 DOI: 10.1007/s00125-024-06286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 12/22/2024]
Abstract
AIMS/HYPOTHESIS p21 (CDC42/RAC1) activated kinase 1 (PAK1) is depleted in type 2 diabetic human islets compared with non-diabetic human islets, and acute PAK1 restoration in the islets can restore insulin secretory function ex vivo. We hypothesised that beta cell-specific PAK1 enrichment in vivo can mitigate high-fat-diet (HFD)-induced glucose intolerance by increasing the functional beta cell mass. METHODS Human islets expressing exogenous PAK1 specifically in beta cells were used for bulk RNA-seq. Human EndoC-βH1 cells overexpressing myc-tagged PAK1 were used for chromatin immunoprecipitation (ChIP) and ChIP-sequencing (ChIP-seq). Novel doxycycline-inducible beta cell-specific PAK1-expressing (iβPAK1-Tg) mice were fed a 45% HFD pre-induction for 3 weeks and for a further 3 weeks with or without doxycycline induction. These HFD-fed mice were evaluated for GTT, ITT, 6 h fasting plasma insulin and blood glucose, body composition, islet insulin content and apoptosis. RESULTS Beta cell-specific PAK1 enrichment in type 2 diabetes human islets resulted in decreased beta cell apoptosis and increased insulin content. RNA-seq showed an upregulation of INS gene transcription by PAK1. Using clonal human beta cells, we found that PAK1 protein was localised in the cytoplasm and the nucleus. ChIP studies revealed that nuclear PAK1 enhanced pancreatic and duodenal homeobox1 (PDX1) and neuronal differentiation 1 (NEUROD1) binding to the INS promoter in a glucose-responsive manner. Importantly, the iβPAK1-Tg mice, when challenged with HFD and doxycycline induction displayed enhanced glucose tolerance, increased islet insulin content and reduced beta cell apoptosis when compared with iβPAK1-Tg mice without doxycycline induction. CONCLUSIONS/INTERPRETATION PAK1 plays an unforeseen and beneficial role in beta cells by promoting insulin biogenesis via enhancing the expression of PDX1, NEUROD1 and INS, along with anti-apoptotic effects, that culminate in increased insulin content and beta cell mass in vivo and ameliorate diet-induced glucose intolerance. DATA AVAILABILITY The raw and processed RNA-seq data and ChIP-seq data, which has been made publicly available at Gene Expression Omnibus (GEO) at https://www.ncbi.nlm.nih.gov/geo/ , can be accessed in GSE239382.
Collapse
Affiliation(s)
- Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Erika M McCown
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Pablo A Garcia
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Mahmoudi-Aznaveh A, Tavoosidana G, Najmabadi H, Azizi Z, Ardestani A. The liver-derived exosomes stimulate insulin gene expression in pancreatic beta cells under condition of insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1303930. [PMID: 38027137 PMCID: PMC10661932 DOI: 10.3389/fendo.2023.1303930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction An insufficient functional beta cell mass is a core pathological hallmark of type 2 diabetes (T2D). Despite the availability of several effective pharmaceuticals for diabetes management, there is an urgent need for novel medications to protect pancreatic beta cells under diabetic conditions. Integrative organ cross-communication controls the energy balance and glucose homeostasis. The liver and pancreatic islets have dynamic cross-communications where the liver can trigger a compensatory beta cell mass expansion and enhanced hormonal secretion in insulin-resistant conditions. However, the indispensable element(s) that foster beta cell proliferation and insulin secretion have yet to be completely identified. Exosomes are important extracellular vehicles (EVs) released by most cell types that transfer biological signal(s), including metabolic messengers such as miRNA and peptides, between cells and organs. Methods We investigated whether beta cells can take up liver-derived exosomes and examined their impact on beta cell functional genes and insulin expression. Exosomes isolated from human liver HepG2 cells were characterized using various methods, including Transmission Electron Microscopy (TEM), dynamic light scattering (DLS), and Western blot analysis of exosomal markers. Exosome labeling and cell uptake were assessed using CM-Dil dye. The effect of liver cell-derived exosomes on Min6 beta cells was determined through gene expression analyses of beta cell markers and insulin using qPCR, as well as Akt signaling using Western blotting. Results Treatment of Min6 beta cells with exosomes isolated from human liver HepG2 cells treated with insulin receptor antagonist S961 significantly increased the expression of beta cell markers Pdx1, NeuroD1, and Ins1 compared to the exosomes isolated from untreated cells. In line with this, the activity of AKT kinase, an integral component of the insulin receptor pathway, is elevated in pancreatic beta cells, as represented by an increase in AKT's downstream substrate, FoxO1 phosphorylation. Discussions This study suggests that liver-derived exosomes may carry a specific molecular cargo that can affect insulin expression in pancreatic beta cells, ultimately affecting glucose homeostasis.
Collapse
Affiliation(s)
- Azam Mahmoudi-Aznaveh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Ardestani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:biom12121785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
|
5
|
Usher ET, Showalter SA. Biophysical insights into glucose-dependent transcriptional regulation by PDX1. J Biol Chem 2022; 298:102623. [PMID: 36272648 PMCID: PMC9691942 DOI: 10.1016/j.jbc.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/22/2022] Open
Abstract
The pancreatic and duodenal homeobox 1 (PDX1) is a central regulator of glucose-dependent transcription of insulin in pancreatic β cells. PDX1 transcription factor activity is integral to the development and sustained health of the pancreas; accordingly, deciphering the complex network of cellular cues that lead to PDX1 activation or inactivation is an important step toward understanding the etiopathologies of pancreatic diseases and the development of novel therapeutics. Despite nearly 3 decades of research into PDX1 control of Insulin expression, the molecular mechanisms that dictate the function of PDX1 in response to glucose are still elusive. The transcriptional activation functions of PDX1 are regulated, in part, by its two intrinsically disordered regions, which pose a barrier to its structural and biophysical characterization. Indeed, many studies of PDX1 interactions, clinical mutations, and posttranslational modifications lack molecular level detail. Emerging methods for the quantitative study of intrinsically disordered regions and refined models for transactivation now enable us to validate and interrogate the biochemical and biophysical features of PDX1 that dictate its function. The goal of this review is to summarize existing PDX1 studies and, further, to generate a comprehensive resource for future studies of transcriptional control via PDX1.
Collapse
Affiliation(s)
- Emery T Usher
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott A Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
6
|
Liu W, Xiong S, Zhang Y, Du J, Dong C, Yu Z, Ma X. Transcriptome Profiling Reveals Important Transcription Factors and Biological Processes in Skin Regeneration Mediated by Mechanical Stretch. Front Genet 2021; 12:757350. [PMID: 34659370 PMCID: PMC8511326 DOI: 10.3389/fgene.2021.757350] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Mechanical stretch is utilized to promote skin regeneration during tissue expansion for reconstructive surgery. Although mechanical stretch induces characteristic morphological changes in the skin, the biological processes and molecular mechanisms involved in mechanically induced skin regeneration are not well elucidated. Methods: A male rat scalp expansion model was established and the important biological processes related to mechanical stretch-induced skin regeneration were identified using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and gene set enrichment analysis (GSEA). Analysis was also conducted by constructing a protein–protein interaction (PPI) network, identifying key modules and hub genes, determining transcription factor (TF)-mRNA regulatory relationships, and confirming the expression pattern of the TFs and hub genes. Results: We identified nine robust hub genes (CXCL1, NEB, ACTN3, MYOZ1, ACTA1, TNNT3, PYGM, AMPD1, and CKM) that may serve as key molecules in skin growth. These genes were determined to be involved in several important biological processes, including keratinocyte differentiation, cytoskeleton reorganization, chemokine signaling pathway, glycogen metabolism, and voltage-gated ion channel activity. The potentially significant pathways, including the glucagon signaling pathway, the Wnt signaling pathway, and cytokine–cytokine receptor interaction, were distinguished. In addition, we identified six TFs (LEF1, TCF7, HMGA1, TFAP2C, FOSL1, and ELF5) and constructed regulatory TF–mRNA interaction networks. Conclusion: This study generated a comprehensive overview of the gene networks underlying mechanically induced skin regeneration. The functions of these key genes and the pathways in which they participate may reveal new aspects of skin regeneration under mechanical strain. Furthermore, the identified TF regulators can be used as potential candidates for clinical therapeutics for skin pretreatment before reconstructive surgery.
Collapse
Affiliation(s)
- Wei Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shaoheng Xiong
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu Zhang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Du
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chen Dong
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xianjie Ma
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Mechanisms of Binding Specificity among bHLH Transcription Factors. Int J Mol Sci 2021; 22:ijms22179150. [PMID: 34502060 PMCID: PMC8431614 DOI: 10.3390/ijms22179150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The transcriptome of every cell is orchestrated by the complex network of interaction between transcription factors (TFs) and their binding sites on DNA. Disruption of this network can result in many forms of organism malfunction but also can be the substrate of positive natural selection. However, understanding the specific determinants of each of these individual TF-DNA interactions is a challenging task as it requires integrating the multiple possible mechanisms by which a given TF ends up interacting with a specific genomic region. These mechanisms include DNA motif preferences, which can be determined by nucleotide sequence but also by DNA’s shape; post-translational modifications of the TF, such as phosphorylation; and dimerization partners and co-factors, which can mediate multiple forms of direct or indirect cooperative binding. Binding can also be affected by epigenetic modifications of putative target regions, including DNA methylation and nucleosome occupancy. In this review, we describe how all these mechanisms have a role and crosstalk in one specific family of TFs, the basic helix-loop-helix (bHLH), with a very conserved DNA binding domain and a similar DNA preferred motif, the E-box. Here, we compile and discuss a rich catalog of strategies used by bHLH to acquire TF-specific genome-wide landscapes of binding sites.
