1
|
Hager M, Chang P, Lee M, Burns CM, Endicott SJ, Miller RA, Li X. Recapitulation of anti-aging phenotypes by global overexpression of PTEN in mice. GeroScience 2024; 46:2653-2670. [PMID: 38114855 PMCID: PMC10828233 DOI: 10.1007/s11357-023-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The PTEN gene negatively regulates the oncogenic PI3K-AKT pathway by encoding a lipid and protein phosphatase that dephosphorylates lipid phosphatidylinositol-3,4,5-triphosphate (PIP3) resulting in the inhibition of PI3K and downstream inhibition of AKT. Overexpression of PTEN in mice leads to a longer lifespan compared to control littermates, although the mechanism is unknown. Here, we provide evidence that young adult PTENOE mice exhibit many characteristics shared by other slow-aging mouse models, including those with mutations that affect GH/IGF1 pathways, calorie-restricted mice, and mice treated with anti-aging drugs. PTENOE white adipose tissue (WAT) has increased UCP1, a protein linked to increased thermogenesis. WAT of PTENOE mice also shows a change in polarization of fat-associated macrophages, with elevated levels of arginase 1 (Arg1, characteristic of M2 macrophages) and decreased production of inducible nitric oxide synthase (iNOS, characteristic of M1 macrophages). Muscle and hippocampus showed increased expression of the myokine FNDC5, and higher levels of its cleavage product irisin in plasma, which has been linked to increased conversion of WAT to more thermogenic beige/brown adipose tissue. PTENOE mice also have an increase, in plasma and liver, of GPLD1, which is known to improve cognition in mice. Hippocampus of the PTENOE mice has elevation of both BDNF and DCX, indices of brain resilience and neurogenesis. These changes in fat, macrophages, liver, muscle, hippocampus, and plasma may be considered "aging rate indicators" in that they seem to be consistently changed across many of the long-lived mouse models and may help to extend lifespan by delaying many forms of late-life illness. Our new findings show that PTENOE mice can be added to the group of long-lived mice that share this multi-tissue suite of biochemical characteristics.
Collapse
Affiliation(s)
- Mary Hager
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peter Chang
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael Lee
- College of Literature, Sciences, & the Arts, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Calvin M Burns
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - S Joseph Endicott
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Room 3160, BSRB ,109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Kiba T. OVEREXPRESSION OF PTEN GENE INCREASES INS2 GENE MRNA EXPRESSION, NOT INS1 GENE MRNA EXPRESSION, IN INSULINOMA CELL LINE RIN-5F. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2023; 19:277-280. [PMID: 38356984 PMCID: PMC10863969 DOI: 10.4183/aeb.2023.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Objective One functional neuroendocrine tumor that causes hypoglycemia due to inappropriately high insulin production is an insulinoma. In rats, two genes coding for insulin, insulin 1 (Ins1) and insulin 2 (Ins2) are found on chromosome 1. Ins1 was produced from an Ins2 transcript, and it was inserted into the genome via an RNA-mediated duplication-transposition event, according to some structural feature analyses. Methods In this study, the author has looked at how overexpression of the PTEN gene in the insulinoma cell line Rin-5F affects the expression of the insulin genes, Ins 1 and Ins 2. Results In the insulinoma cell line, overexpression of the PTEN gene boosts Ins2 gene mRNA expression but not Ins1 gene mRNA expression. It has been reported that PTEN upregulates insulin signaling by increasing insulin receptor substrate (IRS)-2 mRNA levels. Also, PTEN has been reported to be secreted in exosomes and thereafter, into extracellular space. Conclusions The present study suggested that overexpression of PTEN might induce the increasing Ins 2 gene expression, one of the phosphorylated genes against the IRS-2 through the insulin/IGF-1 receptor. Our knowledge of the molecular pathways of PTEN relating the synthesis of insulin has been increased by the present study.
Collapse
Affiliation(s)
- T. Kiba
- Okayama University of Science, Faculty of Science, Department of Life Sciences, Okayama, Japan
| |
Collapse
|
3
|
Feng J, Wang L, Zhang K, Ni S, Li B, Liu J, Wang D. Identification and panoramic analysis of drug response-related genes in triple negative breast cancer using as an example NVP-BEZ235. Sci Rep 2023; 13:5984. [PMID: 37045929 PMCID: PMC10097725 DOI: 10.1038/s41598-023-32757-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Taking NVP-BEZ235 (BEZ235) as an example to screen drug response-related genes (DRRGs) and explore their potential value in triple-negative breast cancer (TNBC). Through high-throughput technique, multidimensional transcriptome expression data (mRNA, miRNA and lncRNA) of BEZ235-treated and -untreated MDA-MB-468 cell lines were obtained. Combined with transcriptome data of the MDA-MB-468 cells and TCGA-TNBC tissues, differential gene expression analysis and WGCNA were performed to identify DRRGs associated with tumor trait by simulating the drug response microenvironment (DRM) of BEZ235-treated patients. Based on DRRGs, we constructed a ceRNA network and verified the expression levels of three key molecules by RT-qPCR, which not only demonstrated the successful construction of a BEZ235-treated cell line model but also explained the antitumor mechanism of BEZ235. Four molecular subtypes related to the DRM with survival difference were proposed using cluster analysis, namely glycolysis subtype, proliferation depression subtype, immune-suppressed subtype, and immune-activated subtype. A novel prognostic signature consisting of four DRRGs was established by Lasso-Cox analysis, which exhibited outstanding performance in predicting overall survival compared with several excellent reported signatures. The high- and low-risk groups were characterized by enrichment of metabolism-related pathways and immune-related pathways, respectively. Of note, the low-risk group had a better response to immune checkpoint blockade. Besides, pRRophetic analysis found that patients in the low-risk group were more sensitive to methotrexate and cisplation, whereas more resistant to BEZ235, docetaxel and paclitaxel. In conclusion, the DRRGs exemplified by BEZ235 are potential biomarkers for TNBC molecular typing, prognosis prediction and targeted therapy. The novel DRRGs-guided strategy for predicting the subtype, survival and therapy efficacy, might be also applied to more cancers and drugs other than TNBC and BEZ235.
Collapse
Affiliation(s)
- Jia Feng
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Luchang Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Sujiao Ni
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Baolin Li
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Dongsheng Wang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Effects of Chronic Arginase Inhibition with Norvaline on Tau Pathology and Brain Glucose Metabolism in Alzheimer's Disease Mice. Neurochem Res 2022; 47:1255-1268. [DOI: 10.1007/s11064-021-03519-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/11/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022]
|
5
|
Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K, Rogers JC, Roberts TM, Gygi SP, Paulo JA. TMTpro-18plex: The Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing. J Proteome Res 2021; 20:2964-2972. [PMID: 33900084 DOI: 10.1021/acs.jproteome.1c00168] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of the TMTpro-16plex series expanded the breadth of commercial isobaric tagging reagents by nearly 50% over classic TMT-11plex. In addition to the described 16plex reagents, the proline-based TMTpro molecule can accommodate two additional combinations of heavy carbon and nitrogen isotopes. Here, we introduce the final two labeling reagents, TMTpro-134C and TMTpro-135N, which permit the simultaneous global protein profiling of 18 samples with essentially no missing values. For example, six conditions with three biological replicates can now be perfectly accommodated. We showcase the 18plex reagent set by profiling the proteome and phosphoproteome of a pair of isogenic mammary epithelial cell lines under three conditions in triplicate. We compare the depth and quantitative performance of this data set with a TMTpro-16plex experiment in which two samples were omitted. Our analysis revealed similar numbers of quantified peptides and proteins, with high quantitative correlation. We interrogated further the TMTpro-18plex data set by highlighting changes in protein abundance profiles under different conditions in the isogenic cell lines. We conclude that TMTpro-18plex further expands the sample multiplexing landscape, allowing for complex and innovative experimental designs.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston 02215, Massachusetts, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Ryan D Bomgarden
- Thermo Fisher Scientific, Rockford 61101-9316, Illinois, United States
| | - Ian Pike
- Proteome Sciences, London WC1H 9BB, U.K
| | | | - John C Rogers
- Thermo Fisher Scientific, Rockford 61101-9316, Illinois, United States
| | - Thomas M Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston 02215, Massachusetts, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston 02115, Massachusetts, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston 02115, Massachusetts, United States
| |
Collapse
|
6
|
Datta N, Chakraborty S, Basu M, Ghosh MK. Tumor Suppressors Having Oncogenic Functions: The Double Agents. Cells 2020; 10:cells10010046. [PMID: 33396222 PMCID: PMC7824251 DOI: 10.3390/cells10010046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer progression involves multiple genetic and epigenetic events, which involve gain-of-functions of oncogenes and loss-of-functions of tumor suppressor genes. Classical tumor suppressor genes are recessive in nature, anti-proliferative, and frequently found inactivated or mutated in cancers. However, extensive research over the last few years have elucidated that certain tumor suppressor genes do not conform to these standard definitions and might act as “double agents”, playing contrasting roles in vivo in cells, where either due to haploinsufficiency, epigenetic hypermethylation, or due to involvement with multiple genetic and oncogenic events, they play an enhanced proliferative role and facilitate the pathogenesis of cancer. This review discusses and highlights some of these exceptions; the genetic events, cellular contexts, and mechanisms by which four important tumor suppressors—pRb, PTEN, FOXO, and PML display their oncogenic potentials and pro-survival traits in cancer.
