1
|
Sen K, Kumar Das S, Ghosh N, Sinha K, Sil PC. Lupeol: A dietary and medicinal triterpene with therapeutic potential. Biochem Pharmacol 2024; 229:116545. [PMID: 39293501 DOI: 10.1016/j.bcp.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Lupeol, a triterpene derived from various plants, has emerged as a potent dietary supplement with extensive therapeutic potential. This review offers a comprehensive examination of lupeol's applications across diverse health conditions. By meticulously analyzing current scientific literature, we have synthesized findings that underscore lupeol's impact on cancer, diabetes, gastrointestinal disorders, neurological diseases, dermatological conditions, nephrological issues, and cardiovascular health. The review delves into molecular studies that reveal lupeol's ability to modulate disease pathways and alleviate symptoms, positioning it as a promising therapeutic agent. Moreover, we discuss the potential role of lupeol in clinical practice and public health strategies, emphasizing its substantial benefits as a natural compound. This thorough analysis serves as a critical resource for researchers, providing insights into the multifaceted therapeutic properties of lupeol and its potential to significantly enhance health outcomes.
Collapse
Affiliation(s)
- Koushik Sen
- Jhargram Raj College, Jhargram 721507, India
| | | | | | | | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India.
| |
Collapse
|
2
|
Xu X, Yang A, Han Y, Li S, Hao G, Cui N. Pancancer analysis of the interactions between CTNNB1 and infiltrating immune cell populations. Medicine (Baltimore) 2024; 103:e40186. [PMID: 39495984 PMCID: PMC11537592 DOI: 10.1097/md.0000000000040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Recently, evidence has indicated that CTNNB1 is important in a variety of malignancies. However, how CTNNB1 interacts with immune cell infiltration remains to be further investigated. In this study, we focused on the correlations between CTNNB1 and tumorigenesis, tumor progression, mutation, phosphorylation, and prognosis via gene expression profiling interaction analysis; TIMER 2.0, cBioPortal, GTEx, CPTAC, and GEPIA2 database analyses; and R software. CTNNB1 mutations are most found in uterine endometrioid carcinoma and hepatocellular carcinoma. However, no CTNNB1 mutations were found to be associated with a poor prognosis. In addition, CTNNB1 DNA methylation levels were higher in normal tissues than in tumor tissues in cancer except for breast invasive carcinoma, which had higher methylation levels in tumor tissues. The phosphorylation level of the S675 and S191 sites of CTNNB1 was greater in the primary tumor tissues in the clear cell renal cell carcinoma, liver hepatocellular carcinoma, lung adenocarcinoma, pancreatic adenocarcinoma, and breast cancer datasets but not in the glioblastoma multiform dataset. As for, with respect to immune infiltration, CD8 + T-cell infiltration was negatively correlated with the expression of CTNNB1 in thymoma and uterine corpus endometrial carcinoma. The CTNNB1 level was found to be positively associated with the infiltration index of the corresponding fibroblasts in the TCGA tumors of colon adenocarcinoma, human papillomavirus-negative head and neck squamous cell carcinoma, mesothelioma, testicular germ cell tumor, and thymoma. We also identified the top CTNNB1-correlated genes in the TCGA projects and analyzed the expression correlation between CTNNB1 and selected target genes, including PPP4R2, RHOA, and SPRED1. Additionally, pathway enrichment suggested that NUMB is involved in the Wnt pathway. This study highlights the predictive role of CTNNB1 across cancers, suggesting that CTNNB1 might serve as a potential biomarker for the diagnosis and prognosis evaluation of various malignant tumors.
Collapse
Affiliation(s)
- Xiaoyuan Xu
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aimin Yang
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Han
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siran Li
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guimin Hao
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Cui
- Department of Reproductive Medicine, Hebei Key Laboratory of Infertility and Genetics, Hebei Clinical Research Center for Birth Defects, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Lopez-Tello J, Kiu R, Schofield Z, Zhang CXW, van Sinderen D, Le Gall G, Hall LJ, Sferruzzi-Perri AN. Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Mol Metab 2024; 88:102004. [PMID: 39127167 PMCID: PMC11401360 DOI: 10.1016/j.molmet.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Faculty of Medicine. Autonomous University of Madrid, Spain.
| | - Raymond Kiu
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Zoe Schofield
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cindy X W Zhang
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Lindsay J Hall
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Abo-Elenin MHH, Kamel R, Nofal S, Ahmed AAE. The crucial role of beta-catenin in the osteoprotective effect of semaglutide in an ovariectomized rat model of osteoporosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03378-z. [PMID: 39254876 DOI: 10.1007/s00210-024-03378-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Postmenopausal osteoporosis is a common chronic medical illness resulting from an imbalance between bone resorption and bone formation along with microarchitecture degeneration attributed to estrogen deficiency and often accompanied by other medical conditions such as weight gain, depression, and insomnia. Semaglutide (SEM) is a recently introduced GLP-1 receptor agonist (GLP-1RA) for the treatment of obesity and type 2 diabetes mellitus by mitigating insulin resistance. It has been discovered that the beneficial effects of GLP-1 are associated with alterations in lipolysis, adipogenesis, and anti-inflammatory processes. GLP-1 analogs transmit signals directly to adipose tissue. Mesenchymal stem cells (MSCs) are multidisciplinary cells that originate from bone marrow, migrate to injury sites, and promote bone regeneration. MSCs can differentiate into osteoblasts, adipose cells, and cartilage cells. Our aim is to investigate the role of semaglutide on bone formation and the Wnt signaling pathway. Osteoporosis was induced in female rats by ovariectomy, and the ovariectomized rats were treated with alendronate as standard treatment with a dose of 3 mg/kg orally and semaglutide with two doses (150 mcg/kg and 300 mcg/kg) S.C. for 10 successive weeks. Semaglutide ameliorates bone detrimental changes induced by ovariectomy. It improves bone microarchitecture and preserves bone mineral content. Semaglutide ameliorates ovariectomy-induced osteoporosis and increases the expression of β-catenin, leading to increased bone formation and halted receptor activator of nuclear factor kappa-Β ligand (RANKL's) activation. Semaglutide can be used as a potential prophylactic and therapeutic drug against osteoporosis, possibly by activating Wnt signaling and decreasing bone resorption.
Collapse
Affiliation(s)
| | - Rehab Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| | - Amany Ali Eissa Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo City, Egypt
| |
Collapse
|
5
|
Lin LL, Nayak B, Osmulski PA, Wang E, Wang CP, Valente PT, Wang CM, Tan X, Santanam N, Wang TL, Gaczynska ME, Kost ER, Huang THM, Kirma NB. PAI-1 uncouples integrin-β1 from restrain by membrane-bound β-catenin to promote collagen fibril remodeling in obesity-related neoplasms. Cell Rep 2024; 43:114527. [PMID: 39046873 DOI: 10.1016/j.celrep.2024.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
The paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase β-catenin accumulation for WNT signaling activation, this epigenetic repression causes β-catenin release from transmembrane integrins. Furthermore, PAI-1 elicits the disengagement of TIMP2 and SPARC from integrin-β1 on the cell surface, lifting an integrin-β1-ECM signaling constraint. The heightened interaction of integrin-β1 with type 1 collagen (COL1) remodels extracellular fibrillar structures in the ECM. Consequently, the enhanced nanomechanical stiffness of this microenvironment is conducive to EEC motility and neoplastic transformation. The formation of extensively branched COL1 fibrils is also observed in endometrial tumors of patients with obesity. The findings highlight PAI-1 as a contributor to enhanced integrin-COL1 engagement and extensive ECM remodeling during obesity-associated neoplastic development.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Bijaya Nayak
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Pawel A Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Exing Wang
- Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chen-Pin Wang
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Tian-Li Wang
- Departments of Pathology and Gynecology/Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Maria E Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Nameer B Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
6
|
Yu C, Yu S, Liu Z, Xu L, Zhang Z, Wan J, Ji P, Zhang P, Fu Y, Le Y, Hou R. Morroniside promotes skin wound re-epithelialization by facilitating epidermal stem cell proliferation through GLP-1R-mediated upregulation of β-catenin expression. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1072-1084. [PMID: 38779766 PMCID: PMC11322873 DOI: 10.3724/abbs.2024070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 05/25/2024] Open
Abstract
Epidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms. Application of 10‒50 μg/mL of morroniside to the skin wound promotes wound healing in mice. In vitro studies demonstrate that morroniside stimulates the proliferation of mouse and human EpSCs in a time- and dose-dependent manner. Mechanistic studies reveal that morroniside promotes the proliferation of EpSCs by facilitating the cell cycle transition from the G1 to S phase. Morroniside increases the expression of β-catenin via the glucagon-like peptide-1 receptor (GLP-1R)-mediated PKA, PKA/PI3K/AKT and PKA/ERK signaling pathways, resulting in an increase in cyclin D1 and cyclin E1 expression, either directly or by upregulating c-Myc expression. This process ultimately leads to EpSC proliferation. Administration of morroniside to mouse skin wounds increases the phosphorylation of AKT and ERK, the expressions of β-catenin, c-Myc, cyclin D1, and cyclin E1, as well as the proliferation of EpSCs, in periwound skin tissue, and accelerates wound re-epithelialization. These effects of morroniside are mediated by the GLP-1R. Overall, these results indicate that morroniside promotes skin wound healing by stimulating the proliferation of EpSCs via increasing β-catenin expression and subsequently upregulating c-Myc, cyclin D1, and cyclin E1 expressions through GLP-1R signaling pathways. Morroniside has clinical potential for treating skin wounds.
