1
|
Gonuguntla S, Humphrey RK, Gorantla A, Hao E, Jhala US. Stress-induced pseudokinase TRB3 augments IL1β signaling by interacting with Flightless homolog 1. J Biol Chem 2023; 299:104803. [PMID: 37172723 PMCID: PMC10432976 DOI: 10.1016/j.jbc.2023.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Interleukin-1β is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1β-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1β-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1β signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1β receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1β signaling to augment the proinflammatory response in beta cells.
Collapse
Affiliation(s)
- Sumati Gonuguntla
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Rohan K Humphrey
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Akshita Gorantla
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Ergeng Hao
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA
| | - Ulupi S Jhala
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Yao M, Meng M, Yang X, Wang S, Zhang H, Zhang F, Shi L, Zhang Y, Zhang X, Xu Z. POSH regulates assembly of the NMDAR/PSD-95/Shank complex and synaptic function. Cell Rep 2022; 39:110642. [PMID: 35385725 DOI: 10.1016/j.celrep.2022.110642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/01/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022] Open
Abstract
Mutation or disruption of the Shank/ProSAP family of genes is a high risk factor for autism spectrum disorders (ASDs) and intellectual disability. N-methyl-D-aspartate glutamate receptor (NMDAR) dysfunction contributes to the development of autism-like behaviors. However, the molecular mechanism of Shank-mediated NMDAR modulation is still not clear. Here, we show that the scaffold protein plenty of SH3s (POSH) directly interacts with two other scaffold proteins, PSD95 and SHANK2/3, at excitatory synapses. In POSH conditional knockout (cKO) mice, normal synaptic clustering of NMDAR/PSD-95/SHANK complex is disrupted, accompanied by abnormal dendritic spine development and glutamatergic transmission in hippocampal neurons. POSH cKO mice display profound autism-like behaviors, including impairments in social interactions, social communication, repetitive behaviors, and deficits in learning and memory. Thus, POSH clusters at the postsynaptic density (PSD) with PSD-95 and SHANK2/3 and plays important roles in the signaling mechanisms of the NMDAR/PSD-95/POSH/SHANK complex as well as in spine development and brain function.
Collapse
Affiliation(s)
- Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| | - Meizhen Meng
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiyu Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Hongsheng Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Shi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqing Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China.
| |
Collapse
|
3
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
4
|
Ma X, Lu JY, Moraru A, Teleman AA, Fang J, Qiu Y, Liu P, Xu T. A novel regulator of ER Ca 2+ drives Hippo-mediated tumorigenesis. Oncogene 2019; 39:1378-1387. [PMID: 31649333 DOI: 10.1038/s41388-019-1076-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
Calcium ion (Ca2+) is a versatile second messenger that regulates various cellular and physiological functions. However, the in vivo molecular mechanisms by which Ca2+ alterations contribute to tumor growth remain poorly explored. Here we show that Emei is a novel ER Ca2+ regulator that synergizes with RasV12 to induce tumor growth via JNK-mediated Hippo signaling. Emei disruption reduces ER Ca2+ level and subsequently leads to JNK activation and Hippo inactivation. Importantly, genetically increasing cytosolic Ca2+ concentration cooperates with RasV12 to drive tumor growth via inactivating the Hippo pathway. Finally, we identify POSH as a crucial link that bridges cytosolic Ca2+ alteration with JNK activation and Hippo-mediated tumor growth. Together, our findings provide a novel mechanism of tumor growth that acts through intracellular Ca2+ levels to modulate JNK-mediated Hippo signaling.
Collapse
Affiliation(s)
- Xianjue Ma
- School of Life Sciences, Westlake University, Hangzhou, China. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Jin-Yu Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Baylor College of Medicine, Hematology & Oncology, Houston, TX, USA
| | | | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg University, 69120, Heidelberg, Germany.,CellNetworks - Cluster of Excellence, Heidelberg University, Heidelberg, Germany
| | - Jinan Fang
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Qiu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Peng Liu
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Tian Xu
- School of Life Sciences, Westlake University, Hangzhou, China. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Xu D, Yao M, Wang Y, Yuan L, Hoeck JD, Yu J, Liu L, Yeap YYC, Zhang W, Zhang F, Feng Y, Ma T, Wang Y, Ng DCH, Niu X, Su B, Behrens A, Xu Z. MEKK3 coordinates with FBW7 to regulate WDR62 stability and neurogenesis. PLoS Biol 2018; 16:e2006613. [PMID: 30566428 PMCID: PMC6347294 DOI: 10.1371/journal.pbio.2006613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/25/2019] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Mutations of WD repeat domain 62 (WDR62) lead to autosomal recessive primary microcephaly (MCPH), and down-regulation of WDR62 expression causes the loss of neural progenitor cells (NPCs). However, how WDR62 is regulated and hence controls neurogenesis and brain size remains elusive. Here, we demonstrate that mitogen-activated protein kinase kinase kinase 3 (MEKK3) forms a complex with WDR62 to promote c-Jun N-terminal kinase (JNK) signaling synergistically in the control of neurogenesis. The deletion of Mekk3, Wdr62, or Jnk1 resulted in phenocopied defects, including premature NPC differentiation. We further showed that WDR62 protein is positively regulated by MEKK3 and JNK1 in the developing brain and that the defects of wdr62 deficiency can be rescued by the transgenic expression of JNK1. Meanwhile, WDR62 is also negatively regulated by T1053 phosphorylation, leading to the recruitment of F-box and WD repeat domain-containing protein 7 (FBW7) and proteasomal degradation. Our findings demonstrate that the coordinated reciprocal and bidirectional regulation among MEKK3, FBW7, WDR62, and JNK1, is required for fine-tuned JNK signaling for the control of balanced NPC self-renewal and differentiation during cortical development. Microcephaly is a neural developmental disorder characterized by significantly reduced brain size and variable intellectual disability. WD repeat domain 62 (WDR62) was identified as the second most common gene for autosomal recessive primary microcephaly (MCPH) in human. Here, we studied the underlying regulatory mechanism of WDR62 and the impact on generation of new neurons. We show that mitogen-activated protein kinase kinase kinase 3 (Mekk3), Wdr62, and c-Jun N-terminal kinase 1 (Jnk1) knockout (KO) mice have defects in the generation and maturation of neurons. We demonstrate that WDR62 stability is positively regulated by a mitogen-activated protein kinase kinase kinase (MAPKKK), MEKK3, but negatively regulated by the E3 ligase, F-box and WD repeat domain-containing protein 7 (FBW7). These positive and negative factors calibrate the strength of the activity of the JNK signaling pathway, which controls self-renewal and differentiation of neural progenitor cells (NPCs) during brain development. This finding improves our understanding of the molecular pathogenesis of MCPH.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ling Yuan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | | | - Jingwen Yu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Liang Liu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yvonne Y. C. Yeap
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Weiya Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yinghang Feng
- Sino-Danish College, University of Chinese Academy of Science, Beijing, China
| | - Tiantian Ma
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yujie Wang
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Dominic C. H. Ng
- School of Biomedical Science, Faculty of Medicine, University of Queensland, St Lucia, Australia
| | - Xiaoyin Niu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- King’s College London, Faculty of Life Sciences and Medicine, Guy’s Campus, London, United Kingdom
- * E-mail: (ZX); (AB)
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Science, Beijing, China
- Parkinson’s Disease Center, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (ZX); (AB)
| |
Collapse
|
6
|
West RJH, Ugbode C, Gao FB, Sweeney ST. The pro-apoptotic JNK scaffold POSH/SH3RF1 mediates CHMP2BIntron5-associated toxicity in animal models of frontotemporal dementia. Hum Mol Genet 2018; 27:1382-1395. [PMID: 29432529 PMCID: PMC6454437 DOI: 10.1093/hmg/ddy048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. However, the pathological mechanisms driving neuronal atrophy in FTD remain poorly understood. Here we identify a conserved role for the novel pro-apoptotic protein plenty of SH3s (POSH)/SH3 domain containing ring finger 1 in mediating neuropathology in Drosophila and mammalian models of charged multivesicular body protein 2B (CHMP2BIntron5) associated FTD. Aberrant, AKT dependent, accumulation of POSH was observed throughout the nervous system of both Drosophila and mice expressing CHMP2BIntron5. Knockdown of POSH was shown to be neuroprotective and sufficient to alleviate aberrant neuronal morphology, behavioral deficits and premature-lethality in Drosophila models, as well as dendritic collapse and cell death in CHMP2BIntron5expressing rat primary neurons. POSH knockdown also ameliorated elevated markers of Jun N-terminal kinase and apoptotic cascades in both Drosophila and mammalian models. This study provides the first characterization of POSH as a potential component of an FTD neuropathology, identifying a novel apoptotic pathway with relevance to the FTD spectrum.