Collapse
Affiliation(s)
- Neerajana Datta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Paraganas, West Bengal PIN-743372, India;
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India; (N.D.); (S.C.)
- Correspondence:
| |
Collapse
|
7
|
Li YZ, Di Cristofano A, Woo M. Metabolic Role of PTEN in Insulin Signaling and Resistance. Cold Spring Harb Perspect Med 2020; 10:a036137. [PMID: 31964643 PMCID: PMC7397839 DOI: 10.1101/cshperspect.a036137] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is most prominently known for its function in tumorigenesis. However, a metabolic role of PTEN is emerging as a result of its altered expression in type 2 diabetes (T2D), which results in impaired insulin signaling and promotion of insulin resistance during the pathogenesis of T2D. PTEN functions in regulating insulin signaling across different organs have been identified. Through the use of a variety of models, such as tissue-specific knockout (KO) mice and in vitro cell cultures, PTEN's role in regulating insulin action has been elucidated across many cell types. Herein, we will review the recent advancements in the understanding of PTEN's metabolic functions in each of the tissues and cell types that contribute to regulating systemic insulin sensitivity and discuss how PTEN may represent a promising therapeutic strategy for treatment or prevention of T2D.
Collapse
Affiliation(s)
- Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology and Medicine (Oncology), Albert Einstein College of Medicine and Albert Einstein Cancer Center, Bronx, New York 10461, USA
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M9, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, University Health Network/Mount Sinai Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
8
|
Yehia L, Eng C. 65 YEARS OF THE DOUBLE HELIX: One gene, many endocrine and metabolic syndromes: PTEN-opathies and precision medicine. Endocr Relat Cancer 2018; 25:T121-T140. [PMID: 29792313 DOI: 10.1530/erc-18-0162] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
An average of 10% of all cancers (range 1-40%) are caused by heritable mutations and over the years have become powerful models for precision medicine practice. Furthermore, such cancer predisposition genes for seemingly rare syndromes have turned out to help explain mechanisms of sporadic carcinogenesis and often inform normal development. The tumor suppressor PTEN encodes a ubiquitously expressed phosphatase that counteracts the PI3K/AKT/mTOR cascade - one of the most critical growth-promoting signaling pathways. Clinically, individuals with germline PTEN mutations have diverse phenotypes and fall under the umbrella term PTEN hamartoma tumor syndrome (PHTS). PHTS encompasses four clinically distinct allelic overgrowth syndromes, namely Cowden, Bannayan-Riley-Ruvalcaba, Proteus and Proteus-like syndromes. Relatedly, mutations in other genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN also predispose patients to partially overlapping clinical manifestations, with similar effects as PTEN malfunction. We refer to these syndromes as 'PTEN-opathies.' As a tumor suppressor and key regulator of normal development, PTEN dysfunction can cause a spectrum of phenotypes including benign overgrowths, malignancies, metabolic and neurodevelopmental disorders. Relevant to clinical practice, the identification of PTEN mutations in patients not only establishes a PHTS molecular diagnosis, but also informs on more accurate cancer risk assessment and medical management of those patients and affected family members. Importantly, timely diagnosis is key, as early recognition allows for preventative measures such as high-risk screening and surveillance even prior to cancer onset. This review highlights the translational impact that the discovery of PTEN has had on the diagnosis, management and treatment of PHTS.
Collapse
Affiliation(s)
- Lamis Yehia
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Charis Eng
- Genomic Medicine InstituteLerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Taussig Cancer InstituteCleveland Clinic, Cleveland, Ohio, USA
- Department of Genetics and Genome SciencesCase Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Germline High Risk Cancer Focus GroupCASE Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Ngeow J, Sesock K, Eng C. Clinical Implications for Germline PTEN Spectrum Disorders. Endocrinol Metab Clin North Am 2017; 46:503-517. [PMID: 28476234 DOI: 10.1016/j.ecl.2017.01.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Patients with PTEN hamartoma tumor syndrome (PHTS) may present to a variety of different subspecialties with benign and malignant clinical features. They have increased lifetime risks of breast, endometrial, thyroid, renal, and colon cancers, as well as neurodevelopmental disorders such as autism spectrum disorder. Patients and affected family members can be offered gene-directed surveillance and management. Patients who are unaffected can be spared unnecessary investigations. With longitudinal follow-up, we are likely to identify other non-cancer manifestations associated with PHTS such as metabolic, immunologic, and neurologic features.
Collapse
Affiliation(s)
- Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, 11 Hospital Drive, Singapore 169610, Singapore; Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA
| | - Kaitlin Sesock
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Barrows D, Schoenfeld SM, Hodakoski C, Silkov A, Honig B, Couvillon A, Shymanets A, Nürnberg B, Asara JM, Parsons R. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem 2015; 290:28915-31. [PMID: 26438819 DOI: 10.1074/jbc.m115.668244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Sarah M Schoenfeld
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Cindy Hodakoski
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | - Aliaksei Shymanets
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - Bernd Nürnberg
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - John M Asara
- the Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
11
|
IRS2 and PTEN are key molecules in controlling insulin sensitivity in podocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3224-34. [PMID: 26384875 DOI: 10.1016/j.bbamcr.2015.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/01/2015] [Accepted: 09/14/2015] [Indexed: 01/03/2023]
Abstract
Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN.
Collapse
|
12
|
Martin NE, Gerke T, Sinnott JA, Stack EC, Andrén O, Andersson SO, Johansson JE, Fiorentino M, Finn S, Fedele G, Stampfer M, Kantoff PW, Mucci LA, Loda M. Measuring PI3K Activation: Clinicopathologic, Immunohistochemical, and RNA Expression Analysis in Prostate Cancer. Mol Cancer Res 2015; 13:1431-40. [PMID: 26124442 DOI: 10.1158/1541-7786.mcr-14-0569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/12/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Assessing the extent of PI3K pathway activity in cancer is vital to predicting sensitivity to PI3K-targeting drugs, but the best biomarker of PI3K pathway activity in archival tumor specimens is unclear. Here, PI3K pathway activation was assessed, in clinical tissue from 1,021 men with prostate cancers, using multiple pathway nodes that include PTEN, phosphorylated AKT (pAKT), phosphorylated ribosomal protein S6 (pS6), and stathmin. Based on these markers, a 9-point score of PI3K activation was created using the combined intensity of the 4-markers and analyzed its association with proliferation (Ki67), apoptosis (TUNEL), and androgen receptor (AR) status, as well as pathologic features and cancer-specific outcomes. In addition, the PI3K activation score was compared with mRNA expression profiling data for a large subset of men. Interestingly, those tumors with higher PI3K activation scores also had higher Gleason grade (P = 0.006), increased AR (r = 0.37; P < 0.001) and Ki67 (r = 0.24; P < 0.001), and decreased TUNEL (r = -0.12; P = 0.003). Although the PI3K activation score was not associated with an increased risk of lethal outcome, a significant interaction between lethal outcome, Gleason and high PI3K score (P = 0.03) was observed. Finally, enrichment of PI3K-specific pathways was found in the mRNA expression patterns differentiating the low and high PI3K activation scores; thus, the 4-marker IHC score of PI3K pathway activity correlates with features of PI3K activation. IMPLICATIONS The relationship of this activation score to sensitivity to anti-PI3K agents remains to be tested but may provide more precision guidance when selecting patients for these therapies.
Collapse
Affiliation(s)
- Neil E Martin
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Travis Gerke
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Jennifer A Sinnott
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward C Stack
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ove Andrén
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Swen-Olof Andersson
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Jan-Erik Johansson
- School of Health and Medical Sciences, Örebro University; and Department of Urology, Örebro University Hospital, Örebro, Sweden
| | - Michelangelo Fiorentino
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Pathology Unit, Addarii Institute, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Stephen Finn
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Trinity College, Dublin, Ireland
| | - Giuseppe Fedele
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Meir Stampfer
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Massimo Loda
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Schwartz S, Wongvipat J, Trigwell CB, Hancox U, Carver BS, Rodrik-Outmezguine V, Will M, Yellen P, de Stanchina E, Baselga J, Scher HI, Barry ST, Sawyers CL, Chandarlapaty S, Rosen N. Feedback suppression of PI3Kα signaling in PTEN-mutated tumors is relieved by selective inhibition of PI3Kβ. Cancer Cell 2015; 27:109-22. [PMID: 25544636 PMCID: PMC4293347 DOI: 10.1016/j.ccell.2014.11.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/25/2014] [Accepted: 11/08/2014] [Indexed: 01/16/2023]
Abstract
In PTEN-mutated tumors, we show that PI3Kα activity is suppressed and PI3K signaling is driven by PI3Kβ. A selective inhibitor of PI3Kβ inhibits the Akt/mTOR pathway in these tumors but not in those driven by receptor tyrosine kinases. However, inhibition of PI3Kβ only transiently inhibits Akt/mTOR signaling because it relieves feedback inhibition of IGF1R and other receptors and thus causes activation of PI3Kα and a rebound in downstream signaling. This rebound is suppressed and tumor growth inhibition enhanced with combined inhibition of PI3Kα and PI3Kβ. In PTEN-deficient models of prostate cancer, this effective inhibition of PI3K causes marked activation of androgen receptor activity. Combined inhibition of both PI3K isoforms and androgen receptor results in major tumor regressions.