Collapse
Affiliation(s)
- Chenghao Yu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Siyuan Yu
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Zuohua Liu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Lei Xu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Zhiqiang Zhang
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Jiaming Wan
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Pengxiang Ji
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Ping Zhang
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Yi Fu
- Department of Human AnatomyHistology and EmbryologySchool of Biology and Basic Medical SciencesSuzhou Medical College of Soochow UniversitySuzhou215123China
| | - Yingying Le
- Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ruixing Hou
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| |
Collapse
|
7
|
Chen X, Xiao J, Tao D, Liang Y, Chen S, Shen L, Li S, Zheng Z, Zeng Y, Luo C, Peng F, Long H. Metadherin orchestrates PKA and PKM2 to activate β-catenin signaling in podocytes during proteinuric chronic kidney disease. Transl Res 2024; 266:68-83. [PMID: 37995969 DOI: 10.1016/j.trsl.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed β-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce β-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and β-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/β-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the β-catenin-mediated transcription complex by regulating PKA and PKM2 function.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danping Tao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyi Liang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sijia Chen
- Department of Nephrology and Rheumatology, The First Hospital of Changsha, Changsha, China
| | - Lingyu Shen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zerong Zheng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Taguchi Y, Nakaya T, Aizawa K, Noguchi Y, Maiya N, Iwamoto C, Ohba K, Sugawara M, Murata M, Nagai R, Kano F. Peptide mimetic NC114 induces growth arrest by preventing PKCδ activation and FOXM1 nuclear translocation in colorectal cancer cells. FEBS Open Bio 2024; 14:695-720. [PMID: 38425293 PMCID: PMC10988720 DOI: 10.1002/2211-5463.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The peptide mimetic, NC114, is a promising anticancer compound that specifically kills colorectal cancer cells without affecting normal colon epithelial cells. In our previous study, we observed that NC114 inhibited the Wnt/β-catenin pathway, with significant downregulation of both Ser 675-phosphorylated β-catenin and its target genes, cyclin D1 and survivin. However, the molecular mechanism responsible for its cytotoxic effect has not yet been fully characterized. In the present study, we demonstrated that NC114 prevented cell cycle progression from S to G2/M phase by downregulating cell cycle-related gene expression, and also induced growth arrest in SW480 and HCT-116 colorectal cancer cells. A novel covariation network analysis combined with transcriptome analysis revealed a series of signaling cascades affected by NC114 treatment, and identified protein kinase C-δ (PKCδ) and forkhead box protein M1 (FOXM1) as important regulatory factors for NC114-induced growth arrest. NC114 treatment inhibits the activation of PKCδ and its kinase activity, which suppresses MEK/ERK signaling. Attenuated MEK/ERK signaling then results in a reduction in FOXM1 phosphorylation and subsequent nuclear translocation of FOXM1 and β-catenin. Consequently, formation of a T-cell factor-4 (TCF4)/β-catenin transcription complex in the nucleus is inhibited and transcription of its target genes, such as cell cycle-related genes, is downregulated. The efficacy of NC114 on tumor growth was confirmed in a xenograft model. Collectively, elucidation of the mechanism by which NC114 induces growth arrest in colorectal cancer cells should provide a novel therapeutic strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yuki Taguchi
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaKanagawaJapan
- Multimodal Cell Analysis Collaborative Research ClusterTokyo Institute of TechnologyYokohamaKanagawaJapan
| | - Takeo Nakaya
- Department of PathologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Kenichi Aizawa
- Department of Clinical PharmacologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Yoshiyuki Noguchi
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaKanagawaJapan
- International Research Center for NeurointelligenceThe University of TokyoBunkyo‐kuTokyoJapan
| | - Nobuhiko Maiya
- Stem Cell Business Department, Healthcare Business UnitNIKON CorporationYokohamaKanagawaJapan
| | - Chisako Iwamoto
- Marketing Department, Healthcare Business UnitNIKON CorporationMinato‐kuTokyoJapan
| | - Kenichi Ohba
- Engineering Solution Business DivisionNikon System Inc.YokohamaKanagawaJapan
| | - Minoru Sugawara
- Cancer Precision Medicine CenterJapanese Foundation for Cancer ResearchKoto‐kuTokyoJapan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaKanagawaJapan
- Multimodal Cell Analysis Collaborative Research ClusterTokyo Institute of TechnologyYokohamaKanagawaJapan
- International Research Center for NeurointelligenceThe University of TokyoBunkyo‐kuTokyoJapan
| | - Ryozo Nagai
- Jichi Medical UniversityShimotsukeTochigiJapan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaKanagawaJapan
- Multimodal Cell Analysis Collaborative Research ClusterTokyo Institute of TechnologyYokohamaKanagawaJapan
| |
Collapse
|
9
|
Liu SW, Luo JQ, Zhao LY, Ou NJ, Chao-Yang, Zhang YX, Bai HW, Sun HF, Zhang JX, Yao CC, Li P, Tian RH, Li Z, Zhu ZJ. scRNA-seq reveals that origin recognition complex subunit 6 regulates mouse spermatogonial cell proliferation and apoptosis via activation of Wnt/β-catenin signaling. Asian J Androl 2024; 26:46-56. [PMID: 37788012 PMCID: PMC10846824 DOI: 10.4103/aja202330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/26/2023] [Indexed: 10/04/2023] Open
Abstract
The regulation of spermatogonial proliferation and apoptosis is of great significance for maintaining spermatogenesis. The single-cell RNA sequencing (scRNA-seq) analysis of the testis was performed to identify genes upregulated in spermatogonia. Using scRNA-seq analysis, we identified the spermatogonia upregulated gene origin recognition complex subunit 6 ( Orc6 ), which is involved in DNA replication and cell cycle regulation; its protein expression in the human and mouse testis was detected by western blot and immunofluorescence. To explore the potential function of Orc6 in spermatogonia, the C18-4 cell line was transfected with control or Orc6 siRNA. Subsequently, 5-ethynyl-2-deoxyuridine (EdU) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, flow cytometry, and western blot were used to evaluate its effects on proliferation and apoptosis. It was revealed that ORC6 could promote proliferation and inhibit apoptosis of C18-4 cells. Bulk RNA sequencing and bioinformatics analysis indicated that Orc6 was involved in the activation of wingless/integrated (Wnt)/β-catenin signaling. Western blot revealed that the expression of β-catenin protein and its phosphorylation (Ser675) were significantly decreased when silencing the expression of ORC6. Our findings indicated that Orc6 was upregulated in spermatogonia, whereby it regulated proliferation and apoptosis by activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shi-Wei Liu
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jia-Qiang Luo
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Liang-Yu Zhao
- Department of Urology, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Ning-Jing Ou
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao-Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Xiang Zhang
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao-Wei Bai
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong-Fang Sun
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jian-Xiong Zhang
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen-Cheng Yao
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Peng Li
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ru-Hui Tian
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zi-Jue Zhu
- Department of Andrology, Center for Men’s Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Lab of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
10
|
Jang HJ, Park E, Jung HJ, Kwon TH. Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney. Am J Physiol Renal Physiol 2024; 326:F69-F85. [PMID: 37855039 PMCID: PMC11194055 DOI: 10.1152/ajprenal.00144.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, β-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of β-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with β-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. β-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.
Collapse
Affiliation(s)
- Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Euijung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- Epithelial Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
11
|
Dogsom O, Hamza A, Mahmud S, Min JK, Lee YB, Park JB. The Complex of p-Tyr42 RhoA and p-p65/RelA in Response to LPS Regulates the Expression of Phosphoglycerate Kinase 1. Antioxidants (Basel) 2023; 12:2090. [PMID: 38136210 PMCID: PMC10740983 DOI: 10.3390/antiox12122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation plays a crucial role in tumorigenesis, primarily mediated by NF-κB. RhoA GTPases are instrumental in regulating the activation of NF-κB. Specifically, the phosphorylation of Tyrosine 42 on RhoA ensures the activation of NF-κB by directly activating the IKKβ associated with IKKγ (NEMO). This study aimed to uncover the molecular mechanism through which p-Tyrosine 42 RhoA, in conjunction with NF-κB, promotes tumorigenesis. Notably, we observed that p-Tyrosine 42 RhoA co-immunoprecipitated with the p-Ser 536 p65/RelA subunit in NF-κB in response to LPS. Moreover, both p-Tyrosine 42 RhoA and p-p65/RelA translocated to the nucleus, where they formed a protein complex associated with the promoter of phosphoglycerate kinase 1 (PGK1) and regulated the expression of PGK1. In addition, p-p65/RelA and p-Tyr42 RhoA co-immunoprecipitated with p300 histone acetyltransferase. Intriguingly, PGK1 exhibited an interaction with β-catenin, PKM1 and PKM2. Of particular interest, si-PGK1 led to a reduction in the levels of β-catenin and phosphorylated pyruvate dehydrogenase A1 (p-PDHA1). We also found that PGK1 phosphorylated β-catenin at the Thr551 and Ser552 residues. These findings discovered that PGK1 may play a role in transcriptional regulation, alongside other transcription factors.
Collapse
Affiliation(s)
- Oyungerel Dogsom
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
- Department of Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Amir Hamza
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
| | - Shohel Mahmud
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
- National Institute of Biotechnology, Ganakbari, Ashulia, Savar 1349, Dhaka, Bangladesh
| | - Jung-Ki Min
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
| | - Yoon-Beom Lee
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea; (O.D.); (A.H.); (S.M.); (J.-K.M.); (Y.-B.L.)
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Hallymdaehag-Gil 1, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
12
|
Yun H, You JE, Hong JK, Kim DY, Lee JU, Kang DH, Ryu YS, Koh DI, Jin DH. TCOF1 promotes the colorectal cancer progression by stabilizing β-catenin. Med Oncol 2023; 40:348. [PMID: 37935810 DOI: 10.1007/s12032-023-02218-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Colorectal cancer (CRC) is one of the highest mortality rates worldwide, and various studies reported to the occurrence of CRC. In particular, the Wnt/β-catenin pathway is known to be a major factor in the progression of CRC and β-catenin involved in the expression of its downstream target genes. We searched for TCOF1 through sliver staining to identify a new binding partner for β-catenin and to investigate the role of the gene involved in CRC. Treacle Ribosome Biogenesis Factor 1 (TCOF1) is a nucleolar protein that regulates the transcription of ribosomal DNA (rDNA). There are many reports of genetic studies on TCOF1 mutations and defects, but its function in CRC remains unknown. We demonstrated that TCOF1 and β-catenin expression in tissue microarray (TMA) containing 101 individual CRC and 17 adjacent normal samples. Additionally, the effects of TCOF1 knockdown or overexpression were examined proliferation, colony formation assay, western blot, and quantitative real-time PCR (qRT-PCR). TCOF1 knockdown or overexpression regulates cell proliferation about three-fold and the phosphorylation of β-catenin, cyclin D1 expression levels. Besides, we discovered the mechanism through which TCOF1 regulates the stability of β-catenin was involved in degradation through proteasome using ubiquitination assay. Finally, we confirmed the interaction of TCOF1 with the tankyrase inhibitor NVP-TNKS656, which destabilizes β-catenin through in vitro and in vivo. Collectively, this study shows that significantly correlation was observed that TCOF1 and β-catenin were risk factor for tumor progression. The stability of β-catenin via regulating TCOF1 expression could be a potential strategy for therapeutic with CRC.