Collapse
|
8
|
Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 2021; 12:3117. [PMID: 34035261 PMCID: PMC8149454 DOI: 10.1038/s41467-021-23216-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria.
Collapse
|
9
|
Camara BOS, Ocarino NM, Bertassoli BM, Malm C, Araújo FR, Reis AMS, Jorge EC, Alves EGL, Serakides R. Differentiation of canine adipose mesenchymal stem cells into insulin-producing cells: comparison of different culture medium compositions. Domest Anim Endocrinol 2021; 74:106572. [PMID: 33039930 DOI: 10.1016/j.domaniend.2020.106572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
The aim of this study was to differentiate canine adipose-derived mesenchymal stem cells (ADMSCs) into insulin-producing cells by using culture media with different compositions to determine the most efficient media. Stem cells isolated from the fat tissues close to the bitch uterus were distributed into 6 groups: (1) Dulbecco's modified Eagle medium (DMEM)-high glucose (HG), β-mercaptoethanol, and nicotinamide; (2) DMEM-HG, β-mercaptoethanol, nicotinamide, and exendin-4; (3) DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, and l-glutamine; (4) DMEM-HG, β-mercaptoethanol, and nicotinamide (for the initial 8-d period), and DMEM-HG, β-mercaptoethanol, nicotinamide, exendin-4, B27, nonessential amino acids, l-glutamine, and basic fibroblast growth factor (for the remaining 8-d period); (5) DMEM-HG and fetal bovine serum; and (6) DMEM-low glucose and fetal bovine serum (standard control group). Adipose-derived mesenchymal stem cells from groups 1 to 5 gradually became round in shape and gathered in clusters. These changes differed between the groups. In group 3, the cell clusters were apparently more in numbers and gathered as bigger aggregates. Dithizone staining showed that groups 3 and 4 were similar in terms of the mean area of each aggregate stained for insulin. However, only in group 4, the number of insulin aggregates and the total area of aggregates stained were significantly bigger than in the other groups. The mRNA expression of PDX1, BETA2, MafA, and Insulin were also confirmed in all the groups. We conclude that by manipulating the composition of the culture medium it is possible to induce canine ADMSCs into insulin-producing cells, and the 2-staged protocol that was used promoted the best differentiation.
Collapse
Affiliation(s)
- B O S Camara
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - N M Ocarino
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - B M Bertassoli
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - C Malm
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - F R Araújo
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - A M S Reis
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E C Jorge
- Laboratório de Biologia Oral e do Desenvolvimento, Departamento de Morfologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - E G L Alves
- Universidade de Uberaba (UNIUBE), Uberaba, Minas Gerais, Brazil
| | - R Serakides
- Núcleo de Células Tronco e Terapia Celular Animal (NCT-TCA) da Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
10
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
11
|
Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci 2020; 21:ijms21114170. [PMID: 32545257 PMCID: PMC7312888 DOI: 10.3390/ijms21114170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Correspondence: ; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553
| | | | | | | |
Collapse
|
12
|
VEGF-B ablation in pancreatic β-cells upregulates insulin expression without affecting glucose homeostasis or islet lipid uptake. Sci Rep 2020; 10:923. [PMID: 31969592 PMCID: PMC6976647 DOI: 10.1038/s41598-020-57599-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) affects millions of people and is linked with obesity and lipid accumulation in peripheral tissues. Increased lipid handling and lipotoxicity in insulin producing β-cells may contribute to β-cell dysfunction in T2DM. The vascular endothelial growth factor (VEGF)-B regulates uptake and transcytosis of long-chain fatty acids over the endothelium to tissues such as heart and skeletal muscle. Systemic inhibition of VEGF-B signaling prevents tissue lipid accumulation, improves insulin sensitivity and glucose tolerance, as well as reduces pancreatic islet triglyceride content, under T2DM conditions. To date, the role of local VEGF-B signaling in pancreatic islet physiology and in the regulation of fatty acid trans-endothelial transport in pancreatic islet is unknown. To address these questions, we have generated a mouse strain where VEGF-B is selectively depleted in β-cells, and assessed glucose homeostasis, β-cell function and islet lipid content under both normal and high-fat diet feeding conditions. We found that Vegfb was ubiquitously expressed throughout the pancreas, and that β-cell Vegfb deletion resulted in increased insulin gene expression. However, glucose homeostasis and islet lipid uptake remained unaffected by β-cell VEGF-B deficiency.
Collapse
|
13
|
GPR120 protects lipotoxicity-induced pancreatic β-cell dysfunction through regulation of PDX1 expression and inhibition of islet inflammation. Clin Sci (Lond) 2019; 133:101-116. [PMID: 30523046 DOI: 10.1042/cs20180836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
G-protein coupled receptor 120 (GPR120) has been shown to act as an omega-3 unsaturated fatty acid sensor and is involved in insulin secretion. However, the underlying mechanism in pancreatic β cells remains unclear. To explore the potential link between GPR120 and β-cell function, its agonists docosahexaenoic acid (DHA) and GSK137647A were used in palmitic acid (PA)-induced pancreatic β-cell dysfunction, coupled with GPR120 knockdown (KD) in MIN6 cells and GPR120 knockout (KO) mice to identify the underlying signaling pathways. In vitro and ex vivo treatments of MIN6 cells and islets isolated from wild-type (WT) mice with DHA and GSK137647A restored pancreatic duodenal homeobox-1 (PDX1) expression levels and β-cell function via inhibiting PA-induced elevation of proinflammatory chemokines and activation of nuclear factor κB, c-Jun amino (N)-terminal kinases1/2 and p38MAPK signaling pathways. On the contrary, these GPR120 agonism-mediated protective effects were abolished in GPR120 KD cells and islets isolated from GPR120 KO mice. Furthermore, GPR120 KO mice displayed glucose intolerance and insulin resistance relative to WT littermates, and β-cell functional related genes were decreased while inflammation was exacerbated in islets with increased macrophages in pancreas from GPR120 KO mice. DHA and GSK137647A supplementation ameliorated glucose tolerance and insulin sensitivity, as well as improved Pdx1 expression and islet inflammation in diet-induced obese WT mice, but not in GPR120 KO mice. These findings indicate that GPR120 activation is protective against lipotoxicity-induced pancreatic β-cell dysfunction, via the mediation of PDX1 expression and inhibition of islet inflammation, and that GPR120 activation may serve as a preventative and therapeutic target for obesity and diabetes.
Collapse
|
14
|
Malenczyk K, Szodorai E, Schnell R, Lubec G, Szabó G, Hökfelt T, Harkany T. Secretagogin protects Pdx1 from proteasomal degradation to control a transcriptional program required for β cell specification. Mol Metab 2018; 14:108-120. [PMID: 29910119 PMCID: PMC6034064 DOI: 10.1016/j.molmet.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Specification of endocrine cell lineages in the developing pancreas relies on extrinsic signals from non-pancreatic tissues, which initiate a cell-autonomous sequence of transcription factor activation and repression switches. The steps in this pathway share reliance on activity-dependent Ca2+ signals. However, the mechanisms by which phasic Ca2+ surges become converted into a dynamic, cell-state-specific and physiologically meaningful code made up by transcription factors constellations remain essentially unknown. METHODS We used high-resolution histochemistry to explore the coincident expression of secretagogin and transcription factors driving β cell differentiation. Secretagogin promoter activity was tested in response to genetically manipulating Pax6 and Pax4 expression. Secretagogin null mice were produced with their pancreatic islets morphologically and functionally characterized during fetal development. A proteomic approach was utilized to identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome and verified in vitro by focusing on Pdx1 retention. RESULTS Here, we show that secretagogin, a Ca2+ sensor protein that controls α and β cell turnover in adult, is in fact expressed in endocrine pancreas from the inception of lineage segregation in a Pax4-and Pax6-dependent fashion. By genetically and pharmacologically manipulating secretagogin expression and interactome engagement in vitro, we find secretagogin to gate excitation-driven Ca2+ signals for β cell differentiation and insulin production. Accordingly, secretagogin-/- fetuses retain a non-committed pool of endocrine progenitors that co-express both insulin and glucagon. We identify the Ca2+-dependent interaction of secretagogin with subunits of the 26S proteasome complex to prevent Pdx1 degradation through proteasome inactivation. This coincides with retained Nkx6.1, Pax4 and insulin transcription in prospective β cells. CONCLUSIONS In sum, secretagogin scales the temporal availability of a Ca2+-dependent transcription factor network to define β cell identity.