Collapse
Affiliation(s)
- Sarit Schwartz
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John Wongvipat
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cath B Trigwell
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Urs Hancox
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Brett S Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vanessa Rodrik-Outmezguine
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marie Will
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paige Yellen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - José Baselga
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon T Barry
- AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
14
|
Montales MTE, Melnyk SB, Simmen FA, Simmen RCM. Maternal metabolic perturbations elicited by high-fat diet promote Wnt-1-induced mammary tumor risk in adult female offspring via long-term effects on mammary and systemic phenotypes. Carcinogenesis 2014; 35:2102-12. [PMID: 24832086 DOI: 10.1093/carcin/bgu106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many adult chronic diseases are thought to be influenced during early life by maternal nutrition; however, the underlying mechanisms remain largely unknown. Obesity-related diseases may be due partly to high fat consumption. Herein, we evaluated mammary tumor risk in female mouse mammary tumor virus-Wnt-1 transgenic (Tg) offspring exposed to high-fat diet (HFD) or control diet (CD) (45% and 17% kcal from fat, respectively) during gestation and lactation, with CD provided to progeny at weaning. In Tg offspring, maternal HFD exposure increased mammary tumor incidence and decreased tumor latency without affecting tumor volume. Tumor risk was associated with higher tumor necrosis factor-α and insulin and altered oxidative stress biomarkers in sera and with early changes in mammary expression of genes linked to tumor promotion [interleukin 6 (Il6)] or inhibition [phosphatase and tensin homolog deleted on chromosome 10 (Pten), B-cell lymphoma 2 (Bcl2)]. Corresponding wild-type progeny exposed to maternal HFD displayed accelerated mammary development, higher mammary adiposity, increased insulin resistance and early changes in Pten, Bcl2 and Il6, than CD-exposed offspring. Dams-fed HFD showed higher serum glucose and oxidative stress biomarkers but comparable adiposity compared with CD-fed counterparts. In human breast cancer MCF-7 cells, sera from maternal HFD-exposed Tg offspring elicited changes in PTEN, BCL2 and IL6 gene expression, mimicking in vivo exposure; increased cell viability and mammosphere formation and induced measures [insulin receptor substrate-1 (IRS-1), IRS-2] of insulin sensitivity. Serum effects on IRS-1 were recapitulated by exogenous insulin and the PTEN-specific inhibitor SF1670. Hyperinsulinemia and PTEN loss-of-function may thus, couple maternal HFD exposure to enhanced insulin sensitivity via increased mammary IRS-1 expression in progeny, to promote breast cancer risk.
Collapse
Affiliation(s)
- Maria Theresa E Montales
- Department of Physiology & Biophysics, Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan B Melnyk
- Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Frank A Simmen
- Department of Physiology & Biophysics, Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Rosalia C M Simmen
- Department of Physiology & Biophysics, Department of Pediatrics and Arkansas Children's Hospital Research Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Abstract
Depending on the circumstance, FOXO (Forkhead O) (FOXO1, FOXO3, and FOXO4) transcription factors activate the expression of markedly different sets of genes to produce different phenotypic effects. For example, distinct FOXO-regulated transcriptional programs stimulate cell death or enhance organism life span. To gain insight into how FOXOs select specific genes for regulation, we performed a screen for genes that modify FOXO activation of TRAIL, a death receptor ligand capable of inducing extrinsic apoptosis. We discovered that the bZIP transcriptional repressor NFIL3 (nuclear factor interleukin 3-regulated) hindered FOXO transcription factor access to chromatin at the TRAIL promoter by binding to nearby DNA and recruiting histone deacetylase-2 (HDAC2) to reduce histone acetylation. In the same manner, NFIL3 repressed expression of certain FOXO targets--e.g., FAS, GADD45α (growth arrest and DNA damage-inducible, α), and GADD45β--but not others. NFIL3, which we found to be overexpressed in different cancers, supported tumor cell survival largely through repression of TRAIL and antagonized hydrogen peroxide-induced cell death. Moreover, its expression in cancer was associated with lower patient survival. Therefore, NFIL3 alters cancer cell behavior and FOXO function by acting on chromatin to restrict the menu of FOXO target genes. Targeting of NFIL3 could be of therapeutic benefit for cancer patients.
Collapse
|
16
|
Keniry M, Parsons R. mTOR Inhibition, the Second Generation: ATP-Competitive mTOR Inhibitor Initiates Unexpected Receptor Tyrosine Kinase–Driven Feedback Loop: Table 1. Cancer Discov 2011; 1:203-4. [DOI: 10.1158/2159-8290.cd-11-0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
van Duijn PW, Ziel-van der Made ACJ, van der Korput JAG, Trapman J. PTEN-mediated G1 cell-cycle arrest in LNCaP prostate cancer cells is associated with altered expression of cell-cycle regulators. Prostate 2010; 70:135-46. [PMID: 19784964 DOI: 10.1002/pros.21045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The tumor suppressor PTEN regulates many biological processes. A well-known downstream effector of PTEN is phospho-Akt. Although PTEN is the most frequently inactivated gene in prostate cancer, its mode of action is not fully understood. We studied the association of regulated PTEN expression with changes in biological function and gene expression profiles. METHODS PTEN-negative LNCaP cells were stably transfected with wild-type PTEN cDNA under inducible control, resulting in LNCaP/PTEN cells. Microarray analysis was used to monitor gene expression changes upon induction of PTEN. Expression of selected individual genes was studied in Q-PCR and siRNA experiments. Cell-cycle distribution was analyzed by flow cytometry. RESULTS Induced expression of PTEN in LNCaP/PTEN cells significantly inhibited cell proliferation, at least partly due to cell-cycle arrest at the G1 phase. Expression profiling combined with pathway analysis revealed that PTEN-dependent G1 growth arrest was associated with an altered mRNA expression of the G1 cell-cycle regulators Cdc25a, E2F2, cyclin G2, and RBL2/p130. Specific inhibition of Akt signaling by siRNA resulted in downregulation of both E2F2 and Cdc25a mRNA expression and upregulation of the FOXO target cyclin G2, similar to the effect observed by PTEN induction. However, Akt did not mediate the PTEN-dependent RBL2/p130 mRNA expression in LNCaP/PTEN cells. CONCLUSIONS The results indicate that PTEN dependent gene expression is important in cell-cycle regulation and is mediated by both Akt-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- P W van Duijn
- Department of Pathology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
18
|
Abstract
The lipid phosphatase PTEN functions as a tumor suppressor by dephosphorylating the D3 position of phosphoinositide-3,4,5-trisphosphate, thereby negatively regulating the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. In mammalian cells, PTEN exists either as a monomer or as a part of a >600-kDa complex (the PTEN-associated complex [PAC]). Previous studies suggest that the antagonism of PI3K/AKT signaling by PTEN may be mediated by a nonphosphorylated form of the protein resident within the multiprotein complex. Here we show that PTEN associates with p85, the regulatory subunit of PI3K. Using newly generated antibodies, we demonstrate that this PTEN-p85 association involves the unphosphorylated form of PTEN engaged within the PAC and also includes the p110beta isoform of PI3K. The PTEN-p85 association is enhanced by trastuzumab treatment and linked to a decline in AKT phosphorylation in some ERBB2-amplified breast cancer cell lines. Together, these results suggest that integration of p85 into the PAC may provide a novel means of downregulating the PI3K/AKT pathway.