Collapse
Affiliation(s)
- Ryan J H West
- Department of Biology, University of York, York YO10 5DD, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
7
|
Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene 2018; 37:1031-1040. [PMID: 29084209 PMCID: PMC5823719 DOI: 10.1038/onc.2017.396] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/23/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Mixed lineage kinase 3 (MLK3) functions in migration and/or invasion of several human cancers; however, the role of MLK3 in colorectal cancer (CRC) invasion is unknown. MLK3 is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) which activates MAPK pathways through either kinase-dependent or -independent mechanisms. Human colorectal tumors display increased levels of reactive oxygen species (ROS) or oxidative stress. ROS, such as H2O2, are important for carcinogenesis and activate MAPK signaling pathways. In human colorectal carcinoma (HCT116) cells treated with H2O2, extracellular signal-regulated kinases 1 and 2 (ERK1/2) were activated and MLK3 exhibited reduced electrophoretic mobility (shift) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which was eliminated by phosphatase treatment. Pretreatment with the ROS scavenger N-acetyl-L-cysteine, the ERK1/2 inhibitor UO126, or ERK1/2 siRNA knockdown blocked the H2O2-induced shift of MLK3, while MLK3 inhibition with Cep1347 did not. In co-immunoprecipitation experiments performed on H2O2-treated HCT116 cells, endogenous MLK3 associated with endogenous ERK1/2 and B-Raf. Active ERK1 phosphorylated kinase dead FLAG-MLK3 in vitro, whereas ERK1 phosphorylation of kinase dead FLAG-MLK3-S705A-S758A was reduced. Both MLK3 siRNA knockdown and FLAG-MLK3-S705A-S758A expression decreased ERK1/2 activation in H2O2-treated cells. Prolonged H2O2 treatment activated ERK1/2 and promoted invasion of colon cancer cells, which was attenuated by MLK3 siRNA knockdown. Furthermore, S705A-S758A-FLAG-MLK3 demonstrated decreased oxidative-stress induced colon cancer cell invasion, but increased interaction with GST-B-Raf as compared with wild-type-FLAG-MLK3 in H2O2-treated cells. These results suggest oxidative stress stimulates an ERK1/2-dependent phosphorylation of MLK3 on Ser705 and Ser758, which promotes MLK3-dependent B-Raf and ERK1/2 activation; this positive feedback loop enhances the invasion of colon cancer cells.
Collapse
Affiliation(s)
- April L. Schroyer
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Nicholas W. Stimes
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Widian F. Abi Saab
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| | - Deborah N. Chadee
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, USA
| |
Collapse
|
8
|
POSH regulates Hippo signaling through ubiquitin-mediated expanded degradation. Proc Natl Acad Sci U S A 2018; 115:2150-2155. [PMID: 29440430 DOI: 10.1073/pnas.1715165115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Hippo signaling pathway is a master regulator of organ growth, tissue homeostasis, and tumorigenesis. The activity of the Hippo pathway is controlled by various upstream components, including Expanded (Ex), but the precise molecular mechanism of how Ex is regulated remains poorly understood. Here we identify Plenty of SH3s (POSH), an E3 ubiquitin ligase, as a key component of Hippo signaling in DrosophilaPOSH overexpression synergizes with loss of Kibra to induce overgrowth and up-regulation of Hippo pathway target genes. Furthermore, knockdown of POSH impedes dextran sulfate sodium-induced Yorkie-dependent intestinal stem cell renewal, suggesting a physiological role of POSH in modulating Hippo signaling. Mechanistically, POSH binds to the C-terminal of Ex and is essential for the Crumbs-induced ubiquitination and degradation of Ex. Our findings establish POSH as a crucial regulator that integrates the signal from the cell surface to negatively regulate Ex-mediated Hippo activation in Drosophila.
Collapse
|
9
|
Rattanasinchai C, Llewellyn BJ, Conrad SE, Gallo KA. MLK3 regulates FRA-1 and MMPs to drive invasion and transendothelial migration in triple-negative breast cancer cells. Oncogenesis 2017; 6:e345. [PMID: 28604765 PMCID: PMC5519193 DOI: 10.1038/oncsis.2017.44] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/06/2023] Open
Abstract
Mixed-lineage kinase 3 (MLK3), a mitogen-activated protein kinase kinase kinase (MAP3K), has critical roles in metastasis of triple-negative breast cancer (TNBC), in part by regulating paxillin phosphorylation and focal adhesion turnover. However the mechanisms and the distinct step(s) of the metastatic processes through which MLK3 exerts its influence are not fully understood. Here we report that in non-metastatic, estrogen receptor-positive breast cancer (ER+ BC) cells, induced MLK3 expression robustly upregulates the oncogenic transcription factor, FOS-related antigen-1 (FRA-1), which is accompanied by elevation of matrix metalloproteinases (MMPs), MMP-1 and MMP-9. MLK3-induced ER+ BC cell invasion is abrogated by FRA-1 silencing, demonstrating that MLK3 drives invasion through FRA-1. Conversely, in metastatic TNBC models, high FRA-1 levels are significantly reduced upon depletion of MLK3 by either gene silencing or by the CRISPR/Cas9n editing approach. Furthermore, ablation of MLK3 or MLK inhibitor treatment decreases expression of both MMP-1 and MMP-9. Consistent with the role of tumor cell-derived MMP-1 in endothelial permeability and transendothelial migration, both of these are reduced in MLK3-depleted TNBC cells. In addition, MLK inhibitor treatment or MLK3 depletion, which downregulates MMP-9 expression, renders TNBC cells defective in Matrigel invasion. Furthermore, circulating tumor cells derived from TNBC-bearing mice display increased levels of FRA-1 and MMP-1 compared with parental cells, supporting a role for the MLK3–FRA-1–MMP-1 signaling axis in vascular intravasation. Our results demonstrating the requirement for MLK3 in controlling the FRA-1/MMPs axis suggest that MLK3 is a promising therapeutic target for treatment of TNBC.
Collapse
Affiliation(s)
- C Rattanasinchai
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - B J Llewellyn
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - S E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - K A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Protein Kinases and Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17091585. [PMID: 27657053 PMCID: PMC5037850 DOI: 10.3390/ijms17091585] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/09/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023] Open
Abstract
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules.
Collapse
|
11
|
Cunningham CA, Cardwell LN, Guan Y, Teixeiro E, Daniels MA. POSH Regulates CD4+ T Cell Differentiation and Survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4003-13. [PMID: 27084103 PMCID: PMC4868786 DOI: 10.4049/jimmunol.1501728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
The scaffold molecule POSH is crucial for the regulation of proliferation and effector function in CD8(+) T cells. However, its role in CD4(+) T cells is not known. In this study, we found that disruption of the POSH scaffold complex established a transcriptional profile that strongly skewed differentiation toward Th2, led to decreased survival, and had no effect on cell cycle entry. This is in stark contrast to CD8(+) T cells in which POSH regulates cell cycle and does not affect survival. Disruption of POSH in CD4(+) T cells resulted in the loss of Tak1-dependent activation of JNK1/2 and Tak1-mediated survival. However, in CD8(+) T cells, POSH regulates only JNK1. Remarkably, each type of T cell had a unique composition of the POSH scaffold complex and distinct posttranslational modifications of POSH. These data indicate that the mechanism that regulates POSH function in CD4(+) T cells is different from CD8(+) T cells. All together, these data strongly suggest that POSH is essential for the integration of cell-type-specific signals that regulate the differentiation, survival, and function of T cells.