Collapse
Affiliation(s)
- Katarzyna Malenczyk
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Edit Szodorai
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, SE-17177, Stockholm, Sweden
| | - Gert Lubec
- Paracelsus Medical University, Strubergasse 21, A-5020, Salzburg, Austria
| | - Gábor Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony utca 43, H-1083, Budapest, Hungary
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria; Department of Neuroscience, Karolinska Institutet, Retzius väg 8, SE-17177, Stockholm, Sweden.
| |
Collapse
|
15
|
Neelankal John A, Jiang FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabetes Complications 2018; 32:429-443. [PMID: 29422234 DOI: 10.1016/j.jdiacomp.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
One significant health issue that plagues contemporary society is that of Type 2 diabetes (T2D). This disease is characterised by higher-than-average blood glucose levels as a result of a combination of insulin resistance and insufficient insulin secretions from the β-cells of pancreatic islets of Langerhans. Previous developmental research into the pancreas has identified how early precursor genes of pancreatic β-cells, such as Cpal, Ngn3, NeuroD, Ptf1a, and cMyc, play an essential role in the differentiation of these cells. Furthermore, β-cell molecular characterization has also revealed the specific role of β-cell-markers, such as Glut2, MafA, Ins1, Ins2, and Pdx1 in insulin expression. The expression of these genes appears to be suppressed in the T2D β-cells, along with the reappearance of the early endocrine marker genes. Glucose transporters transport glucose into β-cells, thereby controlling insulin release during hyperglycaemia. This stimulates glycolysis through rises in intracellular calcium (a process enhanced by vitamin D) (Norman et al., 1980), activating 2 of 4 proteinases. The rise in calcium activates half of pancreatic β-cell proinsulinases, thus releasing free insulin from granules. The synthesis of ATP from glucose by glycolysis, Krebs cycle and oxidative phosphorylation plays a role in insulin release. Some studies have found that the β-cells contain high levels of the vitamin D receptor; however, the role that this plays in maintaining the maturity of the β-cells remains unknown. Further research is required to develop a more in-depth understanding of the role VDR plays in β-cell function and the processes by which the beta cell function is preserved.
Collapse
Affiliation(s)
- Abraham Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia.
| |
Collapse
|
16
|
Liu SH, Yu J, Sanchez R, Liu X, Heidt D, Willey J, Nemunaitis J, Brunicardi FC. A novel synthetic human insulin super promoter for targeting PDX-1-expressing pancreatic cancer. Cancer Lett 2018; 418:75-83. [PMID: 29309817 DOI: 10.1016/j.canlet.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Our previous studies have shown that a rat insulin promoter II fragment (RIP) was used to effectively target pancreatic adenocarcinoma (PDAC) and insulinoma that over-express pancreatic and duodenal homeobox-1 (PDX-1). To enhance the activity and specificity of the human insulin promoter, we engineered a synthetic human insulin super-promoter (SHIP). Reporter assay demonstrated that SHIP1 was the most powerful promoter among all of the SHIPs and had far greater activity than the endogenous human insulin promoters and RIP in PDAC expressing PDX-1. Over-expression, knockdown and competitive inhibition of PDX-1 expression assay proved that PDX-1 is a critical transcript factor to regulate the activity of SHIP1. SHIP1-driven viral thymidine kinase followed by ganciclovir (SHIP1-TK/GCV) resulted in cytotoxicity to PDAC cells in vitro. Systemic delivery of SHIP1-TK/GCV in PDAC xenograft mice significantly suppressed PANC-1 tumor growth in vivo greater than RIP-TK/GCV and CMV-TK/GCV controls (p < .05). These preclinical data suggest that SHIP1 is a powerful novel promoter that can be used to target human PDAC expressing PDX-1 in clinical trials. Furthermore, this novel strategy of engineering synthetic super-promoters could be used for other cancer targets.
Collapse
Affiliation(s)
- Shi-He Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - Juehua Yu
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Robbi Sanchez
- Department of Surgery, University of California at Los Angeles, CA, USA
| | - Xiaochen Liu
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - David Heidt
- Department of Surgery, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - James Willey
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | - John Nemunaitis
- Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo OH, USA
| | | |
Collapse
|
17
|
Chiefari E, Foti DP, Sgarra R, Pegoraro S, Arcidiacono B, Brunetti FS, Greco M, Manfioletti G, Brunetti A. Transcriptional Regulation of Glucose Metabolism: The Emerging Role of the HMGA1 Chromatin Factor. Front Endocrinol (Lausanne) 2018; 9:357. [PMID: 30034366 PMCID: PMC6043803 DOI: 10.3389/fendo.2018.00357] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
HMGA1 (high mobility group A1) is a nonhistone architectural chromosomal protein that functions mainly as a dynamic regulator of chromatin structure and gene transcription. As such, HMGA1 is involved in a variety of fundamental cellular processes, including gene expression, epigenetic regulation, cell differentiation and proliferation, as well as DNA repair. In the last years, many reports have demonstrated a role of HMGA1 in the transcriptional regulation of several genes implicated in glucose homeostasis. Initially, it was proved that HMGA1 is essential for normal expression of the insulin receptor (INSR), a critical link in insulin action and glucose homeostasis. Later, it was demonstrated that HMGA1 is also a downstream nuclear target of the INSR signaling pathway, representing a novel mediator of insulin action and function at this level. Moreover, other observations have indicated the role of HMGA1 as a positive modulator of the Forkhead box protein O1 (FoxO1), a master regulatory factor for gluconeogenesis and glycogenolysis, as well as a positive regulator of the expression of insulin and of a series of circulating proteins that are involved in glucose counterregulation, such as the insulin growth factor binding protein 1 (IGFBP1), and the retinol binding protein 4 (RBP4). Thus, several lines of evidence underscore the importance of HMGA1 in the regulation of glucose production and disposal. Consistently, lack of HMGA1 causes insulin resistance and diabetes in humans and mice, while variations in the HMGA1 gene are associated with the risk of type 2 diabetes and metabolic syndrome, two highly prevalent diseases that share insulin resistance as a common pathogenetic mechanism. This review intends to give an overview about our current knowledge on the role of HMGA1 in glucose metabolism. Although research in this field is ongoing, many aspects still remain elusive. Future directions to improve our insights into the pathophysiology of glucose homeostasis may include epigenetic studies and the use of "omics" strategies. We believe that a more comprehensive understanding of HMGA1 and its networks may reveal interesting molecular links between glucose metabolism and other biological processes, such as cell proliferation and differentiation.
Collapse
Affiliation(s)
- Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pegoraro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Manfredi Greco
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | | | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti
| |
Collapse
|
18
|
Li H, Wang Z, Li Y, Fang R, Wang H, Shi H, Zhang X, Zhang W, Ye L. Hepatitis B X-interacting protein promotes the formation of the insulin gene-transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem 2017; 293:2053-2065. [PMID: 29259128 DOI: 10.1074/jbc.m117.809582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
The activation of insulin gene transcription depends on multiple nuclear proteins, including the transcription factors PDX-1 and NEUROD1, which form a transcriptional complex. We recently reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can modulate glucose metabolism reprogramming in cancer cells. However, the physiological role of HBXIP in the modulation of glucose metabolism in normal tissues is poorly understood. Here, we report that Hbxip is an essential regulator of the effect of the Pdx-1/Neurod1 complex on insulin gene transcription in murine pancreatic β-cells in vitro and in vivo We found that pancreatic β-cell-specific Hbxip-knockout mice displayed higher fasting blood glucose levels and impaired glucose tolerance. Furthermore, Hbxip was involved in the regulation of insulin in the pancreas islets and increased insulin gene expression in rat pancreatic β-cells. Mechanistically, Hbxip stimulated insulin enhancer activity by interacting with Pdx-1 and recruiting Neurod1 to Pdx-1. Functionally, we provide evidence that Hbxip is required for Pdx-1/Neurod1-mediated insulin expression in rat pancreatic β-cells. Collectively, these results indicate that Hbxip is involved in the transcription of insulin by increasing the levels of the Pdx-1/Neurod1 complex in animal pancreatic β-cells. Our finding provides the insight into the mechanism by which Hbxip stimulates the transcription of the insulin gene.
Collapse
Affiliation(s)
- Hang Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Zhen Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Yinghui Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Runping Fang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Huawei Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Hui Shi
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Xiaodong Zhang
- Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiying Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Lihong Ye
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| |
Collapse
|
19
|
Carvalho DS, Diniz MM, Haidar AA, Cavanal MDF, da Silva Alves E, Carpinelli AR, Gil FZ, Hirata AE. L-Arginine supplementation improves insulin sensitivity and beta cell function in the offspring of diabetic rats through AKT and PDX-1 activation. Eur J Pharmacol 2016; 791:780-787. [PMID: 27717730 DOI: 10.1016/j.ejphar.2016.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/11/2023]
Abstract
Maternal hyperglycemia can result in defects in glucose metabolism and pancreatic β-cell function in offspring. The purpose of this study was to evaluate the impact of maternal diabetes mellitus on pancreatic islets, muscle and adipose tissue of the offspring, with or without oral l-Arginine supplementation. The induction of diabetes was performed using streptozotocin (60mg/kg). Animals were studied at 3 months of age and treatment (sucrose or l-Arginine) was administered from weaning. We observed that l-Arg improved insulin sensitivity in the offspring of diabetic mothers (DA), reflected by higher insulin-induced phosphorylation of Akt in muscle and adipose tissue. Insulin resistance is associated with increased oxidative stress and the NADPH oxidase enzyme plays an important role. Our results showed that the augmented interaction of p47PHOX with gp91PHOX subunits of the enzyme in skeletal muscle tissue in the offspring of diabetic rats (DV) was abolished after l-Arg treatment in DA rats. Maternal diabetes caused alterations in the islet functionality of the offspring leading to increased insulin secretion at both low (2.8mM) and high (16.7mM) concentrations of glucose. l-Arg reverses this effect, suggesting that it may be an important modulator in the insulin secretory process. In addition it is possible that l-Arg exerts its effects directly onto essential molecules for the maintenance and survival of pancreatic islets, decreasing protein expression of p47PHOX while increasing Akt phosphorylation and PDX-1 expression. The mechanism by which l-Arg exerts its beneficial effects may involve nitric oxide bioavailability since treatment restored NO levels in the pancreas.
