1
|
Alarfaj H. Selenium in Surgery. Cureus 2024; 16:e72168. [PMID: 39583421 PMCID: PMC11582387 DOI: 10.7759/cureus.72168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Selenium, a micronutrient essential for many enzymatic functions, is crucial for maintaining human health. Its presence in the human diet is of paramount importance for metabolism and support of the immune system. Many diseases of surgical importance are related to the level of selenoproteins and their influence on different organs. The aim of this concise narrative review is to highlight the role of selenium as a trace element in various surgical morbidities, a concept that is often neglected or not well perceived by most surgeons.
Collapse
|
2
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
3
|
Fujita H, Tanaka YK, Ogata S, Suzuki N, Kuno S, Barayeu U, Akaike T, Ogra Y, Iwai K. PRDX6 augments selenium utilization to limit iron toxicity and ferroptosis. Nat Struct Mol Biol 2024; 31:1277-1285. [PMID: 38867112 PMCID: PMC11327102 DOI: 10.1038/s41594-024-01329-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Ferroptosis is a form of regulated cell death induced by iron-dependent accumulation of lipid hydroperoxides. Selenoprotein glutathione peroxidase 4 (GPX4) suppresses ferroptosis by detoxifying lipid hydroperoxides via a catalytic selenocysteine (Sec) residue. Sec, the genetically encoded 21st amino acid, is biosynthesized from a reactive selenium donor on its cognate tRNA[Ser]Sec. It is thought that intracellular selenium must be delivered 'safely' and 'efficiently' by a carrier protein owing to its high reactivity and very low concentrations. Here, we identified peroxiredoxin 6 (PRDX6) as a novel selenoprotein synthesis factor. Loss of PRDX6 decreases the expression of selenoproteins and induces ferroptosis via a reduction in GPX4. Mechanistically, PRDX6 increases the efficiency of intracellular selenium utilization by transferring selenium between proteins within the selenocysteyl-tRNA[Ser]Sec synthesis machinery, leading to efficient synthesis of selenocysteyl-tRNA[Ser]Sec. These findings highlight previously unidentified selenium metabolic systems and provide new insights into ferroptosis.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, Japan.
| | - Yu-Ki Tanaka
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Sota Kuno
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, Japan
- Department of Radiation Oncology, New York University Langone Health, New York, NY, USA
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Kyoto University School of Medicine, Kyoto, Japan.
| |
Collapse
|
4
|
Lee TJ, Nettleford SK, McGlynn A, Carlson BA, Kirimanjeswara GS, Prabhu KS. The role of selenoproteins in neutrophils during inflammation. Arch Biochem Biophys 2022; 732:109452. [PMID: 36336122 PMCID: PMC9712253 DOI: 10.1016/j.abb.2022.109452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/22/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Polymorphonuclear neutrophils (PMNs)-derived ROS are involved in the regulation of multiple functions of PMNs critical in both inflammation and its timely resolution. Selenium is an essential trace element that functions as a gatekeeper of cellular redox homeostasis in the form of selenoproteins. Despite their well-studied involvement in regulating functions of various immune cells, limited studies have focused on the regulation of selenoproteins in PMN and their associated functions. Ex-vivo treatment of murine primary bone marrow derived PMNs with bacterial endotoxin lipopolysaccharide (LPS) indicated temporal regulation of several selenoprotein genes at the mRNA level. However, only glutathione peroxidase 4 (Gpx4) was significantly upregulated, while Selenof, Selenow, and Gpx1 were significantly downregulated in a temporal manner at the protein level. Exposure of PMNs isolated from tRNASec (Trsp)fl/fl S100A8Cre (TrspN) PMN-specific selenoprotein knockout mice, to the Gram-negative bacterium, Citrobacter rodentium, showed decreased bacterial growth, reduced phagocytosis, as well as impaired neutrophil extracellular trap (NET) formation ability, when compared to the wild-type PMNs. Increased extracellular ROS production upon LPS stimulation was also observed in TrspN PMNs that was associated with upregulation of Alox12, Cox2, and iNOS, as well as proinflammatory cytokines such as TNFα and IL-1β. Our data indicate that the inhibition of selenoproteome expression results in alteration of PMN proinflammatory functions, suggesting a potential role of selenoproteins in the continuum of inflammation and resolution.
Collapse
Affiliation(s)
- Tai-Jung Lee
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Shaneice K Nettleford
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Allison McGlynn
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bradley A Carlson
- Office of Research Support, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Girish S Kirimanjeswara
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA
| | - K Sandeep Prabhu
- Department of Veterinary & Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Tsuji PA, Santesmasses D, Lee BJ, Gladyshev VN, Hatfield DL. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci 2021; 23:ijms23010005. [PMID: 35008430 PMCID: PMC8744743 DOI: 10.3390/ijms23010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022] Open
Abstract
Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.
Collapse
Affiliation(s)
- Petra A. Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
- Correspondence:
| | - Didac Santesmasses
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Byeong J. Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Dolph L. Hatfield
- Scientist Emeritus, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
6
|
Fradejas-Villar N, Bohleber S, Zhao W, Reuter U, Kotter A, Helm M, Knoll R, McFarland R, Taylor RW, Mo Y, Miyauchi K, Sakaguchi Y, Suzuki T, Schweizer U. The Effect of tRNA [Ser]Sec Isopentenylation on Selenoprotein Expression. Int J Mol Sci 2021; 22:ijms222111454. [PMID: 34768885 PMCID: PMC8583801 DOI: 10.3390/ijms222111454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2′O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Rainer Knoll
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Yufeng Mo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
- Correspondence:
| |
Collapse
|
7
|
Torres DJ, Pitts MW, Seale LA, Hashimoto AC, An KJ, Hanato AN, Hui KW, Remigio SMA, Carlson BA, Hatfield DL, Berry MJ. Female Mice with Selenocysteine tRNA Deletion in Agrp Neurons Maintain Leptin Sensitivity and Resist Weight Gain While on a High-Fat Diet. Int J Mol Sci 2021; 22:ijms222011010. [PMID: 34681674 PMCID: PMC8539086 DOI: 10.3390/ijms222011010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
The role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis. There is also evidence that selenium supports leptin signaling in the hypothalamus by maintaining proper redox balance. In this study, we generated mice with conditional knockout of the selenocysteine tRNA[Ser]Sec gene (Trsp) in an orexigenic cell population called agouti-related peptide (Agrp)-positive neurons. We found that female TrspAgrpKO mice gain less weight while on a high-fat diet, which occurs due to changes in adipose tissue activity. Female TrspAgrpKO mice also retained hypothalamic sensitivity to leptin administration. Male mice were unaffected, however, highlighting the sexually dimorphic influence of selenium on neurobiology and energy homeostasis. These findings provide novel insight into the role of selenoproteins within a small yet heavily influential population of hypothalamic neurons.
Collapse
Affiliation(s)
- Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (L.A.S.); (M.J.B.)
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
- Correspondence:
| | - Matthew W. Pitts
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Lucia A. Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (L.A.S.); (M.J.B.)
| | - Ann C. Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Katlyn J. An
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Ashley N. Hanato
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Katherine W. Hui
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Stella Maris A. Remigio
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (M.W.P.); (A.C.H.); (K.J.A.); (A.N.H.); (K.W.H.); (S.M.A.R.)
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (L.A.S.); (M.J.B.)
| |
Collapse
|
8
|
Seale LA, Ogawa-Wong AN, Watanabe LM, Khadka VS, Menor M, Torres DJ, Carlson BA, Hatfield DL, Berry MJ. Adaptive Thermogenesis in a Mouse Model Lacking Selenoprotein Biosynthesis in Brown Adipocytes. Int J Mol Sci 2021; 22:E611. [PMID: 33435397 PMCID: PMC7827413 DOI: 10.3390/ijms22020611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/02/2022] Open
Abstract
Selenoproteins are a class of proteins with the selenium-containing amino acid selenocysteine (Sec) in their primary structure. Sec is incorporated into selenoproteins via recoding of the stop codon UGA, with specific cis and trans factors required during translation to avoid UGA recognition as a stop codon, including a Sec-specific tRNA, tRNA[Ser]Sec, encoded in mice by the gene Trsp. Whole-body deletion of Trsp in mouse is embryonically lethal, while targeted deletion of Trsp in mice has been used to understand the role of selenoproteins in the health and physiology of various tissues. We developed a mouse model with the targeted deletion of Trsp in brown adipocytes (Trspf/f-Ucp1-Cre+/-), a cell type predominant in brown adipose tissue (BAT) controlling energy expenditure via activation of adaptive thermogenesis, mostly using uncoupling protein 1 (Ucp1). At room temperature, Trspf/f-Ucp1-Cre+/- mice maintain oxygen consumption and Ucp1 expression, with male Trspf/f-Ucp1-Cre+/- mice accumulating more triglycerides in BAT than both female Trspf/f-Ucp1-Cre+/- mice or Trspf/f controls. Acute cold exposure neither reduced core body temperature nor changed the expression of selenoprotein iodothyronine deiodinase type II (Dio2), a marker of adaptive thermogenesis, in Trspf/f-Ucp1-Cre+/- mice. Microarray analysis of BAT from Trspf/f-Ucp1-Cre+/- mice revealed glutathione S-transferase alpha 3 (Gsta3) and ELMO domain containing 2 (Elmod2) as the transcripts most affected by the loss of Trsp. Male Trspf/f-Ucp1-Cre+/- mice showed mild hypothyroidism while downregulating thyroid hormone-responsive genes Thrsp and Tshr in their BATs. In summary, modest changes in the BAT of Trspf/f-Ucp1-Cre +/- mice implicate a mild thyroid hormone dysfunction in brown adipocytes.