Collapse
Affiliation(s)
- Cody A Cunningham
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Leah N Cardwell
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Yue Guan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| |
Collapse
|
12
|
Oetjen E, Lemcke T. Dual leucine zipper kinase (MAP3K12) modulators: a patent review (2010–2015). Expert Opin Ther Pat 2016; 26:607-16. [DOI: 10.1517/13543776.2016.1170810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Zhang F, Yu J, Yang T, Xu D, Chi Z, Xia Y, Xu Z. A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development. J Biol Chem 2016; 291:11466-75. [PMID: 27026702 DOI: 10.1074/jbc.m116.716811] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 12/23/2022] Open
Abstract
Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases.
Collapse
Affiliation(s)
- Feng Zhang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100101, and
| | - Jingwen Yu
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
| | - Tao Yang
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
| | - Dan Xu
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
| | - Zhixia Chi
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101
| | - Yanheng Xia
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the University of Chinese Academy of Sciences, Beijing 100101, and
| | - Zhiheng Xu
- From the State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, the Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, the Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China
| |
Collapse
|
14
|
Nafis S, Ponnusamy K, Husain M, Singh RKB, Bamezai RNK. Identification of key regulators and their controlling mechanism in a combinatorial apoptosis network: a systems biology approach. MOLECULAR BIOSYSTEMS 2016; 12:3357-3369. [DOI: 10.1039/c6mb00526h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
NFKB1, SP1 and hsa-let-7a, were identified as key regulators of apoptosis, by network theory through probability of signal propagation, hub-removal and motif analysis.
Collapse
Affiliation(s)
- Shazia Nafis
- Department of Biotechnology
- Jamia Millia Islamia (Central University)
- New Delhi
- India
- School of Computational and Integrative Sciences
| | - Kalaiarasan Ponnusamy
- National Centre of Applied Human Genetics
- School of Life Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | - Mohammad Husain
- Department of Biotechnology
- Jamia Millia Islamia (Central University)
- New Delhi
- India
| | - R. K. Brojen Singh
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi
- India
| | - Rameshwar N. K. Bamezai
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi
- India
- National Centre of Applied Human Genetics
| |
Collapse
|
15
|
West RJH, Lu Y, Marie B, Gao FB, Sweeney ST. Rab8, POSH, and TAK1 regulate synaptic growth in a Drosophila model of frontotemporal dementia. ACTA ACUST UNITED AC 2015; 208:931-47. [PMID: 25800055 PMCID: PMC4384727 DOI: 10.1083/jcb.201404066] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutations in genes essential for protein homeostasis have been identified in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Why mature neurons should be particularly sensitive to such perturbations is unclear. We identified mutations in Rab8 in a genetic screen for enhancement of an FTD phenotype associated with ESCRT-III dysfunction. Examination of Rab8 mutants or motor neurons expressing a mutant ESCRT-III subunit, CHMP2B(Intron5), at the Drosophila melanogaster neuromuscular junction synapse revealed synaptic overgrowth and endosomal dysfunction. Expression of Rab8 rescued overgrowth phenotypes generated by CHMP2B(Intron5). In Rab8 mutant synapses, c-Jun N-terminal kinase (JNK)/activator protein-1 and TGF-β signaling were overactivated and acted synergistically to potentiate synaptic growth. We identify novel roles for endosomal JNK-scaffold POSH (Plenty-of-SH3s) and a JNK kinase kinase, TAK1, in regulating growth activation in Rab8 mutants. Our data uncover Rab8, POSH, and TAK1 as regulators of synaptic growth responses and point to recycling endosome as a key compartment for synaptic growth regulation during neurodegenerative processes.
Collapse
Affiliation(s)
- Ryan J H West
- Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK
| | - Yubing Lu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bruno Marie
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00901
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sean T Sweeney
- Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK Department of Biology and Hull York Medical School, University of York, Heslington, York YO10 5DD, England, UK
| |
Collapse
|
16
|
Humphrey RK, Ray A, Gonuguntla S, Hao E, Jhala US. Loss of TRB3 alters dynamics of MLK3-JNK signaling and inhibits cytokine-activated pancreatic beta cell death. J Biol Chem 2014; 289:29994-30004. [PMID: 25204656 PMCID: PMC4208007 DOI: 10.1074/jbc.m114.575613] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/11/2014] [Indexed: 01/13/2023] Open
Abstract
Disabling cellular defense mechanisms is essential for induction of apoptosis. We have previously shown that cytokine-mediated activation of the MAP3K MLK3 stabilizes TRB3 protein levels to inhibit AKT and compromise beta cell survival. Here, we show that genetic deletion of TRB3 results in basal activation of AKT, preserves mitochondrial integrity, and confers resistance against cytokine-induced pancreatic beta cell death. Mechanistically, we find that TRB3 stabilizes MLK3, most likely by suppressing AKT-directed phosphorylation, ubiquitination, and proteasomal degradation of MLK3. Accordingly, TRB3(-/-) islets show a decrease in both the amplitude and duration of cytokine-stimulated MLK3 induction and JNK activation. It is well known that JNK signaling is facilitated by a feed forward loop of sequential kinase phosphorylation and is reinforced by a mutual stabilization of the module components. The failure of TRB3(-/-) islets to mount an optimal JNK activation response, coupled with the ability of TRB3 to engage and maintain steady state levels of MLK3, recasts TRB3 as an integral functional component of the JNK module in pancreatic beta cells.
Collapse
Affiliation(s)
- Rohan K Humphrey
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Anamika Ray
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Sumati Gonuguntla
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Ergeng Hao
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Ulupi S Jhala
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| |
Collapse
|
17
|
Humphrey RK, Ray A, Gonuguntla S, Hao E, Jhala US. Loss of TRB3 alters dynamics of MLK3-JNK signaling and inhibits cytokine-activated pancreatic beta cell death. J Biol Chem 2014. [PMID: 25204656 DOI: 10.1074/jbc.m114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disabling cellular defense mechanisms is essential for induction of apoptosis. We have previously shown that cytokine-mediated activation of the MAP3K MLK3 stabilizes TRB3 protein levels to inhibit AKT and compromise beta cell survival. Here, we show that genetic deletion of TRB3 results in basal activation of AKT, preserves mitochondrial integrity, and confers resistance against cytokine-induced pancreatic beta cell death. Mechanistically, we find that TRB3 stabilizes MLK3, most likely by suppressing AKT-directed phosphorylation, ubiquitination, and proteasomal degradation of MLK3. Accordingly, TRB3(-/-) islets show a decrease in both the amplitude and duration of cytokine-stimulated MLK3 induction and JNK activation. It is well known that JNK signaling is facilitated by a feed forward loop of sequential kinase phosphorylation and is reinforced by a mutual stabilization of the module components. The failure of TRB3(-/-) islets to mount an optimal JNK activation response, coupled with the ability of TRB3 to engage and maintain steady state levels of MLK3, recasts TRB3 as an integral functional component of the JNK module in pancreatic beta cells.
Collapse
Affiliation(s)
- Rohan K Humphrey
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Anamika Ray
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Sumati Gonuguntla
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Ergeng Hao
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| | - Ulupi S Jhala
- From the Pediatric Diabetes Research Center, University of California, San Diego School of Medicine, La Jolla, California 92037
| |
Collapse
|
18
|
Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7:ra52. [PMID: 24894995 DOI: 10.1126/scisignal.2005260] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.
Collapse
Affiliation(s)
- Ho-Sung Lee
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sung-Young Shin
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
19
|
Stahnke MJ, Dickel C, Schröder S, Kaiser D, Blume R, Stein R, Pouponnot C, Oetjen E. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase. Cell Signal 2014; 26:1792-9. [PMID: 24726898 DOI: 10.1016/j.cellsig.2014.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 01/25/2023]
Abstract
Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2.