Collapse
Affiliation(s)
- Hyeseon Yun
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Ji-Eun You
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jun Ki Hong
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Ji-U Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dong-Hee Kang
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
13
|
Lee JH, Ryu H, Lee H, Yu HR, Gao Y, Lee KM, Kim YJ, Lee J. Endoplasmic reticulum stress in pancreatic β cells induces incretin desensitization and β-cell dysfunction via ATF4-mediated PDE4D expression. Am J Physiol Endocrinol Metab 2023; 325:E448-E465. [PMID: 37729023 DOI: 10.1152/ajpendo.00156.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Pancreatic β-cell dysfunction and eventual loss are key steps in the progression of type 2 diabetes (T2D). Endoplasmic reticulum (ER) stress responses, especially those mediated by the protein kinase RNA-like ER kinase and activating transcription factor 4 (PERK-ATF4) pathway, have been implicated in promoting these β-cell pathologies. However, the exact molecular events surrounding the role of the PERK-ATF4 pathway in β-cell dysfunction remain unknown. Here, we report our discovery that ATF4 promotes the expression of PDE4D, which disrupts β-cell function via a downregulation of cAMP signaling. We found that β-cell-specific transgenic expression of ATF4 led to early β-cell dysfunction and loss, a phenotype that resembles accelerated T2D. Expression of ATF4, rather than C/EBP homologous protein (CHOP), promoted PDE4D expression, reduced cAMP signaling, and attenuated responses to incretins and elevated glucose. Furthermore, we found that β-cells of leptin receptor-deficient diabetic (db/db) mice had elevated nuclear localization of ATF4 and PDE4D expression, accompanied by impaired β-cell function. Accordingly, pharmacological inhibition of the ATF4 pathway attenuated PDE4D expression in the islets and promoted incretin-simulated glucose tolerance and insulin secretion in db/db mice. Finally, we found that inhibiting PDE4 activity with selective pharmacological inhibitors improved β-cell function in both db/db mice and β-cell-specific ATF4 transgenic mice. In summary, our results indicate that ER stress causes β-cell failure via ATF4-mediated PDE4D production, suggesting the ATF4-PDE4D pathway could be a therapeutic target for protecting β-cell function during the progression of T2D.NEW & NOTEWORTHY Endoplasmic reticulum stress has been implied to cause multiple β-cell pathologies during the progression of type 2 diabetes (T2D). However, the precise molecular events underlying this remain unknown. Here, we discovered that elevated ATF4 activity, which was seen in T2D β cells, attenuated β-cell proliferation and impaired insulin secretion via PDE4D-mediated downregulation of cAMP signaling. Additionally, we demonstrated that pharmacological inhibition of the ATF4 pathway or PDE4D activity alleviated β-cell dysfunction, suggesting its therapeutic usefulness against T2D.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hanguk Ryu
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyejin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hye Ram Yu
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Young-Joon Kim
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|
14
|
Iloki Assanga SB, Lewis Luján LM, McCarty MF. Targeting beta-catenin signaling for prevention of colorectal cancer - Nutraceutical, drug, and dietary options. Eur J Pharmacol 2023; 956:175898. [PMID: 37481200 DOI: 10.1016/j.ejphar.2023.175898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/09/2023] [Accepted: 06/29/2023] [Indexed: 07/24/2023]
Abstract
Progressive up-regulation of β-catenin signaling is very common in the transformation of colorectal epithelium to colorectal cancer (CRC). Practical measures for opposing such signaling hence have potential for preventing or slowing such transformation. cAMP/PKA activity in colon epithelium, as stimulated by COX-2-generated prostaglandins and β2-adrenergic signaling, boosts β-catenin activity, whereas cGMP/PKG signaling has the opposite effect. Bacterial generation of short-chain fatty acids (as supported by unrefined high-carbohydrate diets, berberine, and probiotics), dietary calcium, daily aspirin, antioxidants opposing cox-2 induction, and nicotine avoidance, can suppress cAMP production in colonic epithelium, whereas cGMP can be boosted via linaclotides, PDE5 inhibitors such as sildenafil or icariin, and likely high-dose biotin. Selective activation of estrogen receptor-β by soy isoflavones, support of adequate vitamin D receptor activity with UV exposure or supplemental vitamin D, and inhibition of CK2 activity with flavanols such as quercetin, can also oppose β-catenin signaling in colorectal epithelium. Secondary bile acids, the colonic production of which can be diminished by low-fat diets and berberine, can up-regulate β-catenin activity by down-regulating farnesoid X receptor expression. Stimulation of PI3K/Akt via insulin, IGF-I, TLR4, and EGFR receptors boosts β-catenin levels via inhibition of glycogen synthase-3β; plant-based diets can down-regulate insulin and IGF-I levels, exercise training and leanness can keep insulin low, anthocyanins and their key metabolite ferulic acid have potential for opposing TLR4 signaling, and silibinin is a direct antagonist for EGFR. Partially hydrolyzed phytate can oppose growth factor-mediated down-regulation of β-catenin by inhibiting Akt activation. Multifactorial strategies for safely opposing β-catenin signaling can be complemented with measures that diminish colonic mutagenesis and DNA hypomethylation - such as avoidance of heme-rich meat and charred or processed meats, consumption of phase II-inductive foods and nutraceuticals (e.g., Crucifera), and assurance of adequate folate status.
Collapse
Affiliation(s)
- Simon Bernard Iloki Assanga
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd Luis Encinas y Rosales S/N Col. Centro, Hermosillo, Sonora, C.P. 83000, Mexico.
| | - Lidianys María Lewis Luján
- Technological Institute of Hermosillo (ITH), Ave. Tecnológico y Periférico Poniente S/N, Col. Sahuaro, Hermosillo, Sonora, C.P. 83170, México.
| | | |
Collapse
|
15
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
16
|
Park R, Lee S, Chin H, Nguyen ATQ, Lee D. Tumor-Promoting Role of GNA14 in Colon Cancer Development. Cancers (Basel) 2023; 15:4572. [PMID: 37760541 PMCID: PMC10527020 DOI: 10.3390/cancers15184572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have shown that mutations in members of the G-protein α family contribute to the onset and progression of cancer. However, the role of GNA14 in CRC remains unknown. In this study, we examined the effect of GNA14 on CRC through genetic approaches in vitro and in vivo. We found that GNA14 knockdown by small interfering RNA (siRNA) inhibited the proliferation of CRC cells SW403 and HT29. Gna14 knockout mice developed normally without obvious abnormalities. However, the number of polyps in the small intestine was significantly reduced in Gna14 knockout mice compared to control mice after mating with ApcMin mice, a representative CRC mouse model. In particular, deletion of the Gna14 inhibited polyp growth, especially in the distal end of the small intestine. Histological examination showed that Gna14 knockout mice suppressed malignant tumor progression due to decreased proliferation and increased apoptosis in polyps compared to controls. In addition, GNA14 knockdown in CRC cells resulted in downregulation of ERK phosphorylation and β-catenin and β-catenin phosphorylation at S675. Similarly, ERK phosphorylation and phospho-β-catenin phosphorylation at S675 were decreased in polyps of Gna14 knockout mice. Collectively, these analyses show that GNA14 may accelerate CRC cell proliferation and malignant tumor progression through ERK and β-catenin pathways.
Collapse
Affiliation(s)
| | | | | | | | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
17
|
Kimani CN, Reuter H, Kotzé SH, Muller CJF. Regeneration of Pancreatic Beta Cells by Modulation of Molecular Targets Using Plant-Derived Compounds: Pharmacological Mechanisms and Clinical Potential. Curr Issues Mol Biol 2023; 45:6216-6245. [PMID: 37623211 PMCID: PMC10453321 DOI: 10.3390/cimb45080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by pancreatic beta-cell dysfunction, increased cell death and loss of beta-cell mass despite chronic treatment. Consequently, there has been growing interest in developing beta cell-centered therapies. Beta-cell regeneration is mediated by augmented beta-cell proliferation, transdifferentiation of other islet cell types to functional beta-like cells or the reprograming of beta-cell progenitors into fully differentiated beta cells. This mediation is orchestrated by beta-cell differentiation transcription factors and the regulation of the cell cycle machinery. This review investigates the beta-cell regenerative potential of antidiabetic plant extracts and phytochemicals. Various preclinical studies, including in vitro, in vivo and ex vivo studies, are highlighted. Further, the potential regenerative mechanisms and the intra and extracellular mediators that are of significance are discussed. Also, the potential of phytochemicals to translate into regenerative therapies for T2D patients is highlighted, and some suggestions regarding future perspectives are made.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
- Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Christo John Fredrick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa;
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
18
|
Brown AD, Cranstone C, Dupré DJ, Langelaan DN. β-Catenin interacts with the TAZ1 and TAZ2 domains of CBP/p300 to activate gene transcription. Int J Biol Macromol 2023; 238:124155. [PMID: 36963539 DOI: 10.1016/j.ijbiomac.2023.124155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
The transcriptional co-regulator β-catenin is a critical member of the canonical Wnt signaling pathway, which plays an important role in regulating cell fate. Deregulation of the Wnt/β-catenin pathway is characteristic in the development of major types of cancer, where accumulation of β-catenin promotes cancer cell proliferation and renewal. β-catenin gene expression is facilitated through recruitment of co-activators such as histone acetyltransferases CBP/p300; however, the mechanism of their interaction is not fully understood. Here we investigate the interaction between the C-terminal transactivation domain of β-catenin and CBP/p300. Using a combination of pulldown assays, isothermal titration calorimetry, and nuclear resonance spectroscopy we determine the disordered C-terminal region of β-catenin binds promiscuously to the TAZ1 and TAZ2 domains of CBP/p300. We then map the interaction site of the C-terminal β-catenin transactivation domain onto TAZ1 and TAZ2 using chemical-shift perturbation studies. Luciferase-based gene reporter assays indicate Asp750-Leu781 is critical to β-catenin gene activation, and mutagenesis revealed that acidic and hydrophobic residues within this region are necessary to maintain TAZ1 binding. These results outline a mechanism of Wnt/β-catenin gene regulation that underlies cell development and provides a framework to develop methods to block β-catenin dependent signaling.
Collapse
Affiliation(s)
- Alexandra D Brown
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Connor Cranstone
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
19
|
Slabá H, Määttänen M, Marttinen M, Lapinkero V, Päivärinta E, Pajari AM. Daily berry consumption attenuates β-catenin signalling and genotoxicity in colon carcinoma cells exposed to faecal water from healthy volunteers in a clinical trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
20
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
21
|
Sibuea S, Ho JK, Pouton CW, Haynes JM. TGFβ3, dibutyryl cAMP and a notch inhibitor modulate phenotype late in stem cell-derived dopaminergic neuron maturation. Front Cell Dev Biol 2023; 11:1111705. [PMID: 36819101 PMCID: PMC9928866 DOI: 10.3389/fcell.2023.1111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of β-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor β3 (TGFβ3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFβ3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFβ3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.