Collapse
Affiliation(s)
- Lucia A. Seale
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
- Pacific Biomedical Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Ashley N. Ogawa-Wong
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
| | - Ligia M. Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (V.S.K.); (M.M.)
| | - Mark Menor
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA; (V.S.K.); (M.M.)
| | - Daniel J. Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA; (A.N.O.-W.); (L.M.W.); (D.J.T.)
- Pacific Biomedical Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (B.A.C.); (D.L.H.)
| | - Marla J. Berry
- Pacific Biomedical Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| |
Collapse
|
9
|
Santesmasses D, Mariotti M, Gladyshev VN. Tolerance to Selenoprotein Loss Differs between Human and Mouse. Mol Biol Evol 2020; 37:341-354. [PMID: 31560400 PMCID: PMC6993852 DOI: 10.1093/molbev/msz218] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mouse has emerged as the most common model organism in biomedicine. Here, we analyzed the tolerance to the loss-of-function (LoF) of selenoprotein genes, estimated from mouse knockouts and the frequency of LoF variants in humans. We found not only a general correspondence in tolerance (e.g., GPX1, GPX2) and intolerance (TXNRD1, SELENOT) to gene LoF between humans and mice but also important differences. Notably, humans are intolerant to the loss of iodothyronine deiodinases, whereas their deletion in mice leads to mild phenotypes, and this is consistent with phenotype differences in selenocysteine machinery loss between these species. In contrast, loss of TXNRD2 and GPX4 is lethal in mice but may be tolerated in humans. We further identified the first human SELENOP variants coding for proteins varying in selenocysteine content. Finally, our analyses suggested that premature termination codons in selenoprotein genes trigger nonsense-mediated decay, but do this inefficiently when UGA codon is gained. Overall, our study highlights differences in the physiological importance of selenoproteins between human and mouse.
Collapse
Affiliation(s)
- Didac Santesmasses
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Marco Mariotti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Nettleford SK, Zhao L, Qian F, Herold M, Arner B, Desai D, Amin S, Xiong N, Singh V, Carlson BA, Prabhu KS. The Essential Role of Selenoproteins in the Resolution of Citrobacter rodentium-Induced Intestinal Inflammation. Front Nutr 2020; 7:96. [PMID: 32775340 PMCID: PMC7381334 DOI: 10.3389/fnut.2020.00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) leads to adverse colonic inflammation associated with poor resolution of inflammation and loss of epithelial integrity. Micronutrient trace element selenium (Se) is incorporated into selenoproteins as the 21st amino acid, selenocysteine (Sec). Previous studies have shown that such an incorporation of Sec into the selenoproteome is key for the anti-inflammatory functions of Se in macrophages and other immune cells. An intriguing mechanism underlying the anti-inflammatory and pro-resolving effects of Se stems from the ability of selenoproteins to skew arachidonic acid metabolism from pro-inflammatory mediators, prostaglandin E2 (PGE2) toward anti-inflammatory mediators derived from PGD2, such as 15-deoxy-Δ12, 14- prostaglandin J2 (15d-PGJ2), via eicosanoid class switching of bioactive lipids. The impact of Se and such an eicosanoid-class switching mechanism was tested in an enteric infection model of gut inflammation by C. rodentium, a murine equivalent of EPEC. C57BL/6 mice deficient in Se (Se-D) experienced higher mortality when compared to those on Se adequate (0.08 ppm Se) and Se supplemented (0.4 ppm Se) diets following infection. Decreased survival was associated with decreased group 3 innate lymphoid cells (ILC3s) and T helper 17 (Th17) cells in colonic lamina propria of Se-D mice along with deceased expression of epithelial barrier protein Zo-1. Inhibition of metabolic inactivation of PGE2 by 15-prostaglandin dehydrogenase blocked the Se-dependent increase in ILC3 and Th17 cells in addition to reducing epithelial barrier integrity, as seen by increased systemic levels of FITC-dextran following oral administration; while 15d-PGJ2 administration in Se-D mice alleviated the effects by increasing ILC3 and Th17 cells. Mice lacking selenoproteins in monocyte/macrophages via the conditional deletion of the tRNA[Sec] showed increased mortality post infection. Our studies indicate a crucial role for dietary Se in the protection against inflammation following enteric infection via immune mechanisms involving epithelial barrier integrity.
Collapse
Affiliation(s)
- Shaneice K Nettleford
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Fenghua Qian
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Morgan Herold
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Brooke Arner
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| | - Dhimant Desai
- Department of Pharmacology, Organic Synthesis Core Laboratory, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Shantu Amin
- Department of Pharmacology, Organic Synthesis Core Laboratory, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | - Na Xiong
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Vishal Singh
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, United States
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, State College, PA, United States
| |
Collapse
|
11
|
Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants (Basel) 2020; 9:antiox9050383. [PMID: 32380763 PMCID: PMC7278666 DOI: 10.3390/antiox9050383] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022] Open
Abstract
Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine. Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover, endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are putative oxidoreductases that participate in various cellular processes depending on redox regulation. Herein, we review the recent studies on the role of selenoproteins in redox regulation and their physiological functions in humans, as well as their role in various diseases.
Collapse
|
12
|
Stanishevska NV. Selenoproteins and their emerging roles in signaling pathways. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The functional activity of selenoproteins has a wide range of effects on complex pathogenetic processes, including teratogenesis, immuno-inflammatory, neurodegenerative. Being active participants and promoters of many signaling pathways, selenoproteins support the lively interest of a wide scientific community. This review is devoted to the analysis of recent data describing the participation of selenoproteins in various molecular interactions mediating important signaling pathways. Data processing was carried out by the method of complex analysis. For convenience, all selenoproteins were divided into groups depending on their location and function. Among the group of selenoproteins of the ER membrane, selenoprotein N affects the absorption of Ca2+ by the endoplasmic reticulum mediated by oxidoreductin (ERO1), a key player in the CHOP/ERO1 branch, a pathogenic mechanism that causes myopathy. Another selenoprotein of the ER membrane selenoprotein K binding to the DHHC6 protein affects the IP3R receptor that regulates Ca2+ flux. Selenoprotein K is able to affect another protein of the endoplasmic reticulum CHERP, also appearing in Ca2+ transport. Selenoprotein S, associated with the lumen of ER, is able to influence the VCP protein, which ensures the incorporation of selenoprotein K into the ER membrane. Selenoprotein M, as an ER lumen protein, affects the phosphorylation of STAT3 by leptin, which confirms that Sel M is a positive regulator of leptin signaling. Selenoprotein S also related to luminal selenoproteins ER is a modulator of the IRE1α-sXBP1 signaling pathway. Nuclear selenoprotein H will directly affect the suppressor of malignant tumours, p53 protein, the activation of which increases with Sel H deficiency. The same selenoprotein is involved in redox regulation. Among the cytoplasmic selenoproteins, abundant investigations are devoted to SelP, which affects the PI3K/Akt/Erk signaling pathway during ischemia/reperfusion, is transported into the myoblasts through the plasmalemma after binding to the apoER2 receptor, and into the neurons to the megaline receptor and in general, selenoprotein P plays the role of a pool that stores the necessary trace element and releases it, if necessary, for vital selenoproteins. The thioredoxin reductase family plays a key role in the invasion and metastasis of salivary adenoid cystic carcinoma through the influence on the TGF-β-Akt/GSK-3β pathway during epithelial-mesenchymal transition. The deletion of thioredoxin reductase 1 affects the levels of messengers of the Wnt/β-catenin signaling pathway. No less studied is the glutathione peroxidase group, of which GPX3 is able to inhibit signaling in the Wnt/β-catenin pathway and thereby inhibit thyroid metastasis, as well as suppress protein levels in the PI3K/Akt/c-fos pathway. A key observation is that in cases of carcinogenesis, a decrease in GPX3 and its hypermethylation are almost always found. Among deiodinases, deiodinase 3 acts as a promoter of the oncogenes BRAF, MEK or p38, while stimulating a decrease in the expression of cyclin D1. The dependence of the level of deiodinase 3 on the Hedgehog (SHH) signaling pathway is also noted. Methionine sulfoxide reductase A can compete for the uptake of ubiquitin, reduce p38, JNK and ERK promoters of the MAPK signaling pathway; methionine sulfoxide reductase B1 suppresses MAPK signaling messengers, and also increases PARP and caspase 3.