Collapse
Affiliation(s)
| | - Corinna Dickel
- Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabine Schröder
- Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diana Kaiser
- Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Blume
- Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Celio Pouponnot
- Institut Curie, CNRS UMR 3347, INSERM U1021, Paris Sud University Centre de Recherche, Orsay, France
| | - Elke Oetjen
- Department of Pharmacology, University Medical Center Göttingen, Göttingen, Germany; Institute of Clinical Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research) partner site Hamburg/Kiel/Lübeck, Hamburg, Germany; Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
20
|
Xu D, Zhang F, Wang Y, Sun Y, Xu Z. Microcephaly-Associated Protein WDR62 Regulates Neurogenesis through JNK1 in the Developing Neocortex. Cell Rep 2014; 6:104-16. [DOI: 10.1016/j.celrep.2013.12.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/23/2013] [Accepted: 12/11/2013] [Indexed: 01/04/2023] Open
|
21
|
ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression. Protein Cell 2013; 4:711-21. [PMID: 27023913 DOI: 10.1007/s13238-013-3910-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/25/2013] [Indexed: 12/21/2022] Open
Abstract
Mutations in LR RK2 (Leucine rich repeat kinase 2) are a major cause of Parkinson's disease (PD). We and others reported recently that expression of the pathogenic gainof-function mutant form of LRRK2, LRRK2 G2019S, induces mitochondrial fission in neurons through DLP1. Here we provide evidence that expression of LRRK2 G2019S stimulates mitochondria loss or mitophagy. We have characterized several LRRK2 interacting proteins and found that LRRK2 interacts with ULK1 which plays an essential role in autophagy. Knockdown of either ULK1 or DLP1 expression with shRNAs suppresses LRRK2 G2019S expression-induced mitochondrial clearance, suggesting that LRRK2 G2019S expression induces mitochondrial fission through DLP1 followed by mitophagy via an ULK1 dependent pathway. In addition to ULK1, we found that LRRK2 interacts with the endogenous MKK4/7, JIP3 and coordinates with them in the activation of JNK signaling. Interestingly, LRRK2 G2019S-induced loss of mitochondria can also be suppressed by 3 different JNK inhibitors, implying the involvement of the JNK pathway in the pathogenic mechanism of mutated LRRK2. Thus our findings may provide an insight into the complicated pathogenesis of PD as well as some clues to the development of novel therapeutic strategies.
Collapse
|
22
|
Humphrey RK, Yu SMA, Bellary A, Gonuguntla S, Yebra M, Jhala US. Lysine 63-linked ubiquitination modulates mixed lineage kinase-3 interaction with JIP1 scaffold protein in cytokine-induced pancreatic β cell death. J Biol Chem 2013; 288:2428-40. [PMID: 23172226 PMCID: PMC3554912 DOI: 10.1074/jbc.m112.425884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/16/2012] [Indexed: 12/14/2022] Open
Abstract
The mixed lineage kinase MLK3 plays a crucial role in compromising mitochondrial integrity and functions as a proapoptotic competence factor in the early stages of cytokine-induced pancreatic β cell death. In an effort to identify mechanisms that regulate MLK3 activity in β cells, we discovered that IL-1β stimulates Lys-63-linked ubiquitination of MLK3 via a conserved, TRAF6-binding peptapeptide motif in the catalytic domain of the kinase. TRAF6-mediated ubiquitination was required for dissociation of inactive monomeric MLK3 from the scaffold protein IB1/JIP1, facilitating the subsequent dimerization, autophosphorylation, and catalytic activation of MLK3. Inability to ubiquitinate MLK3, or the presence of A20, an upstream Lys-63-linked deubiquitinase, strongly curtailed the ability of MLK3 to affect the proapoptotic translocation of BAX in cytokine-stimulated pancreatic β cells, an early step in the progression toward β cell death. These studies suggest a novel mechanism for MLK3 activation and provide new clues for therapeutic intervention in promoting β cell survival.
Collapse
Affiliation(s)
- Rohan K. Humphrey
- From the Pediatric Diabetes Research Center, University of California, San Diego, School of Medicine, La Jolla, California 92037
| | - Shu Mei A. Yu
- From the Pediatric Diabetes Research Center, University of California, San Diego, School of Medicine, La Jolla, California 92037
| | - Aditi Bellary
- From the Pediatric Diabetes Research Center, University of California, San Diego, School of Medicine, La Jolla, California 92037
| | - Sumati Gonuguntla
- From the Pediatric Diabetes Research Center, University of California, San Diego, School of Medicine, La Jolla, California 92037
| | - Myra Yebra
- From the Pediatric Diabetes Research Center, University of California, San Diego, School of Medicine, La Jolla, California 92037
| | - Ulupi S. Jhala
- From the Pediatric Diabetes Research Center, University of California, San Diego, School of Medicine, La Jolla, California 92037
| |
Collapse
|
23
|
Ma XJ, Xue L. [Regulation of the JNK signaling pathway by dual leucine zipper kinase DLK.]. YI CHUAN = HEREDITAS 2012; 32:785-90. [PMID: 20709675 DOI: 10.3724/sp.j.1005.2010.00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The C-Jun NH2-terminal kinase (JNK) belongs to the evolutionarily conserved sub-group of mitogen-activated protein (MAP) kinases family. Many studies have shown that JNK pathway plays physiological roles in cell proliferation, differentiation, migration and apoptosis, and its deregulation has been associated with developmental defects and various human diseases. Dual leucine zipper kinase (DLK) is a member of the mixed-lineage kinases that performs important cellu-lar functions as a MAP triple kinase (MAPKKK) in regulating the JNK signaling pathway. In this paper, we described the DLK protein structures, physiological roles, and their functional interactions with JNK signaling, as well as the molecular mechanisms underlying their involvement in various human diseases.
Collapse
Affiliation(s)
- Xian-Jue Ma
- School of Life Science and Technology, Tongji University, Shanghai, China.
| | | |
Collapse
|
24
|
Yang T, Sun Y, Zhang F, Zhu Y, Shi L, Li H, Xu Z. POSH localizes activated Rac1 to control the formation of cytoplasmic dilation of the leading process and neuronal migration. Cell Rep 2012; 2:640-51. [PMID: 22959435 DOI: 10.1016/j.celrep.2012.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/02/2012] [Accepted: 08/13/2012] [Indexed: 11/15/2022] Open
Abstract
The formation of proximal cytoplasmic dilation in the leading process (PCDLP) of migratory neocortical neurons is crucial for somal translocation and neuronal migration, processes that require the elaborate coordination of F-actin dynamics, centrosomal movement, and nucleokinesis. However, the underlying molecular mechanisms remain poorly understood. Here, we show that the Rac1-interacting scaffold protein POSH is essential for neuronal migration in vivo. We demonstrate that POSH is concentrated in the PCDLP and that knockdown of POSH impairs PCDLP formation, centrosome translocation, and nucleokinesis. Furthermore, POSH colocalizes with F-actin and the activated form of Rac1. Knockdown of POSH impairs F-actin assembly and delocalizes activated Rac1. Interference of Rac1 activity also disrupts F-actin assembly and PCDLP formation and perturbs neuronal migration. Thus, we have uncovered a mechanism by which POSH regulates the localization of activated Rac1 and F-actin assembly to control PCDLP formation and subsequent somal translocation of migratory neurons.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Niu J, Yu M, Wang C, Xu Z. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J Neurochem 2012; 122:650-8. [PMID: 22639965 DOI: 10.1111/j.1471-4159.2012.07809.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the leading causes of genetically inherited Parkinson's disease (PD) identified so far. The underlying mechanism whereby missense alterations in LRRK2 initiate neurodegeneration remains largely unclear. Mitochondrial dysfunction has been recognized to contribute to the pathogenesis of both sporadic and familial PD. The pathogenic gain-of-function mutant form of LRRK2, LRRK2 G2019S, is associated with elevated kinase activity and PD. Here we show that LRRK2 G2019S can cause defects in the morphology and dynamics of mitochondria in cortical neurons. In neurons, endogenous LRRK2 and the mitochondrial fission factor Dynamin like protein 1 (DLP1) interact with and partially co-localize with each other. DLP1 plays an essential role in LRRK2-induced mitochondrial fission. In support of this, expression of LRRK2 leads to the translocation of DLP1 from the cytosol to the mitochondria and knockdown of DLP1 expression inhibits LRRK2-induced mitochondrial fission. In addition, co-expression of LRRK2 and DLP1 induces mitochondrial clearance. Furthermore, we have found that expression of LRRK2 leads to increased reactive oxygen species levels in cells. Taken together, our results provide insights into the pathobiology of LRRK2 and suggest that LRRK2 G2019S may induce neuronal dysfunction or cell death by disturbing normal mitochondrial fission/fusion dynamics and function.