Collapse
Affiliation(s)
- Shanti Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,National Agency of Drug and Food Control, Jakarta, Indonesia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,*Correspondence: John M. Haynes,
| |
Collapse
|
22
|
Liu X, Yu T, Tan X, Jin D, Yang W, Zhang J, Dai L, He Z, Li D, Zhang Y, Liao S, Zhao J, Zhong TP, Liu C. Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2. eLife 2023; 12:81438. [PMID: 36645741 PMCID: PMC9943066 DOI: 10.7554/elife.81438] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
In organ regeneration, progenitor and stem cells reside in their native microenvironment, which provides dynamic physical and chemical cues essential to their survival, proliferation, and differentiation. However, the types of cells that form the native microenvironment for renal progenitor cells (RPCs) have not been clarified. Here, single-cell sequencing of zebrafish kidney reveals fabp10a as a principal marker of renal interstitial cells (RICs), which can be specifically labeled by GFP under the control of fabp10a promoter in the fabp10a:GFP transgenic zebrafish. During nephron regeneration, the formation of nephrons is supported by RICs that form a network to wrap the RPC aggregates. RICs that are in close contact with RPC aggregates express cyclooxygenase 2 (Cox2) and secrete prostaglandin E2 (PGE2). Inhibiting PGE2 production prevents nephrogenesis by reducing the proliferation of RPCs. PGE2 cooperates with Wnt4a to promote nephron maturation by regulating β-catenin stability of RPC aggregates. Overall, these findings indicate that RICs provide a necessary microenvironment for rapid nephrogenesis during nephron regeneration.
Collapse
Affiliation(s)
- Xiaoliang Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Ting Yu
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Xiaoqin Tan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Daqing Jin
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Wenmin Yang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Jiangping Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Lu Dai
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Zhongwei He
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Yunfeng Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Shuyi Liao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, East China Normal University, School of Life SciencesShanghaiChina
| | - Chi Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
23
|
Kim DE, Shin SB, Kim CH, Kim YB, Oh HJ, Yim H. PLK1-mediated phosphorylation of β-catenin enhances its stability and transcriptional activity for extracellular matrix remodeling in metastatic NSCLC. Theranostics 2023; 13:1198-1216. [PMID: 36793862 PMCID: PMC9925311 DOI: 10.7150/thno.79318] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
Rationale: β-catenin is a component for cell adhesion and a transcriptional coactivator in epithelial-mesenchymal transition (EMT). Previously we found that catalytically active PLK1 drives EMT in non-small cell lung cancer (NSCLC), upregulating extracellular matrix factors including TSG6, laminin γ2, and CD44. To understand the underlying mechanism and clinical significance of PLK1 and β-catenin in NSCLC, their relationship and function in metastatic regulation were investigated. Methods: The clinical relevance between the survival rate of NSCLC patients and the expression of PLK1 and β-catenin was analyzed by a KM plot. Immunoprecipitation, kinase assay, LC-MS/MS spectrometry, and site-directed mutagenesis were performed to reveal their interaction and phosphorylation. A lentiviral doxycycline-inducible system, Transwell-based 3D culture, tail-vein injection model, confocal microscopy, and chromatin immunoprecipitation assays were used to elucidate the function of phosphorylated β-catenin in the EMT of NSCLC. Results: Clinical analysis revealed that the high expression of CTNNB1/PLK1 was inversely correlated with the survival rates of 1,292 NSCLC patients, especially in metastatic NSCLC. In TGF-β-induced or active PLK1-driven EMT, β-catenin, PLK1, TSG6, laminin γ2, and CD44 were concurrently upregulated. β-catenin is a binding partner of PLK1 in TGF-β-induced EMT and is phosphorylated at S311. Phosphomimetic β-catenin promotes cell motility, invasiveness of NSCLC cells, and metastasis in a tail-vein injection mouse model. Its upregulated stability by phosphorylation enhances transcriptional activity through nuclear translocation for the expression of laminin γ2, CD44, and c-Jun, therefore enhancing PLK1 expression by AP-1. Conclusions: Our findings provide evidence for the critical role of the PLK1/β-catenin/AP-1 axis in metastatic NSCLC, implying that β-catenin and PLK1 may serve as a molecular target and prognostic indicator of the therapeutic response in metastatic NSCLC patients.
Collapse
Affiliation(s)
- Da-Eun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Sol-Bi Shin
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Chang-Hyeon Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Yeo-Bin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Hyun-Ji Oh
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Korea.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| |
Collapse
|
24
|
Kang JI, Choi YK, Han SC, Kim HG, Hong SW, Kim J, Kim JH, Hyun JW, Yoo ES, Kang HK. Limonin, a Component of Immature Citrus Fruits, Activates Anagen Signaling in Dermal Papilla Cells. Nutrients 2022; 14:nu14245358. [PMID: 36558517 PMCID: PMC9787355 DOI: 10.3390/nu14245358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Hair loss remains a significant problem that is difficult to treat; therefore, there is a need to identify safe natural materials that can help patients with hair loss. We evaluated the hair anagen activation effects of limonin, which is abundant in immature citrus fruits. Limonin increased the proliferation of rat dermal papilla cells (rDPC) by changing the levels of cyclin D1 and p27, and increasing the number of BrdU-positive cells. Limonin increased autophagy by decreasing phosphorylated mammalian target of rapamycin levels and increasing the phospho-Raptor, ATG7 and LC3B. Limonin also activated the Wnt/β-catenin pathway by increasing phospho-β-catenin levels. XAV939, a Wnt/β-catenin inhibitor, inhibited these limonin-induced changes, including induced autophagy, BrdU-positive cells, and cell proliferation. Limonin increased the phosphorylated AKT levels in both two-dimensional cultured rDPC and three-dimensional spheroids. Treatment with the PI3K inhibitor wortmannin inhibited limonin-induced proliferation, and disrupted other limonin-mediated changes, including decreased p27, increased BrdU-positive cells, induced autophagy, and increased ATG7 and LC3B levels. Wortmannin also inhibited limonin-induced cyclin D1 and LC3 expression in spheroids. Collectively, these results indicate that limonin can enhance anagen signaling by activating autophagy via targeting the Wnt/β-catenin and/or PI3K/AKT pathways in rDPC, highlighting a candidate nutrient for hair loss treatment.
Collapse
Affiliation(s)
- Jung-Il Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Youn Kyoung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Sang-Chul Han
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyeon Gyu Kim
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Seok Won Hong
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jungeun Kim
- Department of Chemistry & Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Hoon Kim
- Department of Biotechnology, College of Applied Life Science, SARI, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eun-Sook Yoo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee-Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: ; Tel.: +82-64-754-3846; Fax: +82-64-702-2687
| |
Collapse
|
25
|
Kim W, Yeo DY, Choi SK, Kim HY, Lee SW, Ashim J, Han JE, Yu W, Jeong H, Park JK, Park S. NOLC1 knockdown suppresses prostate cancer progressions by reducing AKT phosphorylation and β-catenin accumulation. Biochem Biophys Res Commun 2022; 635:99-107. [DOI: 10.1016/j.bbrc.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
26
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Sharma S, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harassi A, Bungau S, Mostafavi E. Possible Role of Wnt Signaling Pathway in Diabetic Retinopathy. Curr Drug Targets 2022; 23:1372-1380. [PMID: 35232336 DOI: 10.2174/1389450123666220301110140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023]
Abstract
The core of impaired vision in working people suffering from insulin-dependent and noninsulin- dependent diabetes mellitus is diabetic retinopathy (DR). The Wnt Protein Ligands family influences various processes; this ensures the cells are able to interact and co-ordinate various mobile functions, including cell growth, division, survival, apoptosis, migration, and cell destiny. The extracellular Wnt signal activates other signals. It is seen that Wnt pathways play an important role in inflammation, oxidative stress, and angiogenesis. It has been illustrated that the canonically preserved Wnt signaling system has a vital role in the homeostasis of adulthood. Developmental disorders in each of these stages will lead to serious eye problems and eventually blindness. There is, therefore, a need to specifically organize and regulate the growth of ocular tissues. In tissue specification and polarities, axonal exhaust, and maintenance of cells, especially in the central nervous system, Wnt/frizzled pathways play an important role. Thus, Wnt route antagonists may act as have been possible therapeutic options in DR by inhibiting aberrant Wnt signals. Elaborative and continued research in this area will help in the advancement of current knowledge in the field of DR, and eventually, this can lead to the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Sheetu Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harassi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
28
|
Deng L, Li X, Ren X, Lai S, Zhu Y, Li J, Huang H, Mu Y. A grooved porous hydroxyapatite scaffold induces osteogenic differentiation via regulation of PKA activity by upregulating miR-129-5p expression. J Periodontal Res 2022; 57:1238-1255. [PMID: 36222334 DOI: 10.1111/jre.13060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Hydroxyapatite scaffolds with different morphologies have been widely used in bone tissue engineering. Moreover, microRNAs (miRNAs) have been proven to be extensively involved in regulating bone regeneration. We developed grooved porous hydroxyapatite (HAG) scaffolds with good osteogenic efficiency. However, little is known about the role of miRNAs in HAG scaffold-mediated promotion of bone regeneration. The objective of this study was to reveal the mechanism from the perspective of differential miRNA expression. METHODS Scanning electron microscopy (SEM) was used to perform the coculture of cells and scaffolds. The miRNA profiles were generated by a microarray assay. A synthetic miR-129-5p mimic and inhibitor were used for overexpression or inhibition. The expression of osteogenic marker mRNAs and proteins was detected by quantitative real-time PCR (qRT-PCR), Western blotting, and immunofluorescence. An ALP activity kit and alizarin red staining (ARS) were used to measure ALP activity and mineral deposition formation. Cell migration ability was examined by wound healing and transwell assays. Protein kinase A (PKA) activity was measured by enzyme-linked immunosorbent assay (ELISA) after miR-129-5p transfection. Target genes were identified by a dual-luciferase reporter assay. H89 preculture evaluated the cross talk between miR-129-5p and PKA activity. Heterotopic implantation models, hematoxylin-eosin (HE), immunohistochemistry staining, and micro-CT were used to evaluate miR-129-5p osteogenesis in vivo. RESULTS miRNAs were differentially expressed during osteogenic differentiation induced by HAG in vitro and in vivo. miR-129-5p was the only highly expressed miRNA both in vitro and in vivo. miR-129-5p overexpression promoted osteoblast differentiation and cell migration, while its inhibition weakened the effect of HAG. Moreover, miR-129-5p activated PKA to regulate the phosphorylation of β-catenin and cAMP-response element binding protein (CREB) by inhibiting cAMP-dependent protein kinase inhibitor alpha (Pkia). H89 prevented the effects of miR-129-5p on osteogenic differentiation and cell migration. HE, immunohistochemistry staining and micro-CT results showed that miR-129-5p promoted in vivo osteogenesis of the HAG scaffold. CONCLUSION The HAG scaffold activates Pka by upregulating miR-129-5p and inhibiting Pkia, resulting in CREB-dependent transcriptional activation and accumulation of β-catenin and promoting osteogenic marker expression.