Collapse
|
13
|
Leonardi A, Evke S, Lee M, Melendez JA, Begley TJ. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic Biol Med 2019; 143:573-593. [PMID: 31476365 PMCID: PMC7650020 DOI: 10.1016/j.freeradbiomed.2019.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Here we highlight the role of epitranscriptomic systems in post-transcriptional regulation, with a specific focus on RNA modifying writers required for the incorporation of the 21st amino acid selenocysteine during translation, and the pathologies linked to epitranscriptomic and selenoprotein defects. Epitranscriptomic marks in the form of enzyme-catalyzed modifications to RNA have been shown to be important signals regulating translation, with defects linked to altered development, intellectual impairment, and cancer. Modifications to rRNA, mRNA and tRNA can affect their structure and function, while the levels of these dynamic tRNA-specific epitranscriptomic marks are stress-regulated to control translation. The tRNA for selenocysteine contains five distinct epitranscriptomic marks and the ALKBH8 writer for the wobble uridine (U) has been shown to be vital for the translation of the glutathione peroxidase (GPX) and thioredoxin reductase (TRXR) family of selenoproteins. The reactive oxygen species (ROS) detoxifying selenocysteine containing proteins are a prime examples of how specialized translation can be regulated by specific tRNA modifications working in conjunction with distinct codon usage patterns, RNA binding proteins and specific 3' untranslated region (UTR) signals. We highlight the important role of selenoproteins in detoxifying ROS and provide details on how epitranscriptomic marks and selenoproteins can play key roles in and maintaining mitochondrial function and preventing disease.
Collapse
Affiliation(s)
- Andrea Leonardi
- Colleges of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Sara Evke
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - May Lee
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA
| | - J Andres Melendez
- Colleges of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, Albany, NY, USA.
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA; RNA Institute, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
14
|
Abstract
Selenium has transitioned from an environmental poison and carcinogen to an essential micronutrient associated with a broad array of health promoting effects. These beneficial effects are now accepted to be linked to its incorporation into selenoproteins, a family of rare proteins utilizing a specialized translation machinery to integrate selenium in the form of selenocysteine. Despite this recognized role, much less is known regarding the actual role of selenium in these proteins. Here, we will provide the reader with an overview of the essential role of specific selenoproteins and their link to pathology based on mouse studies and relevant mutations discovered in humans. Additionally, we will cover recent insights linking a non-interchangeable role for selenium in glutathione peroxidase 4 and its function in suppressing ferroptosis. This critical dependency ultimately generates a strong reliance on metabolic pathways that regulate selenium metabolism and its incorporation into proteins, such as the mevalonate pathway.
Collapse
Affiliation(s)
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| |
Collapse
|
15
|
Selenocysteine tRNA [Ser]Sec, the Central Component of Selenoprotein Biosynthesis: Isolation, Identification, Modification, and Sequencing. Methods Mol Biol 2018; 1661:43-60. [PMID: 28917036 DOI: 10.1007/978-1-4939-7258-6_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The selenocysteine (Sec) tRNA[Ser]Sec population consists of two isoforms that differ from each other by a single 2'-O-methylribosyl moiety at position 34 (Um34). These two isoforms, which are encoded in a single gene, Trsp, and modified posttranscriptionally, are involved individually in the synthesis of two subclasses of selenoproteins, designated housekeeping and stress-related selenoproteins. Techniques used in obtaining these isoforms for their characterization include extraction of RNA from mammalian cells and tissues, purifying the tRNA[Ser]Sec population by one or more procedures, and finally resolving the two isoforms from each other. Since some of the older techniques for isolating tRNA[Ser]Sec and resolving the isoforms are used in only a few laboratories, these procedures will be discussed briefly and references provided for more detailed information, while the more recently developed procedures are discussed in detail. In addition, a novel technique that was developed in sequencing tRNA[Ser]Sec for identifying their occurrence in other organisms is also presented.
Collapse
|
16
|
Pham K, Dong J, Jiang X, Qu Y, Yu H, Yang Y, Olea W, Marini JC, Chan L, Wang J, Wehrens XHT, Cui X, Li Y, Hadsell DL, Cheng N. Loss of glutaredoxin 3 impedes mammary lobuloalveolar development during pregnancy and lactation. Am J Physiol Endocrinol Metab 2017; 312:E136-E149. [PMID: 27894063 PMCID: PMC5374299 DOI: 10.1152/ajpendo.00150.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Mammalian glutaredoxin 3 (Grx3) has been shown to be important for regulating cellular redox homeostasis in the cell. Our previous studies indicate that Grx3 is significantly overexpressed in various human cancers including breast cancer and demonstrate that Grx3 controls cancer cell growth and invasion by regulating reactive oxygen species (ROS) and NF-κB signaling pathways. However, it remains to be determined whether Grx3 is required for normal mammary gland development and how it contributes to epithelial cell proliferation and differentiation in vivo. In the present study, we examined Grx3 expression in different cell types within the developing mouse mammary gland (MG) and found enhanced expression of Grx3 at pregnancy and lactation stages. To assess the physiological role of Grx3 in MG, we generated the mutant mice in which Grx3 was deleted specifically in mammary epithelial cells (MECs). Although the reduction of Grx3 expression had only minimal effects on mammary ductal development in virgin mice, it did reduce alveolar density during pregnancy and lactation. The impairment of lobuloalveolar development was associated with high levels of ROS accumulation and reduced expression of milk protein genes. In addition, proliferative gene expression was significantly suppressed with proliferation defects occurring in knockout MECs during alveolar development compared with wild-type controls. Therefore, our findings suggest that Grx3 is a key regulator of ROS in vivo and is involved in pregnancy-dependent mammary gland development and secretory activation through modulating cellular ROS.
Collapse
Affiliation(s)
- Khanh Pham
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiqian Jiang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Han Yu
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yisheng Yang
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Walter Olea
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Juan C Marini
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lawrence Chan
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Darryl L Hadsell
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
17
|
Abstract
Selenium is a micronutrient essential to human health and has long been associated with cancer prevention. Functionally, these effects are thought to be mediated by a class of selenium-containing proteins known as selenoproteins. Indeed, many selenoproteins have antioxidant activity which can attenuate cancer development by minimizing oxidative insult and resultant DNA damage. However, oxidative stress is increasingly being recognized for its "double-edged sword" effect in tumorigenesis, whereby it can mediate both negative and positive effects on tumor growth depending on the cellular context. In addition to their roles in redox homeostasis, recent work has also implicated selenoproteins in key oncogenic and tumor-suppressive pathways. Together, these data suggest that the overall contribution of selenoproteins to tumorigenesis is complicated and may be affected by a variety of factors. In this review, we discuss what is currently known about selenoproteins in tumorigenesis with a focus on their contextual roles in cancer development, growth, and progression.
Collapse
Affiliation(s)
- Sarah P Short
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S Williams
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, United States.
| |
Collapse
|
18
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
19
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
20
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
21
|
Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell Mol Life Sci 2016; 74:607-616. [PMID: 27563706 DOI: 10.1007/s00018-016-2339-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient that is incorporated into at least 25 selenoproteins encoded by the human genome, many of which serve antioxidant functions. Because patients with inflammatory bowel disease (IBD) demonstrate nutritional deficiencies and are at increased risk for colon cancer due to heightened inflammation and oxidative stress, selenoprotein dysfunction may contribute to disease progression. Over the years, numerous studies have analyzed the effects of selenoprotein loss and shown that they are important mediators of intestinal inflammation and carcinogenesis. In particular, recent work has focused on the role of selenoprotein P (SEPP1), a major selenium transport protein which also has endogenous antioxidant function. These experiments determined SEPP1 loss altered immune and epithelial cellular function in a murine model of colitis-associated carcinoma. Here, we discuss the current knowledge of SEPP1 and selenoprotein function in the setting of IBD, colitis, and inflammatory tumorigenesis.
Collapse
|
22
|
Carlson BA, Tobe R, Yefremova E, Tsuji PA, Hoffmann VJ, Schweizer U, Gladyshev VN, Hatfield DL, Conrad M. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol 2016; 9:22-31. [PMID: 27262435 PMCID: PMC4900515 DOI: 10.1016/j.redox.2016.05.003] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023] Open
Abstract
The selenoenzyme glutathione peroxidase 4 (Gpx4) is an essential mammalian glutathione peroxidase, which protects cells against detrimental lipid peroxidation and governs a novel form of regulated necrotic cell death, called ferroptosis. To study the relevance of Gpx4 and of another vitally important selenoprotein, cytosolic thioredoxin reductase (Txnrd1), for liver function, mice with conditional deletion of Gpx4 in hepatocytes were studied, along with those lacking Txnrd1 and selenocysteine (Sec) tRNA (Trsp) in hepatocytes. Unlike Txnrd1- and Trsp-deficient mice, Gpx4−/− mice died shortly after birth and presented extensive hepatocyte degeneration. Similar to Txnrd1-deficient livers, Gpx4−/− livers manifested upregulation of nuclear factor (erythroid-derived)-like 2 (Nrf2) response genes. Remarkably, Gpx4−/− pups born from mothers fed a vitamin E-enriched diet survived, yet this protection was reversible as subsequent vitamin E deprivation caused death of Gpx4-deficient mice ~4 weeks thereafter. Abrogation of selenoprotein expression in Gpx4−/− mice did not result in viable mice, indicating that the combined deficiency aggravated the loss of Gpx4 in liver. By contrast, combined Trsp/Txnrd1-deficient mice were born, but had significantly shorter lifespans than either single knockout, suggesting that Txnrd1 plays an important role in supporting liver function of mice lacking Trsp. In sum our study demonstrates that the ferroptosis regulator Gpx4 is critical for hepatocyte survival and proper liver function, and that vitamin E can compensate for its loss by protecting cells against deleterious lipid peroxidation. Conditional Gpx4 loss causes hepatocellular degeneration and early death of mice. Dietary vitamin E supplementation rescues death of liver-specific Gpx4 null mice. Nutritional vitamin E content in diet may severely impact experimental outcome.