Collapse
|
19
|
Sun XJ, Liu F. Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. VITAMINS AND HORMONES 2009; 80:351-87. [PMID: 19251044 DOI: 10.1016/s0083-6729(08)00613-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance. IRS-proteins are insulin receptor substrates that mediate insulin signaling via multiple tyrosyl phosphorylations. However, they are also substrates for many serine/threonine kinases downstream of other signaling network and become serine phosphorylated in response to various conditions such as inflammation, stress and over nutrients. The serine phosphorylation of IRS-proteins alters the capacities of IRS-proteins to be phosphorylated on tyrosyl, therefore, able to mediate insulin signaling. The unique structure of IRS-proteins render them idea molecules to fulfill the task to sense the environmental cues and integrate them into insulin sensitivity through serine/threonine phosphorylation. This review intends to summarize the role of IRS-proteins in insulin signaling with focuses on the role of Yin and Yang regulation of insulin signaling pathway. Understanding the dynamic of these complicated regulation net work not only provide us a complete picture of what happens in the normal conditions, but also pathaphysiological conditions such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Xiao Jian Sun
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
20
|
Szabolcs M, Keniry M, Simpson L, Reid LJ, Koujak S, Schiff SC, Davidian G, Licata S, Gruvberger-Saal S, Murty VVVS, Nandula S, Efstratiadis A, Kushner JA, White MF, Parsons R. Irs2 inactivation suppresses tumor progression in Pten+/- mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:276-86. [PMID: 19095950 DOI: 10.2353/ajpath.2009.080086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mutations in the phosphatase and tensin homologue (PTEN)/phosphatidylinositol-3 kinase-alpha (PI3K) signaling pathway are frequently found in human cancer. In addition, Pten(+/-) mice develop tumors in multiple organs because of the activation of the PI3K signaling cascade. Because activation of PI3K signaling leads to feedback inhibition of insulin receptor substrate-2 (IRS2) expression, an upstream activator of PI3K, we therefore anticipated that IRS2 expression would be low in tumors that lack PTEN. Surprisingly, however, an elevation of IRS2 was often detected in tumor samples in which PTEN levels were compromised. To determine the potential contribution of Irs2 to tumor progression, Pten(+/-) mice were crossed with Irs2(+/-) mice. Deletion of Irs2 did not affect the initiation of neoplasia found in Pten(+/-) mice but suppressed cancer cell growth, proliferation, and invasion through the basement membrane. Deletion of Irs2 also attenuated the expression of Myc in prostatic intraepithelial neoplasia in Pten(+/-) mice. In addition, the expression levels of IRS2 and MYC were highly correlated in human prostate cancer, and IRS2 could stimulate MYC expression in cultured cells. Our findings provide evidence that the PI3K-activating adaptor Irs2 contributes to tumor progression in Pten(+/-) mice by stimulating both Myc and DNA synthesis.
Collapse
Affiliation(s)
- Matthias Szabolcs
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Velkova A, Tatarek-Nossol M, Andreetto E, Kapurniotu A. Exploiting cross-amyloid interactions to inhibit protein aggregation but not function: nanomolar affinity inhibition of insulin aggregation by an IAPP mimic. Angew Chem Int Ed Engl 2008; 47:7114-8. [PMID: 18688904 DOI: 10.1002/anie.200801499] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aleksandra Velkova
- Laboratory of Peptide Biochemistry, Center for Integrated Protein Science München, Technische Universität München, An der Saatzucht 5, 85350 Freising-Weihenstephan, Germany
| | | | | | | |
Collapse
|
22
|
Velkova A, Tatarek-Nossol M, Andreetto E, Kapurniotu A. Amyloid-Kreuzwechselwirkung zur Inhibierung der Proteinaggregation, nicht aber der Proteinfunktion: Inhibierung der Insulinaggregation im nanomolaren Bereich durch ein IAPP-Mimetikum. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Thalidomide induces limb anomalies by PTEN stabilization, Akt suppression, and stimulation of caspase-dependent cell death. Mol Cell Biol 2008; 28:529-38. [PMID: 18178729 DOI: 10.1128/mcb.00553-07] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Thalidomide, a drug used for the treatment of multiple myeloma and inflammatory diseases, is also a teratogen that causes birth defects, such as limb truncations and microphthalmia, in humans. Thalidomide-induced limb truncations result from increased cell death during embryonic limb development and consequential disturbance of limb outgrowth. Here we demonstrate in primary human embryonic cells and in the chicken embryo that thalidomide-induced signaling through bone morphogenetic proteins (Bmps) protects active PTEN from proteasomal degradation, resulting in suppression of Akt signaling. As a consequence, caspase-dependent cell death is stimulated by the intrinsic and Fas death receptor apoptotic pathway. Most importantly, thalidomide-induced limb deformities and microphthalmia in chicken embryos could be rescued by a pharmacological PTEN inhibitor as well as by insulin, a stimulant of Akt signaling. We therefore conclude that perturbation of PTEN/Akt signaling and stimulation of caspase activity is central to the teratogenic effects of thalidomide.
Collapse
|
24
|
Thalidomide induces limb anomalies by PTEN stabilization, Akt suppression, and stimulation of caspase-dependent cell death. Mol Cell Biol 2008. [PMID: 18178729 DOI: 10.1128/mcb.00533-07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thalidomide, a drug used for the treatment of multiple myeloma and inflammatory diseases, is also a teratogen that causes birth defects, such as limb truncations and microphthalmia, in humans. Thalidomide-induced limb truncations result from increased cell death during embryonic limb development and consequential disturbance of limb outgrowth. Here we demonstrate in primary human embryonic cells and in the chicken embryo that thalidomide-induced signaling through bone morphogenetic proteins (Bmps) protects active PTEN from proteasomal degradation, resulting in suppression of Akt signaling. As a consequence, caspase-dependent cell death is stimulated by the intrinsic and Fas death receptor apoptotic pathway. Most importantly, thalidomide-induced limb deformities and microphthalmia in chicken embryos could be rescued by a pharmacological PTEN inhibitor as well as by insulin, a stimulant of Akt signaling. We therefore conclude that perturbation of PTEN/Akt signaling and stimulation of caspase activity is central to the teratogenic effects of thalidomide.
Collapse
|
25
|
Vinciguerra M, Veyrat-Durebex C, Moukil MA, Rubbia-Brandt L, Rohner-Jeanrenaud F, Foti M. PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 2008; 134:268-80. [PMID: 18166358 DOI: 10.1053/j.gastro.2007.10.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 09/28/2007] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor and a regulator of insulin sensitivity in peripheral tissues. In the liver, PTEN deletion increases insulin sensitivity, but induces steatosis, steatohepatitis, and hepatocellular carcinoma. Here, we investigated the pathophysiologic mechanisms regulating PTEN expression in the liver and the development of steatosis. METHODS PTEN expression was evaluated in the liver of rats and human beings having metabolic syndrome. Signaling pathways regulating PTEN expression and lipid accumulation in hepatocytes were examined in vitro. RESULTS PTEN expression is down-regulated in the liver of rats having steatosis and high plasma levels of fatty acids, as well as in steatotic human livers. Unsaturated fatty acids inhibited PTEN expression in HepG2 cells via activation of a signaling complex formed by the mammalian target of rapamycin (mTOR) and nuclear factor-kappaB (NF-kappaB). Down-regulation of PTEN expression induced steatosis by affecting import, esterification, and extracellular release of fatty acids. CONCLUSIONS Hepatic steatosis can be mediated by alterations of PTEN expression in hepatocytes exposed to high levels of unsaturated fatty acids. Furthermore, our data revealed interaction between mTOR and NF-kappaB, suggesting cross-talk between these 2 pathways.
Collapse
Affiliation(s)
- Manlio Vinciguerra
- Department of Cell Physiology and Metabolism, Geneva Medical Faculty, Geneva University Hospital, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Lopiccolo J, Ballas MS, Dennis PA. PTEN hamartomatous tumor syndromes (PHTS): rare syndromes with great relevance to common cancers and targeted drug development. Crit Rev Oncol Hematol 2007; 63:203-14. [PMID: 17643312 DOI: 10.1016/j.critrevonc.2007.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 06/07/2007] [Indexed: 12/22/2022] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene located on chromosome 10q22-23 that negatively regulates the pro-survival PI3K/Akt/mTOR pathway by functioning as a lipid phosphatase. Signaling through this pathway promotes cellular transformation and survival as well as resistance to chemotherapy and radiation. Loss of PTEN function is commonly observed in human cancers through somatic mutation, hypermethylation, and/or enhanced degradation. PTEN hamartomatous tumor syndromes (PHTS) are a collection of rare clinical syndromes marked by germline PTEN loss. Compared to the general population, PHTS patients have an increased risk of developing certain cancers and can develop benign tumors in virtually any organ. These patients provide a unique opportunity to examine the role of PTEN in human tumorigenesis, as well as study genotype-phenotype relationships. Because these patients are at higher risk of developing malignancies and have no established medical therapies, early screening, surveillance, and preventive care are important issues. Inhibitors of the PI3K/Akt/mTOR pathway that are being developed as cancer therapeutics could provide new therapeutic options for these rare patients, and could be credentialed as pathway inhibitors prior to testing in the general oncology population.