Collapse
Affiliation(s)
- Li Deng
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Xinlun Li
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaohua Ren
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuang Lai
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yushu Zhu
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, Chengdu, China
| | - Hao Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
29
|
Sun Z, Zhu Y, Feng X, Liu X, Zhou K, Wang Q, Zhang H, Shi H. H3F3A K27M Mutation Promotes the Infiltrative Growth of High-Grade Glioma in Adults by Activating β-Catenin/USP1 Signaling. Cancers (Basel) 2022; 14:cancers14194836. [PMID: 36230759 PMCID: PMC9563249 DOI: 10.3390/cancers14194836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Gliomas is a primary type of tumor in the central nervous system. High-grade glioma is a malignant cancerous disease and grows rapidly. This study reports the expression of H3.3K27M in high-grade glioma tissues and the association with malignant glioma cell behavior. Moreover, the results suggested that a high expression of H3.3K27M promotes the migration and invasion of glioma cells, leading to a poor prognosis by promoting the infiltration of glioma through aggravating aberrant activation of β-catenin signaling-driven pathway. Abstract H3F3A K27M (H3.3K27M) is a newly identified molecular pathological marker in glioma and is strongly correlated with the malignancy of diffuse intrinsic pontine glioma (DIPG). In recent years, accumulating evidence has revealed that other types of glioma also contain the H3.3K27M mutation. However, the role of H3.3K27M in high-grade adult glioma, the most malignant glioma, has not been investigated. In this study, we focused on exploring the expression and function of H3.3K27M in high-grade glioma in adults. We found that H3.3K27M was highly expressed at high levels in some high-grade glioma tissues. Then, we introduced H3.3K27M into H3.3 wild-type glioma cells, U87 cells and LN229 cells. We found that H3.3K27M did not affect the growth of glioma cells in vitro and in vivo; however, the survival of mice with transplanted tumors was significantly reduced. Further investigation revealed that H3.3K27M expression mainly promoted the migration and invasion of glioma cells. Moreover, we confirmed that H3.3K27M overexpression increased the levels of the β-catenin and p-β-catenin (Ser675) proteins, the ubiquitin-specific protease 1 (USP1) mRNA and protein levels, and the enhancer of zeste homolog 2 (EZH2) protein level. In addition, the β-catenin inhibitor XAV-939 significantly attenuated the upregulation of the aforementioned proteins and inhibited the increased migration and invasion caused by the H3.3K27M mutation. Overall, the H3.3K27M mutation in high-grade glioma is a potential biomarker for poor prognosis mainly due to the infiltration of glioma cells that is at least partially mediated by the β-catenin/USP1/EZH2 pathway.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Yufu Zhu
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Xia Feng
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Xiaoyun Liu
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Kunlin Zhou
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Hengzhu Zhang
- Department of Neurosurgery, The Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi 214002, China
| | - Hengliang Shi
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou 221002, China
- Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-516-85587335
| |
Collapse
|
30
|
Srivastava T, Garola RE, Zhou J, Boinpelly VC, Priya L, Ali MF, Rezaiekhaligh MH, Heruth DP, Novak J, Alon US, Joshi T, Jiang Y, McCarthy ET, Savin VJ, Johnson ML, Sharma R, Sharma M. Prostanoid receptors in hyperfiltration-mediated glomerular injury: Novel agonists and antagonists reveal opposing roles for EP2 and EP4 receptors. FASEB J 2022; 36:e22559. [PMID: 36125047 DOI: 10.1096/fj.202200875r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Increased fluid-flow shear stress (FFSS) contributes to hyperfiltration-induced podocyte and glomerular injury resulting in progression of chronic kidney disease (CKD). We reported that increased FFSS in vitro and in vivo upregulates PGE2 receptor EP2 (but not EP4 expression), COX2-PGE2 -EP2 axis, and EP2-linked Akt-GSK3β-β-catenin signaling pathway in podocytes. To understand and use the disparities between PGE2 receptors, specific agonists, and antagonists of EP2 and EP4 were used to assess phosphorylation of Akt, GSK3β and β-catenin in podocytes using Western blotting, glomerular filtration barrier function using in vitro albumin permeability (Palb ) assay, and mitigation of hyperfiltration-induced injury in unilaterally nephrectomized (UNX) mice at 1 and 6 months. Results show an increase in Palb by PGE2 , EP2 agonist (EP2AGO ) and EP4 antagonist (EP4ANT ), but not by EP2 antagonist (EP2ANT ) or EP4 agonist (EP4AGO ). Pretreatment with EP2ANT blocked the effect of PGE2 or EP2AGO on Palb . Modulation of EP2 and EP4 also induced opposite effects on phosphorylation of Akt and β-Catenin. Individual agonists or antagonists of EP2 or EP4 did not induce significant improvement in albuminuria in UNX mice. However, treatment with a combination EP2ANT + EP4AGO for 1 or 6 months caused a robust decrease in albuminuria. EP2ANT + EP4AGO combination did not impact adaptive hypertrophy or increased serum creatinine. Observed differences between expression of EP2 and EP4 on the glomerular barrier highlight these receptors as potential targets for intervention. Safe and effective mitigating effect of EP2ANT + EP4AGO presents a novel opportunity to delay the progression of hyperfiltration-associated CKD as seen in transplant donors.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA.,Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, Missouri, USA
| | - Robert E Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Jianping Zhou
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Varun C Boinpelly
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Lakshmi Priya
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Mohammed Farhan Ali
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Mohammad H Rezaiekhaligh
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Daniel P Heruth
- Children's Mercy Research Institute, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Uri S Alon
- Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, Missouri, USA
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, Missouri, USA.,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA.,MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, USA.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Ellen T McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Virginia J Savin
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mark L Johnson
- Department of Oral and Craniofacial Sciences, University of Missouri at Kansas City-School of Dentistry, Kansas City, Missouri, USA
| | - Ram Sharma
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Mukut Sharma
- Midwest Veterans' Biomedical Research Foundation (MVBRF), Kansas City, Missouri, USA.,Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, Missouri, USA.,Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
31
|
Parrish ML, Broaddus RR, Gladden AB. Mechanisms of mutant β-catenin in endometrial cancer progression. Front Oncol 2022; 12:1009345. [PMID: 36248967 PMCID: PMC9556987 DOI: 10.3389/fonc.2022.1009345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial carcinoma (EC) is the most diagnosed gynecological malignancy in Western countries. Both incidence and mortality rates of EC have steadily risen in recent years. Despite generally favorable prognoses for patients with the endometrioid type of EC, a subset of patients has been identified with decreased progression-free survival. Patients in this group are distinguished from other endometrioid EC patients by the presence of exon 3 hotspot mutations in CTNNB1, the gene encoding for the β-catenin protein. β-catenin is an evolutionarily conserved protein with critical functions in both adherens junctions and Wnt-signaling. The exact mechanism by which exon 3 CTNNB1 mutations drive EC progression is not well understood. Further, the potential contribution of mutant β-catenin to adherens junctions' integrity is not known. Additionally, the magnitude of worsened progression-free survival in patients with CTNNB1 mutations is context dependent, and therefore the importance of this subset of patients can be obscured by improper categorization. This review will examine the history and functions of β-catenin, how these functions may change and drive EC progression in CTNNB1 mutant patients, and the importance of this patient group in the broader context of the disease.
Collapse
Affiliation(s)
- Molly L. Parrish
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew B. Gladden
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
32
|
Rai A, Yelamanchi SD, Radotra BD, Gupta SK, Mukherjee KK, Tripathi M, Chhabra R, Ahuja CK, Kumar N, Pandey A, Korbonits M, Dutta P, Gaston-Massuet C. Phosphorylation of β-catenin at Serine552 correlates with invasion and recurrence of non-functioning pituitary neuroendocrine tumours. Acta Neuropathol Commun 2022; 10:138. [PMID: 36114575 PMCID: PMC9482208 DOI: 10.1186/s40478-022-01441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Non-functioning pituitary tumours (NF-PitNETs) are common intracranial benign neoplasms that can exhibit aggressive behaviour by invading neighbouring structures and, in some cases, have multiple recurrences. Despite resulting in severe co-morbidities, no predictive biomarkers of recurrence have been identified for NF-PitNETs. In this study we have used high-throughput mass spectrometry-based analysis to examine the phosphorylation pattern of different subsets of NF-PitNETs. Based on histopathological, radiological, surgical and clinical features, we have grouped NF-PitNETs into non-invasive, invasive, and recurrent disease groups. Tumour recurrence was determined based on regular clinical and radiological data of patients for a mean follow-up of 10 years (SD ± 5.4 years). Phosphoproteomic analyses identified a unique phosphopeptide enrichment pattern which correlates with disease recurrence. Candidate phosphorylated proteins were validated in a large cohort of NF-PitNET patients by western blot and immunohistochemistry. We identified a cluster of 22 phosphopeptides upregulated in recurrent NF-PitNETs compared to non-invasive and invasive subgroups. We reveal significant phosphorylation of the β-catenin at Ser552 in recurrent and invasive NF-PitNETs, compared to non-invasive/non-recurrent NF-PitNET subgroup. Moreover, β-catenin pSer552 correlates with the recurrence free survival among 200 patients with NF-PitNET. Together, our results suggest that the phosphorylation status of β-catenin at Ser552 could act as potential biomarker of tumour recurrence in NF-PitNETs.