Collapse
Affiliation(s)
- Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryuta Tobe
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elena Yefremova
- Helmholtz Zentrum München, Institute for Developmental Genetics, Neuherberg, Germany
| | - Petra A Tsuji
- Department of Biological Sciences, Towson University, Towson, MD, USA
| | - Victoria J Hoffmann
- Office of the Director Diagnostic and Research Services Branch, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dolph L Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute for Developmental Genetics, Neuherberg, Germany.
| |
Collapse
|
23
|
Lei XG, Zhu JH, Cheng WH, Bao Y, Ho YS, Reddi AR, Holmgren A, Arnér ESJ. Paradoxical Roles of Antioxidant Enzymes: Basic Mechanisms and Health Implications. Physiol Rev 2016; 96:307-64. [PMID: 26681794 DOI: 10.1152/physrev.00010.2014] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate "paradoxical" outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of "antioxidant" nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that "paradoxical" roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways.
Collapse
Affiliation(s)
- Xin Gen Lei
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jian-Hong Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Wen-Hsing Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yongping Bao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ye-Shih Ho
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Amit R Reddi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arne Holmgren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing,China; Department of Animal Science, Cornell University, Ithaca, New York; Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi; Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, Norfolk, United Kingdom; Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan; Georgia Institute of Technology, School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Atlanta, Georgia; and Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Balce DR, Greene CJ, Tailor P, Yates RM. Endogenous and exogenous pathways maintain the reductive capacity of the phagosome. J Leukoc Biol 2015; 100:17-26. [PMID: 26710800 DOI: 10.1189/jlb.2hi0315-083r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/04/2015] [Indexed: 01/16/2023] Open
Abstract
Although endosomes, lysosomes, and phagosomes require a reductive environment for the optimal activity of disulfide reductases and other thiol-dependent enzymes, how these reductive environments are established and maintained remain unknown. Our goal in this study was to begin to elucidate the redox control systems responsible for maintaining redox-sensitive enzymatic activities in the phagolysosome of murine macrophages. Through the use of specific inhibitors and genetic knockdown of known redox enzymes, we identified redox pathways that influence phagosomal disulfide reduction. In particular, known inhibitors of the NADPH-dependent selenoprotein, thioredoxin reductase, were shown to inhibit phagosomal disulfide reduction and phagosomal proteolysis. This was supported by the observation that conditional deletion of the selenocysteine tRNA in macrophages decreased phagosomal disulfide reduction capacity. In addition, pharmacologic inhibition of the pentose phosphate pathway decreased rates of disulfide reduction and proteolysis in the phagosome, implicating NADPH as a source of phagosomal reductive energy. Finally, by analyzing the effect of extracellular redox couples, such as cysteine:cystine on thiol-dependent phagosomal processes, we demonstrated that the extracellular space can additionally supply the phagosome with reductive energy. Collectively, these data demonstrate that defined cytosolic reductive pathways act in concert with the uptake of cysteine from the extracellular space to support thiol-dependent chemistries in the phagosome.
Collapse
Affiliation(s)
- Dale R Balce
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada; and
| | - Catherine J Greene
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada; and
| | - Pankaj Tailor
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada; and
| | - Robin M Yates
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada; and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Selenium is an essential trace element that is incorporated in the small but vital family of proteins, namely the selenoproteins, as the selenocysteine amino acid residue. In humans, 25 selenoprotein genes have been characterized. The most remarkable trait of selenoprotein biosynthesis is the cotranslational insertion of selenocysteine by the recoding of a UGA codon, normally decoded as a stop signal. RECENT ADVANCES In eukaryotes, a set of dedicated cis- and trans-acting factors have been identified as well as a variety of regulatory mechanisms, factors, or elements that control the selenoprotein expression at the level of the UGA-selenocysteine recoding process, offering a fascinating playground in the field of translational control. It appeared that the central players are two RNA molecules: the selenocysteine insertion sequence (SECIS) element within selenoprotein mRNA and the selenocysteine-tRNA([Ser]Sec); and their interacting partners. CRITICAL ISSUES After a couple of decades, despite many advances in the field and the discovery of many essential and regulatory components, the precise mechanism of UGA-selenocysteine recoding remains elusive and more complex than anticipated, with many layers of control. This review offers an update of selenoproteome biosynthesis and regulation in eukaryotes. FUTURE DIRECTIONS The regulation of selenoproteins in response to a variety of pathophysiological conditions and cellular stressors, including selenium levels, oxidative stress, replicative senescence, or cancer, awaits further detailed investigation. Clearly, the efficiency of UGA-selenocysteine recoding is the limiting stage of selenoprotein synthesis. The sequence of events leading Sec-tRNA([Ser]Sec) delivery to ribosomal A site awaits further analysis, notably at the level of a three-dimensional structure.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| | - Laurent Chavatte
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM , CNRS/UPPA, UMR5254, Pau, France
| |
Collapse
|
26
|
The 811 C/T polymorphism in the 3' untranslated region of the selenoprotein 15-kDa (Sep15) gene and breast cancer in Caucasian women. Tumour Biol 2015; 37:1009-15. [PMID: 26264612 DOI: 10.1007/s13277-015-3847-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
The 15-kDa selenoprotein (Sep15) is a selenocysteine-containing oxidoreductase in the endoplasmic reticulum that participates in disulfide-bond formation and protein folding control. The 3'-untranslated region (3'-UTR) contains two exclusively linked, polymorphic sites at positions 811 (C/T) and 1125 (G/A), which result in two functional haplotypes: 811C/1125G or 811T/1125A. The 811T/1125A variant occurs significantly more often in African-Americans as compared to Caucasians and has been linked to increased breast cancer risk in black women. We studied the 811C/T (rs5845) Sep15 gene polymorphism in 182 Caucasian women-83 breast cancer cases and 99 healthy controls-by pyrosequencing and polymerase chain reaction. Associations between allelic variants and clinico-pathological variables (e.g., age, stage of disease, tumor type, grading, and receptor status) were investigated. The genotype distribution in breast cancer patients (CC 63.9 %, CT 33.7 %, TT 2.4 %) and controls (69.7 %, CT 28.3 %, TT 2 %) showed no significant difference (OR 0.77, 95 % CI 0.41-1.42, p = 0.4). The overall low prevalence of the T allele was in accordance with that reported for Caucasians in previous studies. There was no significant association between 811C/T Sep15 polymorphism and any of clinico-pathological parameters. In conclusion, we are the first to report on 811C/T SEP 15 polymorphism in white breast cancer patients. Genotype variation within the 3'-UTR of the SEP 15 gene showed no association with breast cancer risk or clinico-pathological parameters in Caucasian women.
Collapse
|
27
|
Mahdi Y, Xu XM, Carlson BA, Fradejas N, Günter P, Braun D, Southon E, Tessarollo L, Hatfield DL, Schweizer U. Expression of Selenoproteins Is Maintained in Mice Carrying Mutations in SECp43, the tRNA Selenocysteine 1 Associated Protein (Trnau1ap). PLoS One 2015; 10:e0127349. [PMID: 26043259 PMCID: PMC4456167 DOI: 10.1371/journal.pone.0127349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/14/2015] [Indexed: 12/31/2022] Open
Abstract
Selenocysteine tRNA 1 associated protein (Trnau1ap) has been characterized as a tRNA[Ser]Sec-binding protein of 43 kDa, hence initially named SECp43. Previous studies reported its presence in complexes containing tRNA[Ser]Sec implying a role of SECp43 as a co-factor in selenoprotein expression. We generated two conditionally mutant mouse models targeting exons 3+4 and exons 7+8 eliminating parts of the first RNA recognition motif or of the tyrosine-rich domain, respectively. Constitutive inactivation of exons 3+4 of SECp43 apparently did not affect the mice or selenoprotein expression in several organs. Constitutive deletion of exons 7+8 was embryonic lethal. We therefore generated hepatocyte-specific Secp43 knockout mice and characterized selenoprotein expression in livers of mutant mice. We found no significant changes in the levels of 75Se-labelled hepatic proteins, selenoprotein levels as determined by Western blot analysis, enzymatic activity or selenoprotein mRNA abundance. The methylation pattern of tRNA[Ser]Sec remained unchanged. Truncated Secp43 Δ7,8mRNA increased in Secp43-mutant livers suggesting auto-regulation of Secp43 mRNA abundance. We found no signs of liver damage in Secp433-mutant mice, but neuron-specific deletion of exons 7+8 impaired motor performance, while not affecting cerebral selenoprotein expression or cerebellar development. These findings suggest that the targeted domains in the SECp43 protein are not essential for selenoprotein biosynthesis in hepatocytes and neurons. Whether the remaining second RNA recognition motif plays a role in selenoprotein biosynthesis and which other cellular process depends on SECp43 remains to be determined.