Collapse
Affiliation(s)
- Jaclyn Lopiccolo
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889, United States
| | | | | |
Collapse
|
27
|
Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, Kennedy NJ, Jiao J, Rose J, Xie W, Loda M, Golub T, Mellinghoff IK, Davis RJ, Wu H, Sawyers CL. Identification of the JNK signaling pathway as a functional target of the tumor suppressor PTEN. Cancer Cell 2007; 11:555-69. [PMID: 17560336 DOI: 10.1016/j.ccr.2007.04.021] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 02/14/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
Although most oncogenic phenotypes of PTEN loss are attributed to AKT activation, AKT alone is not sufficient to induce all of the biological activities associated with PTEN inactivation. We searched for additional PTEN-regulated pathways through gene set enrichment analysis (GSEA) and identified genes associated with JNK activation. PTEN null cells exhibit higher JNK activity, and genetic studies demonstrate that JNK functions parallel to and independently of AKT. Furthermore, PTEN deficiency sensitizes cells to JNK inhibition and negative feedback regulation of PI3K was impaired in PTEN null cells. Akt and JNK activation are highly correlated in human prostate cancer. These findings implicate JNK in PI3K-driven cancers and demonstrate the utility of GSEA to identify functional pathways using genetically defined systems.
Collapse
Affiliation(s)
- Igor Vivanco
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lackey J, Barnett J, Davidson L, Batty IH, Leslie NR, Downes CP. Loss of PTEN selectively desensitizes upstream IGF1 and insulin signaling. Oncogene 2007; 26:7132-42. [PMID: 17486056 PMCID: PMC2773499 DOI: 10.1038/sj.onc.1210520] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many tumors have chronically elevated activity of PI 3-kinase-dependent signaling pathways, caused largely by oncogenic mutation of PI 3-kinase itself or loss of the opposing tumor suppressor lipid phosphatase, PTEN. Several PI 3-kinase-dependent feedback mechanisms have been identified that may affect the sensitivity of upstream receptor signaling, but the events required to initiate an inhibited state have not been addressed. We show that in a variety of cell types, loss of PTEN via experimental knockdown or in tumor cell lines correlates with a block in insulin-like growth factor 1 (IGF1)/insulin signaling, without affecting the sensitivity of platelet-derived growth factor or epidermal growth factor signaling. These effects on IGF/insulin signaling include a reduction of up to five- to tenfold in IGF-stimulated PI 3-kinase activation, a failure to activate the ERK kinases and, in some cells, reduced expression of insulin receptor substrate 1, and both IGF1 and insulin receptors. These data indicate that chronically elevated PI 3-kinase-dependent signaling to the degree seen in many tumors causes a selective loss of sensitivity in IGF1/insulin signaling that could significantly reduce the selective advantage of deregulated activation of IGF1/IGF1-R signaling in tumor development.
Collapse
Affiliation(s)
| | | | | | | | - Nick R. Leslie
- Author for correspondence, Nick Leslie, Tel: 44-1382-386263 Fax: 44-1382-385507
| | | |
Collapse
|
29
|
Kim JS, Lee C, Bonifant CL, Ressom H, Waldman T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol Cell Biol 2007; 27:662-77. [PMID: 17060456 PMCID: PMC1800819 DOI: 10.1128/mcb.00537-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In an effort to identify genes whose expression is regulated by activated phosphatidylinositol 3-kinase (PI3K) signaling, we performed microarray analysis and subsequent quantitative reverse transcription-PCR on an isogenic set of PTEN gene-targeted human cancer cells. Numerous p53 effectors were upregulated following PTEN deletion, including p21, GDF15, PIG3, NOXA, and PLK2. Stable depletion of p53 led to reversion of the gene expression program. Western blots revealed that p53 was stabilized in HCT116 PTEN(-/-) cells via an Akt1-dependent and p14(ARF)-independent mechanism. Stable depletion of PTEN in untransformed human fibroblasts and epithelial cells also led to upregulation of p53 and senescence-like growth arrest. Simultaneous depletion of p53 rescued this phenotype, enabling PTEN-depleted cells to continue proliferating. Next, we tested whether oncogenic PIK3CA, like inactivated PTEN, could activate p53. Retroviral expression of oncogenic human PIK3CA in MCF10A cells led to activation of p53 and upregulation of p53-regulated genes. Stable depletion of p53 reversed these PIK3CA-induced expression changes and synergized with oncogenic PIK3CA in inducing anchorage-independent growth. Finally, targeted deletion of an endogenous allele of oncogenic, but not wild-type, PIK3CA in a human cancer cell line led to a reduction in p53 levels and a decrease in the expression of p53-regulated genes. These studies demonstrate that activation of PI3K signaling by mutations in PTEN or PIK3CA can lead to activation of p53-mediated growth suppression in human cells, indicating that p53 can function as a brake on phosphatidylinositol (3,4,5)-triphosphate-induced mitogenesis during human cancer pathogenesis.
Collapse
Affiliation(s)
- Jung-Sik Kim
- Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road NW, NRB E304, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
30
|
Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6:184-92. [PMID: 16453012 DOI: 10.1038/nrc1819] [Citation(s) in RCA: 928] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tumour-suppressor phosphatase with tensin homology (PTEN) is the most important negative regulator of the cell-survival signalling pathway initiated by phosphatidylinositol 3-kinase (PI3K). Although PTEN is mutated or deleted in many tumours, deregulation of the PI3K-PTEN network also occurs through other mechanisms. Crosstalk between the PI3K pathways and other tumorigenic signalling pathways, such as those that involve Ras, p53, TOR (target of rapamycin) or DJ1, can contribute to this deregulation. How does the PI3K pathway integrate signals from numerous sources, and how can this information be used in the rational design of cancer therapies?
Collapse
Affiliation(s)
- Megan Cully
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | | | | | | |
Collapse
|
31
|
Cully M, Shiu J, Piekorz RP, Muller WJ, Done SJ, Mak TW. Transforming Acidic Coiled Coil 1 Promotes Transformation and Mammary Tumorigenesis. Cancer Res 2005; 65:10363-70. [PMID: 16288026 DOI: 10.1158/0008-5472.can-05-1633] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming acidic coiled coil 1 (TACC1) is a putative oncogene located within a breast cancer amplicon found on human chromosome 8p11. Although TACC1 has been reported to transform fibroblasts, it is also down-regulated in a subset of mammary tumors treated with anthracyclin. Here, we show that ectopic TACC1 overexpression can cooperate with Ras to induce focus formation in murine fibroblast cultures and prevent death caused by overexpression of Pten or a dominant-negative form of protein kinase B (PKB)/Akt. In transgenic mice carrying TACC1 under the control of the mouse mammary tumor virus promoter, TACC1 expression reduced apoptosis during mammary gland involution, increased the penetrance of mammary tumors in a pten+/- background, and decreased the average age of mammary tumor onset in a mouse model based on a phosphatidylinositol 3'-kinase (PI3K)-decoupled mutant of polyoma middle T. Elevated levels of both phospho-PKB and phospho-extracellular signal-regulated kinase were found in mammary tissue containing the TACC1 transgene. Thus, TACC1 positively regulates the Ras and PI3K pathways, promotes Ras-mediated transformation, and prevents apoptosis induced by PI3K pathway inhibition. TACC1 also cooperates with tumorigenic mutations in the PI3K pathway and thereby plays an oncogenic role in tumor formation in the murine mammary gland.
Collapse
Affiliation(s)
- Megan Cully
- Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Kushner JA, Simpson L, Wartschow LM, Guo S, Rankin MM, Parsons R, White MF. Phosphatase and tensin homolog regulation of islet growth and glucose homeostasis. J Biol Chem 2005; 280:39388-93. [PMID: 16170201 DOI: 10.1074/jbc.m504155200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Irs2 branch of the insulin/insulin-like growth factor signaling cascade activates the phosphatidylinositol 3-kinase --> Akt --> Foxo1 cascade in many tissues, including hepatocytes and pancreatic beta-cells. The 3'-lipid phosphatase Pten ordinarily attenuates this cascade; however, its influence on beta-cell growth or function is unknown. To determine whether decreased Pten expression could restore beta-cell function and prevent diabetes in Irs2(-/-) mice, we generated wild type or Irs2 knock-out mice that were haploinsufficient for Pten (Irs2(-/-)::Pten(+/-)). Irs2(-/-) mice develop diabetes by 3 months of age as beta-cell mass declined progressively until insulin production was lost. Pten insufficiency increased peripheral insulin sensitivity in wild type and Irs2(-/-) mice and increased Akt and Foxo1 phosphorylation in the islets. Glucose tolerance improved in the Pten(+/-) mice, although beta-cell mass and circulating insulin levels decreased. Compared with Irs2(-/-) mice, the Irs2(-/-)::Pten(+/-) mice displayed nearly normal glucose tolerance and survived without diabetes, because normal but small islets produced sufficient insulin until the mice died of lymphoproliferative disease at 12 months age. Thus, steps to enhance phosphatidylinositol 3-kinase signaling can promote beta-cell growth, function, and survival without the Irs2 branch of the insulin/insulin-like growth factor signaling cascade.