Collapse
|
33
|
Yoon JH, Youn K, Jun M. Discovery of Pinostrobin as a Melanogenic Agent in cAMP/PKA and p38 MAPK Signaling Pathway. Nutrients 2022; 14:nu14183713. [PMID: 36145089 PMCID: PMC9504415 DOI: 10.3390/nu14183713] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Melanogenesis is the process of melanin synthesis to protect the skin against ultraviolet radiation and other external stresses. The loss of skin pigmentation is closely related to depigmented skin disorders. The melanogenic effects of pinostrobin, an active flavanone found in honey, were evaluated. B16F10 cells were used for melanin content, tyrosinase activity, and the expression of melanogenesis-related markers. Moreover, computational simulations were performed to predict docking and pharmacokinetics. Pinostrobin increased melanin levels and tyrosinase activity by stimulating the expression of melanogenic regulatory factors including tyrosinase, tyrosinase-related protein (TRP) 1 and microphthalmia transcription factor (MITF). Specifically, the phosphorylation of cAMP response element binding (CREB) involved in the MITF activation was augmented by pinostrobin. Moreover, the compound upregulated the β-catenin by cAMP/PKA-mediated GSK-3β inactivation. Co-treatment with a PKA inhibitor, inhibited melanin production, tyrosinase activity, and expression of MITF, p-CREB, p-GSK-3β and p-β-catenin, demonstrating that pinostrobin-stimulated melanogenesis was closely related to cAMP/PKA signaling pathway. Furthermore, the combination of pinostrobin and a specific p38 inhibitor, showed that MITF upregulation by pinostrobin was partly associated with the p38 signaling pathway. Docking simulation exhibited that the oxygen group at C-4 and the hydroxyl group at C-5 of pinostrobin may play an essential role in melanogenesis. In silico analysis revealed that pinostrobin had the optimal pharmacokinetic profiles including gastrointestinal absorption, skin permeability, and inhibition of cytochrome (CYP) enzymes. From the present results, it might be suggested that pinostrobin could be useful as a potent and safe melanogenic agent in the depigmentation disorder, vitiligo.
Collapse
Affiliation(s)
- Jeong-Hyun Yoon
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
| | - Kumju Youn
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
| | - Mira Jun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Korea
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Korea
- Correspondence: ; Tel.: +82-51-200-7323; Fax: +82-51-200-7535
| |
Collapse
|
34
|
Oncogene addiction to GNAS in GNAS R201 mutant tumors. Oncogene 2022; 41:4159-4168. [PMID: 35879396 DOI: 10.1038/s41388-022-02388-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/28/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022]
Abstract
The GNASR201 gain-of-function mutation is the single most frequent cancer-causing mutation across all heterotrimeric G proteins, driving oncogenesis in various low-grade/benign gastrointestinal and pancreatic tumors. In this study, we investigated the role of GNAS and its product Gαs in tumor progression using peritoneal models of colorectal cancer (CRC). GNAS was knocked out in multiple CRC cell lines harboring GNASR201C/H mutations (KM12, SNU175, SKCO1), leading to decreased cell-growth in 2D and 3D organoid models. Nude mice were peritoneally injected with GNAS-knockout KM12 cells, leading to a decrease in tumor growth and drastically improved survival at 7 weeks. Supporting these findings, GNAS overexpression in LS174T cells led to increased cell-growth in 2D and 3D organoid models, and increased tumor growth in PDX mouse models. GNAS knockout decreased levels of cyclic AMP in KM12 cells, and molecular profiling identified phosphorylation of β-catenin and activation of its targets as critical downstream effects of mutant GNAS signaling. Supporting these findings, chemical inhibition of both PKA and β-catenin reduced growth of GNAS mutant organoids. Our findings demonstrate oncogene addiction to GNAS in peritoneal models of GNASR201C/H tumors, which signal through the cAMP/PKA and Wnt/β-catenin pathways. Thus, GNAS and its downstream mediators are promising therapeutic targets for GNAS mutant tumors.
Collapse
|
35
|
Renaud SJ, Jeyarajah MJ. How trophoblasts fuse: an in-depth look into placental syncytiotrophoblast formation. Cell Mol Life Sci 2022; 79:433. [PMID: 35859055 PMCID: PMC11072895 DOI: 10.1007/s00018-022-04475-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/07/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
In humans, cell fusion is restricted to only a few cell types under normal conditions. In the placenta, cell fusion is a critical process for generating syncytiotrophoblast: the giant multinucleated trophoblast lineage containing billions of nuclei within an interconnected cytoplasm that forms the primary interface separating maternal blood from fetal tissue. The unique morphology of syncytiotrophoblast ensures that nutrients and gases can be efficiently transferred between maternal and fetal tissue while simultaneously restricting entry of potentially damaging substances and maternal immune cells through intercellular junctions. To maintain integrity of the syncytiotrophoblast layer, underlying cytotrophoblast progenitor cells terminate their capability for self-renewal, upregulate expression of genes needed for differentiation, and then fuse into the overlying syncytium. These processes are disrupted in a variety of obstetric complications, underscoring the importance of proper syncytiotrophoblast formation for pregnancy health. Herein, an overview of key mechanisms underlying human trophoblast fusion and syncytiotrophoblast development is discussed.
Collapse
Affiliation(s)
- Stephen J Renaud
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada.
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology and Children's Health Research Institute, University of Western Ontario, London, ON, N6A5C1, Canada
| |
Collapse
|
36
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
37
|
Gu J, Shao W, Liu D, Feng JN, Pang J, Jin T. Liraglutide stimulates the β-catenin signaling cascade in mouse epididymal fat tissue. J Mol Endocrinol 2022; 69:343-356. [PMID: 35552259 DOI: 10.1530/jme-22-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
Although canonical Wnt signaling pathway activation was shown to negatively regulate adipogenesis, recent investigations suggest that Wnt pathway effectors TCF7L2 and β-catenin (β-cat) in adipose tissues are also involved in energy homeostasis during adulthood. In assessing the metabolic beneficial effect of GLP-1-based diabetes drugs in high-fat diet (HFD)-challenged mice, we observed that liraglutide treatment affected the expression of a battery of adipose tissue-specific genes, including those that encode adiponectin and leptin, mainly in epididymal white adipose tissue (eWAT). Fourteen-week HFD challenge repressed TCF7L2 and β-cat S675 phosphorylation in eWAT, while such repression was reversed by liraglutide treatment (150 µg/kg body weight daily) during weeks 10-14. In Glp1r-/-mice, liraglutide failed in stimulating TCF7L2 or β-cat in eWAT. We detected Glp1r expression in mouse eWAT and its level is enriched in its stromal vascular fraction (SVF). Mouse eWAT-SVF showed reduced expression of Tcf7l2 and its Tcf7l2 level could not be stimulated by liraglutide treatment; while following adipogenic differentiation, rat eWAT-SVF showed elevated Tcf7l2 expression. Direct in vitro liraglutide treatment in eWAT-SVF stimulated CREB S133, β-cat S675 phosphorylation, and cellular cAMP level. Thus, cAMP/β-cat signaling cascade can be stimulated by liraglutide in eWAT via GLP-1R expressed in eWAT-SVF.
Collapse
Affiliation(s)
- Jianqiu Gu
- Department of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, People's Republic of China
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Dinghui Liu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jia Nuo Feng
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Juan Pang
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Hino SI, Inenaga K, Miyazaki T, Tanaka-Mizota C. Suppression of HCT116 Human Colon Cancer Cell Motility by Polymethoxyflavones is Associated with Inhibition of Wnt/β-Catenin Signaling. Nutr Cancer 2022; 74:3662-3669. [PMID: 35658755 DOI: 10.1080/01635581.2022.2084122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aberrant regulation of the Wnt/β-catenin signaling pathway is one of the major causes of colorectal cancer (CRC). In this study, we examined the effect of polymethoxyflavones present in citrus peels on Wnt/β-catenin signaling in the HCT116 CRC cell line. We found that 5,7,3',4'-tetra-methoxyflavone (TMF) and 7,8,3',4'-TMF inhibited the expression of target genes of Wnt/β-catenin signaling and the transcriptional activities of β-catenin/Tcf and suppressed the motility of HCT116 cells. Because the binding of β-catenin to Tcf-4 was disrupted by 5,7,3',4'-TMF and 7,8,3',4'- TMF, we suggest that they are inhibitors of the Wnt/β-catenin signaling and may have potential applications in CRC prevention.
Collapse
Affiliation(s)
- Shin-Ichiro Hino
- Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Kiyoka Inenaga
- Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | - Takuto Miyazaki
- Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan
| | | |
Collapse
|
39
|
Dittmann KH, Mayer C, Stephan H, Mieth C, Bonin M, Lechmann B, Rodemann HP. Exposure of primary osteoblasts to combined magnetic and electric fields induced spatiotemporal endochondral ossification characteristic gene- and protein expression profiles. J Exp Orthop 2022; 9:39. [PMID: 35499653 PMCID: PMC9061914 DOI: 10.1186/s40634-022-00477-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Molecular processes in primary osteoblasts were analyzed in response to magnetic and electric field exposure to examine its potential impact on bone healing. Methods Primary osteoblasts were exposed to a combination of a magnetic field and an additional electric field (EFMF) (20 Hz, 700 mV, 5 mT, continuous sinusoids) in vitro. mRNA- and protein-expressions were assessed during a time interval of 21 days and compared with expression data obtained from control osteoblasts. Results We observed an autonomous osteoblast differentiation process in vitro under the chosen cultivation conditions. The initial proliferative phase was characterized by a constitutively high mRNA expression of extracellular matrix proteins. Concurrent EFMF exposure resulted in significanly increased cell proliferation (fold change: 1.25) and reduced mRNA-expressions of matrix components (0.5–0.75). The following reorganization of the extracellular matrix is prerequisite for matrix mineralization and is characterised by increased Ca2+ deposition (1.44). On molecular level EFMF exposure led to a significant decreased thrombospondin 1 (THBS1) mRNA- (0.81) and protein- (0.54) expression, which in turn reduced the TGFß1-dependent mRNA- (0.68) and protein- (0.5) expression of transforming growth factor beta induced (ßIG-H3) significantly, an inhibitor of endochondral ossification. Consequently, EFMF exposure stimulated the expression of genes characteristic for endochondral ossification, such as collagen type 10, A1 (1.50), osteopontin (1.50) and acellular communication network factor 3 (NOV) (1.45). Conclusions In vitro exposure of osteoblasts to EFMF supports cell differentiation and induces gene- and protein-expression patterns characteristic for endochondral ossification during bone fracture healing in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s40634-022-00477-9.