Collapse
Affiliation(s)
- Yassin Mahdi
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Xue-Ming Xu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bradley A. Carlson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Noelia Fradejas
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Paul Günter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dolph L. Hatfield
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
28
|
Kaushal N, Kudva AK, Patterson AD, Chiaro C, Kennett MJ, Desai D, Amin S, Carlson BA, Cantorna MT, Prabhu KS. Crucial role of macrophage selenoproteins in experimental colitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3683-92. [PMID: 25187657 PMCID: PMC4170023 DOI: 10.4049/jimmunol.1400347] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation is a hallmark of inflammatory bowel disease (IBD) that involves macrophages. Given the inverse link between selenium (Se) status and IBD-induced inflammation, our objective was to demonstrate that selenoproteins in macrophages were essential to suppress proinflammatory mediators, in part, by the modulation of arachidonic acid metabolism. Acute colitis was induced using 4% dextran sodium sulfate in wild-type mice maintained on Se-deficient (<0.01 ppm Se), Se-adequate (0.08 ppm; sodium selenite), and two supraphysiological levels in the form of Se-supplemented (0.4 ppm; sodium selenite) and high Se (1.0 ppm; sodium selenite) diets. Selenocysteinyl transfer RNA knockout mice (Trsp(fl/fl)LysM(Cre)) were used to examine the role of selenoproteins in macrophages on disease progression and severity using histopathological evaluation, expression of proinflammatory and anti-inflammatory genes, and modulation of PG metabolites in urine and plasma. Whereas Se-deficient and Se-adequate mice showed increased colitis and exhibited poor survival, Se supplementation at 0.4 and 1.0 ppm increased survival of mice and decreased colitis-associated inflammation with an upregulation of expression of proinflammatory and anti-inflammatory genes. Metabolomic profiling of urine suggested increased oxidation of PGE2 at supraphysiological levels of Se that also correlated well with Se-dependent upregulation of 15-hydroxy-PG dehydrogenase (15-PGDH) in macrophages. Pharmacological inhibition of 15-PGDH, lack of selenoprotein expression in macrophages, and depletion of infiltrating macrophages indicated that macrophage-specific selenoproteins and upregulation of 15-PGDH expression were key for Se-dependent anti-inflammatory and proresolving effects. Selenoproteins in macrophages protect mice from dextran sodium sulfate-colitis by enhancing 15-PGDH-dependent oxidation of PGE2 to alleviate inflammation, suggesting a therapeutic role for Se in IBD.
Collapse
Affiliation(s)
- Naveen Kaushal
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Avinash K Kudva
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Andrew D Patterson
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Christopher Chiaro
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Mary J Kennett
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Dhimant Desai
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033; and
| | - Shantu Amin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033; and
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Margherita T Cantorna
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802
| | - K Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802;
| |
Collapse
|
29
|
Zhang Z, Zhang J, Xiao J. Selenoproteins and selenium status in bone physiology and pathology. Biochim Biophys Acta Gen Subj 2014; 1840:3246-3256. [PMID: 25116856 DOI: 10.1016/j.bbagen.2014.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/23/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence supports the view that selenoproteins are essential for maintaining bone health. SCOPE OF REVIEW The current state of knowledge concerning selenoproteins and Se status in bone physiology and pathology is summarized. MAJOR CONCLUSIONS Antioxidant selenoproteins including glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), as a whole, play a pivotal role in maintaining bone homeostasis and protecting against bone loss. GPx1, a major antioxidant enzyme in osteoclasts, is up-regulated by estrogen, an endogenous inhibitor of osteoclastogenesis. TrxR1 is an immediate early gene in response to 1α,25-dihydroxyvitamin D3, an osteoblastic differentiation agent. The combination of 1α,25-dihydroxyvitamin D3 and Se generates a synergistic elevation of TrxR activity in Se-deficient osteoblasts. Of particular concern, pleiotropic TrxR1 is implicated in promoting NFκB activation. Coincidentally, TrxR inhibitors such as curcumin and gold compounds exhibit potent osteoclastogenesis inhibitory activity. Studies in patients with the mutations of selenocysteine insertion sequence-binding protein 2, a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins have clearly established a causal link of selenoproteins in bone development. Se transport to bone relies on selenoprotein P. Plasma selenoprotein P concentrations have been found to be positively correlated with bone mineral density in elderly women. GENERAL SIGNIFICANCE A full understanding of the role and function of selenoproteins and Se status on bone physiology and pathology may lead to effectively prevent against or modify bone diseases by using Se.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China
| | - Jinsong Zhang
- School of Tea Food Science, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Jianru Xiao
- Department of Orthopaedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, PR China.
| |
Collapse
|
30
|
Imai T, Kurihara T, Esaki N, Mihara H. Glutathione contributes to the efflux of selenium from hepatoma cells. Biosci Biotechnol Biochem 2014; 78:1376-80. [PMID: 25130740 DOI: 10.1080/09168451.2014.918487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Selenite is a selenium source for selenoprotein biosynthesis in mammalian cells. Although previous studies have suggested the involvement of glutathione (GSH) and/or thioredoxin reductase in selenite metabolism, intracellular selenite metabolism remains largely unknown. Here, we report that GSH depletion did not affect the amount of selenoprotein in Hepa 1-6 cells, suggesting that GSH does not play a central role in the reduction of selenite in selenoprotein biosynthesis. On the other hand, we found that GSH is involved in the efflux of low-molecular-weight selenium compounds from cells, presumably via the formation of selenodiglutathione. Moreover, selenite inhibited the efflux of a fluorescent bimane-GS conjugate that is mediated by ATP-dependent multidrug-resistant proteins, implying the existence of an active transporter for selenodiglutathione. This is the first report demonstrating that GSH plays a role in selenium excretion from cells by forming a GSH-conjugate, which may contribute to the distribution, detoxification, and homeostasis of selenium in the body.
Collapse
Affiliation(s)
- Takeshi Imai
- a Institute for Chemical Research , Kyoto University , Kyoto , Japan
| | | | | | | |
Collapse
|
31
|
Barroso M, Florindo C, Kalwa H, Silva Z, Turanov AA, Carlson BA, de Almeida IT, Blom HJ, Gladyshev VN, Hatfield DL, Michel T, Castro R, Loscalzo J, Handy DE. Inhibition of cellular methyltransferases promotes endothelial cell activation by suppressing glutathione peroxidase 1 protein expression. J Biol Chem 2014; 289:15350-62. [PMID: 24719327 PMCID: PMC4140892 DOI: 10.1074/jbc.m114.549782] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNA(Sec) to the Um34 form. The formation of methylated tRNA(Sec) facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNA(Sec) and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNA(Sec) hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype.
Collapse
Affiliation(s)
- Madalena Barroso
- From the Cardiovascular and ,the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | - Cristina Florindo
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and
| | | | - Zélia Silva
- the Chronic Diseases Research Center, Departamento de Imunologia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1099-085 Lisbon, Portugal
| | - Anton A. Turanov
- Genetics Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Bradley A. Carlson
- the Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Isabel Tavares de Almeida
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and ,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Henk J. Blom
- the Department of General Pediatrics, Center for Pediatrics and Adolescent Medicine, University Hospital, 79106 Freiburg, Germany
| | - Vadim N. Gladyshev
- Genetics Divisions, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dolph L. Hatfield
- the Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, and
| | | | - Rita Castro
- the Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL) and ,Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1649-004 Lisbon, Portugal
| | | | - Diane E. Handy
- From the Cardiovascular and , To whom correspondence should be addressed: Cardiovascular Div., Dept. of Medicine, Brigham and Women's Hospital and Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115. Tel.: 617-525-4845; Fax: 617-525-4830; E-mail:
| |
Collapse
|
32
|
Wirth EK, Bharathi BS, Hatfield D, Conrad M, Brielmeier M, Schweizer U. Cerebellar hypoplasia in mice lacking selenoprotein biosynthesis in neurons. Biol Trace Elem Res 2014; 158:203-10. [PMID: 24599700 PMCID: PMC3984410 DOI: 10.1007/s12011-014-9920-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/27/2022]
Abstract
Selenium exerts many, if not most, of its physiological functions as a selenocysteine moiety in proteins. Selenoproteins are involved in many biochemical processes including regulation of cellular redox state, calcium homeostasis, protein biosynthesis, and degradation. A neurodevelopmental syndrome called progressive cerebello-cortical atrophy (PCCA) is caused by mutations in the selenocysteine synthase gene, SEPSECS, demonstrating that selenoproteins are essential for human brain development. While we have shown that selenoproteins are required for correct hippocampal and cortical interneuron development, little is known about the functions of selenoproteins in the cerebellum. Therefore, we have abrogated neuronal selenoprotein biosynthesis by conditional deletion of the gene encoding selenocysteyl tRNA([Ser]Sec) (gene symbol Trsp). Enzymatic activity of cellular glutathione peroxidase and cytosolic thioredoxin reductase is reduced in cerebellar extracts from Trsp-mutant mice. These mice grow slowly and fail to gain postural control or to coordinate their movements. Histological analysis reveals marked cerebellar hypoplasia, associated with Purkinje cell death and decreased granule cell proliferation. Purkinje cell death occurs along parasagittal stripes as observed in other models of Purkinje cell loss. Neuron-specific inactivation of glutathione peroxidase 4 (Gpx4) used the same Cre driver phenocopies tRNA([Ser]Sec) mutants in several aspects: cerebellar hypoplasia, stripe-like Purkinje cell loss, and reduced granule cell proliferation. Parvalbumin-expressing GABAergic interneurons (stellate and/or basket cells) are virtually absent in tRNA([Ser]Sec)-mutant mice, while some remained in Gpx4-mutant mice. Our data show that selenoproteins are specifically required in postmitotic neurons of the developing cerebellum, thus providing a rational explanation for cerebellar hypoplasia as occurring in PCCA patients.