Collapse
Affiliation(s)
| | - Marilia Melo Diniz
- Department of Physiology - Federal University of São Paulo, UNIFESP, Brazil
| | - André Abour Haidar
- Department of Physiology - Federal University of São Paulo, UNIFESP, Brazil
| | | | | | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, USP, Brazil
| | - Frida Zaladek Gil
- Department of Physiology - Federal University of São Paulo, UNIFESP, Brazil
| | | |
Collapse
|
20
|
Wang W, Shi Q, Guo T, Yang Z, Jia Z, Chen P, Zhou C. PDX1 and ISL1 differentially coordinate with epigenetic modifications to regulate insulin gene expression in varied glucose concentrations. Mol Cell Endocrinol 2016; 428:38-48. [PMID: 26994512 DOI: 10.1016/j.mce.2016.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/26/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
The mechanism of insulin gene transcription control in response to glucose concentration is poorly defined. The islet-restricted transcription factors PDX1 and ISL1 interact with BETA2, activating insulin gene expression. However, their contribution and hierarchical organization in insulin expression control based on glucose concentration remain unknown. We investigated PDX1 and ISL1 regulation of insulin gene expression in pancreatic β cells cultured in normal (5 mM/L) and high (25 mM/L) glucose conditions. ISL1 interacted with BETA2 to maintain basic insulin gene transcriptional activity under normal glucose. The ISL1-recruited cofactors SET9 and JMJD3 facilitated insulin gene histone modifications under normal glucose. In high-glucose concentrations, PDX1 formed a complex with BETA2 to enhance insulin gene expression. PDX1 also recruited SET9 and JMJD3 to promote the activation of histone modulation on the insulin promoter. This is the first evidence transcription factors orchestrate epigenetic modifications to control insulin gene expression based on glucose concentration.
Collapse
Affiliation(s)
- Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Qiong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Ting Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xue Yuan Road, Beijing 100191, China.
| |
Collapse
|
21
|
Jiang FX, Morahan G. Insulin-secreting β cells require a post-genomic concept. World J Diabetes 2016; 7:198-208. [PMID: 27226815 PMCID: PMC4873311 DOI: 10.4239/wjd.v7.i10.198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023] Open
Abstract
Pancreatic insulin-secreting β cells are essential in maintaining normal glucose homeostasis accomplished by highly specialized transcription of insulin gene, of which occupies up to 40% their transcriptome. Deficiency of these cells causes diabetes mellitus, a global public health problem. Although tremendous endeavors have been made to generate insulin-secreting cells from human pluripotent stem cells (i.e., primitive cells capable of giving rise to all cell types in the body), a regenerative therapy to diabetes has not yet been established. Furthermore, the nomenclature of β cells has become inconsistent, confusing and controversial due to the lack of standardized positive controls of developmental stage-matched in vivo cells. In order to minimize this negative impact and facilitate critical research in this field, a post-genomic concept of pancreatic β cells might be helpful. In this review article, we will briefly describe how β cells were discovered and islet lineage is developed that may help understand the cause of nomenclatural controversy, suggest a post-genomic definition and finally provide a conclusive remark on future research of this pivotal cell.
Collapse
|
22
|
Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. J Diabetes Investig 2016; 7:286-96. [PMID: 27330712 PMCID: PMC4847880 DOI: 10.1111/jdi.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β‐cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β‐cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin‐producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β‐cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β‐cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin‐producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin‐producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin‐producing cells, especially duct and acinar cells.
Collapse
Affiliation(s)
- Hyo-Sup Kim
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| |
Collapse
|
23
|
Burke GW, Vendrame F, Virdi SK, Ciancio G, Chen L, Ruiz P, Messinger S, Reijonen HK, Pugliese A. Lessons From Pancreas Transplantation in Type 1 Diabetes: Recurrence of Islet Autoimmunity. Curr Diab Rep 2015; 15:121. [PMID: 26547222 DOI: 10.1007/s11892-015-0691-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes recurrence (T1DR) affecting pancreas transplants was first reported in recipients of living-related pancreas grafts from twins or HLA identical siblings; given HLA identity, recipients received no or minimal immunosuppression. This observation provided critical evidence that type 1 diabetes (T1D) is an autoimmune disease. However, T1DR is traditionally considered very rare in immunosuppressed recipients of pancreas grafts from organ donors, representing the majority of recipients, and immunological graft failures are ascribed to chronic rejection. We have been performing simultaneous pancreas-kidney (SPK) transplants for over 25 years and find that 6-8 % of our recipients develop T1DR, with symptoms usually becoming manifest on extended follow-up. T1DR is typically characterized by (1) variable degree of insulitis and loss of insulin staining, on pancreas transplant biopsy (with most often absent), minimal to moderate and rarely severe pancreas, and/or kidney transplant rejection; (2) the conversion of T1D-associated autoantibodies (to the autoantigens GAD65, IA-2, and ZnT8), preceding hyperglycemia by a variable length of time; and (3) the presence of autoreactive T cells in the peripheral blood, pancreas transplant, and/or peripancreatic transplant lymph nodes. There is no therapeutic regimen that so far has controlled the progression of islet autoimmunity, even when additional immunosuppression was added to the ongoing chronic regimens; we hope that further studies and, in particular, in-depth analysis of pancreas transplant biopsies with recurrent diabetes will help identify more effective therapeutic approaches.
Collapse
Affiliation(s)
- George W Burke
- Miami Transplant Institute, 1801 NW 9th Ave, Highland Professional Building, Miami, FL, 33136, USA.
- Department of Surgery, Division of Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Francesco Vendrame
- Department of Medicine, Division of Endocrinology and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sahil K Virdi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - G Ciancio
- Miami Transplant Institute, 1801 NW 9th Ave, Highland Professional Building, Miami, FL, 33136, USA
- Department of Surgery, Division of Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Linda Chen
- Miami Transplant Institute, 1801 NW 9th Ave, Highland Professional Building, Miami, FL, 33136, USA
- Department of Surgery, Division of Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Phillip Ruiz
- Miami Transplant Institute, 1801 NW 9th Ave, Highland Professional Building, Miami, FL, 33136, USA
- Department of Surgery, Division of Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shari Messinger
- Department of Epidemiology and Public Health Sciences, Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Alberto Pugliese
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, Division of Endocrinology and Metabolism, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
24
|
Jiang FX, Mishina Y, Baten A, Morahan G, Harrison LC. Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1-5-HT axis. Biol Open 2015; 4:1016-23. [PMID: 26187948 PMCID: PMC4542282 DOI: 10.1242/bio.011858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling is crucial for the development and function of numerous organs, but its role on the function of pancreatic islets is not completely clear. To explore this question, we applied the high throughput transcriptomic analyses on the islets isolated from mice with a pancreas-specific deletion of the gene, Bmpr1a, encoding the type 1a BMP receptor. Consistently, these pBmpr1aKO mice had impaired glucose homeostasis at 3 months, and were more severely affected at 12 months of age. These had lower fasting blood insulin concentrations, with reduced expression of several key regulators of β-cell function. Importantly, transcriptomic profiling of 3-month pBmpr1aKO islets and bioinformatic analyses revealed abnormal expression of 203 metabolic genes. Critically among these, the tryptophan hydroxylase 1 gene (Tph1), encoding the rate-limiting enzyme for the production of 5-hydroxytryptamine (5-HT) was the highest over-expressed one. 5-HT is an important regulator of insulin secretion from β cells. Treatment with excess 5-HT inhibited this secretion. Thus our transcriptomic analysis links two highly conserved molecular pathways the BMP signaling and the TPH1–5-HT axis on glucose homeostasis.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Akma Baten
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Grant Morahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Leonard C Harrison
- The Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| |
Collapse
|
25
|
Abuzgaia AM, Hardy DB, Arany E. Regulation of postnatal pancreatic Pdx1 and downstream target genes after gestational exposure to protein restriction in rats. Reproduction 2015; 149:293-303. [DOI: 10.1530/rep-14-0245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study carried out in our laboratory demonstrated that protein restriction (low protein, LP) during fetal and neonatal life alters pancreatic development and impairs glucose tolerance later in life. In this study, we examined the role of the transcription factorPdx1, a master regulator of β-cell differentiation and function along with its downstream target genes insulin,Glut2and glucokinase (GK). The role(s) of these genes and protein products on the pancreata of male offspring from mothers exposed to LP diets were assessed during gestation, weaning, and adult life. Pregnant rats were allocated to two dietary treatments: control (C) 20% protein diet or LP, 8% protein diet. At birth, offspring were divided into four groups: C received control diet all life, LP1 received LP diet all life, LP2 changed the LP diet to C at weaning, and LP3 switched to C after being exposed to LP during gestation only. Body weights (bw) were significantly (P<0.001) decreased in all LP groups at birth. At weaning, only the LP3 offspring had their body weight restored to control levels.Pdx1or any of thePdx1-target genes were similar in all diets at day 21. However, at d130Pdx1mRNA expression and protein abundance were significantly decreased (P<0.05) in all LP groups. In addition, insulin mRNA and protein were decreased in LP1 and LP3 groups compared with C,Glut2mRNA and GLUT2 protein levels were decreased in LP3 and GK did not change between groups. Intraperitoneal glucose tolerance test revealed impaired glucose tolerance in LP3 males, concomitant with decreased β-cell mass, islet area, and PDX1 nuclear protein localization. Collectively, this study suggests that restoring proteins in the diet after birth in LP offspring dramatically impairs glucose homeostasis in early adulthood, by alteringPdx1expression and downstream-target genes increasing the risk to develop type 2 diabetes.