Collapse
Affiliation(s)
- Jingwen Niu
- The National Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
26
|
Wilhelm M, Kukekov NV, Schmit TL, Biagas KV, Sproul AA, Gire S, Maes ME, Xu Z, Greene LA. Sh3rf2/POSHER protein promotes cell survival by ring-mediated proteasomal degradation of the c-Jun N-terminal kinase scaffold POSH (Plenty of SH3s) protein. J Biol Chem 2011; 287:2247-56. [PMID: 22128169 DOI: 10.1074/jbc.m111.269431] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report that Sh3rf2, a homologue of the pro-apoptotic scaffold POSH (Plenty of SH3s), acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway. siRNA-mediated knockdown of Sh3rf2 promotes apoptosis of neuronal PC12 cells, cultured cortical neurons, and C6 glioma cells. This death appears to result from activation of JNK signaling. Loss of Sh3rf2 triggers activation of JNK and its target c-Jun. Also, apoptosis promoted by Sh3rf2 knockdown is inhibited by dominant-negative c-Jun as well as by a JNK inhibitor. Investigation of the mechanism by which Sh3rf2 regulates cell survival implicates POSH, a scaffold required for activation of pro-apoptotic JNK/c-Jun signaling. In cells lacking POSH, Sh3rf2 knockdown is unable to activate JNK. We further find that Sh3rf2 binds POSH to reduce its levels by a mechanism that requires the RING domains of both proteins and that appears to involve proteasomal POSH degradation. Conversely, knockdown of Sh3rf2 promotes the stabilization of POSH protein and activation of JNK signaling. Finally, we show that endogenous Sh3rf2 protein rapidly decreases following several different apoptotic stimuli and that knockdown of Sh3rf2 activates the pro-apoptotic JNK pathway in neuronal cells. These findings support a model in which Sh3rf2 promotes proteasomal degradation of pro-apoptotic POSH in healthy cells and in which apoptotic stimuli lead to rapid loss of Sh3rf2 expression, and consequently to stabilization of POSH and JNK activation and cell death. On the basis of these observations, we propose the alternative name POSHER (POSH-eliminating RING protein) for the Sh3rf2 protein.
Collapse
Affiliation(s)
- Michael Wilhelm
- Departments of Pediatrics, Columbia University Health Sciences, New York, New York10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Martin J, St-Pierre MV, Dufour JF. Hit proteins, mitochondria and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:626-32. [PMID: 21316334 DOI: 10.1016/j.bbabio.2011.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
The histidine triad (HIT) superfamily comprises proteins that share the histidine triad motif, His-ϕ-His-ϕ-His-ϕ-ϕ, where ϕ is a hydrophobic amino acid. HIT proteins are ubiquitous in prokaryotes and eukaryotes. HIT proteins bind nucleotides and exert dinucleotidyl hydrolase, nucleotidylyl transferase or phosphoramidate hydrolase enzymatic activity. In humans, 5 families of HIT proteins are recognized. The accumulated epidemiological and experimental evidence indicates that two branches of the superfamily, the HINT (Histidine Triad Nucleotide Binding) members and FHIT (Fragile Histidine Triad), have tumor suppressor properties but a conclusive physiological role can still not be assigned to these proteins. Aprataxin forms another discrete branch of the HIT superfamily, is implicated in DNA repair mechanisms and unlike the HINT and FHIT members, a defective protein can be conclusively linked to a disease, ataxia with oculomotor apraxia type 1. The scavenger mRNA decapping enzyme, DcpS, forms a fourth branch of the HIT superfamily. Finally, the GalT enzymes, which exert specific nucleoside monophosphate transferase activity, form a fifth branch that is not implicated in tumorigenesis. The molecular mechanisms by which the HINT and FHIT proteins participate in bioenergetics of cancer are just beginning to be unraveled. Their purported actions as tumor suppressors are highlighted in this review.
Collapse
Affiliation(s)
- Juliette Martin
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Switzerland
| | | | | |
Collapse
|
28
|
Abstract
Transcription factors are the common convergence points of signal transduction pathways to affect gene transcription. Signal transduction activity results in posttranslational modification (PTM) of transcription factors and the sum of these modifications at any given time point will determine the action of the transcription factor. It has been suggested that these PTMs provide a transcription factor code analogous to the histone code. However, the number and variety of these modifications and the lack of knowledge in general of their dynamics precludes at present a concise view of how combinations of PTMs affect transcription factor function. Also, a single type of PTM such as phosphorylation can have opposing effects on transcription factor activity. Transcription factors of the Forkhead box O (FOXO) class are predominantly regulated through signaling, by phosphoinositide 3-kinase/protein kinase B (also known as AKT) pathway and a reactive oxygen species/c-Jun N-terminal kinase pathway. Both pathways result in increased FOXO phosphorylation yet with opposing result. Whereas PKB-mediated phosphorylation inactivates FOXO, c-Jun N-terminal kinase-mediated phosphorylation results in activation of FOXO. Here we discuss regulation of FOXO transcription factors by phosphorylation as an example for understanding integration of signal transduction at the level of transcription activity.
Collapse
|
29
|
Regulation of the protein stability of POSH and MLK family. Protein Cell 2010; 1:871-8. [PMID: 21203929 DOI: 10.1007/s13238-010-0111-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/08/2010] [Indexed: 01/05/2023] Open
Abstract
Sequential activation of the JNK pathway components, including Rac1/Cdc42, MLKs (mixed-lineage kinases), MKK4/7 and JNKs, plays a required role in many cell death paradigms. Those components are organized by a scaffold protein, POSH (Plenty of SH3's), to ensure the effective activation of the JNK pathway and cell death upon apoptotic stimuli. We have shown recently that the expression of POSH and MLK family proteins are regulated through protein stability. By generating a variety of mutants, we provide evidence here that the Nterminal half of POSH is accountable for its stability regulation and its over-expression-induced cell death. In addition, POSH's ability to induce apoptosis is correlated with its stability as well as its MLK binding ability. MLK family's stability, like that of POSH, requires activation of JNKs. However, we were surprised to find out that the widely used dominant negative (d/n) form of c-Jun could down-regulate MLK's stability, indicating that peptide from d/n c-Jun can be potentially developed into a therapeutical drug.
Collapse
|
30
|
Dickson HM, Zurawski J, Zhang H, Turner DL, Vojtek AB. POSH is an intracellular signal transducer for the axon outgrowth inhibitor Nogo66. J Neurosci 2010; 30:13319-25. [PMID: 20926658 PMCID: PMC2963859 DOI: 10.1523/jneurosci.1324-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/22/2010] [Accepted: 08/07/2010] [Indexed: 01/31/2023] Open
Abstract
Myelin-derived inhibitors limit axon outgrowth and plasticity during development and in the adult mammalian CNS. Nogo66, a functional domain of the myelin-derived inhibitor NogoA, signals through the PirB receptor to inhibit axon outgrowth. The signaling pathway mobilized by Nogo66 engagement of PirB is not well understood. We identify a critical role for the scaffold protein Plenty of SH3s (POSH) in relaying process outgrowth inhibition downstream of Nogo66 and PirB. Blocking the function of POSH, or two POSH-associated proteins, leucine zipper kinase (LZK) and Shroom3, with RNAi in cortical neurons leads to release from myelin and Nogo66 inhibition. We also observed autocrine inhibition of process outgrowth by NogoA, and suppression analysis with the POSH-associated kinase LZK demonstrated that LZK operates downstream of NogoA and PirB in a POSH-dependent manner. In addition, cerebellar granule neurons with an RNAi-mediated knockdown in POSH function were refractory to the inhibitory action of Nogo66, indicating that a POSH-dependent mechanism operates to inhibit axon outgrowth in different types of CNS neurons. These studies delineate an intracellular signaling pathway for process outgrowth inhibition by Nogo66, comprised of NogoA, PirB, POSH, LZK, and Shroom3, and implicate the POSH complex as a potential therapeutic target to enhance axon outgrowth and plasticity in the injured CNS.