Collapse
Affiliation(s)
- Jake A Kushner
- Division of Endocrinology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Steelman LS, Bertrand FE, McCubrey JA. The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opin Ther Targets 2005; 8:537-50. [PMID: 15584861 DOI: 10.1517/14728222.8.6.537] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a phosphatase that removes phosphates primarily from lipids. It has also been called mutated in multiple advanced cancers 1 and transforming growth factor-beta regulated epithelial cell-enriched phosphatase 1. The best described substrate of PTEN is phosphatidyliniositol (3,4,5)-tris-phosphate [PtdIns(3,4,5)P3]. PTEN removes the phosphate in PtdIns(3,4,5)P(3) to generate PtdIns(4,5)P(2). PTEN serves to counter-balance the effects of phosphoinositide 3' kinase, which normally adds a phosphate to PtdIns(4,5)P(2) to generate PtdIns(3,4,5)P(3). PtdIns(3,4,5)P(3) recruits kinases such as phosphoinositide-dependent kinase 1, which in turn phosphorylate Akt, which phosphorylates other downstream proteins involved in regulation of apoptosis and cell-cycle progression. PTEN removal of the phosphate from PtdIns(3,4,5)P(3) inhibits this pathway by preventing localisation of proteins with pleckstrin homology domains to the cell membrane. Alterations of the PTEN gene are associated with cancer and other diseases. Novel therapeutic approaches have been developed to counteract the deletion/mutation of PTEN in human cancer. This review will discuss the role of PTEN in signal transduction and cancer as well as pharmacological approaches to combat PTEN loss in human cancer.
Collapse
Affiliation(s)
- Linda S Steelman
- East Carolina University, Department of Microbiology and Immunology, Brody School of Medicine, Brody Building 5N98C, Greenville, NC 27834, USA
| | | | | |
Collapse
|
34
|
Koehl GE, Schlitt HJ, Geissler EK. Rapamycin and tumor growth: mechanisms behind its anticancer activity. Transplant Rev (Orlando) 2005. [DOI: 10.1016/j.trre.2005.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Zhang D, Bar-Eli M, Meloche S, Brodt P. Dual Regulation of MMP-2 Expression by the Type 1 Insulin-like Growth Factor Receptor. J Biol Chem 2004; 279:19683-90. [PMID: 14993222 DOI: 10.1074/jbc.m313145200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The matrix metalloproteinase (MMP)-2 has been recognized as a major mediator of basement membrane degradation, angiogenesis, tumor invasion, and metastasis. The factors that regulate its expression have not, however, been fully elucidated. We previously identified the type I insulin-like growth factor (IGF-I) receptor as a regulator of MMP-2 synthesis. The objective of the present study was to investigate the signal transduction pathway(s) mediating this regulation. We show here that in Lewis lung carcinoma subline H-59 cells treated with IGF-I (10 ng/ml), the PI 3-kinase (phosphatidylinositol 3'-kinase) /protein kinase B (Akt) and C-Raf/ERK pathways were activated, and MMP-2 promoter activity, mRNA, and protein synthesis were induced. MMP-2 induction was blocked by the PI 3-kinase inhibitors LY294002 and wortmannin, by overexpression of a dominant-negative Akt or wild-type PTEN (phosphatase and tensin homologue deleted on chromosome 10), and by rapamycin. In contrast, a MEK inhibitor PD98059 failed to reduce MMP-2 promoter activation and actually increased MMP-2 mRNA and protein synthesis by up to 30%. Interestingly, suppression of PI 3-kinase signaling by a dominant-negative Akt enhanced ERK activity in cells stimulated with 10 ng/ml but not with 100 ng/ml IGF-I. Furthermore, at the higher (100 ng/ml) IGF-I concentration, C-Raf and ERK, but not PI 3-kinase activation, was enhanced, and this resulted in down-regulation of MMP-2 synthesis. This effect was reversed in cells expressing a dominant-negative ERK mutant. The results suggest that IGF-I can up-regulate MMP-2 synthesis via PI 3-kinase/Akt/mTOR (the mammalian target of rapamycin) signaling while concomitantly transmitting a negative regulatory signal via the Raf/ERK pathway. The outcome of IGF-IR (the receptor for IGF-I) activation may ultimately depend on factors, such as ligand bioavailability, that can shift the balance preferentially toward one pathway or the other.
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Surgery, McGill University Health Center, the Royal Victoria Hospital, Room H6.25, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | | | | | |
Collapse
|
36
|
Ishihara H, Sasaoka T, Kagawa S, Murakami S, Fukui K, Kawagishi Y, Yamazaki K, Sato A, Iwata M, Urakaze M, Ishiki M, Wada T, Yaguchi S, Tsuneki H, Kimura I, Kobayashi M. Association of the polymorphisms in the 5'-untranslated region of PTEN gene with type 2 diabetes in a Japanese population. FEBS Lett 2003; 554:450-4. [PMID: 14623110 DOI: 10.1016/s0014-5793(03)01225-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is known to act as a lipid phosphatase hydrolyzing phosphatidylinositol (PI)(3,4,5)P(3) to PI(4,5)P(2). Since the PI3-kinase product, PI(3,4,5)P(3), is an important second messenger leading to the metabolic action of insulin, PTEN functions as a potent negative regulator of insulin signaling and its gene is one of the possible candidates involved in susceptibility to the development of type 2 (non-insulin-dependent) diabetes. In the present study, we investigated the polymorphisms of the PTEN gene in Japanese patients with type 2 diabetes and non-diabetic control subjects. We identified three mutations of the gene in the type 2 diabetes patients. Among these mutations, the frequency of the substitution of C with G at position -9 (-9C-->G) (SNP1), located in the untranslated region of exon 1, was significantly higher in type 2 diabetic patients than in control subjects. In addition, transfection of the PTEN gene with SNP1 resulted in a significantly higher expression level of PTEN protein compared with that of the wild-type PTEN gene in Cos1 and Rat1 cells. Furthermore, insulin-induced phosphorylation of Akt in HIRc cells was decreased more greatly by transfection of SNP1 PTEN gene than that of wild-type PTEN gene. These findings suggest that the change of C to G at position -9 of the PTEN gene is associated with the insulin resistance of type 2 diabetes due possibly to a potentiated hydrolysis of the PI3-kinase product.
Collapse
|
37
|
Neid M, Datta K, Stephan S, Khanna I, Pal S, Shaw L, White M, Mukhopadhyay D. Role of insulin receptor substrates and protein kinase C-zeta in vascular permeability factor/vascular endothelial growth factor expression in pancreatic cancer cells. J Biol Chem 2003; 279:3941-8. [PMID: 14604996 DOI: 10.1074/jbc.m303975200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), the critical molecule in tumor angiogenesis, is regulated by different stimuli, such as hypoxia and oncogenes, and also by growth factors. Previously we have shown that in AsPC-1 pancreatic adenocarcinoma cells, insulin-like growth factor receptor (IGF-IR) regulates VPF/VEGF expression. Insulin receptor substrate-1 and -2 (IRS-1 and IRS-2), two major downstream molecules of IGF-1R, are known to be important in the genesis of diabetes. In this study, we have defined a new role of IRS in angiogenesis. Both of the IRS proteins modulate VPF/VEGF expression in pancreatic cancer cells by different mechanistic pathways. The Sp1-dependent VPF/VEGF transcription is regulated mainly by IRS-2. Protein kinase C-zeta (PKC-zeta) plays a central role in VPF/VEGF expression and acts as a switching element. Furthermore, we have also demonstrated that the phosphatidylinositol 3-kinase pathway, but not the Ras pathway, is a downstream event of IRS proteins for VPF/VEGF expression in AsPC-1 cells. Interestingly, like renal cancer cells, in AsPC-1 cells PKC-zeta leads to direct Sp1-dependent VPF/VEGF transcription; in addition, it also promotes a negative feedback loop to IRS-2 that decreases the association of IRS-2/IGF-1R and IRS-2/p85. Taken together, our results show that in AsPC-1 pancreatic carcinoma cells, Sp1-dependent VPF/VEGF transcription is controlled by IGF-1R signaling through IRS-2 proteins and modulated by a negative feedback loop of PKC-zeta to IRS-2. Our data also suggest that IRS proteins, which are known to play crucial roles in IGF-1R signaling, are also important mediators for tumor angiogenesis.
Collapse
Affiliation(s)
- Matthias Neid
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
McMorran B, Town L, Costelloe E, Palmer J, Engel J, Hume D, Wainwright B. Effector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa infection. Infect Immun 2003; 71:6035-44. [PMID: 14500525 PMCID: PMC201109 DOI: 10.1128/iai.71.10.6035-6044.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse set of virulence factors that aid colonization and influence host cell defenses. An important early step in the establishment of infection is the production of type III-secreted effectors translocated into host cells by the bacteria. We used cDNA microarrays to compare the transcriptomic response of lung epithelial cells to P. aeruginosa mutants defective in type IV pili, the type III secretion apparatus, or in the production of specific type III-secreted effectors. Of the 18,000 cDNA clones analyzed, 55 were induced or repressed after 4 h of infection and could be classified into four different expression patterns. These include (i) host genes that are induced or repressed in a type III secretion-independent manner (32 clones), (ii) host genes induced specifically by ExoU (20 clones), and (iii) host genes induced in an ExoU-independent but type III secretion dependent manner (3 clones). In particular, ExoU was essential for the expression of immediate-early response genes, including the transcription factor c-Fos. ExoU-dependent gene expression was mediated in part by early and transient activation of the AP1 transcription factor complex. In conclusion, the present study provides a detailed insight into the response of epithelial cells to infection and indicates the significant role played by the type III virulence mechanism in the initial host response.