Collapse
|
26
|
Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Özcan S, Pachaiyappan B, Woster PM, Hunter CS, Stein R, Mirmira RG. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. J Biol Chem 2015; 290:9812-22. [PMID: 25713082 DOI: 10.1074/jbc.m114.616219] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
The transcription factor Pdx1 is crucial to islet β cell function and regulates target genes in part through interaction with coregulatory factors. Set7/9 is a Lys methyltransferase that interacts with Pdx1. Here we tested the hypothesis that Lys methylation of Pdx1 by Set7/9 augments Pdx1 transcriptional activity. Using mass spectrometry and mutational analysis of purified proteins, we found that Set7/9 methylates the N-terminal residues Lys-123 and Lys-131 of Pdx1. Methylation of these residues occurred only in the context of intact, full-length Pdx1, suggesting a specific requirement of secondary and/or tertiary structural elements for catalysis by Set7/9. Immunoprecipitation assays and mass spectrometric analysis using β cells verified Lys methylation of endogenous Pdx1. Cell-based luciferase reporter assays using wild-type and mutant transgenes revealed a requirement of Pdx1 residue Lys-131, but not Lys-123, for transcriptional augmentation by Set7/9. Lys-131 was not required for high-affinity interactions with DNA in vitro, suggesting that its methylation likely enhances post-DNA binding events. To define the role of Set7/9 in β cell function, we generated mutant mice in which the gene encoding Set7/9 was conditionally deleted in β cells (Set(Δ)β). Set(Δ)β mice exhibited glucose intolerance similar to Pdx1-deficient mice, and their isolated islets showed impaired glucose-stimulated insulin secretion with reductions in expression of Pdx1 target genes. Our results suggest a previously unappreciated role for Set7/9-mediated methylation in the maintenance of Pdx1 activity and β cell function.
Collapse
Affiliation(s)
| | - Bernhard Maier
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Sarah A Tersey
- Department of Pediatrics and the Herman B. Wells Center for Pediatric Research
| | - Megan L Sampley
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | | | - Sabire Özcan
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Boobalan Pachaiyappan
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Patrick M Woster
- the Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Chad S Hunter
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Roland Stein
- the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Raghavendra G Mirmira
- From the Department of Cellular and Integrative Physiology, Department of Pediatrics and the Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, and Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
27
|
Mulley JF, Hargreaves AD, Hegarty MJ, Heller RS, Swain MT. Transcriptomic analysis of the lesser spotted catshark (Scyliorhinus canicula) pancreas, liver and brain reveals molecular level conservation of vertebrate pancreas function. BMC Genomics 2014; 15:1074. [PMID: 25480530 PMCID: PMC4362833 DOI: 10.1186/1471-2164-15-1074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 11/27/2014] [Indexed: 12/20/2022] Open
Abstract
Background Understanding the evolution of the vertebrate pancreas is key to understanding its functions. The chondrichthyes (cartilaginous fish such as sharks and rays) have often been suggested to possess the most ancient example of a distinct pancreas with both hormonal (endocrine) and digestive (exocrine) roles. The lack of genetic, genomic and transcriptomic data for cartilaginous fish has hindered a more thorough understanding of the molecular-level functions of the chondrichthyan pancreas, particularly with respect to their “unusual” energy metabolism (where ketone bodies and amino acids are the main oxidative fuel source) and their paradoxical ability to both maintain stable blood glucose levels and tolerate extensive periods of hypoglycemia. In order to shed light on some of these processes, we carried out the first large-scale comparative transcriptomic survey of multiple cartilaginous fish tissues: the pancreas, brain and liver of the lesser spotted catshark, Scyliorhinus canicula. Results We generated a mutli-tissue assembly comprising 86,006 contigs, of which 44,794 were assigned to a particular tissue or combination of tissues based on mapping of sequencing reads. We have characterised transcripts encoding genes involved in insulin regulation, glucose sensing, transcriptional regulation, signaling and digestion, as well as many peptide hormone precursors and their receptors for the first time. Comparisons to mammalian pancreas transcriptomes reveals that mechanisms of glucose sensing and insulin regulation used to establish and maintain a stable internal environment are conserved across jawed vertebrates and likely pre-date the vertebrate radiation. Conservation of pancreatic hormones and genes encoding digestive proteins support the single, early evolution of a distinct pancreatic gland with endocrine and exocrine functions in jawed vertebrates. In addition, we demonstrate that chondrichthyes lack pancreatic polypeptide (PP) and that reports of PP in the literature are likely due cross-reaction with PYY and/or NPY in the pancreas. A three hormone islet organ is therefore the ancestral jawed vertebrate condition, later elaborated upon only in the tetrapod lineage. Conclusions The cartilaginous fish are a great untapped resource for the reconstruction of patterns and processes of vertebrate evolution and new approaches such as those described in this paper will greatly facilitate their incorporation into the rank of “model organism”. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1074) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research, The University of Western Australia , Perth, Australia
| | | |
Collapse
|
29
|
Expression of biologically active TAT-fused recombinant islet transcription factors. Life Sci 2014; 114:45-50. [DOI: 10.1016/j.lfs.2014.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 11/17/2022]
|
30
|
Sanchez-Ferras O, Bernas G, Laberge-Perrault E, Pilon N. Induction and dorsal restriction of Paired-box 3 (Pax3) gene expression in the caudal neuroectoderm is mediated by integration of multiple pathways on a short neural crest enhancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:546-58. [PMID: 24815547 DOI: 10.1016/j.bbagrm.2014.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/26/2014] [Accepted: 04/30/2014] [Indexed: 12/27/2022]
Abstract
Pax3 encodes a paired-box transcription factor with key roles in neural crest and neural tube ontogenesis. Robust control of Pax3 neural expression is ensured by two redundant sets of cis-regulatory modules (CRMs) that integrate anterior-posterior (such as Wnt-βCatenin signaling) as well as dorsal-ventral (such as Shh-Gli signaling) instructive cues. In previous work, we sought to characterize the Wnt-mediated regulation of Pax3 expression and identified the Cdx transcription factors (Cdx1/2/4) as critical intermediates in this process. We identified the neural crest enhancer-2 (NCE2) from the 5'-flanking region of Pax3 as a Cdx-dependent CRM that recapitulates the restricted expression of Pax3 in the mouse caudal neuroectoderm. While this is consistent with a key role in relaying the inductive signal from posteriorizing Wnt ligands, the broad expression of Cdx proteins in the tailbud region is not consistent with the restricted activity of NCE2. This implies that other positive and/or negative inputs are required and, here, we report a novel role for the transcription factor Zic2 in this regulation. Our data strongly suggests that Zic2 is involved in the induction (as a direct Pax3NCE2 activator and Cdx neural cofactor) as well as the maintenance of Pax3 dorsal restriction (as a target of the ventral Shh repressive input). We also provide evidence that the inductive Cdx-Zic2 interaction is integrated on NCE2 with a positive input from the neural-specific transcription factor Sox2. Altogether, our data provide important mechanistic insights into the coordinated integration of different signaling pathways on a short Pax3 CRM.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada
| | - Emilie Laberge-Perrault
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada.
| |
Collapse
|
31
|
Kuang J, Hou X, Zhang J, Chen Y, Su Z. Identification of insulin as a novel retinoic acid receptor-related orphan receptor α target gene. FEBS Lett 2014; 588:1071-9. [PMID: 24583012 DOI: 10.1016/j.febslet.2014.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 01/27/2014] [Accepted: 02/14/2014] [Indexed: 02/05/2023]
Abstract
Insulin plays an important role in regulation of lipid and glucose metabolism. Retinoic acid receptor-related orphan receptor α (RORα) modulates physiopathological processes such as dyslipidemia and diabetes. In this study, we found overexpression of RORα in INS1 cells resulted in increased expression and secretion of insulin. Suppression of endogenous RORα caused a decrease of insulin expression. Luciferase and electrophoretic mobility shift assay (EMSA) assays demonstrated that RORα activated insulin transcription via direct binding to its promoter. RORα was also observed to regulate BETA2 expression, which is one of the insulin active transfactors. In vivo analyses showed that the insulin transcription is increased by the synthetic RORα agonist SR1078. These findings identify RORα as a transcriptional activator of insulin and suggest novel therapeutic opportunities for management of the disease.