Collapse
Affiliation(s)
| | | | - Huanqing Zhang
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - David L. Turner
- Department of Biological Chemistry and
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|
31
|
POSH is involved in Eiger-Basket (TNF-JNK) signaling and embryogenesis in Drosophila. J Genet Genomics 2010; 37:605-19. [DOI: 10.1016/s1673-8527(09)60080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/07/2010] [Accepted: 06/17/2010] [Indexed: 01/08/2023]
|
32
|
Humphrey RK, Newcomb CJ, Yu SMA, Hao E, Yu D, Krajewski S, Du K, Jhala US. Mixed lineage kinase-3 stabilizes and functionally cooperates with TRIBBLES-3 to compromise mitochondrial integrity in cytokine-induced death of pancreatic beta cells. J Biol Chem 2010; 285:22426-36. [PMID: 20421299 PMCID: PMC2903363 DOI: 10.1074/jbc.m110.123786] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 04/09/2010] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt.
Collapse
Affiliation(s)
- Rohan K. Humphrey
- From the Department of Pediatrics, University of California, San Diego, La Jolla, California 92037
| | - Christina J. Newcomb
- From the Department of Pediatrics, University of California, San Diego, La Jolla, California 92037
| | - Shu-Mei A. Yu
- From the Department of Pediatrics, University of California, San Diego, La Jolla, California 92037
| | - Ergeng Hao
- From the Department of Pediatrics, University of California, San Diego, La Jolla, California 92037
| | - Doris Yu
- From the Department of Pediatrics, University of California, San Diego, La Jolla, California 92037
| | - Stan Krajewski
- the Sanford-Burnham Medical Research Institute, La Jolla, California 92037, and
| | - Keyong Du
- the Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111
| | - Ulupi S. Jhala
- From the Department of Pediatrics, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
33
|
Lennox AL, Stronach B. POSH misexpression induces caspase-dependent cell death in Drosophila. Dev Dyn 2010; 239:651-64. [PMID: 20014406 DOI: 10.1002/dvdy.22186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
POSH (Plenty of SH3 domains) is a scaffold for signaling proteins regulating cell survival. Specifically, POSH promotes assembly of a complex including Rac GTPase, mixed lineage kinase (MLK), MKK7, and Jun kinase (JNK). In Drosophila, genetic analysis implicated POSH in Tak1-dependent innate immune response, in part through regulation of JNK signaling. Homologs of the POSH signaling complex components, MLK and MKK7, are essential in Drosophila embryonic dorsal closure. Using a gain-of-function approach, we tested whether POSH plays a role in this process. Ectopic expression of POSH in the embryo causes dorsal closure defects due to apoptosis of the amnioserosa, but ectodermal JNK signaling is normal. Phenotypic consequences of POSH expression were found to be dependent on Drosophila Nc, the caspase-9 homolog, but only partially on Tak1 and not at all on Slpr and Hep. These results suggest that POSH may use different signaling complexes to promote cell death in distinct contexts.
Collapse
Affiliation(s)
- Ashley L Lennox
- Department of Biological Sciences, 202 Life Sciences Annex, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
34
|
IL-1β induces ER stress in a JNK dependent manner that determines cell death in human pancreatic epithelial MIA PaCa-2 cells. Apoptosis 2010; 15:864-76. [DOI: 10.1007/s10495-010-0498-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Ren J, Wang Y, Liang Y, Zhang Y, Bao S, Xu Z. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis. J Biol Chem 2010; 285:12695-705. [PMID: 20159986 DOI: 10.1074/jbc.m110.103911] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.
Collapse
Affiliation(s)
- Jinqi Ren
- Institute of Genetics and Developmental Biology, The Key Laboratory of Molecular and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Here, we explore the role of Cbl proteins in regulation of neuronal apoptosis. In two paradigms of neuron apoptosis - nerve growth factor (NGF) deprivation and DNA damage - cellular levels of c-Cbl and Cbl-b fell well before the onset of cell death. NGF deprivation also induced rapid loss of tyrosine phosphorylation (and most likely, activation) of c-Cbl. Targeting c-Cbl and Cbl-b with siRNAs to mimic their loss/inactivation sensitized neuronal cells to death promoted by NGF deprivation or DNA damage. One potential mechanism by which Cbl proteins might affect neuronal death is by regulation of apoptotic c-Jun N-terminal kinase (JNK) signaling. We demonstrate that Cbl proteins interact with the JNK pathway components mixed lineage kinase (MLK) 3 and POSH and that knockdown of Cbl proteins is sufficient to increase JNK pathway activity. Furthermore, expression of c-Cbl blocks the ability of MLKs to signal to downstream components of the kinase cascade leading to JNK activation and protects neuronal cells from death induced by MLKs, but not from downstream JNK activators. On the basis of these findings, we propose that Cbls suppress cell death in healthy neurons at least in part by inhibiting the ability of MLKs to activate JNK signaling. Apoptotic stimuli lead to loss of Cbl protein/activity, thereby removing a critical brake on JNK activation and on cell death.
Collapse
Affiliation(s)
- Andrew A. Sproul
- Department of Biological Sciences, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Zhiheng Xu
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Michael Wilhelm
- Department of Pediatrics, Columbia University, New York, New York
| | - Stephen Gire
- Department of Pediatrics, Columbia University, New York, New York
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
37
|
|
38
|
Cazanave SC, Mott JL, Elmi NA, Bronk SF, Werneburg NW, Akazawa Y, Kahraman A, Garrison SP, Zambetti GP, Charlton MR, Gores GJ. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem 2009; 284:26591-602. [PMID: 19638343 DOI: 10.1074/jbc.m109.022491] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Free fatty acids (FFA) induce hepatocyte lipoapoptosis by a c-Jun N-terminal kinase (JNK)-dependent mechanism. However, the cellular processes by which JNK engages the core apoptotic machinery during lipotoxicity, especially activation of BH3-only proteins, remain incompletely understood. Thus, our aim was to determine whether JNK mediates induction of BH3-only proteins during hepatocyte lipoapoptosis. The saturated FFA palmitate, but not the monounsaturated FFA oleate, induces an increase in PUMA mRNA and protein levels. Palmitate induction of PUMA was JNK1-dependent in primary murine hepatocytes. Palmitate-mediated PUMA expression was inhibited by a dominant negative c-Jun, and direct binding of a phosphorylated c-Jun containing the activator protein 1 complex to the PUMA promoter was identified by electrophoretic mobility shift assay and a chromatin immunoprecipitation assay. Short hairpin RNA-targeted knockdown of PUMA attenuated Bax activation, caspase 3/7 activity, and cell death. Similarly, the genetic deficiency of Puma rendered murine hepatocytes resistant to lipoapoptosis. PUMA expression was also increased in liver biopsy specimens from patients with non-alcoholic steatohepatitis as compared with patients with simple steatosis or controls. Collectively, the data implicate JNK1-dependent PUMA expression as a mechanism contributing to hepatocyte lipoapoptosis.
Collapse
Affiliation(s)
- Sophie C Cazanave
- Miles and Shirley Fitterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Taylor J, Chung KH, Figueroa C, Zurawski J, Dickson HM, Brace EJ, Avery AW, Turner DL, Vojtek AB. The scaffold protein POSH regulates axon outgrowth. Mol Biol Cell 2008; 19:5181-92. [PMID: 18829867 PMCID: PMC2592661 DOI: 10.1091/mbc.e08-02-0231] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 08/28/2008] [Accepted: 09/23/2008] [Indexed: 12/13/2022] Open
Abstract
How scaffold proteins integrate signaling pathways with cytoskeletal components to drive axon outgrowth is not well understood. We report here that the multidomain scaffold protein Plenty of SH3s (POSH) regulates axon outgrowth. Reduction of POSH function by RNA interference (RNAi) enhances axon outgrowth in differentiating mouse primary cortical neurons and in neurons derived from mouse P19 cells, suggesting POSH negatively regulates axon outgrowth. Complementation analysis reveals a requirement for the third Src homology (SH) 3 domain of POSH, and we find that the actomyosin regulatory protein Shroom3 interacts with this domain of POSH. Inhibition of Shroom3 expression by RNAi leads to increased process lengths, as observed for POSH RNAi, suggesting that POSH and Shroom function together to inhibit process outgrowth. Complementation analysis and interference of protein function by dominant-negative approaches suggest that Shroom3 recruits Rho kinase to inhibit process outgrowth. Furthermore, inhibition of myosin II function reverses the POSH or Shroom3 RNAi phenotype, indicating a role for myosin II regulation as a target of the POSH-Shroom complex. Collectively, these results suggest that the molecular scaffold protein POSH assembles an inhibitory complex that links to the actin-myosin network to regulate neuronal process outgrowth.