Collapse
Affiliation(s)
- Eva K. Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - B. Suman Bharathi
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dolph Hatfield
- Molecular Biology of Selenium, Mouse Cancer Genetics Program, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892 USA
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg, Munich Germany
| | - Markus Brielmeier
- Abteilung für Vergleichende Medizin, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ulrich Schweizer
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 11, 53115 Bonn, Germany
| |
Collapse
|
33
|
Luchman HA, Villemaire ML, Bismar TA, Carlson BA, Jirik FR. Prostate epithelium-specific deletion of the selenocysteine tRNA gene Trsp leads to early onset intraepithelial neoplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:871-7. [PMID: 24447801 DOI: 10.1016/j.ajpath.2013.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/26/2013] [Accepted: 11/19/2013] [Indexed: 11/29/2022]
Abstract
Although various lines of evidence suggest that oxidative stress plays a role in human prostate cancer initiation and progression, there is a paucity of direct evidence for its role in tumor initiation. To begin to address this issue, we developed a novel tumorigenesis model by reducing the expression of multiple selenoproteins (SPs) in mouse prostatic epithelium. This was accomplished via the prostate-specific deletion of Trsp, a gene that encodes a transfer RNA (Sec tRNA) required for the insertion of selenocysteine residues into SPs during their translation. By 6 weeks of age, Trsp-deficient mice exhibited widespread prostatic intraepithelial neoplasia lesions in all prostatic lobes, which then progressed to high-grade dysplasia and microinvasive carcinoma by 24 weeks. In contrast to other murine prostate cancer models, Trsp-deficient mice required neither the deletion of a tumor suppressor nor the transgenic introduction of an oncogene for prostatic intraepithelial neoplasia lesion development. In keeping with the antioxidant functions of several SPs, we found increases in lipid peroxidation markers in Trsp-deficient epithelial cells. This novel model of prostate neoplasia provides evidence for the existence of a selenoprotein or selenoproteins capable of acting as a tumor suppressor in the murine prostate.
Collapse
Affiliation(s)
- H Artee Luchman
- Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michelle L Villemaire
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada; Department of Biochemistry, Molecular Biology, and Oncology, University of Calgary and Calgary Laboratory Services, Calgary, Alberta, Canada
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank R Jirik
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
34
|
Sengupta A, Lichti UF, Carlson BA, Cataisson C, Ryscavage AO, Mikulec C, Conrad M, Fischer SM, Hatfield DL, Yuspa SH. Targeted disruption of glutathione peroxidase 4 in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2. J Invest Dermatol 2013; 133:1731-41. [PMID: 23364477 PMCID: PMC3652900 DOI: 10.1038/jid.2013.52] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chiu-Ugalde J, Wirth EK, Klein MO, Sapin R, Fradejas-Villar N, Renko K, Schomburg L, Köhrle J, Schweizer U. Thyroid function is maintained despite increased oxidative stress in mice lacking selenoprotein biosynthesis in thyroid epithelial cells. Antioxid Redox Signal 2012; 17:902-13. [PMID: 22369680 DOI: 10.1089/ars.2011.4055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS We have tested the hypothesis that selenium (Se)-containing antioxidative enzymes protect thyroid epithelial cells from oxidative damage associated with enzymatic production of hydrogen peroxide required for thyroid hormone biosynthesis. Thyroid epithelial cells therefore express antioxidative enzymes, including catalase, peroxiredoxins, thioredoxin reductases, and glutathione peroxidases (GPxs). The latter two enzyme families contain highly active peroxide-degrading enzymes that carry selenocysteine (Sec) in their active centers. Since low Se status has been associated with thyroid disorders, selenoproteins are considered essential for thyroid integrity and function. We have conditionally inactivated selenoprotein biosynthesis in thyrocytes by targeting Sec tRNA. RESULTS Constitutive and inducible Cre/loxP-mediated recombination of tRNA([Ser]Sec) drastically reduced activities of selenoenzymes GPx and type I-deiodinase in thyroid extracts. Immunohistochemical staining revealed increased 4-hydroxynonenal and 3-nitro-tyrosine levels consistent with increased oxidative stress. However, gross thyroid morphology remained intact for at least 6 months after recombination. Circulating thyroid hormone levels remained normal in mutant mice, while thyrotropin (TSH) levels were moderately elevated. Challenging mutant mice with low iodine diet increased TSH, but did not lead to destruction of selenoprotein-deficient thyroids. INNOVATION This is the first report probing the assumed physiological roles of selenoproteins in the thyroid using a genetic loss-of-function approach. CONCLUSION We conclude that selenoproteins protect thyrocytes from oxidative damage and modulate thyroid hormone biosynthesis, but are not essential for thyrocyte survival.
Collapse
Affiliation(s)
- Jazmin Chiu-Ugalde
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodriguez V, Vasudevan S, Noma A, Carlson BA, Green JE, Suzuki T, Chandrasekharappa SC. Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW) base in phenylalanine-tRNA. PLoS One 2012; 7:e39297. [PMID: 22761755 PMCID: PMC3386263 DOI: 10.1371/journal.pone.0039297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW) and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNAPhe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2) is active in yeast and can synthesize the yW of yeast tRNAPhe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet), and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNAPhe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis.
Collapse
Affiliation(s)
- Virginia Rodriguez
- Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Sona Vasudevan
- Department of Biochemistry and Molecular Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Akiko Noma
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Bradley A. Carlson
- Laboratory of Cancer Prevention, National Cancer Institute National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeffrey E. Green
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Settara C. Chandrasekharappa
- Cancer Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Hudson TS, Carlson BA, Hoeneroff MJ, Young HA, Sordillo L, Muller WJ, Hatfield DL, Green JE. Selenoproteins reduce susceptibility to DMBA-induced mammary carcinogenesis. Carcinogenesis 2012; 33:1225-30. [PMID: 22436612 DOI: 10.1093/carcin/bgs129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Selenium is an essential micronutrient in the diet of humans and other mammals. Based largely on animal studies and epidemiological evidence, selenium is purported to be a promising cancer chemopreventive agent. However, the biological mechanisms by which chemopreventive activity takes place are poorly understood. It remains unclear whether selenium acts in its elemental form, through incorporation into organic compounds, through selenoproteins or any combination of these. The purpose of this study was to determine whether selenoproteins mitigate the risk of developing chemically induced mammary cancer. Selenoprotein expression was ablated in mouse mammary epithelial cells through genetic deletion of the selenocysteine (Sec) tRNA gene (Trsp), whose product, designated selenocysteine tRNA, is required for selenoprotein translation. Trsp floxed and mouse mammary tumor virus (MMTV)-cre mice were crossed to achieve tissue-specific excision of Trsp in targeted mammary glands. Eight- to twelve-week-old second generation Trsp(fl/+);wt, Trsp(fl/+);MMTV-cre, Trsp(fl/fl);wt and Trsp(fl/fl);MMTV-cre female mice were administered standard doses of the carcinogen, 7,12-dimethylbenzylbenz[a]antracene. Our results revealed that heterozygous, Trsp(fl/+);MMTV-cre mice showed no difference in tumor incidence, tumor rate and survival compared with the Trsp(fl/+);wt mice. However, 54.8% of homozygous Trsp(fl/f)(l);MMTV-cre mice developed mammary tumors and exhibited significantly shorter survival than the corresponding Trsp(fl/fl);wt mice, where only 36.4% developed tumors. Loss of the homozygous Trsp alleles was associated with the reduction of selenoprotein expression. The results suggest that mice with reduced selenoprotein expression have increased susceptibility to developing carcinogen-induced mammary tumors and that a major protective mechanism against carcinogen-induced mammary cancer requires the expression of these selenoproteins.
Collapse
Affiliation(s)
- Tamaro S Hudson
- Transgenic Oncogenesis and Genomics Section, Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Understanding selenoprotein function and regulation through the use of rodent models. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1633-42. [PMID: 22440326 DOI: 10.1016/j.bbamcr.2012.02.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is an essential micronutrient. Its biological functions are associated with selenoproteins, which contain this trace element in the form of the 21st amino acid, selenocysteine. Genetic defects in selenocysteine insertion into proteins are associated with severe health issues. The consequences of selenoprotein deficiency are more variable, with several selenoproteins being essential, and several showing no clear phenotypes. Much of these functional studies benefited from the use of rodent models and diets employing variable levels of Se. This review summarizes the data obtained with these models, focusing on mouse models with targeted expression of individual selenoproteins and removal of individual, subsets or all selenoproteins in a systemic or organ-specific manner. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
39
|
Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2011; 2:122-8. [PMID: 22332041 PMCID: PMC3065758 DOI: 10.3945/an.110.000265] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biosynthetic pathway for selenocysteine (Sec), the 21st amino acid in the genetic code whose codeword is UGA, was recently determined in eukaryotes and archaea. Sec tRNA, designated tRNA([Ser]Sec), is initially aminoacylated with serine by seryl-tRNA synthetase and the resulting seryl moiety is converted to phosphoserine by O-phosphoseryl-tRNA kinase to form O-phosphoseryl-tRNA([Ser]Sec). Sec synthase (SecS) then uses O-phosphoseryl-tRNA([Ser]Sec) and the active donor of selenium, selenophosphate, to form Sec-tRNA([Ser]Sec). Selenophosphate is synthesized from selenide and ATP by selenophosphate synthetase 2 (SPS2). Sec was the last protein amino acid in eukaryotes whose biosynthesis had not been established and the only known amino acid in eukaryotes whose biosynthesis occurs on its tRNA. Interestingly, sulfide can replace selenide to form thiophosphate in the SPS2-catalyzed reaction that can then react with O-phosphoseryl-tRNA([Ser]Sec) in the presence of SecS to form cysteine-(Cys-)tRNA([Ser]Sec). This novel pathway of Cys biosynthesis results in Cys being decoded by UGA and replacing Sec in normally selenium-containing proteins (selenoproteins). The selenoprotein, thioredoxin reductase 1 (TR1), was isolated from cells in culture and from mouse liver for analysis of Cys/Sec replacement by MS. The level of Cys/Sec replacement in TR1 was proportional to the level of selenium in the diet of the mice. Elucidation of the biosynthesis of Sec and Sec/Cys replacement provides novel ways of regulating selenoprotein functions and ultimately better understanding of the biological roles of dietary selenium.