Collapse
Affiliation(s)
- Jiangying Kuang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yulong Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiguang Su
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Arcidiacono B, Iiritano S, Chiefari E, Brunetti FS, Gu G, Foti DP, Brunetti A. Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells. Front Endocrinol (Lausanne) 2014; 5:237. [PMID: 25628604 PMCID: PMC4292585 DOI: 10.3389/fendo.2014.00237] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 01/03/2023] Open
Abstract
The high-mobility group AT-hook 1 (HMGA1) protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called "enhanceosomes" on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increased susceptibility to type 2 diabetes mellitus in humans and mice. Interestingly, mice with disrupted HMGA1 gene had significantly smaller islets and decreased insulin content in their pancreata, suggesting that HMGA1 may have a direct role in insulin transcription and secretion. Herein, we investigate the regulatory roles of HMGA1 in insulin transcription. We provide evidence that HMGA1 physically interacts with PDX-1 and MafA, two critical transcription factors for insulin gene expression and beta-cell function, both in vitro and in vivo. We then show that the overexpression of HMGA1 significantly improves the transactivating activity of PDX-1 and MafA on human and mouse insulin promoters, while HMGA1 knockdown considerably decreased this transactivating activity. Lastly, we demonstrate that high glucose stimulus significantly increases the binding of HMGA1 to the insulin (INS) gene promoter, suggesting that HMGA1 may act as a glucose-sensitive element controlling the transcription of the INS gene. Together, our findings provide evidence that HMGA1, by regulating PDX-1- and MafA-induced transactivation of the INS gene promoter, plays a critical role in pancreatic beta-cell function and insulin production.
Collapse
Affiliation(s)
- Biagio Arcidiacono
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Iiritano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Center of Stem Cell Biology, Vanderbilt Medical Center, Nashville, TN, USA
| | - Daniela Patrizia Foti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Viale Europa (Località Germaneto), Catanzaro 88100, Italy e-mail:
| |
Collapse
|
33
|
Semache M, Ghislain J, Zarrouki B, Tremblay C, Poitout V. Pancreatic and duodenal homeobox-1 nuclear localization is regulated by glucose in dispersed rat islets but not in insulin-secreting cell lines. Islets 2014; 6:e982376. [PMID: 25437380 PMCID: PMC4588559 DOI: 10.4161/19382014.2014.982376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The transcription factor Pancreatic and Duodenal Homeobox-1 (PDX-1) plays a major role in the development and function of pancreatic β-cells and its mutation results in diabetes. In adult β-cells, glucose stimulates transcription of the insulin gene in part by regulating PDX-1 expression, stability and activity. Glucose is also thought to modulate PDX-1 nuclear translocation but in vitro studies examining nucleo-cytoplasmic shuttling of endogenous or ectopically expressed PDX-1 in insulin-secreting cell lines have led to conflicting results. Here we show that endogenous PDX-1 undergoes translocation from the cytoplasm to the nucleus in response to glucose in dispersed rat islets but not in insulin-secreting MIN6, HIT-T15, or INS832/13 cells. Interestingly, however, we found that a PDX-1-GFP fusion protein can shuttle from the cytoplasm to the nucleus in response to glucose stimulation in HIT-T15 cells. Our results suggest that the regulation of endogenous PDX-1 sub-cellular localization by glucose is observed in primary islets and that care should be taken when interpreting data from insulin-secreting cell lines.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- DAPI, 4′, 6-diamidino-2-phenylindole
- DMEM, dulbecco's modified eagle medium
- EDTA, ethylenediaminetetraacetic acid
- GFP, green fluorescent protein
- HDAC, histone deacetylase
- HIT-T15
- INS832/13
- KRBH, krebs ringer bicarbonate hepes
- MIN6
- MODY, maturity-onset diabetes of the young
- PDX-1
- PDX-1, pancreatic and duodenal homeobox-1
- SEM, standard error of the mean
- SUMO, small ubiquitin-like modifier
- T2D, type 2 diabetes
- ZDF, zucker diabetic fatty
- glucose
- glucose-stimulated insulin secretion
- nucleo-cytoplasmic shuttling
- pancreatic β cells
Collapse
Affiliation(s)
- Meriem Semache
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
| | - Julien Ghislain
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
| | - Bader Zarrouki
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
| | | | - Vincent Poitout
- Montreal Diabetes Research Center; CRCHUM; Montreal, QC, Canada
- Department of Biochemistry; University of Montreal; QC, Canada
- Department of Medicine; University of Montreal; QC, Canada
- Correspondence to: Vincent Poitout;
| |
Collapse
|
34
|
Sahu D, Bastidas M, Showalter SA. Generating NMR chemical shift assignments of intrinsically disordered proteins using carbon-detected NMR methods. Anal Biochem 2013; 449:17-25. [PMID: 24333248 DOI: 10.1016/j.ab.2013.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs by NMR spectroscopy is limited by the poor (1)H amide chemical shift dispersion typically observed in their spectra. Recently, (13)C direct-detected NMR spectroscopy has been recognized as enabling broad structural study of IDPs. Most notably, multidimensional experiments based on the (15)N,(13)C CON spectrum make complete chemical shift assignment feasible. Here we document a collection of NMR-based tools that efficiently lead to chemical shift assignment of IDPs, motivated by a case study of the C-terminal disordered region from the human pancreatic transcription factor Pdx1. Our strategy builds on the combination of two three-dimensional (3D) experiments, (HN-flip)N(CA)CON and 3D (HN-flip)N(CA)NCO, that enable daisy chain connections to be built along the IDP backbone, facilitated by acquisition of amino acid-specific (15)N,(13)C CON-detected experiments. Assignments are completed through carbon-detected, total correlation spectroscopy (TOCSY)-based side chain chemical shift measurement. Conducting our study required producing valuable modifications to many previously published pulse sequences, motivating us to announce the creation of a database of our pulse programs, which we make freely available through our website.
Collapse
Affiliation(s)
- Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Monique Bastidas
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
35
|
Zhou J, Huang K, Lei XG. Selenium and diabetes--evidence from animal studies. Free Radic Biol Med 2013; 65:1548-1556. [PMID: 23867154 PMCID: PMC3859733 DOI: 10.1016/j.freeradbiomed.2013.07.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Whereas selenium was found to act as an insulin mimic and to be antidiabetic in earlier studies, recent animal experiments and human trials have shown an unexpected risk of prolonged high Se intake in potentiating insulin resistance and type 2 diabetes. Elevating dietary Se intake (0.4 to 3.0mg/kg of diet) above the nutrient requirements, similar to overproduction of selenoproteins, led to insulin resistance and/or diabetes-like phenotypes in mice, rats, and pigs. Although its diabetogenic mechanism remains unclear, high Se intake elevated activity or production of selenoproteins including GPx1, MsrB1, SelS, and SelP. This upregulation diminished intracellular reactive oxygen species and then dysregulated key regulators of β cells and insulin synthesis and secretion, leading to chronic hyperinsulinemia. Overscavenging intracellular H2O2 also attenuated oxidative inhibition of protein tyrosine phosphatases and suppressed insulin signaling. High Se intake might affect expression and/or function of key regulators of glycolysis, gluconeogenesis, and lipogenesis. Future research is needed to find out if certain forms of Se metabolites in addition to selenoproteins and if mechanisms other than intracellular redox control mediate the diabetogenic effects of high Se intake. Furthermore, a potential interactive role of high Se intake in the interphase of carcinogenesis and diabetogenesis should be explored to make optimal use of Se in human nutrition and health.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
ZeRuth GT, Takeda Y, Jetten AM. The Krüppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription. Mol Endocrinol 2013; 27:1692-705. [PMID: 23927931 DOI: 10.1210/me.2013-1117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcriptional regulation of insulin in pancreatic β-cells is mediated primarily through enhancer elements located within the 5' upstream regulatory region of the preproinsulin gene. Recently, the Krüppel-like transcription factor, Gli-similar 3 (Glis3), was shown to bind the insulin (INS) promoter and positively influence insulin transcription. In this report, we examined in detail the synergistic activation of insulin transcription by Glis3 with coregulators, CREB-binding protein (CBP)/p300, pancreatic and duodenal homeobox 1 (Pdx1), neuronal differentiation 1 (NeuroD1), and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). Our data show that Glis3 expression, the binding of Glis3 to GlisBS, and its recruitment of CBP are required for optimal activation of the insulin promoter in pancreatic β-cells not only by Glis3, but also by Pdx1, MafA, and NeuroD1. Mutations in the GlisBS or small interfering RNA-directed knockdown of GLIS3 diminished insulin promoter activation by Pdx1, NeuroD1, and MafA, and neither Pdx1 nor MafA was able to stably associate with the insulin promoter when the GlisBS were mutated. In addition, a GlisBS mutation in the INS promoter implicated in the development of neonatal diabetes similarly abated activation by Pdx1, NeuroD1, and MafA that could be reversed by increased expression of exogenous Glis3. We therefore propose that recruitment of CBP/p300 by Glis3 provides a scaffold for the formation of a larger transcriptional regulatory complex that stabilizes the binding of Pdx1, NeuroD1, and MafA complexes to their respective binding sites within the insulin promoter. Taken together, these results indicate that Glis3 plays a pivotal role in the transcriptional regulation of insulin and may serve as an important therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Gary T ZeRuth
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| | | | | |
Collapse
|
37
|
Babin V, Wang D, Rose RB, Sagui C. Binding polymorphism in the DNA bound state of the Pdx1 homeodomain. PLoS Comput Biol 2013; 9:e1003160. [PMID: 23950697 PMCID: PMC3738460 DOI: 10.1371/journal.pcbi.1003160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
The subtle effects of DNA-protein recognition are illustrated in the homeodomain fold. This is one of several small DNA binding motifs that, in spite of limited DNA binding specificity, adopts crucial, specific roles when incorporated in a transcription factor. The homeodomain is composed of a 3-helix domain and a mobile N-terminal arm. Helix 3 (the recognition helix) interacts with the DNA bases through the major groove, while the N-terminal arm becomes ordered upon binding a specific sequence through the minor groove. Although many structural studies have characterized the DNA binding properties of homeodomains, the factors behind the binding specificity are still difficult to elucidate. A crystal structure of the Pdx1 homeodomain bound to DNA (PDB 2H1K) obtained previously in our lab shows two complexes with differences in the conformation of the N-terminal arm, major groove contacts, and backbone contacts, raising new questions about the DNA recognition process by homeodomains. Here, we carry out fully atomistic Molecular Dynamics simulations both in crystal and aqueous environments in order to elucidate the nature of the difference in binding contacts. The crystal simulations reproduce the X-ray experimental structures well. In the absence of crystal packing constraints, the differences between the two complexes increase during the solution simulations. Thus, the conformational differences are not an artifact of crystal packing. In solution, the homeodomain with a disordered N-terminal arm repositions to a partially specific orientation. Both the crystal and aqueous simulations support the existence of different stable binding conformers identified in the original crystallographic data with different degrees of specificity. We propose that protein-protein and protein-DNA interactions favor a subset of the possible conformations. This flexibility in DNA binding may facilitate multiple functions for the same transcription factor.