Collapse
|
40
|
Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN, Gutkind JS. Genomic Hippo Pathway Alterations and Persistent YAP/TAZ Activation: New Hallmarks in Head and Neck Cancer. Cells 2022; 11:1370. [PMID: 35456049 PMCID: PMC9028246 DOI: 10.3390/cells11081370] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a highly prevalent and deadly malignancy worldwide. The prognosis for locoregionally advanced HNSCC has not appreciably improved over the past 30 years despite advances in surgical, radiation, and targeted therapies and less than 20% of HNSCC patients respond to recently approved immune checkpoint inhibitors. The Hippo signaling pathway, originally discovered as a mechanism regulating tissue growth and organ size, transduces intracellular and extracellular signals to regulate the transcriptional co-activators YAP and TAZ. Alterations in the Hippo pathway resulting in persistent YAP and TAZ activation have emerged as major oncogenic drivers. Our analysis of the human HNSCC oncogenome revealed multiple genomic alterations impairing Hippo signaling and activating YAP and TAZ, which in turn contribute to HNSCC development. This includes mutations and deletions of the FAT1 gene (29%) and amplification of the WWTR1 (encoding TAZ, 14%) and YAP1 genes (8%), together representing one of the most genetically altered signaling mechanisms in this malignancy. Here, we discuss key elements of the mammalian Hippo pathway, detail mechanisms by which perturbations in Hippo signaling promote HNSCC initiation and progression and outline emerging strategies to target Hippo signaling vulnerabilities as part of novel multimodal precision therapies for HNSCC.
Collapse
Affiliation(s)
- Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA 92093, USA
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sydney I. Ramirez
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
- Division of Infectious Disease and Global Public Health, Department of Internal Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | | | | | - J. Silvio Gutkind
- Gleiberman Head and Neck Cancer Center, University of California San Diego Health, La Jolla, CA 92093, USA
- Department of Pharmacology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA;
| |
Collapse
|
41
|
Xie C, Chen C, Wu L, Xiong Y, Xing C, Mao H. BRCC36 prevents vascular calcification in chronic kidney disease through the β-catenin signalling pathway. Exp Cell Res 2022; 413:113051. [PMID: 35149088 DOI: 10.1016/j.yexcr.2022.113051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Vascular calcification (VC) is a strong predictor of cardiovascular mortality and overall mortality in patients with chronic kidney disease (CKD); however, the molecular mechanisms underlying VC have yet to be elucidated. Here, we report the role of the deubiquitinating enzyme BRCC36 in the process of VC in CKD. We established an in vitro VC model of vascular smooth muscle cells (VSMCs) and an adenine-induced CKD mouse model. The expression of BRCC36 was significantly decreased in both the in vivo and in vitro VC models. Alizarin red staining and calcium content assays showed that BRCC36 overexpression reduced calcium deposition in the presence of calcifying medium, while the contractile protein α-smooth muscle actin (α-SMA) was upregulated and phosphorylated β-catenin was downregulated. Cell immunofluorescence showed that BRCC36 overexpression also reduced the expression of phosphorylated β-catenin in the nucleus in the presence of calcifying medium. In addition, coimmunoprecipitation showed that BRCC36 can bind to β-catenin. These results suggest that BRCC36 can interact with β-catenin, the main effector protein of the Wnt/β-catenin pathway, inhibiting the phosphorylation of β-catenin and negatively regulating the cell signalling pathway, thereby inhibiting VC. This may provide new insights into the molecular mechanisms of VC in the context of CKD.
Collapse
Affiliation(s)
- Caidie Xie
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing Public Health Medical Center, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | - Cheng Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, China.
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yiqing Xiong
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
42
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
43
|
Miete C, Solis GP, Koval A, Brückner M, Katanaev VL, Behrens J, Bernkopf DB. Gαi2-induced conductin/axin2 condensates inhibit Wnt/β-catenin signaling and suppress cancer growth. Nat Commun 2022; 13:674. [PMID: 35115535 PMCID: PMC8814139 DOI: 10.1038/s41467-022-28286-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Conductin/axin2 is a scaffold protein negatively regulating the pro-proliferative Wnt/β-catenin signaling pathway. Accumulation of scaffold proteins in condensates frequently increases their activity, but whether condensation contributes to Wnt pathway inhibition by conductin remains unclear. Here, we show that the Gαi2 subunit of trimeric G-proteins induces conductin condensation by targeting a polymerization-inhibiting aggregon in its RGS domain, thereby promoting conductin-mediated β-catenin degradation. Consistently, transient Gαi2 expression inhibited, whereas knockdown activated Wnt signaling via conductin. Colorectal cancers appear to evade Gαi2-induced Wnt pathway suppression by decreased Gαi2 expression and inactivating mutations, associated with shorter patient survival. Notably, the Gαi2-activating drug guanabenz inhibited Wnt signaling via conductin, consequently reducing colorectal cancer growth in vitro and in mouse models. In summary, we demonstrate Wnt pathway inhibition via Gαi2-triggered conductin condensation, suggesting a tumor suppressor function for Gαi2 in colorectal cancer, and pointing to the FDA-approved drug guanabenz for targeted cancer therapy.
Collapse
Affiliation(s)
- Cezanne Miete
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Gonzalo P Solis
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
| | - Martina Brückner
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1211, Geneva 4, Geneva, Switzerland
- School of Biomedicine, Far Eastern Federal University, 690922, Vladivostok, Russia
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dominic B Bernkopf
- Experimental Medicine II, Nikolaus-Fiebiger-Center, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
44
|
Abdul Khaliq S, Umair Z, Baek MO, Chon SJ, Yoon MS. C-Peptide Promotes Cell Migration by Controlling Matrix Metallopeptidase-9 Activity Through Direct Regulation of β-Catenin in Human Endometrial Stromal Cells. Front Cell Dev Biol 2022; 10:800181. [PMID: 35127683 PMCID: PMC8814361 DOI: 10.3389/fcell.2022.800181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022] Open
Abstract
The motility of endometrial stromal cells (ESCs) contributes to the restoration of the endometrial functional layer and subsequently supports the trophoblast invasion during early pregnancy. Following ESCs differentiation through decidualization in response to progesterone during the menstrual cycle and embryo implantation, decidualized ESCs (D-ESCs) have greater motility and invasive activity. The human proinsulin-connecting peptide (C-peptide) is produced in equimolar amounts during the proteolysis of insulin in pancreatic β-cells. However, the function of C-peptide in the cellular motility of the human endometrium remains unexamined. In the present study, C-peptide was identified as a determinant of undecidualized human endometrial stromal cells (UnD-ESCs) migration. C-peptide promoted the migration and invasion of UnD-ESCs and trophoblast-derived Jeg3 cells, but not that of ESCs post decidualization, a functional and biochemical differentiation of UnD-ESCs. Both Akt and protein phosphatase 1 regulated β-catenin phosphorylation in UnD-ESCs, not D-ESCs, thereby promoting β-catenin nuclear translocation in C-peptide-treated UnD-ESCs. C-peptide was also observed to increase matrix metallopeptidase-9 (MMP9) activity by increasing MMP9 expression and decreasing the expression of metallopeptidase inhibitor 1 (TIMP1) and TIMP3. Their expression was modulated by the direct binding of β-catenin in the regulatory region of the promoter of MMP9, TIMP1, and TIMP3. Inhibition of either β-catenin or MMP9 dampened C-peptide-enhanced migration in UnD-ESCs. Together, these findings suggest that C-peptide levels are critical for the regulation of UnD-ESC migration, providing evidence for the association between C-peptide levels and the failure rate of trophoblast invasion by inducing abnormal migration in UnD-ESCs in hyperinsulinemia or PCOS patients.
Collapse
Affiliation(s)
- Sana Abdul Khaliq
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Zobia Umair
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
| | - Mi-Ock Baek
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Mee-Sup Yoon
- Department of Molecular Medicine, Gachon University College of Medicine, Incheon, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- *Correspondence: Mee-Sup Yoon,
| |
Collapse
|
45
|
Jang I, Kim SJ, Song RY, Kim K, Choi S, Lee JS, Gwon MK, Seong MW, Lee KE, Kim JH. Clinical and Molecular Characteristics of PRKACA L206R Mutant Cortisol-Producing Adenomas in Korean Patients. Endocrinol Metab (Seoul) 2021; 36:1287-1297. [PMID: 34852451 PMCID: PMC8743585 DOI: 10.3803/enm.2021.1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND An activating mutation (c.617A>C/p.Lys206Arg, L206R) in protein kinase cAMP-activated catalytic subunit alpha (PRKACA) has been reported in 35% to 65% of cases of cortisol-producing adenomas (CPAs). We aimed to compare the clinical characteristics and transcriptome analysis between PRKACA L206R mutants and wild-type CPAs in Korea. METHODS We included 57 subjects with CPAs who underwent adrenalectomy at Seoul National University Hospital. Sanger sequencing for PRKACA was conducted in 57 CPA tumor tissues. RNA sequencing was performed in 13 fresh-frozen tumor tissues. RESULTS The prevalence of the PRKACA L206R mutation was 51% (29/57). The mean age of the study subjects was 42±12 years, and 87.7% (50/57) of the patients were female. Subjects with PRKACA L206R mutant CPAs showed smaller adenoma size (3.3±0.7 cm vs. 3.8±1.2 cm, P=0.059) and lower dehydroepiandrosterone sulfate levels (218±180 ng/mL vs. 1,511±3,307 ng/mL, P=0.001) than those with PRKACA wild-type CPAs. Transcriptome profiling identified 244 differentially expressed genes (DEGs) between PRKACA L206R mutant (n=8) and wild-type CPAs (n=5), including five upregulated and 239 downregulated genes in PRKACA L206R mutant CPAs (|fold change| ≥2, P<0.05). Among the upstream regulators of DEGs, CTNNB1 was the most significant transcription regulator. In several pathway analyses, the Wnt signaling pathway was downregulated and the steroid biosynthesis pathway was upregulated in PRKACA mutants. Protein-protein interaction analysis also showed that PRKACA downregulates Wnt signaling and upregulates steroid biosynthesis. CONCLUSION The PRKACA L206R mutation in CPAs causes high hormonal activity with a limited proliferative capacity, as supported by transcriptome profiling.