Collapse
Affiliation(s)
- Anton A. Turanov
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115
| | - Xue-Ming Xu
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Min-Hyuk Yoo
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston MA 02115,To whom correspondence should be addressed. E-mail: ;
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892,To whom correspondence should be addressed. E-mail: ;
| |
Collapse
|
40
|
Sengupta A, Lichti UF, Carlson BA, Ryscavage AO, Gladyshev VN, Yuspa SH, Hatfield DL. Selenoproteins are essential for proper keratinocyte function and skin development. PLoS One 2010; 5:e12249. [PMID: 20805887 PMCID: PMC2923614 DOI: 10.1371/journal.pone.0012249] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/23/2010] [Indexed: 11/18/2022] Open
Abstract
Dietary selenium is known to protect skin against UV-induced damage and cancer and its topical application improves skin surface parameters in humans, while selenium deficiency compromises protective antioxidant enzymes in skin. Furthermore, skin and hair abnormalities in humans and rodents may be caused by selenium deficiency, which are overcome by dietary selenium supplementation. Most important biological functions of selenium are attributed to selenoproteins, proteins containing selenium in the form of the amino acid, selenocysteine (Sec). Sec insertion into proteins depends on Sec tRNA; thus, knocking out the Sec tRNA gene (Trsp) ablates selenoprotein expression. We generated mice with targeted removal of selenoproteins in keratin 14 (K14) expressing cells and their differentiated descendents. The knockout progeny had a runt phenotype, developed skin abnormalities and experienced premature death. Lack of selenoproteins in epidermal cells led to the development of hyperplastic epidermis and aberrant hair follicle morphogenesis, accompanied by progressive alopecia after birth. Further analyses revealed that selenoproteins are essential antioxidants in skin and unveiled their role in keratinocyte growth and viability. This study links severe selenoprotein deficiency to abnormalities in skin and hair and provides genetic evidence for the role of these proteins in keratinocyte function and cutaneous development.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ulrike F. Lichti
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew O. Ryscavage
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vadim N. Gladyshev
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SHY); (DLH)
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SHY); (DLH)
| |
Collapse
|
41
|
Dumitrescu AM, Di Cosmo C, Liao XH, Weiss RE, Refetoff S. The syndrome of inherited partial SBP2 deficiency in humans. Antioxid Redox Signal 2010; 12:905-20. [PMID: 19769464 PMCID: PMC2864657 DOI: 10.1089/ars.2009.2892] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Selenium (Se) is an essential trace element required for the biosynthesis of selenoproteins. Selenocysteine insertion sequence (SECIS) binding protein 2 (SBP2) represents a key trans-acting factor for the co-translational insertion of selenocysteine into selenoproteins. In 2005, we reported the first mutations in the SBP2 gene in two families in which the probands presented with transient growth retardation associated with abnormal thyroid function tests. Intracellular metabolism of thyroid hormone (TH) and availability of the active hormone, triiodothyronine, is regulated by three selenoprotein iodothyronine deiodinases (Ds). While acquired changes in D activities are common, inherited defects in humans were not known. Affected children were either homozygous or compound heterozygous for SBP2 mutations. Other selenoproteins, glutathione peroxidase, and selenoprotein P were also reduced in affected subjects. Since our initial report, another family manifesting a similar phenotype was found to harbor a novel SBP2 mutation. In vivo studies of these subjects have explored the effects of Se and TH supplementation. In vitro experiments have provided new insights into the effect of SBP2 mutations. In this review we discuss the clinical presentation of SBP2 mutations, their effect on protein function, consequence for selenoproteins, and the clinical course of subjects with SBP2 defects.
Collapse
|
42
|
Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW, Coppola V, Tessarollo L, Schomburg L, Köhrle J, Hatfield DL, Schweizer U. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 2009; 24:844-52. [PMID: 19890015 DOI: 10.1096/fj.09-143974] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cerebral selenium (Se) deficiency is associated with neurological phenotypes including seizures and ataxia. We wanted to define whether neurons require selenoprotein expression and which selenoproteins are most important, and explore the possible pathomechanism. Therefore, we abrogated the expression of all selenoproteins in neurons by genetic inactivation of the tRNA[Ser](Sec) gene. Cerebral expression of selenoproteins was significantly diminished in the mutants, and histological analysis revealed progressive neurodegeneration. Developing interneurons failed to specifically express parvalbumin (PV) in the mutants. Electrophysiological recordings, before overt cell death, showed normal excitatory transmission, but revealed spontaneous epileptiform activity consistent with seizures in the mutants. In developing cortical neuron cultures, the number of PV(+) neurons was reduced on combined Se and vitamin E deprivation, while other markers, such as calretinin (CR) and GAD67, remained unaffected. Because of the synergism between Se and vitamin E, we analyzed mice lacking neuronal expression of the Se-dependent enzyme glutathione peroxidase 4 (GPx4). Although the number of CR(+) interneurons remained normal in Gpx4-mutant mice, the number of PV(+) interneurons was reduced. Since these mice similarly exhibit seizures and ataxia, we conclude that GPx4 is a selenoenzyme modulating interneuron function and PV expression. Cerebral SE deficiency may thus act via reduced GPx4 expression.-Wirth, E. K., Conrad, M., Winterer, J., Wozny, C., Carlson, B. A., Roth, S., Schmitz, D., Bornkamm, G. W., Coppola, V., Tessarollo, L., Schomburg, L., Köhrle, J., Hatfield, D. L., Schweizer, U. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration.
Collapse
Affiliation(s)
- Eva K Wirth
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta Gen Subj 2009; 1790:1575-85. [DOI: 10.1016/j.bbagen.2009.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 04/23/2009] [Accepted: 05/05/2009] [Indexed: 12/25/2022]
|
44
|
Carlson BA, Yoo MH, Sano Y, Sengupta A, Kim JY, Irons R, Gladyshev VN, Hatfield DL, Park JM. Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression. BMC Immunol 2009; 10:57. [PMID: 19863805 PMCID: PMC2774298 DOI: 10.1186/1471-2172-10-57] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/28/2009] [Indexed: 11/10/2022] Open
Abstract
Background Selenium, a micronutrient whose deficiency in diet causes immune dysfunction and inflammatory disorders, is thought to exert its physiological effects mostly in the form of selenium-containing proteins (selenoproteins). Incorporation of selenium into the amino acid selenocysteine (Sec), and subsequently into selenoproteins is mediated by Sec tRNA[Ser]Sec. Results To define macrophage-specific selenoprotein functions, we generated mice with the Sec tRNA[Ser]Sec gene specifically deleted in myeloid cells. These mutant mice were devoid of the "selenoproteome" in macrophages, yet exhibited largely normal inflammatory responses. However, selenoprotein deficiency led to aberrant expression of extracellular matrix-related genes, and diminished migration of macrophages in a protein gel matrix. Conclusion Selenium status may affect immune defense and tissue homeostasis through its effect on selenoprotein expression and the trafficking of tissue macrophages.
Collapse
Affiliation(s)
- Bradley A Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Carlson BA, Yoo MH, Tsuji PA, Gladyshev VN, Hatfield DL. Mouse models targeting selenocysteine tRNA expression for elucidating the role of selenoproteins in health and development. Molecules 2009; 14:3509-27. [PMID: 19783940 PMCID: PMC3459062 DOI: 10.3390/molecules14093509] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 01/31/2023] Open
Abstract
Selenium (Se) deficiency has been known for many years to be associated with disease, impaired growth and a variety of other metabolic disorders in mammals. Only recently has the major role that Se-containing proteins, designated selenoproteins, play in many aspects of health and development begun to emerge. Se is incorporated into protein by way of the Se-containing amino acid, selenocysteine (Sec). The synthesis of selenoproteins is dependent on Sec tRNA for insertion of Sec, the 21st amino acid in the genetic code, into protein. We have taken advantage of this dependency to modulate the expression of Sec tRNA that in turn modulates the expression of selenoproteins by generating transgenic, conditional knockout, transgenic/standard knockout and transgenic/conditional knockout mouse models, all of which involve the Sec tRNA gene, to elucidate the intracellular roles of this protein class.