Collapse
Affiliation(s)
- Volodymyr Babin
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California, United States of America
| | - Dongli Wang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert B. Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (RBR); (CS)
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (RBR); (CS)
| |
Collapse
|
38
|
Bastidas M, Showalter SA. Thermodynamic and structural determinants of differential Pdx1 binding to elements from the insulin and IAPP promoters. J Mol Biol 2013; 425:3360-77. [PMID: 23796517 DOI: 10.1016/j.jmb.2013.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
In adult mammals, the production of insulin and other peptide hormones, such as the islet amyloid polypeptide (IAPP), is limited to β-cells due to tissue-specific expression of a set of transcription factors, the best known of which is pancreatic duodenal homeobox protein 1 (Pdx1). Like many homeodomain transcription factors, Pdx1 binds to a core DNA recognition sequence containing the tetranucleotide 5'-TAAT-3'; its consensus recognition element is 5'-CTCTAAT(T/G)AG-3'. Currently, a complete thermodynamic profile of Pdx1 binding to near-consensus and native promoter sequences has not been established, obscuring the mechanism of target site selection by this critical transcription factor. Strikingly, while Pdx1 responsive elements in the human insulin promoter conform to the pentanucleotide 5'-CTAAT-3' sequence, the Pdx1 responsive elements in the human iapp promoter all contain a substitution to 5'-TTAAT-3'. The crystal structure of Pdx1 bound to the consensus nucleotide sequence does not explain how Pdx1 identifies this natural variation, if it does at all. Here we report a combination of isothermal calorimetric titrations, NMR spectroscopy, and extensive multi-microsecond molecular dynamics calculations of Pdx1 that define its interactions with a panel of natural promoter elements and consensus-derived sequences. Our results show a small preference of Pdx1 for a C base 5' relative to the core TAAT promoter element. Molecular mechanics calculations, corroborated by experimental NMR data, lead to a rational explanation for sequence discrimination at this position. Taken together, our results suggest a molecular mechanism for differential Pdx1 affinity to elements from the insulin and iapp promoter sequences.
Collapse
Affiliation(s)
- Monique Bastidas
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802, USA.
| | | |
Collapse
|
39
|
Taylor-Fishwick DA. NOX, NOX Who is There? The Contribution of NADPH Oxidase One to Beta Cell Dysfunction. Front Endocrinol (Lausanne) 2013; 4:40. [PMID: 23565109 PMCID: PMC3615241 DOI: 10.3389/fendo.2013.00040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/13/2013] [Indexed: 01/15/2023] Open
Abstract
Predictions of diabetes prevalence over the next decades warrant the aggressive discovery of new approaches to stop or reverse loss of functional beta cell mass. Beta cells are recognized to have a relatively high sensitivity to reactive oxygen species (ROS) and become dysfunctional under oxidative stress conditions. New discoveries have identified NADPH oxidases in beta cells as contributors to elevated cellular ROS. Reviewed are recent reports that evidence a role for NADPH oxidase-1 (NOX-1) in beta cell dysfunction. NOX-1 is stimulated by inflammatory cytokines that are elevated in diabetes. First, regulation of cytokine-stimulated NOX-1 expression has been linked to inflammatory lipid mediators derived from 12-lipoxygenase activity. For the first time in beta cells these data integrate distinct pathways associated with beta cell dysfunction. Second, regulation of NOX-1 in beta cells involves feed-forward control linked to elevated ROS and Src-kinase activation. This potentially results in unbridled ROS generation and identifies candidate targets for pharmacologic intervention. Third, consideration is provided of new, first-in-class, selective inhibitors of NOX-1. These compounds could have an important role in assessing a disruption of NOX-1/ROS signaling as a new approach to preserve and protect beta cell mass in diabetes.
Collapse
Affiliation(s)
- David A. Taylor-Fishwick
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical SchoolNorfolk, VA, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical SchoolNorfolk, VA, USA
| |
Collapse
|
40
|
Abstract
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
41
|
Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9:25-53. [PMID: 22974359 PMCID: PMC3934755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 11/11/2023]
Abstract
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5' flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox- 1(PDX-1), MafA, and β-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling- dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Zhuo Fu
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
42
|
Abstract
Type 1 and some forms of type 2 diabetes mellitus are caused by deficiency of insulin-secretory islet β cells. An ideal treatment for these diseases would therefore be to replace β cells, either by transplanting donated islets or via endogenous regeneration (and controlling the autoimmunity in type 1 diabetes). Unfortunately, the poor availability of donor islets has severely restricted the broad clinical use of islet transplantation. The ability to differentiate embryonic stem cells into insulin-expressing cells initially showed great promise, but the generation of functional β cells has proven extremely difficult and far slower than originally hoped. Pancreatic stem cells (PSC) or transdifferentiation of other cell types in the pancreas may hence provide an alternative renewable source of surrogate β cells. However, the existence of PSC has been hotly debated for many years. In this review, we will discuss the latest development and future perspectives of PSC research, giving readers an overview of this controversial but important area.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- Centre for Diabetes Research, Western Australian Institute for Medical Research, The University of Western Australia, 50 Murray St (Rear), Perth, WA 6000, Australia.
| | | |
Collapse
|
43
|
Sui J, Mehta M, Shi B, Morahan G, Jiang FX. Directed differentiation of embryonic stem cells allows exploration of novel transcription factor genes for pancreas development. Stem Cell Rev Rep 2012; 8:803-12. [PMID: 22278131 DOI: 10.1007/s12015-011-9346-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Embryonic stem cells (ESCs) have been promised as a renewable source for regenerative medicine, including providing a replacement therapy in type 1 diabetes. However, they have not yet been differentiated into functional insulin-secreting β cells. This is due partially to the knowledge gap regarding the transcription factors (TFs) required for pancreas development. We hypothesize that, if directed differentiation in vitro recapitulates the developmental process in vivo, ESCs provide a powerful model to discover novel pancreatic TF genes. Guided by knowledge of their normal development and using RT-PCR and immunochemical analyses, we have established protocols for directed differentiation of mouse ESCs into pancreatic progenitors. Microarray analyses of these differentiating ESC cells at days 0, 4, 8 and 15 confirmed their sequential differentiation. By day 15, we found up-regulation of a group of pancreatic progenitor marker genes including Pdx1, Ptf1a, Nkx6.1, Pax4 and Pax6. Consistently, Pdx1-immunoreactive cells were detected on day 15. Most of these Pdx1(+) cells also expressed Nkx6.1. Bioinformatic analyses of sequential datasets allowed identification of over 20 novel TF genes potentially important for pancreas development. The dynamic expression of representative known and novel genes was confirmed by quantitative real time RT-PCR analysis. This strategy may be modified to study novel regulatory molecules for development of other tissue and organ systems.
Collapse
Affiliation(s)
- Jing Sui
- Centre for Diabetes Research, The Western Australian Institute for Medical Research, University of Western Australia, 50 Murray St (Rear), Perth, WA 6000, Australia
| | | | | | | | | |
Collapse
|
44
|
Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renström E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 2012; 26:1203-12. [PMID: 22570331 DOI: 10.1210/me.2012-1004] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.