Collapse
Affiliation(s)
| | - Kwan-Ho Chung
- Program in Neuroscience, and
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | | | | | | | | | | | - David L. Turner
- *Department of Biological Chemistry
- Program in Neuroscience, and
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | | |
Collapse
|
40
|
Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology 2008; 47:1964-73. [PMID: 18506888 DOI: 10.1002/hep.22240] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED Melittin, a water-soluble toxic peptide derived from bee venom of Apis mellifera was reported to have inhibitory effects on hepatocellular carcinoma (HCC). However, its role in antimetastasis and the underlying mechanism remains elusive. By utilizing both HCC cell lines and an animal model based assay system, we found that Rac1, which has been shown to be involved in cancer cell metastasis, is highly expressed in aggressive HCC cell lines and its activity correlated with cell motility and cytoskeleton polymerization. In addition, Rac1-dependent activity and metastatic potential of aggressive HCC cells are remarkably high in both cellular and nude mouse models. We provide evidence here that melittin inhibits the viability and motility of HCC cells in vitro, which correlates with its suppression of Rac1-dependent activity, cell motility, and microfilament depolymerization. Furthermore, melittin suppresses both HCC metastasis and Rac1-dependent activity in nude mouse models. The specificity of the effect of melittin on Rac1 was confirmed in HCC cells both in vitro and in vivo. CONCLUSION Melittin inhibits tumor cell metastasis by reducing cell motility and migration via the suppression of Rac1-dependent pathway, suggesting that melittin is a potential therapeutic agent for HCC.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Traditional Chinese Medicine, Changhai Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Qiao HX, Hao CJ, Li Y, He X, Chen RS, Cui J, Xu ZH, Li W. JNK activation mediates the apoptosis of xCT-deficient cells. Biochem Biophys Res Commun 2008; 370:584-8. [PMID: 18395005 DOI: 10.1016/j.bbrc.2008.03.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 03/27/2008] [Indexed: 12/01/2022]
Abstract
System X(c)(-) is an anionic amino acid transport system highly specific for cystine and glutamate. The underlying mechanism of cell death of cultured cells from the subtle gray (sut) mouse which contains an xCT null mutation remains elucidated. Our results show that the death of sut cells is likely caused by apoptosis mediated by c-Jun N-terminal kinase (JNK). The JNK activation triggers both a caspase-dependent (caspases-9 and -3) and an ER stress-mediated (eIF2 and CHOP) pathway to induce apoptosis. These findings suggest the possible pathways involved in the cell death of xCT-deficient cells.
Collapse
Affiliation(s)
- Hai-Xuan Qiao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics & Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Muñoz-Alonso MJ, González-Santiago L, Zarich N, Martínez T, Alvarez E, Rojas JM, Muñoz A. Plitidepsin has a dual effect inhibiting cell cycle and inducing apoptosis via Rac1/c-Jun NH2-terminal kinase activation in human melanoma cells. J Pharmacol Exp Ther 2007; 324:1093-101. [PMID: 18089842 DOI: 10.1124/jpet.107.132662] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanoma is the most aggressive skin cancer and a serious health problem worldwide because of its increasing incidence and the lack of satisfactory chemotherapy for late stages of the disease. The marine depsipeptide Aplidin (plitidepsin) is an antitumoral agent under phase II clinical development against several neoplasias, including melanoma. We report that plitidepsin has a dual effect on the human SK-MEL-28 and UACC-257 melanoma cell lines; at low concentrations (</=45 nM), it inhibits the cell cycle by inducing G(1) and G(2)/M arrest, whereas at higher concentrations it induces apoptosis as assessed by poly-(ADP-ribose) polymerase cleavage and the appearance of a hypodiploid peak in flow cytometry analyses. Plitidepsin activates Rac1 GTPase and c-Jun NH(2)-terminal kinase (JNK). In addition, it induces AKT and p38 mitogen-activated protein kinase (MAPK) phosphorylation. By using inhibitors, we found that JNK and p38 MAPK activation depends on Rac1 but not on phosphatidylinositol 3-kinase (PI3K), whereas AKT activation is independent of Rac1 but requires PI3K activity. Plitidepsin cytotoxicity diminishes by Rac1 inhibition or by the blockage of JNK and p38 MAPK using 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580), but not by PI3K inhibition using wortmannin or 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). It is remarkable that plitidepsin and dacarbazine, the alkylating agent most active for treating metastatic melanoma, show a synergistic antiproliferative effect that was paralleled at the level of JNK activation. These results indicate that Rac1/JNK activation is critical for cell cycle arrest and apoptosis induction by plitidepsin in melanoma cells. They also support the combined use of plitidepsin and dacarbazine in in vivo studies.
Collapse
Affiliation(s)
- María J Muñoz-Alonso
- Instituto de Investigaciones Biomédicas "Alberto Sols," Arturo Duperier, 4, E-28029 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Plaumann S, Blume R, Börchers S, Steinfelder HJ, Knepel W, Oetjen E. Activation of the dual-leucine-zipper-bearing kinase and induction of beta-cell apoptosis by the immunosuppressive drug cyclosporin A. Mol Pharmacol 2007; 73:652-9. [PMID: 18042735 DOI: 10.1124/mol.107.040782] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Post-transplant diabetes is an untoward effect often observed under immunosuppressive therapy with cyclosporin A. Besides the development of peripheral insulin resistance and a decrease in insulin gene transcription, a beta-cell toxic effect has been described. However, its molecular mechanism remains unknown. In the present study, the effect of cyclosporin A and the dual leucine-zipper-bearing kinase (DLK) on beta-cell survival was investigated. Cyclosporin A decreased the viability of the insulin-producing pancreatic islet cell line HIT in a time- and concentration-dependent manner. Upon exposure to the immunosuppressant fragmentation of DNA, the activation of the effector caspase-3 and a decrease of full-length caspase-3 and Bcl(XL) were observed in HIT cells and in primary mature murine islets, respectively. Cyclosporin A and tacrolimus, both potent inhibitors of the calcium/calmodulin-dependent phosphatase calcineurin, stimulated the enzymatic activity of cellular DLK in an in vitro kinase assay. Immunocytochemistry revealed that the overexpression of DLK but not its kinase-dead mutant induced apoptosis and enhanced cyclosporin A-induced apoptosis to a higher extent than the drug alone. Moreover, in the presence of DLK, the effective concentration for cyclosporin A-caused apoptosis was similar to its known IC(50) value for the inhibition of calcineurin activity in beta cells. These data suggest that cyclosporin A through inhibition of calcineurin activates DLK, thereby leading to beta-cell apoptosis. This action may thus be a novel mechanism through which cyclosporin A precipitates post-transplant diabetes.