Collapse
Affiliation(s)
- B McMorran
- Institute for Molecular Bioscience, University of Queensland, Brisbane, St. Lucia 4072, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Rakatzi I, Seipke G, Eckel J. [LysB3, GluB29] insulin: a novel insulin analog with enhanced β-cell protective action. Biochem Biophys Res Commun 2003; 310:852-9. [PMID: 14550282 DOI: 10.1016/j.bbrc.2003.09.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin receptor substrate (IRS)-2 has been implicated in the promotion of beta-cell survival. Here we tested the hypothesis that the novel analog [LysB3, GluB29] insulin (insulin glulisine, IG) might mediate an enhanced beta-cell protective effect due to its unique property of preferential IRS-2 phosphorylation. We assessed IRS activation by IG and its anti-apoptotic activity against cytokines or palmitic acid in comparison to insulin, insulin analogs, and insulin-like growth factor (IGF)-I using INS-1 cells. IG induced a prominent IRS-2 activation without significant IRS-1 stimulation. The marked cytokine- and fatty acid-induced apoptosis was strongly (55-60%) inhibited by IG both at the level of caspase 3 activation and nucleosomal release, with only 15% inhibition of apoptosis by regular insulin. At 1nM, insulin, insulin aspart, and insulin lispro were much less effective compared to IG. In conclusion, the prominent anti-apoptotic activity of insulin glulisine might serve to counteract autoimmune- and lipotoxicity-induced beta-cell destruction.
Collapse
Affiliation(s)
- Irini Rakatzi
- Department of Clinical Biochemistry and Pathobiochemistry, German Diabetes Research Institute, Düsseldorf, Germany
| | | | | |
Collapse
|
40
|
Abstract
The inherited hamartoma polyposis syndromes encompass several distinct clinical syndromes with different genetic bases, Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), juvenile polyposis syndrome (JPS), and Peutz-Jeghers syndrome (PJS). Germline mutations in PTEN, encoding a tumor suppressor phosphatase on 10q23.3, is associated with 80% of CS and 60% of BRRS. JPS is caused by mutations in MADH4 and BMPR1A, encoding two members of the TGFB superfamily. Germline mutations in LKB1 (STK11) are associated with a subset of PJS. The number, distribution, and histologic type of polyps differ amongst these syndromes as do component cancer risks. While rare, usually asymptomatic, hamartomatous polyps are felt to be component to CS. Hamartomatous polyposis is usually prominent and symptomatic in BRRS. Polyposis, which can be quite symptomatic, is a cardinal component feature of PJS and JPS. Interestingly, glycogenic acanthosis of the esophagus is highly predictive of CS and the presence of PTEN mutation. PTEN mutation positive CS have been shown to be at increased risk of breast, thyroid, and endometrial cancer. PTEN mutation positive BRRS are at increased risk of at least breast cancer, possibly that of the thyroid as well. In contrast, JPS and PJS have increased risk of gastrointestinal cancers in particular. Thus, molecular-based diagnoses to differentiate each of these syndromes are important for medical management.
Collapse
Affiliation(s)
- Charis Eng
- Clinical Cancer Genetics Program and Human Cancer Genetics Program, Comprehensive Cancer Center, Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
41
|
Abstract
PTEN, on 10q23.3, encodes a major lipid phosphatase which signals down the phosphoinositol-3-kinase/Akt pathway and effects G1 cell cycle arrest and apoptosis. Germline PTEN mutations have been found to occur in 80% of classic Cowden syndrome (CS), 60% of Bannayan-Riley-Ruvalcaba syndrome (BRRS), up to 20% of Proteus syndrome (PS), and approximately 50% of a Proteus-like syndrome (PSL). CS is a heritable multiple hamartoma syndrome with a high risk of breast, thyroid, and endometrial carcinomas. BRRS is a congenital autosomal dominant disorder characterized by megencephaly, developmental delay, lipomatosis, and speckled penis. PS and PSL had never been associated with risk of malignancy. Finding germline PTEN mutations in patients with BRRS, PS, and PSL suggests equivalent risks of developing malignancy as in CS with implications for medical management. The mutational spectra of CS and BRRS overlap, with many of the mutations occurring in exons 5, 7, and 8. Genotype-phenotype association analyses have revealed that the presence of germline PTEN mutations is associated with breast tumor development, and that mutations occurring within and 5' of the phosphatase motif were associated with multi-organ involvement. Pooled analysis of PTEN mutation series of CS and BRRS occurring in the last five years reveals that 65% of CS-associated mutations occur in the first five exons encoding the phosphatase domain and the promoter region, while 60% of BRRS-associated mutations occur in the 3' four exons encoding mainly the C2 domain. Somatic PTEN mutations occur with a wide distribution of frequencies in sporadic primary tumors, with the highest frequencies in endometrial carcinomas and glioblastoma multiform. Several mechanisms of PTEN inactivation occur in primary malignancies derived from different tissues, but a favored mechanism appears to occur in a tissue-specific manner. Inappropriate subcellular compartmentalization and increased/decreased proteosome degradation may be two novel mechanisms of PTEN inactivation. Further functional work could reveal more effective means of molecular-directed therapy and prevention.
Collapse
Affiliation(s)
- Charis Eng
- Clinical Cancer Genetics Program and Human Cancer Genetics Program, Comprehensive Cancer Center, Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
42
|
Pirola L, Bonnafous S, Johnston AM, Chaussade C, Portis F, Van Obberghen E. Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem 2003; 278:15641-51. [PMID: 12594228 DOI: 10.1074/jbc.m208984200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Impaired glucose tolerance precedes type 2 diabetes and is characterized by hyperinsulinemia, which develops to balance peripheral insulin resistance. To gain insight into the deleterious effects of hyperinsulinemia on skeletal muscle, we studied the consequences of prolonged insulin treatment of L6 myoblasts on insulin-dependent signaling pathways. A 24-h long insulin treatment desensitized the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB) and p42/p44 MAPK pathways toward a second stimulation with insulin or insulin-like growth factor-1 and led to decreased insulin-induced glucose uptake. Desensitization was correlated to a reduction in insulin receptor substrate (IRS)-1 and IRS-2 protein levels, which was reversed by the PI3K inhibitor LY294002. Co-treatment of cells with insulin and LY294002, while reducing total IRS-1 phosphorylation, increased its phosphotyrosine content, enhancing IRS-1/PI3K association. PDK1, mTOR, and MAPK inhibitors did not block insulin-induced reduction of IRS-1, suggesting that the PI3K serine-kinase activity causes IRS-1 serine phosphorylation and its commitment to proteasomal degradation. Contrarily, insulin-induced IRS-2 down-regulation occurred via a PI3K/mTOR pathway. Suppression of IRS-1/2 down-regulation by LY294002 rescued the responsiveness of PKB and MAPK toward acute insulin stimulation. Conversely, adenoviral-driven expression of constitutively active PI3K induced an insulin-independent reduction in IRS-1/2 protein levels. IRS-2 appears to be the chief molecule responsible for MAPK and PKB activation by insulin, as knockdown of IRS-2 (but not IRS-1) by RNA interference severely impaired activation of both kinases. In summary, (i) PI3K mediates insulin-induced reduction of IRS-1 by phosphorylating it while a PI3K/mTOR pathway controls insulin-induced reduction of IRS-2, (ii) in L6 cells, IRS-2 is the major adapter molecule linking the insulin receptor to activation of PKB and MAPK, (iii) the mechanism of IRS-1/2 down-regulation is different in L6 cells compared with 3T3-L1 adipocytes. In conclusion, the reduction in IRS proteins via different PI3K-mediated mechanisms contributes to the development of an insulin-resistant state in L6 myoblasts.