Collapse
Affiliation(s)
- Bradley A. Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;E-mails: (M-H.Y.); (P.A.T.); (D.L.H.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Min-Hyuk Yoo
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;E-mails: (M-H.Y.); (P.A.T.); (D.L.H.)
| | - Petra A. Tsuji
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;E-mails: (M-H.Y.); (P.A.T.); (D.L.H.)
- Cancer Prevention Fellowship Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vadim N. Gladyshev
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA; E-mail: (V.N.G.)
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;E-mails: (M-H.Y.); (P.A.T.); (D.L.H.)
| |
Collapse
|
46
|
Downey CM, Horton CR, Carlson BA, Parsons TE, Hatfield DL, Hallgrímsson B, Jirik FR. Osteo-chondroprogenitor-specific deletion of the selenocysteine tRNA gene, Trsp, leads to chondronecrosis and abnormal skeletal development: a putative model for Kashin-Beck disease. PLoS Genet 2009; 5:e1000616. [PMID: 19696890 PMCID: PMC2721633 DOI: 10.1371/journal.pgen.1000616] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 07/24/2009] [Indexed: 01/09/2023] Open
Abstract
Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation. To investigate the effects of skeletal selenoprotein deficiency, a Cre recombinase transgenic mouse line was used to trigger Trsp gene deletions in osteo-chondroprogenitors. Trsp encodes selenocysteine tRNA[Ser]Sec, required for the incorporation of selenocysteine residues into selenoproteins. The mutant mice exhibited growth retardation, epiphyseal growth plate abnormalities, and delayed skeletal ossification, as well as marked chondronecrosis of articular, auricular, and tracheal cartilages. Phenotypically, the mice thus replicated a number of the pathological features of Kashin-Beck disease, supporting the notion that selenium deficiency is important to the development of this syndrome. Kashin-Beck disease (KBD) is a severe, chronic, and deforming musculoskeletal disease affecting millions of individuals in specific regions of Asia. Starting in childhood, the disorder leads to joint and limb deformities, short stature, and delayed skeletal development. Articular cartilage damage due to chondronecrosis and limb deformities then lead to secondary osteoarthritis and severe disability. Factors proposed to cause KBD include selenium deficiency, iodine deficiency, contamination of grain with toxic molds, and humic substances in well water. Soil and water deficiency in selenium (and iodine) are a consistent feature of KBD endemic areas, and affected individuals show profound deficiencies of these two elements. Thus far, there have been no convincing rodent models of KBD based on selenium (and/or iodine) deficiency achieved through dietary manipulation. Our manuscript describes a conditional gene mutation approach in mice that, in effect, mimics severe selenium deficiency, achieving this specifically within skeletal progenitor cells. By deleting selenocysteine tRNA (required for normal selenoprotein activity) in osteo-chondroprogenitors, we found that mice develop post-natal impairment of skeletal growth, dwarfism, delayed ossification, impaired endochondral bone formation, as well as severe chondronecrosis. Our mutant mouse supports the idea that selenium deficiency is key to the skeletal pathology of KBD.
Collapse
Affiliation(s)
- Charlene M. Downey
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Chelsea R. Horton
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Bradley A. Carlson
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Trish E. Parsons
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Benedikt Hallgrímsson
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Frank R. Jirik
- The McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
47
|
Suvorova ES, Lucas O, Weisend CM, Rollins MF, Merrill GF, Capecchi MR, Schmidt EE. Cytoprotective Nrf2 pathway is induced in chronically txnrd 1-deficient hepatocytes. PLoS One 2009; 4:e6158. [PMID: 19584930 PMCID: PMC2703566 DOI: 10.1371/journal.pone.0006158] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/01/2009] [Indexed: 01/05/2023] Open
Abstract
Background Metabolically active cells require robust mechanisms to combat oxidative stress. The cytoplasmic thioredoxin reductase/thioredoxin (Txnrd1/Txn1) system maintains reduced protein dithiols and provides electrons to some cellular reductases, including peroxiredoxins. Principal Findings Here we generated mice in which the txnrd1 gene, encoding Txnrd1, was specifically disrupted in all parenchymal hepatocytes. Txnrd1-deficient livers exhibited a transcriptome response in which 56 mRNAs were induced and 12 were repressed. Based on the global hybridization profile, this represented only 0.3% of the liver transcriptome. Since most liver mRNAs were unaffected, compensatory responses were evidently effective. Nuclear pre-mRNA levels indicated the response was transcriptional. Twenty-one of the induced genes contained known antioxidant response elements (AREs), which are binding sites for the oxidative and chemical stress-induced transcription factor Nrf2. Txnrd1-deficient livers showed increased accumulation of nuclear Nrf2 protein and chromatin immunoprecipitation on the endogenous nqo1 and aox1 promoters in fibroblasts indicated that Txnrd1 ablation triggered in vivo assembly of Nrf2 on each. Conclusions Chronic deletion of Txnrd1 results in induction of the Nrf2 pathway, which contributes to an effective compensatory response.
Collapse
Affiliation(s)
- Elena S. Suvorova
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Olivier Lucas
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Carla M. Weisend
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - MaryClare F. Rollins
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
| | - Gary F. Merrill
- Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, United States of America
| | - Mario R. Capecchi
- Howard Hughes Medical Institute (HHMI), University of Utah, Salt Lake City, Utah, United States of America
| | - Edward E. Schmidt
- Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
48
|
Gresner P, Gromadzinska J, Jablonska E, Kaczmarski J, Wasowicz W. Expression of selenoprotein-coding genes SEPP1, SEP15 and hGPX1 in non-small cell lung cancer. Lung Cancer 2009; 65:34-40. [PMID: 19058871 DOI: 10.1016/j.lungcan.2008.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 06/27/2008] [Accepted: 10/23/2008] [Indexed: 12/14/2022]
Abstract
Aim of the study was to investigate the mRNA expression level of selenoprotein P (SEPP1), 15-kDa selenoprotein (SEP15) and glutathione peroxidase 1 (hGPX1) in paired malignant and non-malignant tissue. To achieve this goal, the quantitative real-time PCR technique was utilized in paired tissue samples from 33 non-small cell lung cancer (NSCLC) patients. Simultaneously, the activity of glutathione peroxidases (GPX) and the level of thiobarbituric acid-reactive species (TBARS) in paired tissue specimens and the blood plasma selenium level was measured. We found significant down-regulation of SEPP1 expression level in tumorous lung tissue (2.732-fold; p<0.001). The expression of hGPX1 and SEP15 in tumorous tissue remained unchanged compared to healthy tissue. The level of TBARS in malignant tissue was significantly increased (p<0.005) and negatively correlated with SEPP1 expression level (R(S)=-0.3238; p<0.05). The activity of GPX in malignant tissue was significantly increased compared to the non-malignant one (p<0.005) and negatively correlated with the expression level of SEPP1. It seems possible, that the down-regulation of SEPP1 expression may lead to an increased oxidative stress possibly resulting in lung carcinogenesis. Increased activity of GPX in tumorous lung tissue seems to be a feedback mechanism.
Collapse
Affiliation(s)
- Peter Gresner
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, 8, Sw. Teresy St., Lodz 91-348, Poland.
| | | | | | | | | |
Collapse
|
49
|
Lin EY, Li JF, Bricard G, Wang W, Deng Y, Sellers R, Porcelli SA, Pollard JW. Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Mol Oncol 2009; 1:288-302. [PMID: 18509509 DOI: 10.1016/j.molonc.2007.10.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genetic depletion of macrophages in Polyoma Middle T oncoprotein (PyMT)-induced mammary tumors in mice delayed the angiogenic switch and the progression to malignancy. To determine whether vascular endothelial growth factor A (VEGF-A) produced by tumor-associated macrophages regulated the onset of the angiogenic switch, a genetic approach was used to restore expression of VEGF-A into tumors at the benign stages. This stimulated formation of a high-density vessel network and in macrophage-depleted mice, was followed by accelerated tumor progression. The expression of VEGF-A led to a massive infiltration into the tumor of leukocytes that were mostly macrophages. This study suggests that macrophage-produced VEGF regulates malignant progression through stimulating tumor angiogenesis, leukocytic infiltration and tumor cell invasion.
Collapse
Affiliation(s)
- Elaine Y Lin
- Department of Developmental and Molecular Biology, Center of Reproductive Biology and Women's Health, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhuo P, Diamond AM. Molecular mechanisms by which selenoproteins affect cancer risk and progression. Biochim Biophys Acta Gen Subj 2009; 1790:1546-54. [PMID: 19289153 DOI: 10.1016/j.bbagen.2009.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 12/31/2022]
Abstract
Selenoproteins comprise a unique class of proteins that contain selenium in the form of selenocysteine. Several selenoproteins have been implicated in the risk or development of cancers in humans by genetic data. These include Selenoprotein P, 3 members of the glutathione peroxidase family of anti-oxidant enzymes and Sep15. At-risk alleles in the germline indicate a likely role in determining susceptibility to cancer, while loss of heterozygosity or chromosomal epigenetic silencing indicate that the reduction in the levels of the corresponding proteins contribute to malignant progression. Lower levels of these proteins are likely to be detrimental due to the resulting cellular stress and perturbations in important regulatory signaling pathways. The genetic data indicating the involvement of these selenoproteins in cancer etiology are discussed, as are the possible mechanisms by which these genes might promote carcinogenesis.
Collapse
Affiliation(s)
- Pin Zhuo
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|