Collapse
Affiliation(s)
- Insoon Jang
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
- Corresponding authors: Kyu Eun Lee, Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea, Tel: +82-2-2072-2081, Fax: +82-2-766-3975, E-mail:
| | - Su-jin Kim
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul,
Korea
- Corresponding authors: Kyu Eun Lee, Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea, Tel: +82-2-2072-2081, Fax: +82-2-766-3975, E-mail:
| | - Ra-Young Song
- Department of Surgery, Chung-Ang University Hospital, Seoul,
Korea
| | - Kwangsoo Kim
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Seongmin Choi
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Jang-Seok Lee
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Min-Kyeong Gwon
- Translational Research Institute, Biomedical Research Institute, Seoul National University Hospital, Seoul,
Korea
| | - Moon Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Kyu Eun Lee
- Department of Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul,
Korea
- Division of Surgery, Thyroid Center, Seoul National University Cancer Hospital, Seoul,
Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
46
|
Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, Levasseur A, Wilmouth J, Pointud JC, Faucz FR, Kamilaris C, Lopez AG, Guillou F, Swain A, Vainio SJ, Tauveron I, Val P, Lefebvre H, Stratakis CA, Martinez A, Lefrançois-Martinez AM. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest 2021; 131:146910. [PMID: 34850745 DOI: 10.1172/jci146910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Large-cell calcifying Sertoli cell tumors (LCCSCTs) are among the most frequent lesions occurring in male Carney complex (CNC) patients. Although they constitute a key diagnostic criterion for this rare multiple neoplasia syndrome resulting from inactivating mutations of the tumor suppressor PRKAR1A, leading to unrepressed PKA activity, LCCSCT pathogenesis and origin remain elusive. Mouse models targeting Prkar1a inactivation in all somatic populations or separately in each cell type were generated to decipher the molecular and paracrine networks involved in the induction of CNC testis lesions. We demonstrate that the Prkar1a mutation was required in both stromal and Sertoli cells for the occurrence of LCCSCTs. Integrative analyses comparing transcriptomic, immunohistological data and phenotype of mutant mouse combinations led to the understanding of human LCCSCT pathogenesis and demonstrated PKA-induced paracrine molecular circuits in which the aberrant WNT4 signal production is a limiting step in shaping intratubular lesions and tumor expansion both in a mouse model and in human CNC testes.
Collapse
Affiliation(s)
- Cyril Djari
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Amandine Septier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Ingrid Plotton
- UM Pathologies Endocriniennes Rénales Musculaires et Mucoviscidose, Hospices Civils de Lyon, Bron, France
| | - Nathanaëlle Montanier
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Damien Dufour
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Adrien Levasseur
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - James Wilmouth
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Crystal Kamilaris
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine-Guy Lopez
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | | | - Amanda Swain
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Igor Tauveron
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France.,Université Clermont-Auvergne, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Pierre Val
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Rouen University Hospital, Department of Endocrinology, Diabetology and Metabolic Diseases and CIC-CRB 140h4, Rouen, France
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland, USA
| | - Antoine Martinez
- iGReD, Université Clermont-Auvergne, CNRS6293, INSERM U1103, Clermont-Ferrand, France
| | | |
Collapse
|
47
|
Nucleoporin 93 mediates β-catenin nuclear import to promote hepatocellular carcinoma progression and metastasis. Cancer Lett 2021; 526:236-247. [PMID: 34767927 DOI: 10.1016/j.canlet.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Nuclear pore complex (NPC) embedded in the nuclear envelope, is the only channel for macromolecule nucleocytoplasmic transportation and has important biological functions. However, the deregulation of specific nucleoporins (Nups) and NPC-Nup-based mechanisms and their function in tumour progression remain poorly understood. Here, we aimed to identify the Nups that contribute to HCC progression and metastasis in 729 primary hepatocellular carcinoma (HCC) cases using molecular, cytological, and biochemical techniques. Our results revealed elevated Nup93 expression in HCC tissues, especially in cases with metastasis, and was linked to worse prognosis. Furthermore, Nup93 knockdown suppressed HCC cell metastasis and proliferation, while Nup93 overexpression promoted these activities. We observed that Nup93 promotes HCC metastasis and proliferation by regulating β-catenin translocation. In addition, we found that Nup93 interacted with β-catenin directly, independent of importin. Furthermore, LEF1 and β-catenin facilitated the Nup93-mediated metastasis and proliferation in HCC via a positive feedback loop. Thus, our findings provide novel insights into the mechanisms underlying the Nup93-induced promotion of HCC metastasis and suggest potential therapeutic targets in the LEF1-Nup93-β-catenin pathway for HCC therapeutics.
Collapse
|
48
|
Xu X, Zhang Y, Wang X, Li S, Tang L. Substrate Stiffness Drives Epithelial to Mesenchymal Transition and Proliferation through the NEAT1-Wnt/β-Catenin Pathway in Liver Cancer. Int J Mol Sci 2021; 22:ijms222112066. [PMID: 34769497 PMCID: PMC8584463 DOI: 10.3390/ijms222112066] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Extracellular matrix (ECM)-derived mechanical stimuli regulate many cellular processes and phenotypes through mechanotransduction signaling pathways. Substrate stiffness changes cell phenotypes and promotes angiogenesis, epithelial to mesenchymal transition (EMT), and metastasis in tumors. Enhanced liver tissue matrix stiffness plays a crucial role in the tumorigenesis and malignant development of liver cancer and is associated with unfavorable survival outcomes. However, how liver cancer cells sense changes in ECM stiffness and the underlying molecular mechanisms are largely unknown. Methods: Seeding HepG2 cells on the micropillar gels, HepG2 cells were assessed for responsiveness to mechanotransduction using Western blot and immunofluorescence. Conclusions: We found that higher substrate stiffness dramatically enhanced malignant cell phenotypes and promoted G1/S transition in HepG2 cells. Furthermore, nuclear paraspeckle assembly transcript 1 (NEAT1) was identified as a matrix stiffness-responsive long non-coding RNA (lncRNA) regulating proliferation and EMT in response to increasing matrix stiffness during the progression of HepG2 cells towards liver cancer phenotypes. Higher matrix stiffness contributed to enhancing NEAT1 expression, which activated the WNT/β-catenin pathway. β-catenin translocates and enters the nucleus and the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1) was upregulated to trigger EMT. Additionally, the proteins required for matrix stiffness-induced proliferation and resistance were strikingly upregulated in HepG2 cells. Therefore, our findings provide evidence that ECM-derived mechanical signals regulate cell proliferation and drive EMT through a NEAT1/WNT/β-catenin mechanotransduction pathway in the tumor microenvironment of liver cancer.
Collapse
Affiliation(s)
- Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
| | - Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu 610500, China
- Correspondence: (S.L.); (L.T.); Tel.: +86-028-62739315 (S.L.); +86-23-65102507 (L.T.)
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (X.X.); (Y.Z.); (X.W.)
- Correspondence: (S.L.); (L.T.); Tel.: +86-028-62739315 (S.L.); +86-23-65102507 (L.T.)
| |
Collapse
|
49
|
Im J, Hyun J, Kim SW, Bhang SH. Enhancing the Angiogenic and Proliferative Capacity of Dermal Fibroblasts with Mulberry (Morus alba. L) Root Extract. Tissue Eng Regen Med 2021; 19:49-57. [PMID: 34674183 DOI: 10.1007/s13770-021-00404-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Enhancing blood flow and cell proliferation in the hair dermis is critical for treating hair loss. This study was designed to aid the development of alternative and effective solutions to overcome alopecia. Specifically, we examined the effects of Morus alba. L root extract (MARE, which has been used in traditional medicine as a stimulant for hair proliferation) on dermal fibroblasts and other cell types found in the epidermis. METHODS We first optimized the concentration of MARE that could be used to treat human dermal fibroblasts (HDFs) without causing cytotoxicity. After optimization, we focused on the effect of MARE on HDFs since these cells secrete paracrine factors related to cell proliferation and angiogenesis that affect hair growth. Conditioned medium (CM) derived from MARE-treated HDFs (MARE HDF-CM) was used to treat human umbilical vein endothelial cells (HUVECs) and hair follicle dermal papilla cells (HFDPCs). RESULTS Concentrations of MARE up to 20 wt% increased the expression of proliferative and anti-apoptotic genes in HDFs. MARE HDF-CM significantly improved the tubular structure formation and migration capacity of HUVECs. Additionally, MARE HDF-CM treatment upregulated the expression of hair growth-related genes in HFDPCs. CM collected from MARE-treated HDFs promoted the proliferation of HFDPCs and the secretion of angiogenic paracrine factors from these cells. CONCLUSION Since it can stimulate the secretion of pro-proliferative and pro-angiogenic paracrine factors from HDFs, MARE has therapeutic potential as a hair loss preventative.
Collapse
Affiliation(s)
- Jisoo Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
50
|
Hu W, Bagramyan K, Bhatticharya S, Hong T, Tapia A, Wong P, Kalkum M, Shively JE. Phosphorylation of human CEACAM1-LF by PKA and GSK3β promotes its interaction with β-catenin. J Biol Chem 2021; 297:101305. [PMID: 34656562 PMCID: PMC8564729 DOI: 10.1016/j.jbc.2021.101305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
CEACAM1-LF, a homotypic cell adhesion adhesion molecule, transduces intracellular signals via a 72 amino acid cytoplasmic domain that contains two immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and a binding site for β-catenin. Phosphorylation of Ser503 by PKC in rodent CEACAM1 was shown to affect bile acid transport or hepatosteatosis via the level of ITIM phosphorylation, but the phosphorylation of the equivalent residue in human CEACAM1 (Ser508) was unclear. Here we studied this analogous phosphorylation by NMR analysis of the 15N labeled cytoplasmic domain peptide. Incubation with a variety of Ser/Thr kinases revealed phosphorylation of Ser508 by GSK3bβ but not by PKC. The lack of phosphorylation by PKC is likely due to evolutionary sequence changes between the rodent and human genes. Phosphorylation site assignment by mass spectrometry and NMR revealed phosphorylation of Ser472, Ser461 and Ser512 by PKA, of which Ser512 is part of a conserved consensus site for GSK3β binding. We showed here that only after phosphorylation of Ser512 by PKA was GSK3β able to phosphorylate Ser508. Phosphorylation of Ser512 by PKA promoted a tight association with the armadillo repeat domain of β-catenin at an extended region spanning the ITIMs of CEACAM1. The kinetics of phosphorylation of the ITIMs by Src, as well dephosphorylation by SHP2, were affected by the presence of Ser508/512 phosphorylation, suggesting that PKA and GSK3β may regulate the signal transduction activity of human CEACAM1-LF. The interaction of CEACAM1-LF with β-catenin promoted by PKA is suggestive of a tight association between the two ITIMs of CEACAM1-LF.
Collapse
Affiliation(s)
- Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Karine Bagramyan
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Teresa Hong
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Alonso Tapia
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Markus Kalkum
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|