Collapse
Affiliation(s)
- Luciano Pirola
- INSERM U145, IFR50, Faculté de Médecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
43
|
Bertelli DF, Ueno M, Amaral MEC, Toyama MH, Carneiro EM, Marangoni S, Carvalho CRO, Saad MJA, Velloso LA, Boschero AC. Reversal of denervation-induced insulin resistance by SHIP2 protein synthesis blockade. Am J Physiol Endocrinol Metab 2003; 284:E679-87. [PMID: 12453826 DOI: 10.1152/ajpendo.00345.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term muscle denervation is a reproducible model of tissue-specific insulin resistance. To investigate the molecular basis of insulin resistance in denervated muscle, the downstream signaling molecules of the insulin-signaling pathway were examined in intact and denervated soleus muscle of rats. Short-term denervation induced a significant fall in glucose clearance rates (62% of control, P < 0.05) as detected by euglycemic hyperinsulinemic clamp and was associated with a significant decrease in insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR; 73% of control, P < 0.05), IR substrate 1 (IRS1; 69% of control, P < 0.05), and IRS2 (82% of control, P < 0.05) and serine phosphorylation of Akt (39% of control, P < 0.05). Moreover, denervation reduced insulin-induced association between IRS1/IRS2 and p85/phosphatidylinositol (PI) 3-kinase. Nevertheless, denervation caused an increase in PI 3-kinase activity associated with IRS1 (275%, P < 0.05) and IRS2 (180%, P < 0.05), but the contents of phosphorylated PI detected by HPLC were significantly reduced in lipid fractions. In the face of the apparent discrepancy, we evaluated the expression and activity of the 5-inositol, lipid phosphatase SH2 domain-containing inositol phosphatase (SHIP2), and the serine phosphorylation of p85/PI 3-kinase. No major differences in SHIP2 expression were detected between intact and denervated muscle. However, serine phosphorylation of p85/PI 3-kinase was reduced in denervated muscle, whereas the blockade of SHIP2 expression by antisense oligonucleotide treatment led to partial restoration of phosphorylated PI contents and to improved glucose uptake. Thus modulation of the functional status of SHIP2 may be a major mechanism of insulin resistance induced by denervation.
Collapse
Affiliation(s)
- Daniela F Bertelli
- Department of Physiology and Biophysics, University of Campinas 6040 Campinas SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang D, Brodt P. Type 1 insulin-like growth factor regulates MT1-MMP synthesis and tumor invasion via PI 3-kinase/Akt signaling. Oncogene 2003; 22:974-82. [PMID: 12592384 DOI: 10.1038/sj.onc.1206197] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The membrane type 1 matrix metalloproteinase (MT1-MMP) has been identified as a major activator of MMP-2 - a process involving the formation of a trimolecular complex with TIMP-2. We previously identified the IGF-I receptor as a positive regulator of MMP-2 synthesis. Here, we investigated the role of IGF-IR in the regulation of MT1-MMP. Highly invasive Lewis lung carcinoma subline H-59 cells express MT1-MMP and utilize it to activate their major extracellular matrix degrading proteinase-MMP-2. These cells were transiently transfected with a plasmid vector expressing a luciferase reporter gene downstream of the mouse MT1-MMP promoter. IGF-I treatment increased luciferase activity in the transfected cells by up to 10-fold and augmented endogenous MT1-MMP mRNA and protein synthesis by up to 2-3-fold, relative to controls. MT1-MMP induction and invasion were blocked by the PI 3-kinase inhibitors LY294002 and wortmannin and by rapamycin, but not by the MEK inhibitor PD98059. Overexpression of a dominant negative Akt mutant or of the tumor suppressor phosphatase and tensin homologue, PTEN, in these cells also caused a significant reduction in MT1-MMP expression and invasion. The results demonstrate that IGF-IR controls tumor cell invasion by coordinately regulating MMP-2 expression and its MT1-MMP-mediated activation and identify PI 3-kinase/Akt/mTOR signaling as critical to this regulation.
Collapse
MESH Headings
- Amino Acid Substitution
- Androstadienes/pharmacology
- Animals
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Chromones/pharmacology
- Collagen
- Drug Combinations
- Enzyme Induction/drug effects
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Insulin-Like Growth Factor I/pharmacology
- Insulin-Like Growth Factor I/physiology
- Laminin
- Matrix Metalloproteinase 14
- Matrix Metalloproteinase 2/physiology
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/biosynthesis
- Metalloendopeptidases/genetics
- Mice
- Morpholines/pharmacology
- Neoplasm Invasiveness/physiopathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- PTEN Phosphohydrolase
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/physiology
- Phosphorylation/drug effects
- Point Mutation
- Promoter Regions, Genetic
- Protein Kinases/physiology
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proteoglycans
- Proto-Oncogene Proteins
- Proto-Oncogene Proteins c-akt
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Receptor, IGF Type 1/drug effects
- Receptor, IGF Type 1/physiology
- Recombinant Fusion Proteins/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/physiology
- Wortmannin
Collapse
Affiliation(s)
- Donglei Zhang
- Department of Surgery, McGill University Health Center, The Royal Victoria Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
45
|
Farrow B, Evers BM. Activation of PPARgamma increases PTEN expression in pancreatic cancer cells. Biochem Biophys Res Commun 2003; 301:50-3. [PMID: 12535639 DOI: 10.1016/s0006-291x(02)02983-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The PI3K pathway contributes to the invasive properties and apoptosis resistance that epitomize pancreatic cancers. PPARgamma is a ligand-activated transcription factor with anti-inflammatory and anti-tumor effects; the mechanisms of tumor suppression are unknown. The purpose of this study was to examine whether activation of PPARgamma can increase the expression of the tumor suppressor PTEN and inhibit PI3K activity. AsPC-1 human pancreatic cancer cells, transfected with a PPRE-luciferase construct, demonstrated increased luminescence following treatment with PPARgamma ligands, indicating the presence of functional PPARgamma protein. The selective PPARgamma ligand rosiglitazone increased PTEN expression in AsPC-1 cells; concurrent treatment with GW9662, which inhibits PPARgamma activation, prevented the increase in PTEN protein levels. Levels of phosphorylated Akt decreased as PTEN levels increased, indicating inhibition of PI3K activity. Taken together, our results suggest that activation of PPARgamma may represent a novel approach for the treatment of pancreatic cancer by increasing PTEN levels and inhibiting PI3K activity.
Collapse
Affiliation(s)
- Buckminster Farrow
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | |
Collapse
|
46
|
Andersen CB, Sakaue H, Nedachi T, Kovacina KS, Clayberger C, Conti M, Roth RA. Protein kinase B/Akt is essential for the insulin- but not progesterone-stimulated resumption of meiosis in Xenopus oocytes. Biochem J 2003; 369:227-38. [PMID: 12374568 PMCID: PMC1223087 DOI: 10.1042/bj20021243] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2002] [Revised: 10/02/2002] [Accepted: 10/09/2002] [Indexed: 11/17/2022]
Abstract
In the present study, we have characterized the Xenopus Akt expressed in oocytes from the African clawed frog Xenopus laevis and tested whether its activity is required for the insulin- and progesterone-stimulated resumption of meiosis. A cDNA encoding the Xenopus Akt was isolated and sequenced, and its expression in the Xenopus oocyte was confirmed by reverse transcription PCR and Northern blotting. Using phosphospecific antibodies and enzyme assays, a large and rapid activation of the Xenopus Akt was observed upon insulin stimulation of the oocytes. In contrast, progesterone caused a modest activation of this kinase with a slower time course. To test whether the activation of Akt was required in the stimulation of the resumption of meiosis, we have utilized two independent approaches: a functional dominant negative Akt mutant and an inhibitory monoclonal antibody. Both the mutant Akt, as well as the inhibitory monoclonal antibody, completely blocked the insulin-stimulated resumption of meiosis. In contrast, both treatments only partially inhibited (by approx. 30%) the progesterone-stimulated resumption of meiosis when submaximal doses of this hormone were utilized. These data demonstrate a crucial role for Akt in the insulin-stimulated cell cycle progression of Xenopus oocytes, whereas Akt may have an ancillary function in progesterone signalling.
Collapse
Affiliation(s)
- Carsten B Andersen
- Division of Reproductive Biology, Department of Gynecology and Obstetrics, Stanford University School of Medicine, Stanford, CA 94305, U.S.A
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The PTEN tumour suppressor protein is a phosphoinositide 3-phosphatase that, by metabolising phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)), acts in direct antagonism to growth factor stimulated PI 3-kinases. A wealth of data has now illuminated pathways that can be controlled by PTEN through PtdIns(3,4,5)P(3), some of which, when deregulated, give a selective advantage to tumour cells. Early studies of PTEN showed that its activity was able to promote cell cycle arrest and apoptosis and inhibit cell motility, but more recent data have identified other functional consequences of PTEN action, such as effects on the regulation of angiogenesis. The structure of PTEN includes several features not seen in related protein phosphatases, which adapt the enzyme to act efficiently as a lipid phosphatase, including a C2 domain tightly associated with the phosphatase domain, and a broader and deeper active site pocket. Several pieces of data indicate that PTEN is a principal regulator of the cellular levels of PtdIns(3,4,5)P(3), but work is only just beginning to uncover mechanisms by which the cellular activity of PTEN can be controlled. There also remains the vexing question of whether any of PTEN's cellular functions reflect its evolutionary roots as a member of the protein tyrosine phosphatase superfamily.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling, School of Life Sciences, Medical Sciences Institute, University of Dundee, DD1 5EH Scotland, Dundee, UK.
| | | |
Collapse
|