Collapse
Affiliation(s)
- Silke Plaumann
- Molecular Pharmacology, University of Göttingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Sun Y, Yang T, Xu Z. The JNK Pathway and Neuronal Migration. J Genet Genomics 2007; 34:957-65. [DOI: 10.1016/s1673-8527(07)60108-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|
45
|
Lyons TR, Thorburn J, Ryan PW, Thorburn A, Anderson SM, Kassenbrock CK. Regulation of the Pro-apoptotic Scaffolding Protein POSH by Akt. J Biol Chem 2007; 282:21987-97. [PMID: 17535800 DOI: 10.1074/jbc.m704321200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
POSH (Plenty of SH3 domains) binds to activated Rac and promotes apoptosis by acting as a scaffold to assemble a signal transduction pathway leading from Rac to JNK activation. Overexpression of POSH induces apoptosis in a variety of cell types, but apoptosis can be prevented by co-expressing the pro-survival protein kinase Akt. We report here that POSH is a direct substrate for phosphorylation by Akt in vivo and in vitro, and we identify a major site of Akt phosphorylation as serine 304 of POSH, which lies within the Rac-binding domain. We further show that phosphorylation of POSH results in a decreased ability to bind activated Rac, as does phosphomimetic S304D and S304E mutation of POSH. S304D mutant POSH also shows a strongly reduced ability to induce apoptosis. These findings identify a novel mechanism by which Akt promotes cell survival.
Collapse
Affiliation(s)
- Traci R Lyons
- Department of Pathology, the University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
c-Jun N-terminal protein kinases (JNK), also known as stress-activated protein kinases, were originally identified by their ability to phosphorylate the N-terminal of the transcription factor c-Jun and by their activation in response to a variety of stresses. JNK are multifunctional kinases involved in many physiological processes. The JNK pathway has been shown to play a major role in apoptosis in many cell death paradigms and its association with a variety of pathological processes is gradually been recognized. This review will concentrate on describing the involvement of the JNK pathway in the context of different diseases and the potential to adopt the JNK pathway components as therapeutic targets.
Collapse
Affiliation(s)
- Jie Cui
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
47
|
Wilhelm M, Kukekov NV, Xu Z, Greene LA. Identification of POSH2, a Novel Homologue of the c-Jun N-Terminal Kinase Scaffold Protein POSH. Dev Neurosci 2007; 29:355-62. [PMID: 17762203 DOI: 10.1159/000105476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/08/2007] [Indexed: 01/12/2023] Open
Abstract
The c-Jun N-terminal kinase (JNK) pathway plays an important role in neuronal apoptosis both during normal CNS development and following stroke in adult animals. As with other MAP kinase pathways, scaffold proteins regulate JNK signaling. The scaffold protein POSH (Plenty of SH3s) enhances JNK activation and apoptosis. We identified a POSH homologue, POSH2, which was cloned from rat brain and is present in cortical neurons in vitro. POSH2 mRNA is expressed in a variety of tissues including brain, and this distribution partially overlaps with that of POSH. POSH2 overexpression promotes JNK activation in HEK293 cells and promotes apoptosis in neuronal PC12 cells, which is blocked by a dominant-negative c-Jun. Finally POSH2 contains a functional RING domain and enhances the stability of coexpressed mixed-lineage kinases. These results indicate that POSH2 may regulate JNK activation and consequent apoptosis under conditions of increased expression.
Collapse
Affiliation(s)
- Michael Wilhelm
- Department of Pediatrics, Columbia University Health Sciences, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
48
|
DeFuria J, Chen P, Shea TB. Divergent effects of the MEKK-1/JNK pathway on NB2a/d1 differentiation: Some activity is required for outgrowth and stabilization of neurites but overactivation inhibits both phenomena. Brain Res 2006; 1123:20-6. [PMID: 17078934 DOI: 10.1016/j.brainres.2006.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/21/2022]
Abstract
c-Jun N-terminal kinase (JNK), along with its upstream activator MEKK-1, is typically thought of as a stress-activated kinase that mediates apoptosis. However, additional studies indicate that the MEKK-1/JNK pathway mediates critical aspects of neuronal survival and differentiation. Herein, we demonstrate that transfection of differentiated NB2a/d1 cells with a construct expression constitutively activated (ca) MEKK-1 increases levels of phospho-dependent neurofilament (NF) immunoreactivity within perikarya, while expression of a dominant-negative (dn) form of MEKK-1 decreases it. Steady-state levels of perikaryal phospho-NF immunoreactivity are reduced and the increase resulting from expression of caMEKK-1 is prevented, by the JNK inhibitor SP600125, suggesting that JNK is a major downstream effector of MEKK-1 on NF phosphorylation. Unexpectedly, both caMEKK-1 and dnMEKK-1 inhibited neuritogenesis as well as translocation of NFs into newly elaborated neurites. The JNK inhibitor SP600125 also inhibited NF transport in a dose-dependent manner. caMEKK-1 also prevented the increase in NF transport otherwise mediated by MAP kinase. Finally, both caMEKK-1 and dnMEKK-1 prevented initial neuritogenesis. These findings indicate that the MEKK-1/JNK pathway regulates critical aspects of initial outgrowth, and subsequent stabilization of axonal neurites.
Collapse
Affiliation(s)
- Jason DeFuria
- Departments of Biological Sciences and Biochemistry, Center Cell Neurobiology and Neurodegeneration Research, University of Massachusetts, Lowell, Lowell, MA 01854, USA
| | | | | |
Collapse
|
49
|
Wilhelm M, Xu Z, Kukekov NV, Gire S, Greene LA. Proapoptotic Nix activates the JNK pathway by interacting with POSH and mediates death in a Parkinson disease model. J Biol Chem 2006; 282:1288-95. [PMID: 17095503 DOI: 10.1074/jbc.m607038200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nix, a pro-apoptotic BH3-only protein, promotes apoptosis of non-neuronal cells, although the mechanisms involved remain incompletely understood. Using a yeast two-hybrid screen with POSH (plenty of SH3 domains, a scaffold involved in activation of the apoptotic JNK/c-Jun pathway) as the bait, we identified an interaction between POSH and Nix. Co-immunoprecipitation and in vitro binding studies confirmed a direct interaction between POSH and Nix in mammalian cells. When overexpressed in HEK293 cells, Nix promotes apoptosis along with enhanced phosphorylation/activation of JNKs and their target c-Jun. These effects appear to be dependent on POSH because Nix does not promote either JNK/c-Jun phosphorylation or apoptosis of 293 cells that do not express POSH. Nix and POSH appear to mutually stabilize one another and this effect could contribute to their promotion of death. Past work showed induction of Nix transcripts in a cellular model of Parkinson disease based on neuronal PC12 cells exposed to 6-hydroxydopamine. Here, we confirm elevation of Nix protein in this model and that Nix over-expression causes apoptotic death of PC12 cells by a mechanism dependent on c-Jun activation. Expression of s-Nix, a dominant-negative form of Nix, protects neuronal PC12 cells from 6-hydroxydopamine but not from nerve growth factor deprivation. These results indicate that Nix promotes cell death via interaction with POSH and activation of the JNK/c-Jun pathway and that Nix protein is induced and contributes to cell death in a cellular model of Parkinson disease.
Collapse
Affiliation(s)
- Michael Wilhelm
- Department of Pediatrics, Columbia University Health Sciences, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
50
|
Schachter KA, Du Y, Lin A, Gallo KA. Dynamic positive feedback phosphorylation of mixed lineage kinase 3 by JNK reversibly regulates its distribution to Triton-soluble domains. J Biol Chem 2006; 281:19134-44. [PMID: 16687404 DOI: 10.1074/jbc.m603324200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MLK3 (mixed lineage kinase 3) is a widely expressed, mammalian serine/threonine protein kinase that activates multiple MAPK pathways. Previously our laboratory used in vivo labeling/mass spectrometry to identify phosphorylation sites of activated MLK3. Seven of 11 identified sites correspond to the consensus motif for phosphorylation by proline-directed kinases. Based on these results, we hypothesized that JNK, or another proline-directed kinase, phosphorylates MLK3 as part of a feedback loop. Herein we provide evidence that MLK3 can be phosphorylated by JNK in vitro and in vivo. Blockade of JNK results in dephosphorylation of MLK3. The hypophosphorylated form of MLK3 is inactive and redistributes to a Triton-insoluble fraction. Recovery from JNK inhibition restores MLK3 solubility and activity, indicating that the redistribution process is reversible. This work describes a novel mode of regulation of MLK3, by which JNK-mediated feedback phosphorylation of MLK3 regulates its activation and deactivation states by cycling between Triton-soluble and Triton-insoluble forms.
Collapse
Affiliation(s)
- Karen A Schachter
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|