Collapse
Affiliation(s)
- Beatrice T Yang
- Department of Clinical Sciences, Unit of Epigenetics and Diabetes, Lund University Diabetes Centre, Scania University Hospital, 205 02 Malmoe, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ishijima Y, Ohmori S, Uenishi A, Ohneda K. GATA transcription factors are involved in IgE-dependent mast cell degranulation by enhancing the expression of phospholipase C-γ1. Genes Cells 2012; 17:285-301. [DOI: 10.1111/j.1365-2443.2012.01588.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Kono T, Ahn G, Moss DR, Gann L, Zarain-Herzberg A, Nishiki Y, Fueger PT, Ogihara T, Evans-Molina C. PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyperglycemic and cytokine stress. Mol Endocrinol 2012; 26:257-71. [PMID: 22240811 DOI: 10.1210/me.2011-1181] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The maintenance of intracellular Ca(2+) homeostasis in the pancreatic β-cell is closely regulated by activity of the sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) pump. Our data demonstrate a loss of β-cell SERCA2b expression in several models of type 2 diabetes including islets from db/db mice and cadaveric diabetic human islets. Treatment of 832/13 rat INS-1-derived cells with 25 mm glucose and the proinflammatory cytokine IL-1β led to a similar loss of SERCA2b expression, which was prevented by treatment with the peroxisome proliferator-activated receptor (PPAR)-γ agonist, pioglitazone. Pioglitazone was able to also protect against hyperglycemia and cytokine-induced elevations in cytosolic Ca(2+) levels, insulin-secretory defects, and cell death. To determine whether PPAR-γ was a direct transcriptional regulator of the SERCA2 gene, luciferase assays were performed and showed that a -259 bp region is sufficient to confer PPAR-γ transactivation; EMSA and chromatin immunoprecipitation experiments confirmed that PPAR-γ directly binds a PPAR response element in this proximal region. We next sought to characterize the mechanisms by which SERCA2b was down-regulated. INS-1 cells were exposed to high glucose and IL-1β in time course experiments. Within 2 h of exposure, activation of cyclin-dependent kinase 5 (CDK5) was observed and correlated with increased serine-273 phosphorylation of PPAR-γ and loss of SERCA2 protein expression, findings that were prevented by pioglitazone and roscovitine, a pharmacological inhibitor of CDK5. We conclude that pioglitazone modulates SERCA2b expression through direct transcriptional regulation of the gene and indirectly through prevention of CDK5-induced phosphorylation of PPAR-γ.
Collapse
Affiliation(s)
- Tatsuyoshi Kono
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lichti-Kaiser K, ZeRuth G, Kang HS, Vasanth S, Jetten AM. Gli-similar proteins: their mechanisms of action, physiological functions, and roles in disease. VITAMINS AND HORMONES 2012; 88:141-71. [PMID: 22391303 DOI: 10.1016/b978-0-12-394622-5.00007-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gli-similar (Glis) 1-3 proteins constitute a subfamily of Krüppel-like zinc-finger proteins that are closely related to members of the Gli family. Glis proteins have been implicated in several pathologies, including cystic kidney disease, diabetes, hypothyroidism, fibrosis, osteoporosis, psoriasis, and cancer. In humans, a mutation in the Glis2 gene has been linked to the development of nephronophthisis (NPHP), a recessive cystic kidney disease, while mutations in Glis3 lead to an extended multisystem phenotype that includes the development of neonatal diabetes, polycystic kidneys, congenital hypothyroidism, and facial dysmorphism. Glis3 has also been identified as a risk locus for type-1 and type-2 diabetes and additional studies have revealed a role for Glis3 in pancreatic endocrine development, β-cell maintenance, and insulin regulation. Similar to Gli1-3, Glis2 and 3 have been reported to localize to the primary cilium. These studies appear to suggest that Glis proteins are part of a primary cilium-associated signaling pathway(s). It has been hypothesized that Glis proteins are activated through posttranslational modifications and subsequently translocate to the nucleus where they regulate transcription by interacting with Glis-binding sites in the promoter regions of target genes. This chapter summarizes the current state of knowledge regarding mechanisms of action of the Glis family of proteins, their physiological functions, as well as their roles in disease.
Collapse
Affiliation(s)
- Kristin Lichti-Kaiser
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
48
|
Amemiya-Kudo M, Oka J, Takeuchi Y, Okazaki H, Yamamoto T, Yahagi N, Matsuzaka K, Okazaki S, Osuga JI, Yamada N, Murase T, Shimano H. Suppression of the pancreatic duodenal homeodomain transcription factor-1 (Pdx-1) promoter by sterol regulatory element-binding protein-1c (SREBP-1c). J Biol Chem 2011; 286:27902-14. [PMID: 21652712 DOI: 10.1074/jbc.m110.186221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Overexpression of sterol regulatory element-binding protein-1c (SREBP-1c) in β cells causes impaired insulin secretion and β cell dysfunction associated with diminished pancreatic duodenal homeodomain transcription factor-1 (PDX-1) expression in vitro and in vivo. To identify the molecular mechanism responsible for this effect, the mouse Pdx-1 gene promoter (2.7 kb) was analyzed in β cell and non-β cell lines. Despite no apparent sterol regulatory element-binding protein-binding sites, the Pdx-1 promoter was suppressed by SREBP-1c in β cells in a dose-dependent manner. PDX-1 activated its own promoter. The E-box (-104/-99 bp) in the proximal region, occupied by ubiquitously expressed upstream stimulatory factors (USFs), was crucial for the PDX-1-positive autoregulatory loop through direct PDX-1·USF binding. This positive feedback activation was a prerequisite for SREBP-1c suppression of the promoter in non-β cells. SREBP-1c and PDX-1 directly interact through basic helix-loop-helix and homeobox domains, respectively. This robust SREBP-1c·PDX-1 complex interferes with PDX-1·USF formation and inhibits the recruitment of PDX-1 coactivators. SREBP-1c also inhibits PDX-1 binding to the previously described PDX-1-binding site (-2721/-2646 bp) in the distal enhancer region of the Pdx-1 promoter. Endogenous up-regulation of SREBP-1c in INS-1 cells through the activation of liver X receptor and retinoid X receptor by 9-cis-retinoic acid and 22-hydroxycholesterol inhibited PDX-1 mRNA and protein expression. Conversely, SREBP-1c RNAi restored Pdx-1 mRNA and protein levels. Through these multiple mechanisms, SREBP-1c, when induced in a lipotoxic state, repressed PDX-1 expression contributing to the inhibition of insulin expression and β cell dysfunction.
Collapse
Affiliation(s)
- Michiyo Amemiya-Kudo
- Okinaka Memorial Institute for Medical Research, Toranomon Hospital, Tokyo 105-8470, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Soesanto Y, Luo B, Parker G, Jones D, Cooksey RC, McClain DA. Pleiotropic and age-dependent effects of decreased protein modification by O-linked N-acetylglucosamine on pancreatic β-cell function and vascularization. J Biol Chem 2011; 286:26118-26. [PMID: 21622566 DOI: 10.1074/jbc.m111.249508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The hexosamine biosynthesis pathway (HBP) regulates the post-translational modification of nuclear and cytoplasmic protein by O-linked N-acetylglucosamine (O-GlcNAc). Numerous studies have demonstrated increased flux through this pathway contributes to the development of β-cell dysfunction. The effect of decreased O-GlcNAc on the maintenance of normal β-cell function, however, is not well understood. We studied transgenic mice that over express β-N-acetylglucosaminidase (O-GlcNAcase), an enzyme that catalyzes the removal of O-GlcNAc from proteins, in the pancreatic β-cell under control of the rat insulin promoter. 3-4-Month-old O-GlcNAcase transgenic mice have higher glucose excursions with a concomitant decrease in circulating insulin levels, insulin mRNA levels, and total islet insulin content. In older (8-9-month-old) O-GlcNAcase transgenic mice glucose tolerance is no longer impaired. This is associated with increased serum insulin, islet insulin content, and insulin mRNA in the O-GlcNAcase transgenic mice. These improvements in β-cell function with aging are associated with increased angiogenesis and increased VEGF expression, with parallel increases in activation of Akt and expression of PGC1α. The biphasic effects as a function of age are consistent with published observations of mice with increased O-GlcNAc in islets and demonstrate that O-GlcNAc signaling exerts multiple effects on both insulin secretion and islet survival.
Collapse
Affiliation(s)
- Yudi Soesanto
- Departments of Biochemistry, University of Utah School ofMedicine, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ryu GR, Yoo JM, Lee E, Ko SH, Ahn YB, Song KH. Decreased Expression and Induced Nucleocytoplasmic Translocation of Pancreatic and Duodenal Homeobox 1 in INS-1 Cells Exposed to High Glucose and Palmitate. Diabetes Metab J 2011; 35:65-71. [PMID: 21537415 PMCID: PMC3080567 DOI: 10.4093/dmj.2011.35.1.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/28/2010] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is often accompanied by increased levels of circulating fatty acid. Elevations in fatty acids and glucose for prolonged periods of time have been suggested to cause progressive dysfunction or apoptosis of pancreatic beta cells in T2DM. However, the precise mechanism of this adverse effect is not well understood. METHODS INS-1 rat-derived insulin-secreting cells were exposed to 30 mM glucose and 0.25 mM palmitate for 48 hours. RESULTS The production of reactive oxygen species increased significantly. Pancreatic and duodenal homeobox 1 (Pdx1) expression was down-regulated, as assessed by reverse transcription-polymerase chain reaction and Western blot analyses. The promoter activities of insulin and Pdx1 were also diminished. Of note, there was nucleocytoplasmic translocation of Pdx1, which was partially prevented by treatment with an antioxidant, N-acetyl-L-cysteine. CONCLUSION Our data suggest that prolonged exposure of beta cells to elevated levels of glucose and palmitate negatively affects Pdx1 expression via oxidative stress.
Collapse
Affiliation(s)
- Gyeong Ryul Ryu
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Mo Yoo
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Esder Lee
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Ko
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Bae Ahn
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki-Ho Song
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|